1
|
Chesneau C, Larue L, Belbekhouche S. Design of Tailor-Made Biopolymer-Based Capsules for Biological Application by Combining Porous Particles and Polysaccharide Assembly. Pharmaceutics 2023; 15:1718. [PMID: 37376165 DOI: 10.3390/pharmaceutics15061718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Various approaches have been described in the literature to demonstrate the possibility of designing biopolymer particles with well-defined characteristics, such as size, chemical composition or mechanical properties. From a biological point of view, the properties of particle have been related to their biodistribution and bioavailability. Among the reported core-shell nanoparticles, biopolymer-based capsules can be used as a versatile platform for drug delivery purposes. Among the known biopolymers, the present review focuses on polysaccharide-based capsules. We only report on biopolyelectrolyte capsules fabricated by combining porous particles as a template and using the layer-by-layer technique. The review focuses on the major steps of the capsule design, i.e., the fabrication and subsequent use of the sacrificial porous template, multilayer coating with polysaccharides, the removal of the porous template to obtain the capsules, capsule characterisation and the application of capsules in the biomedical field. In the last part, selected examples are presented to evidence the major benefits of using polysaccharide-based capsules for biological purposes.
Collapse
Affiliation(s)
- Cléa Chesneau
- Université Paris Est Creteil, CNRS, Institut Chimie et Matériaux Paris Est, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France
| | - Laura Larue
- Université Paris Est Creteil, CNRS, Institut Chimie et Matériaux Paris Est, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France
| | - Sabrina Belbekhouche
- Université Paris Est Creteil, CNRS, Institut Chimie et Matériaux Paris Est, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France
| |
Collapse
|
2
|
Ghiman R, Pop R, Rugina D, Focsan M. Recent progress in preparation of microcapsules with tailored structures for bio-medical applications. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
3
|
Vikulina AS, Campbell J. Biopolymer-Based Multilayer Capsules and Beads Made via Templating: Advantages, Hurdles and Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2502. [PMID: 34684943 PMCID: PMC8537085 DOI: 10.3390/nano11102502] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
One of the undeniable trends in modern bioengineering and nanotechnology is the use of various biomolecules, primarily of a polymeric nature, for the design and formulation of novel functional materials for controlled and targeted drug delivery, bioimaging and theranostics, tissue engineering, and other bioapplications. Biocompatibility, biodegradability, the possibility of replicating natural cellular microenvironments, and the minimal toxicity typical of biogenic polymers are features that have secured a growing interest in them as the building blocks for biomaterials of the fourth generation. Many recent studies showed the promise of the hard-templating approach for the fabrication of nano- and microparticles utilizing biopolymers. This review covers these studies, bringing together up-to-date knowledge on biopolymer-based multilayer capsules and beads, critically assessing the progress made in this field of research, and outlining the current challenges and perspectives of these architectures. According to the classification of the templates, the review sequentially considers biopolymer structures templated on non-porous particles, porous particles, and crystal drugs. Opportunities for the functionalization of biopolymer-based capsules to tailor them toward specific bioapplications is highlighted in a separate section.
Collapse
Affiliation(s)
- Anna S. Vikulina
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg, 1, 14476 Potsdam, Germany
- Bavarian Polymer Institute, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Dr.-Mack-Straße, 77, 90762 Fürth, Germany
| | - Jack Campbell
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK;
| |
Collapse
|
4
|
Cutuli MA, Guarnieri A, Pietrangelo L, Magnifico I, Venditti N, Recchia L, Mangano K, Nicoletti F, Di Marco R, Petronio Petronio G. Potential Mucosal Irritation Discrimination of Surface Disinfectants Employed against SARS-CoV-2 by Limacus flavus Slug Mucosal Irritation Assay. Biomedicines 2021; 9:424. [PMID: 33919850 PMCID: PMC8070772 DOI: 10.3390/biomedicines9040424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 11/25/2022] Open
Abstract
Preventive measures have proven to be the most effective strategy to counteract the spread of the SARS-CoV-2 virus. Among these, disinfection is strongly suggested by international health organizations' official guidelines. As a consequence, the increase of disinfectants handling is going to expose people to the risk of eyes, mouth, nose, and mucous membranes accidental irritation. To assess mucosal irritation, previous studies employed the snail Arion lusitanicus as the mucosal model in Slug Mucosal Irritation (SMI) assay. The obtained results confirmed snails as a suitable experimental model for their anatomical characteristics superimposable to the human mucosae and the different easily observed readouts. Another terrestrial gastropod, Limacus flavus, also known as " Yellow slug ", due to its larger size and greater longevity, has already been proposed as an SMI assay alternative model. In this study, for the first time, in addition to the standard parameters recorded in the SMI test, the production of yellow pigment in response to irritants, unique to the snail L. flavus, was evaluated. Our results showed that this species would be a promising model for mucosal irritation studies. The study conducted testing among all those chemical solutions most commonly recommended against the SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Marco Alfio Cutuli
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy; (M.A.C.); (A.G.); (L.P.); (I.M.); (N.V.); (L.R.); (G.P.P.)
