1
|
Shahsavari S, Rad MB, Hajiaghajani A, Rostami M, Hakimian F, Jafarzadeh S, Hasany M, Collingwood JF, Aliakbari F, Fouladiha H, Bardania H, Otzen DE, Morshedi D. Magnetoresponsive liposomes applications in nanomedicine: A comprehensive review. Biomed Pharmacother 2024; 181:117665. [PMID: 39541790 DOI: 10.1016/j.biopha.2024.117665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/03/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
Safe and effective cancer therapy requires a suitable nanocarrier that can target particular sites, such as cancer cells, in a selective manner. With the tremendous growth in nanotechnology, liposomes, among various competing nanocarriers, have shown promising advances in cancer therapy. Magnetic nanoparticles and metal ions are wide-reaching candidates for conferring magnetic properties and for incorporation into liposomes. Combining liposomes with magnetic structures enables construction of magnetoresponsive liposomes, allowing stimuli-responsiveness to an alternating magnetic field, magnetic targeting, and tracking by magnetic resonance imaging, which could all occur in parallel. This review presents a comprehensive analysis of the practical advances and novel aspects of design, synthesis and engineering magnetoresponsive liposomes, emphasizing their diverse properties for various applications. Our work explores the innovative uses of these structures, extending beyond drug delivery to include smart contrast agents, cell labeling, biosensing, separation, and filtering. By comparing new findings with earlier studies, we showcase significant improvements in efficiency and uncover new potentials, setting a new benchmark for future research in the field of magnetoresponsive liposomes.
Collapse
Affiliation(s)
- Shayan Shahsavari
- Iran Nanotechnology Innovation Council, Nanoclub Elites Association, Tehran, Iran
| | - Mohammad Behnam Rad
- Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, P.O. Box 13145-1384, Tehran, Iran
| | - Amirhossein Hajiaghajani
- School of Electrical Engineering, Iran University of Science and Technology, Tehran 1684613114, Iran
| | | | - Fatemeh Hakimian
- Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, P.O. Box 13145-1384, Tehran, Iran
| | - Sina Jafarzadeh
- Department of Energy Conversion and Storage, Technical University of Denmark, Anker Engelunds Vej, Lyngby 2800 Kgs, Denmark
| | - Masoud Hasany
- Department of Civil and Mechanical Engineering, Technical University of Denmark, Lyngby 2800 Kgs, Denmark
| | | | - Farhang Aliakbari
- National Institute of Genetic Engineering and Biotechnology, Shahrak-e Pajoohesh, km 15 Tehran - Karaj Highway, P.O.Box:14965/161, Tehran, Iran; Molecular Medicine Research Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Hamideh Fouladiha
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Hassan Bardania
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Centre (iNANO) and Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 14, Aarhus C DK-8000, Denmark.
| | - Dina Morshedi
- National Institute of Genetic Engineering and Biotechnology, Shahrak-e Pajoohesh, km 15 Tehran - Karaj Highway, P.O.Box:14965/161, Tehran, Iran.
| |
Collapse
|
2
|
Prognostic value of circulating endothelial cells in glioblastoma patients: a pilot study. Future Sci OA 2022; 8:FSO796. [PMID: 35662744 PMCID: PMC9136629 DOI: 10.2144/fsoa-2022-0008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/23/2022] [Indexed: 11/23/2022] Open
Abstract
Aim: Glioblastoma (GB) is an aggressive tumor type and the detection of circulating endothelial cells (CECs) in peripheral blood has been related to angiogenesis. Materials & methods: A prospective single-center pilot study of CEC detection at diagnosis in 22 patients with GB was performed, using the US FDA-approved CellSearch system. Results: A CEC cutoff value was estimated using a receiver operating curve (ROC) and patients were classified into two groups: <40 CEC/4 ml and >40 CEC/4 ml blood. Median overall survival was 25.33 months for group 1 and 8.23 months for group 2 cases (p = 0.02). There was no correlation between CEC and PWI (perfusion-weighted imaging) RM. Conclusion: CEC detection has a prognostic value in GB cases at diagnosis. Glioblastoma is an aggressive tumor type with a general poor prognosis. Endothelial cell detection in blood samples has been previously described as a marker of outcome in many tumor types. A US FDA-approved device, CellSearch, was used for CEC detection. The patients were split into two groups according to a cutoff value with the highest sensitivity and specificity, group 1 <40 and group 2 >40 CEC/4 ml blood. Patients with >40 CEC at diagnosis had a poorer overall survival; 25.33 months for group 1 and 8.23 months group 2 cases, which was statistically significant.