| | - Antonio Guarnieri
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy; (M.A.C.); (A.G.); (L.P.); (I.M.); (N.V.); (L.R.); (G.P.P.)
| | - Laura Pietrangelo
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy; (M.A.C.); (A.G.); (L.P.); (I.M.); (N.V.); (L.R.); (G.P.P.)
| | - Irene Magnifico
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy; (M.A.C.); (A.G.); (L.P.); (I.M.); (N.V.); (L.R.); (G.P.P.)
| | - Noemi Venditti
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy; (M.A.C.); (A.G.); (L.P.); (I.M.); (N.V.); (L.R.); (G.P.P.)
| | - Laura Recchia
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy; (M.A.C.); (A.G.); (L.P.); (I.M.); (N.V.); (L.R.); (G.P.P.)
| | - Katia Mangano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (K.M.); (F.N.)
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (K.M.); (F.N.)
| | - Roberto Di Marco
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy; (M.A.C.); (A.G.); (L.P.); (I.M.); (N.V.); (L.R.); (G.P.P.)
| | - Giulio Petronio Petronio
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy; (M.A.C.); (A.G.); (L.P.); (I.M.); (N.V.); (L.R.); (G.P.P.)
| |
Collapse
|
5
|
Campbell J, Abnett J, Kastania G, Volodkin D, Vikulina AS. Which Biopolymers Are Better for the Fabrication of Multilayer Capsules? A Comparative Study Using Vaterite CaCO 3 as Templates. ACS APPLIED MATERIALS & INTERFACES 2021; 13:3259-3269. [PMID: 33410679 PMCID: PMC7880531 DOI: 10.1021/acsami.0c21194] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The polymer layer-by-layer assembly is accounted among the most attractive approaches for the design of advanced drug delivery platforms and biomimetic materials in 2D and 3D. The multilayer capsules can be made of synthetic or biologically relevant (e.g., natural) polymers. The biopolymers are advantageous for bioapplications; however, the design of such "biocapsules" is more challengeable due to intrinsic complexity and lability of biopolymers. Until now, there are no systematic studies that report the formation mechanism for multilayer biocapsules templated upon CaCO3 crystals. This work evaluates the structure-property relationship for 16 types of capsules made of different biopolymers and proposes the capsule formation mechanism. The capsules have been fabricated upon mesoporous cores of vaterite CaCO3, which served as a sacrificial template. Stable capsules of polycations poly-l-lysine or protamine and four different polyanions were successfully formed. However, capsules made using the polycation collagen and dextran amine underwent dissolution. Formation of the capsules has been correlated with the stability of the respective polyelectrolyte complexes at increased ionic strength. All formed capsules shrink upon core dissolution and the degree of shrinkage increased in the series of polyanions: heparin sulfate < dextran sulfate < chondroitin sulfate < hyaluronic acid. The same trend is observed for capsule adhesiveness to the glass surface, which correlates with the decrease in polymer charge density. The biopolymer length and charge density govern the capsule stability and internal structure; all formed biocapsules are of a matrix-type, other words are microgels. These findings can be translated to other biopolymers to predict biocapsule properties.
Collapse
Affiliation(s)
- Jack Campbell
- Department
of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University, Clifton Lane, NG11 8NS Nottingham, U.K.
| | - Jordan Abnett
- Department
of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University, Clifton Lane, NG11 8NS Nottingham, U.K.
| | - Georgia Kastania
- Department
of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University, Clifton Lane, NG11 8NS Nottingham, U.K.
| | - Dmitry Volodkin
- Department
of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University, Clifton Lane, NG11 8NS Nottingham, U.K.
- . Phone: +44-115-848-3140
| | - Anna S. Vikulina
- Branch
Bioanalytics and Bioprocesses, Fraunhofer
Institute for Cell Therapy and Immunology, Am Mühlenberg 13-Golm, 14476 Potsdam, Germany
- . Phone: +49-331 58187-122
| |
Collapse
|
6
|
Sharma V, Sundaramurthy A. Multilayer capsules made of weak polyelectrolytes: a review on the preparation, functionalization and applications in drug delivery. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:508-532. [PMID: 32274289 PMCID: PMC7113543 DOI: 10.3762/bjnano.11.41] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/25/2020] [Indexed: 06/11/2023]
Abstract
Multilayer capsules have been of great interest for scientists and medical communities in multidisciplinary fields of research, such as drug delivery, sensing, biomedicine, theranostics and gene therapy. The most essential attributes of a drug delivery system are considered to be multi-functionality and stimuli responsiveness against a range of external and internal stimuli. Apart from the highly explored strong polyelectrolytes, weak polyelectrolytes offer great versatility with a highly controllable architecture, unique stimuli responsiveness and easy tuning of the properties for intracellular delivery of cargo. This review describes the progress in the preparation, functionalization and applications of capsules made of weak polyelectrolytes or their combination with biopolymers. The selection of a sacrificial template for capsule formation, the driving forces involved, the encapsulation of a variety of cargo and release based on different internal and external stimuli have also been addressed. We describe recent perspectives and obstacles of weak polyelectrolyte/biopolymer systems in applications such as therapeutics, biosensing, bioimaging, bioreactors, vaccination, tissue engineering and gene delivery. This review gives an emerging outlook on the advantages and unique responsiveness of weak polyelectrolyte based systems that can enable their widespread use in potential applications.
Collapse
Affiliation(s)
- Varsha Sharma
- Department of Biomedical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Anandhakumar Sundaramurthy
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| |
Collapse
|
7
|
Del Mercato LL, Passione LG, Izzo D, Rinaldi R, Sannino A, Gervaso F. Design and characterization of microcapsules-integrated collagen matrixes as multifunctional three-dimensional scaffolds for soft tissue engineering. J Mech Behav Biomed Mater 2016; 62:209-221. [PMID: 27219851 DOI: 10.1016/j.jmbbm.2016.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/28/2016] [Accepted: 05/05/2016] [Indexed: 02/03/2023]
Abstract
Three-dimensional (3D) porous scaffolds based on collagen are promising candidates for soft tissue engineering applications. The addition of stimuli-responsive carriers (nano- and microparticles) in the current approaches to tissue reconstruction and repair brings about novel challenges in the design and conception of carrier-integrated polymer scaffolds. In this study, a facile method was developed to functionalize 3D collagen porous scaffolds with biodegradable multilayer microcapsules. The effects of the capsule charge as well as the influence of the functionalization methods on the binding efficiency to the scaffolds were studied. It was found that the binding of cationic microcapsules was higher than that of anionic ones, and application of vacuum during scaffolds functionalization significantly hindered the attachment of the microcapsules to the collagen matrix. The physical properties of microcapsules-integrated scaffolds were compared to pristine scaffolds. The modified scaffolds showed swelling ratios, weight losses and mechanical properties similar to those of unmodified scaffolds. Finally, in vitro diffusional tests proved that the collagen scaffolds could stably retain the microcapsules over long incubation time in Tris-HCl buffer at 37°C without undergoing morphological changes, thus confirming their suitability for tissue engineering applications. The obtained results indicate that by tuning the charge of the microcapsules and by varying the fabrication conditions, collagen scaffolds patterned with high or low number of microcapsules can be obtained, and that the microcapsules-integrated scaffolds fully retain their original physical properties.