Collapse
|
3
|
Peserico A, Di Berardino C, Russo V, Capacchietti G, Di Giacinto O, Canciello A, Camerano Spelta Rapini C, Barboni B. Nanotechnology-Assisted Cell Tracking. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1414. [PMID: 35564123 PMCID: PMC9103829 DOI: 10.3390/nano12091414] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/06/2023]
Abstract
The usefulness of nanoparticles (NPs) in the diagnostic and/or therapeutic sector is derived from their aptitude for navigating intra- and extracellular barriers successfully and to be spatiotemporally targeted. In this context, the optimization of NP delivery platforms is technologically related to the exploitation of the mechanisms involved in the NP-cell interaction. This review provides a detailed overview of the available technologies focusing on cell-NP interaction/detection by describing their applications in the fields of cancer and regenerative medicine. Specifically, a literature survey has been performed to analyze the key nanocarrier-impacting elements, such as NP typology and functionalization, the ability to tune cell interaction mechanisms under in vitro and in vivo conditions by framing, and at the same time, the imaging devices supporting NP delivery assessment, and consideration of their specificity and sensitivity. Although the large amount of literature information on the designs and applications of cell membrane-coated NPs has reached the extent at which it could be considered a mature branch of nanomedicine ready to be translated to the clinic, the technology applied to the biomimetic functionalization strategy of the design of NPs for directing cell labelling and intracellular retention appears less advanced. These approaches, if properly scaled up, will present diverse biomedical applications and make a positive impact on human health.
Collapse
Affiliation(s)
- Alessia Peserico
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.D.B.); (V.R.); (G.C.); (O.D.G.); (A.C.); (C.C.S.R.); (B.B.)
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Predoi G, Ciobanu CS, Iconaru SL, Predoi D, Dreghici DB, Groza A, Barbuceanu F, Cimpeanu C, Badea ML, Barbuceanu SF, Furnaris CF, Belu C, Ghegoiu L, Raita MS. Preparation and Characterization of Dextran Coated Iron Oxide Nanoparticles Thin Layers. Polymers (Basel) 2021; 13:polym13142351. [PMID: 34301108 PMCID: PMC8309556 DOI: 10.3390/polym13142351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 01/15/2023] Open
Abstract
In the present study, we report the synthesis of a dextran coated iron oxide nanoparticles (DIO-NPs) thin layer on glass substrate by an adapted method. The surface morphology of the obtained samples was analyzed by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), optical, and metallographic microscopies. In addition, the distribution of the chemical elements into the DIO-NPs thin layer was analyzed by Glow Discharge Optical Emission Spectrometry (GDOES). Furthermore, the chemical bonds formed between the dextran and iron oxide nanoparticles was investigated by Fourier Transform Infrared Spectroscopy (FTIR). Additionally, the HepG2 viability incubated with the DIO-NPs layers was evaluated at different time intervals using MTT (3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The goal of this study was to obtain a DIO-NPs thin layer which could be used as a coating for medical devices such as microfluidic channel, microchips, and catheter. The results of the surface morphology investigations conducted on DIO-NPs thin layer suggests the presence of a continuous and homogeneous layer. In addition, the GDOES results indicate the presence of C, H, Fe, and O signal intensities characteristic to the DIO-NPs layers. The presence in the IR spectra of the Fe-CO metal carbonyl vibration bonds prove that the linkage between iron oxide nanoparticles and dextran take place through carbon–oxygen bonds. The cytotoxicity assays highlighted that HepG2 cells morphology did not show any noticeable modifications after being incubated with DIO-NPs layers. In addition, the MTT assay suggested that the DIO-NPs layers did not present any toxic effects towards HEpG2 cells.
Collapse
Affiliation(s)
- Gabriel Predoi
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Splaiul Independentei, Sector 5, 050097 Bucharest, Romania; (F.B.); (C.F.F.); (C.B.)
- Correspondence: (G.P.); (C.S.C.); (M.S.R.)
| | - Carmen Steluta Ciobanu
- Multifunctional Materials and Structures Laboratory, National Institute of Materials Physics, Atomistilor Street, No. 405A, P.O. Box MG 07, 077125 Magurele, Romania; (S.L.I.); (D.P.); (M.-L.B.); (L.G.)
- Correspondence: (G.P.); (C.S.C.); (M.S.R.)
| | - Simona Liliana Iconaru
- Multifunctional Materials and Structures Laboratory, National Institute of Materials Physics, Atomistilor Street, No. 405A, P.O. Box MG 07, 077125 Magurele, Romania; (S.L.I.); (D.P.); (M.-L.B.); (L.G.)
| | - Daniela Predoi
- Multifunctional Materials and Structures Laboratory, National Institute of Materials Physics, Atomistilor Street, No. 405A, P.O. Box MG 07, 077125 Magurele, Romania; (S.L.I.); (D.P.); (M.-L.B.); (L.G.)
| | - Dragana Biliana Dreghici
- Low Temperature Plasma Laboratory, National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, P.O. Box MG 36, 077125 Magurele, Romania; (D.B.D.); (A.G.)
| | - Andreea Groza
- Low Temperature Plasma Laboratory, National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, P.O. Box MG 36, 077125 Magurele, Romania; (D.B.D.); (A.G.)
| | - Florica Barbuceanu
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Splaiul Independentei, Sector 5, 050097 Bucharest, Romania; (F.B.); (C.F.F.); (C.B.)
- Institute for Diagnosis and Animal Health, 63 Staicovici D. Nicolae, Street, 50557 Bucharest, Romania
| | - Carmen Cimpeanu
- Faculty of Land Reclamation and Environmental Engineering, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd, Sector 1, 011464 Bucharest, Romania;
| | - Monica-Luminita Badea
- Multifunctional Materials and Structures Laboratory, National Institute of Materials Physics, Atomistilor Street, No. 405A, P.O. Box MG 07, 077125 Magurele, Romania; (S.L.I.); (D.P.); (M.-L.B.); (L.G.)
- Faculty of Horticulture, University of Agronomic Sciences and Veterinary Medicine, 59 Marasti Blvd., 011464 Bucharest, Romania
| | - Stefania-Felicia Barbuceanu
- Organic Chemistry Department, Faculty of Pharmacy, University of Medicine and Pharmacy, Traian Vuia Street 6, 020956 Bucharest, Romania;
| | - Ciprian Florin Furnaris
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Splaiul Independentei, Sector 5, 050097 Bucharest, Romania; (F.B.); (C.F.F.); (C.B.)
| | - Cristian Belu
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Splaiul Independentei, Sector 5, 050097 Bucharest, Romania; (F.B.); (C.F.F.); (C.B.)
| | - Liliana Ghegoiu
- Multifunctional Materials and Structures Laboratory, National Institute of Materials Physics, Atomistilor Street, No. 405A, P.O. Box MG 07, 077125 Magurele, Romania; (S.L.I.); (D.P.); (M.-L.B.); (L.G.)
| | - Mariana Stefania Raita
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Splaiul Independentei, Sector 5, 050097 Bucharest, Romania; (F.B.); (C.F.F.); (C.B.)
- Correspondence: (G.P.); (C.S.C.); (M.S.R.)
| |
Collapse
|
5
|
D’Hollander A, Vande Velde G, Jans H, Vanspauwen B, Vermeersch E, Jose J, Struys T, Stakenborg T, Lagae L, Himmelreich U. Assessment of the Theranostic Potential of Gold Nanostars-A Multimodal Imaging and Photothermal Treatment Study. NANOMATERIALS 2020; 10:nano10112112. [PMID: 33114177 PMCID: PMC7690792 DOI: 10.3390/nano10112112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022]
Abstract
Gold nanoparticles offer the possibility to combine both imaging and therapy of otherwise difficult to treat tumors. To validate and further improve their potential, we describe the use of gold nanostars that were functionalized with a polyethyleneglycol-maleimide coating for in vitro and in vivo photoacoustic imaging (PAI), computed tomography (CT), as well as photothermal therapy (PTT) of cancer cells and tumor masses, respectively. Nanostar shaped particles show a high absorption coefficient in the near infrared region and have a hydrodynamic size in biological medium around 100 nm, which allows optimal intra-tumoral retention. Using these nanostars for in vitro labeling of tumor cells, high intracellular nanostar concentrations could be achieved, resulting in high PAI and CT contrast and effective PTT. By injecting the nanostars intratumorally, high contrast could be generated in vivo using PAI and CT, which allowed successful multi-modal tumor imaging. PTT was successfully induced, resulting in tumor cell death and subsequent inhibition of tumor growth. Therefore, gold nanostars are versatile theranostic agents for tumor therapy.