Collapse
Affiliation(s)
- Loretta L Del Mercato
- Nanoscience Institute-CNR, Euromediterranean Center for Nanomaterial Modelling and Technology (ECMT), via Arnesano, 73100 Lecce, Italy; CNR NANOTEC - Institute of Nanotechnology c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy.
| | - Laura Gioia Passione
- Nanoscience Institute-CNR, Euromediterranean Center for Nanomaterial Modelling and Technology (ECMT), via Arnesano, 73100 Lecce, Italy; CNR NANOTEC - Institute of Nanotechnology c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
| | - Daniela Izzo
- DHITECH s.c.a.r.l - High Technology Cluster c/o Campus Ecotekne, Via Monteroni s.n., 73100 Lecce, Italy
| | - Rosaria Rinaldi
- Nanoscience Institute-CNR, Euromediterranean Center for Nanomaterial Modelling and Technology (ECMT), via Arnesano, 73100 Lecce, Italy; Department of Mathematics and Physics "Ennio De Giorgi" University of Salento, via Arnesano, 73100 Lecce, Italy
| | - Alessandro Sannino
- Department of Engineering for Innovation, University of Salento, Via Monteroni s.n., 73100 Lecce, Italy
| | - Francesca Gervaso
- Department of Engineering for Innovation, University of Salento, Via Monteroni s.n., 73100 Lecce, Italy.
| |
Collapse
|
8
|
Sundaramurthy A, Vergaelen M, Maji S, Auzély-Velty R, Zhang Z, De Geest BG, Hoogenboom R. Hydrogen bonded multilayer films based on poly(2-oxazoline)s and tannic acid. Adv Healthc Mater 2014; 3:2040-7. [PMID: 25274164 DOI: 10.1002/adhm.201400377] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/26/2014] [Indexed: 12/12/2022]
Abstract
In recent years, the layer-by-layer (LbL) assembly based on hydrogen bonding interactions is gaining popularity for the preparation of thin film coatings, especially for biomedical purposes, based on the use of neutral, non-toxic building blocks. The use of tannic acid (TA) as hydrogen bonding donor is especially interesting as it results in LbL films that are stable under physiological conditions. In this work, investigations on the LbL thin film preparation of TA with poly(2-oxazoline)s with varying hydrophilicity, namely poly(2-methyl-2-oxazoline) (PMeOx), poly(2-ethyl-2-oxazoline) (PEtOx) and poly(2-n-propyl-2-oxazoline) (PnPropOx), are reported. The LbL assembly process is investigated by quartz crystal microbalance and UV-vis spectroscopy revealing linear growth of the film thickness. Furthermore, isothermal titration calorimetry demonstrates the LbL assembly of TA, and PMeOx is found to be mostly enthalpy driven while the LbL assembly of TA with PEtOx and PnPropOx is mostly entropy driven. Finally, scanning electron microscopy and ellipsometry demonstrate the formation of smooth thin films for LbL assembly of TA with all three polymers. Such poly(2-oxazoline) coatings have high potential for use as anti-biofouling coatings.