Collapse
Affiliation(s)
- Antoine D’Hollander
- Biomedical MRI, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; (A.D.); (G.V.V.); (E.V.)
- Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Department of Life Science Technology, IMEC, Kapeldreef 75, 3001 Leuven, Belgium; (H.J.); (B.V.); (T.S.); (L.L.)
| | - Greetje Vande Velde
- Biomedical MRI, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; (A.D.); (G.V.V.); (E.V.)
- Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Hilde Jans
- Department of Life Science Technology, IMEC, Kapeldreef 75, 3001 Leuven, Belgium; (H.J.); (B.V.); (T.S.); (L.L.)
| | - Bram Vanspauwen
- Department of Life Science Technology, IMEC, Kapeldreef 75, 3001 Leuven, Belgium; (H.J.); (B.V.); (T.S.); (L.L.)
| | - Elien Vermeersch
- Biomedical MRI, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; (A.D.); (G.V.V.); (E.V.)
- Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Jithin Jose
- Fujifilm Visualsonics, Joop Geesinkweg140, 1114 AB Amsterdam, The Netherlands;
| | - Tom Struys
- Lab of Histology, Biomedical Research Institute, Hasselt University, Agora Laan Gebouw C, 3590 Diepenbeek, Belgium;
| | - Tim Stakenborg
- Department of Life Science Technology, IMEC, Kapeldreef 75, 3001 Leuven, Belgium; (H.J.); (B.V.); (T.S.); (L.L.)
| | - Liesbet Lagae
- Department of Life Science Technology, IMEC, Kapeldreef 75, 3001 Leuven, Belgium; (H.J.); (B.V.); (T.S.); (L.L.)
- Department of Physics, Faculty of Sciences, Laboratory of Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| | - Uwe Himmelreich
- Biomedical MRI, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; (A.D.); (G.V.V.); (E.V.)
- Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Correspondence: ; Tel.: +32-16-330925
| |
Collapse
|
6
|
Garcia Ribeiro RS, Belderbos S, Danhier P, Gallo J, Manshian BB, Gallez B, Bañobre M, de Cuyper M, Soenen SJ, Gsell W, Himmelreich U. Targeting tumor cells and neovascularization using RGD-functionalized magnetoliposomes. Int J Nanomedicine 2019; 14:5911-5924. [PMID: 31534330 PMCID: PMC6681073 DOI: 10.2147/ijn.s214041] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 06/29/2019] [Indexed: 12/25/2022] Open
Abstract
Purpose Magnetoliposomes (MLs) have shown great potential as magnetic resonance imaging contrast agents and as delivery vehicles for cancer therapy. Targeting the MLs towards the tumor cells or neovascularization could ensure delivery of drugs at the tumor site. In this study, we evaluated the potential of MLs targeting the αvβ3 integrin overexpressed on tumor neovascularization and different tumor cell types, including glioma and ovarian cancer. Methods MLs functionalized with a Texas Red fluorophore (anionic MLs), and with the fluorophore and the cyclic Arginine-Glycine-Aspartate (cRGD; cRGD-MLs) targeting the αvβ3 integrin, were produced in-house. Swiss nude mice were subcutaneously injected with 107 human ovarian cancer SKOV-3 cells. Tumors were allowed to grow for 3 weeks before injection of anionic or cRGD-MLs. Biodistribution of MLs was followed up with a 7T preclinical magnetic resonance imaging (MRI) scanner and fluorescence imaging (FLI) right after injection, 2h, 4h, 24h and 48h post injection. Ex vivo intratumoral ML uptake was confirmed using FLI, electron paramagnetic resonance spectroscopy (EPR) and histology at different time points post injection. Results In vivo, we visualized a higher uptake of cRGD-MLs in SKOV-3 xenografts compared to control, anionic MLs with both MRI and FLI. Highest ML uptake was seen after 4h using MRI, but only after 24h using FLI indicating the lower sensitivity of this technique. Furthermore, ex vivo EPR and FLI confirmed the highest tumoral ML uptake at 4 h. Last, a Perl’s stain supported the presence of our iron-based particles in SKOV-3 xenografts. Conclusion Uptake of cRGD-MLs can be visualized using both MRI and FLI, even though the latter was less sensitive due to lower depth penetration. Furthermore, our results indicate that cRGD-MLs can be used to target SKOV-3 xenograft in Swiss nude mice. Therefore, the further development of this particles into theranostics would be of interest.
Collapse
Affiliation(s)
- Rita Sofia Garcia Ribeiro
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, Biomedical Sciences Group, Leuven B-3000, Belgium
| | - Sarah Belderbos
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, Biomedical Sciences Group, Leuven B-3000, Belgium
| | - Pierre Danhier
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université Catholique De Louvain, Brussels B-1200, Belgium
| | - Juan Gallo
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université Catholique De Louvain, Brussels B-1200, Belgium
| | - Bella B Manshian
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, Biomedical Sciences Group, Leuven B-3000, Belgium
| | - Bernard Gallez
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université Catholique De Louvain, Brussels B-1200, Belgium
| | - Manuel Bañobre
- Diagnostic Tools and Methods/Advanced (Magnetic) Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory (INL), PT-Braga 4715-330, Portugal
| | - Marcel de Cuyper
- Laboratory of Bionanocolloids, Interdisciplinary Research Centre, KULAK/KU Leuven, Kortrijk B-8500, Belgium
| | - Stefaan J Soenen
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, Biomedical Sciences Group, Leuven B-3000, Belgium
| | - Willy Gsell
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, Biomedical Sciences Group, Leuven B-3000, Belgium
| | - Uwe Himmelreich
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, Biomedical Sciences Group, Leuven B-3000, Belgium
| |
Collapse
|
7
|
Abstract
Pancreatic islets (PIs) transplantation is an alternative approach for the treatment of severe forms of type 1 diabetes (T1D). To monitor the success of transplantation, it is desirable to follow the location of engrafted PIs non-invasively. In vivo magnetic resonance imaging (MRI) of transplanted PIs is a feasible cell tracking method; however, this requires labeling with a suitable contrast agent prior to transplantation. We have tested the feasibility of cationic magnetoliposomes (MLs), compared to commercial contrast agents (Endorem and Resovist), by labeling insulinoma cells and freshly isolated rat PIs. It was possible to incorporate Magnetic Ressonance (MR)-detectable amounts of MLs in a shorter time (4 h) when compared to Endorem and Resovist. MLs did not show negative effects on the PIs' viability and functional parameters in vitro. Labeled islets were transplanted in the renal sub-capsular region of healthy mice. Hypointense contrast in MR images due to the labeled PIs was detected in vivo upon transplantation, while MR detection of PIs labeled with Endorem and Resovist was only possible after the addition of transfection agents. These findings indicate that MLs are suitable to image PIs, without affecting their function, which is promising for future longitudinal pre-clinical and clinical studies involving the assessment of PI transplantation.
Collapse
|
8
|
Ma X, Hartmann R, Jimenez de Aberasturi D, Yang F, Soenen SJH, Manshian BB, Franz J, Valdeperez D, Pelaz B, Feliu N, Hampp N, Riethmüller C, Vieker H, Frese N, Gölzhäuser A, Simonich M, Tanguay RL, Liang XJ, Parak WJ. Colloidal Gold Nanoparticles Induce Changes in Cellular and Subcellular Morphology. ACS NANO 2017; 11:7807-7820. [PMID: 28640995 DOI: 10.1021/acsnano.7b01760] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Exposure of cells to colloidal nanoparticles (NPs) can have concentration-dependent harmful effects. Mostly, such effects are monitored with biochemical assays or probes from molecular biology, i.e., viability assays, gene expression profiles, etc., neglecting that the presence of NPs can also drastically affect cellular morphology. In the case of polymer-coated Au NPs, we demonstrate that upon NP internalization, cells undergo lysosomal swelling, alterations in mitochondrial morphology, disturbances in actin and tubulin cytoskeleton and associated signaling, and reduction of focal adhesion contact area and number of filopodia. Appropriate imaging and data treatment techniques allow for quantitative analyses of these concentration-dependent changes. Abnormalities in morphology occur at similar (or even lower) NP concentrations as the onset of reduced cellular viability. Cellular morphology is thus an important quantitative indicator to verify harmful effects of NPs to cells, without requiring biochemical assays, but relying on appropriate staining and imaging techniques.