Collapse
Affiliation(s)
- Anandhakumar Sundaramurthy
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry; Ghent University; Krijgslaan 281 S4 B-9000 Ghent Belgium
- SRM Research Institute; SRM University; Kattankulathur, Chennai 603 203 Tamil Nadu India
| | - Maarten Vergaelen
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry; Ghent University; Krijgslaan 281 S4 B-9000 Ghent Belgium
| | - Samarendra Maji
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry; Ghent University; Krijgslaan 281 S4 B-9000 Ghent Belgium
| | | | - Zhiyue Zhang
- Department of Pharmaceutics; Ghent University; Harelbekestraat 72 9000 Ghent Belgium
| | - Bruno G. De Geest
- Department of Pharmaceutics; Ghent University; Harelbekestraat 72 9000 Ghent Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry; Ghent University; Krijgslaan 281 S4 B-9000 Ghent Belgium
| |
Collapse
|
9
|
De Koker S, Fierens K, Dierendonck M, De Rycke R, Lambrecht BN, Grooten J, Remon JP, De Geest BG. Nanoporous polyelectrolyte vaccine microcarriers. A formulation platform for enhancing humoral and cellular immune responses. J Control Release 2014; 195:99-109. [PMID: 25078552 DOI: 10.1016/j.jconrel.2014.07.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/18/2014] [Accepted: 07/20/2014] [Indexed: 11/19/2022]
Abstract
In this paper we report on the design, characterization and immuno-biological evaluation of nanoporous polyelectrolyte microparticles as vaccine carrier. Relative to soluble antigen, formulation of antigen as a sub-10 μm particle can strongly enhance antigen-specific cellular immune responses. The latter is crucial to confer protective immunity against intracellular pathogens and for anti-cancer vaccines. However, a major bottleneck in microparticulate vaccine formulation is the development of generic strategies that afford antigen encapsulation under benign and scalable conditions. Our strategy is based on spray drying of a dilute aqueous solution of antigen, oppositely charged polyelectrolytes and mannitol as a pore-forming component. The obtained solid microparticles can be redispersed in aqueous medium, leading to leaching out of the mannitol, thereby creating a highly porous internal structure. This porous structure enhances enzymatic processing of encapsulated proteins. After optimizing the conditions to process these microparticles we demonstrate that they strongly enhance cross-presentation in vitro by dendritic cells to CD8 T cells. In vivo experiments in mice confirm that this vaccine formulation technology is capable of enhancing cellular immune responses.
Collapse
Affiliation(s)
- Stefaan De Koker
- Department of Pharmaceutics, Ghent University, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Zwijnaarde, Ghent, Belgium
| | - Kaat Fierens
- VIB Inflammation Research Center, University of Ghent, Ghent, Belgium; Department of Respiratory Medicine, University Hospital Ghent, Ghent, Belgium
| | | | - Riet De Rycke
- VIB Inflammation Research Center, University of Ghent, Ghent, Belgium; Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- VIB Inflammation Research Center, University of Ghent, Ghent, Belgium; Department of Respiratory Medicine, University Hospital Ghent, Ghent, Belgium
| | - Johan Grooten
- Department of Biomedical Molecular Biology, Ghent University, Zwijnaarde, Ghent, Belgium
| | - Jean Paul Remon
- Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | | |
Collapse
|
10
|
Inter-polymer complex microspheres of chitosan and cellulose acetate phthalate for oral delivery of 5-fluorouracil. Polym Bull (Berl) 2014. [DOI: 10.1007/s00289-014-1176-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Balabushevich NG, Izumrudov VA, Larionova NI. Protein microparticles with controlled stability prepared via layer-by-layer adsorption of biopolyelectrolytes. POLYMER SCIENCE SERIES A 2012. [DOI: 10.1134/s0965545x12040098] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Van Kuringen HPC, Lenoir J, Adriaens E, Bender J, De Geest BG, Hoogenboom R. Partial Hydrolysis of Poly(2-ethyl-2-oxazoline) and Potential Implications for Biomedical Applications? Macromol Biosci 2012; 12:1114-23. [DOI: 10.1002/mabi.201200080] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 04/11/2012] [Indexed: 12/26/2022]
|
13
|
Dierendonck M, De Koker S, Vervaet C, Remon JP, De Geest BG. Interaction between polymeric multilayer capsules and immune cells. J Control Release 2012; 161:592-9. [DOI: 10.1016/j.jconrel.2012.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 02/29/2012] [Accepted: 03/01/2012] [Indexed: 11/26/2022]
|
14
|
De Geest BG, Willart MA, Hammad H, Lambrecht BN, Pollard C, Bogaert P, De Filette M, Saelens X, Vervaet C, Remon JP, Grooten J, De Koker S. Polymeric multilayer capsule-mediated vaccination induces protective immunity against cancer and viral infection. ACS NANO 2012; 6:2136-49. [PMID: 22303914 DOI: 10.1021/nn205099c] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Recombinant antigens hold high potential to develop vaccines against lethal intracellular pathogens and cancer. However, they are poorly immunogenic and fail to induce potent cellular immunity. In this paper, we demonstrate that polymeric multilayer capsules (PMLC) strongly increase antigen delivery toward professional antigen-presenting cells in vivo, including dendritic cells (DCs), macrophages, and B cells, thereby enforcing antigen presentation and stimulating T cell proliferation. A thorough analysis of the T cell response demonstrated their capacity to induce IFN-γ secreting CD4 and CD8 T cells, in addition to follicular T-helper cells, a recently identified CD4 T cell subset supporting antibody responses. On the B cell level, PMLC-mediated antigen delivery promoted the formation of germinal centers, resulting in increased numbers of antibody-secreting plasma cells and elevated antibody titers. The functional relevance of the induced immune responses was validated in murine models of influenza and melanoma. On a mechanistic level, we have demonstrated the capacity of PMLC to activate the NALP3 inflammasome and trigger the release of the potent pro-inflammatory cytokine IL-1β. Finally, using DC-depleted mice, we have identified DCs as the key mediators of the immunogenic properties of PMLC.
Collapse
Affiliation(s)
- Bruno G De Geest
- Laboratory of Pharmaceutical Technology, Department of PharmaceuticsGhent University, Ghent, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Gribova V, Auzely-Velty R, Picart C. Polyelectrolyte Multilayer Assemblies on Materials Surfaces: From Cell Adhesion to Tissue Engineering. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2012; 24:854-869. [PMID: 25076811 PMCID: PMC4112380 DOI: 10.1021/cm2032459] [Citation(s) in RCA: 231] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Controlling the bulk and surface properties of materials is a real challenge for bioengineers working in the fields of biomaterials, tissue engineering and biophysics. The layer-by-layer (LbL) deposition method, introduced 20 years ago, consists in the alternate adsorption of polyelectrolytes that self-organize on the material's surface, leading to the formation of polyelectrolyte multilayer (PEM) films.1 Because of its simplicity and versatility, the procedure has led to considerable developments of biological applications within the past 5 years. In this review, we focus our attention on the design of PEM films as surface coatings for applications in the field of physical properties that have emerged as being key points in relation to biological processes. The numerous possibilities for adjusting the chemical, physical, and mechanical properties of PEM films have fostered studies on the influence of these parameters on cellular behaviors. Importantly, PEM have emerged as a powerful tool for the immobilization of biomolecules with preserved bioactivity.
Collapse
Affiliation(s)
- Varvara Gribova
- LMGP-MINATEC, Grenoble Institute of Technology, 3 Parvis Louis Néel, 38016 Grenoble, France
- Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS), affiliated with University Joseph Fourier, and member of the Institut de Chimie Moléculaire de Grenoble, France
| | - Rachel Auzely-Velty
- Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS), affiliated with University Joseph Fourier, and member of the Institut de Chimie Moléculaire de Grenoble, France
| | - Catherine Picart
- LMGP-MINATEC, Grenoble Institute of Technology, 3 Parvis Louis Néel, 38016 Grenoble, France
| |
Collapse
|
16
|
De Geest BG, Willart MA, Lambrecht BN, Pollard C, Vervaet C, Remon JP, Grooten J, De Koker S. Surface-engineered polyelectrolyte multilayer capsules: synthetic vaccines mimicking microbial structure and function. Angew Chem Int Ed Engl 2012; 51:3862-6. [PMID: 22411781 DOI: 10.1002/anie.201200048] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Indexed: 12/14/2022]
Abstract
Immunizing: to evoke highly potent immune responses against recombinant antigens, hollow capsules consisting of layers of dextran sulphate and poly-L-arginine that encapsulate the antigen ovalbumin (orange circles) were coated with immune-activating CpG-containing oligonucleotides (green). These capsules were readily internalized by dendritic cells and showed activity in further immunization experiments.