Collapse
Affiliation(s)
- Xiaowei Ma
- Chinese Academy of Sciences (CAS) Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology , Beijing 100190, China
| | | | | | | | - Stefaan J H Soenen
- Biomedical MRI Unit/MoSAIC, Catholic University of Leuven , 3000 Leuven, Belgium
| | - Bella B Manshian
- Biomedical MRI Unit/MoSAIC, Catholic University of Leuven , 3000 Leuven, Belgium
| | - Jonas Franz
- nAnostic Institute, Center for Nanotechnology, University of Münster , 48149 Münster, Germany
| | | | | | - Neus Feliu
- Department of Laboratory Medicine (LABMED), Karolinska Institutet , SE-17177 Stockholm, Sweden
- Medcom Advance S.A. , 08840 Barcelona, Spain
| | | | | | - Henning Vieker
- Fakultät für Physik, Universität Bielefeld , 33615 Bielefeld, Germany
| | - Natalie Frese
- Fakultät für Physik, Universität Bielefeld , 33615 Bielefeld, Germany
| | - Armin Gölzhäuser
- Fakultät für Physik, Universität Bielefeld , 33615 Bielefeld, Germany
| | - Michael Simonich
- Sinnhuber Aquatic Research Laboratory (SARL), Oregon State University , Corvallis, Oregon 97331, United States
| | - Robert L Tanguay
- Sinnhuber Aquatic Research Laboratory (SARL), Oregon State University , Corvallis, Oregon 97331, United States
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology , Beijing 100190, China
| | | |
Collapse
|
9
|
Khaleghi S, Rahbarizadeh F, Ahmadvand D, Hosseini HRM. Anti-HER2 VHH Targeted Magnetoliposome for Intelligent Magnetic Resonance Imaging of Breast Cancer Cells. Cell Mol Bioeng 2017; 10:263-272. [PMID: 31719864 DOI: 10.1007/s12195-017-0481-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 02/10/2017] [Indexed: 04/11/2023] Open
Abstract
The combination of liposomes with magnetic nanoparticles, because of their strong effect on T2 relaxation can open new ways in the innovative cancer therapy and diagnosis. In order to design an intelligent contrast agent in MRI, we chose anti-HER2 nanobody the smallest fully functional antigen-binding fragments evolved from the variable domain, the VHH, of a camel heavy chain-only antibody. These targeted magnetoliposomes bind to the HER2 antigen which is highly expressed on breast and ovarian cancer cells so reducing the side effects as well as increasing image contrast and effectiveness. Cellular iron uptake analysis and in vitro MRI of HER2 positive cells incubated with targeted nanoparticles show specific cell targeting. In vitro MRI shows even at the lowest density (200 Cells/μl), dark spots corresponding to labeled cells which were still detectable. These results suggest that this new type of nanoparticles could be effective antigen-targeted contrast agents for molecular imaging.
Collapse
Affiliation(s)
- Sepideh Khaleghi
- 1Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. BOX. 14115-331, Tehran, Iran
| | - Fatemeh Rahbarizadeh
- 1Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. BOX. 14115-331, Tehran, Iran
| | - Davoud Ahmadvand
- 2School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Madaah Hosseini
- 3Materials Science and Engineering Department, Sharif University of Technology, Azadi Avenue, P.O. BOX. 11155-9466, Tehran, Iran
| |
Collapse
|
10
|
D’Hollander A, Mathieu E, Jans H, Vande Velde G, Stakenborg T, Van Dorpe P, Himmelreich U, Lagae L. Development of nanostars as a biocompatible tumor contrast agent: toward in vivo SERS imaging. Int J Nanomedicine 2016; 11:3703-14. [PMID: 27536107 PMCID: PMC4977103 DOI: 10.2147/ijn.s91340] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The need for sensitive imaging techniques to detect tumor cells is an important issue in cancer diagnosis and therapy. Surface-enhanced Raman scattering (SERS), realized by chemisorption of compounds suitable for Raman spectroscopy onto gold nanoparticles, is a new method for detecting a tumor. As a proof of concept, we studied the use of biocompatible gold nanostars as sensitive SERS contrast agents targeting an ovarian cancer cell line (SKOV3). Due to a high intracellular uptake of gold nanostars after 6 hours of exposure, they could be detected and located with SERS. Using these nanostars for passive targeting after systemic injection in a xenograft mouse model, a detectable signal was measured in the tumor and liver in vivo. These signals were confirmed by ex vivo SERS measurements and darkfield microscopy. In this study, we established SERS nanostars as a highly sensitive contrast agent for tumor detection, which opens the potential for their use as a theranostic agent against cancer.