Collapse
Affiliation(s)
- Bruno G De Geest
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
De Geest BG, Willart MA, Lambrecht BN, Pollard C, Vervaet C, Remon JP, Grooten J, De Koker S. Surface-Engineered Polyelectrolyte Multilayer Capsules: Synthetic Vaccines Mimicking Microbial Structure and Function. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201200048] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
De Koker S, Hoogenboom R, De Geest BG. Polymeric multilayer capsules for drug delivery. Chem Soc Rev 2012; 41:2867-84. [DOI: 10.1039/c2cs15296g] [Citation(s) in RCA: 324] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Dierendonck M, De Koker S, De Rycke R, Bogaert P, Grooten J, Vervaet C, Remon JP, De Geest BG. Single-step formation of degradable intracellular biomolecule microreactors. ACS NANO 2011; 5:6886-6893. [PMID: 21866940 DOI: 10.1021/nn200901g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Here we present a single-step all-aqueous approach to encapsulate biomolecules such as enzymes and proteins into stable microreactors. Key in this method is the use of spray-drying of the biomolecules of interest in combination with oppositely charged polyelectrolytes and mannitol as the sacrificial template. Remarkably, upon spray-drying in the presence of polyelectrolyte, mannitol crystallization is suppressed and the obtained amorphous mannitol offers enhanced preservation of the biomolecules' activity. Moreover, the use of mannitol allows the formation of nanopores within the microparticles upon rehydration of the microparticles in aqueous medium and subsequent dissolution of the mannitol. The oppositely charged polyelectrolytes provide a polymeric framework which stabilizes the microparticles upon rehydration. The versatility of this approach is demonstrated using horseradish peroxidase as the model enzyme and ovalbumin as the model antigen.
Collapse
Affiliation(s)
- Marijke Dierendonck
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
20
|
De Koker S, De Cock LJ, Rivera-Gil P, Parak WJ, Auzély Velty R, Vervaet C, Remon JP, Grooten J, De Geest BG. Polymeric multilayer capsules delivering biotherapeutics. Adv Drug Deliv Rev 2011; 63:748-61. [PMID: 21504772 DOI: 10.1016/j.addr.2011.03.014] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 01/13/2011] [Accepted: 03/30/2011] [Indexed: 12/18/2022]
Abstract
Polymeric multilayer capsules have emerged as a novel drug delivery platform. These capsules are fabricated through layer-by-layer sequential deposition of polymers onto a sacrificial core template followed by the decomposition of this core yielding hollow capsules. The resulting nanometer thin membrane is permselective, allowing diffusion of water and ions but excluding larger molecules. Moreover, the sequential fabrication procedure allows a precise fine-tuning of the capsules' physicochemical and biological properties. These properties have put polymeric multilayer capsules under major attention in the field of drug delivery. In this review we focus on polymeric multilayer capsule mediated delivery of biotechnological macromolecular drugs such as peptides, proteins and nucleic acids.
Collapse
|
21
|
Delcea M, Möhwald H, Skirtach AG. Stimuli-responsive LbL capsules and nanoshells for drug delivery. Adv Drug Deliv Rev 2011; 63:730-47. [PMID: 21463658 DOI: 10.1016/j.addr.2011.03.010] [Citation(s) in RCA: 484] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 02/14/2011] [Accepted: 03/22/2011] [Indexed: 12/12/2022]
Abstract
Review of basic principles and recent developments in the area of stimuli responsive polymeric capsules and nanoshells formed via layer-by-layer (LbL) is presented. The most essential attributes of the LbL approach are multifunctionality and responsiveness to a multitude of stimuli. The stimuli can be logically divided into three categories: physical (light, electric, magnetic, ultrasound, mechanical, and temperature), chemical (pH, ionic strength, solvent, and electrochemical) and biological (enzymes and receptors). Using these stimuli, numerous functionalities of nanoshells have been demonstrated: encapsulation, release including that inside living cells or in tissue, sensors, enzymatic reactions, enhancement of mechanical properties, and fusion. This review describes mechanisms and basic principles of stimuli effects, describes progress in the area, and gives an outlook on emerging trends such as theranostics and nanomedicine.
Collapse
Affiliation(s)
- Mihaela Delcea
- Max Planck Institute of Colloids and Interfaces, Research Campus Golm, Potsdam-Golm, Germany
| | | | | |
Collapse
|
22
|
Skirtach AG, Yashchenok AM, Möhwald H. Encapsulation, release and applications of LbL polyelectrolyte multilayer capsules. Chem Commun (Camb) 2011; 47:12736-46. [DOI: 10.1039/c1cc13453a] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|