Collapse
Affiliation(s)
- Antoine D’Hollander
- Department of Life Science Technology, Imec
- Department of Imaging and Pathology, Faculty of Medicine, Biomedical MRI Unit
- Faculty of Medicine, Molecular Small Animal Imaging Center (MoSAIC)
| | - Evelien Mathieu
- Department of Life Science Technology, Imec
- Department of Physics, Faculty of Sciences, Laboratory of Solid State Physics and Magnetism, KU Leuven, Leuven, Belgium
| | - Hilde Jans
- Department of Life Science Technology, Imec
| | - Greetje Vande Velde
- Department of Imaging and Pathology, Faculty of Medicine, Biomedical MRI Unit
- Faculty of Medicine, Molecular Small Animal Imaging Center (MoSAIC)
| | | | - Pol Van Dorpe
- Department of Life Science Technology, Imec
- Department of Physics, Faculty of Sciences, Laboratory of Solid State Physics and Magnetism, KU Leuven, Leuven, Belgium
| | - Uwe Himmelreich
- Department of Imaging and Pathology, Faculty of Medicine, Biomedical MRI Unit
- Faculty of Medicine, Molecular Small Animal Imaging Center (MoSAIC)
| | - Liesbet Lagae
- Department of Life Science Technology, Imec
- Department of Physics, Faculty of Sciences, Laboratory of Solid State Physics and Magnetism, KU Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Hwang JY, Li Z, Loh XJ. Small molecule therapeutic-loaded liposomes as therapeutic carriers: from development to clinical applications. RSC Adv 2016. [DOI: 10.1039/c6ra09854a] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In this review, various methods and mechanisms for encapsulation of small therapeutic molecules in liposomes for targeted delivery and triggered release, as well as their potential in the clinical uses, are discussed.
Collapse
Affiliation(s)
- Jae Yoon Hwang
- Department of Materials Science and Engineering
- National University of Singapore
- Singapore 117576
- Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE)
- Singapore 117602
- Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE)
- Singapore 117602
- Singapore
- Department of Materials Science and Engineering
- National University of Singapore
| |
Collapse
|
12
|
Soenen SJ, Parak WJ, Rejman J, Manshian B. (Intra)cellular stability of inorganic nanoparticles: effects on cytotoxicity, particle functionality, and biomedical applications. Chem Rev 2015; 115:2109-35. [PMID: 25757742 DOI: 10.1021/cr400714j] [Citation(s) in RCA: 316] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Stefaan J Soenen
- Biomedical MRI Unit/MoSAIC, Department of Medicine, KULeuven , B3000 Leuven, Belgium
| | | | | | | |
Collapse
|
13
|
Liposomes as carriers of hydrophilic small molecule drugs: Strategies to enhance encapsulation and delivery. Colloids Surf B Biointerfaces 2014; 123:345-63. [DOI: 10.1016/j.colsurfb.2014.09.029] [Citation(s) in RCA: 292] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/30/2014] [Accepted: 09/14/2014] [Indexed: 12/18/2022]
|
14
|
Carenza E, Barceló V, Morancho A, Montaner J, Rosell A, Roig A. Rapid synthesis of water-dispersible superparamagnetic iron oxide nanoparticles by a microwave-assisted route for safe labeling of endothelial progenitor cells. Acta Biomater 2014; 10:3775-85. [PMID: 24755438 DOI: 10.1016/j.actbio.2014.04.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 03/17/2014] [Accepted: 04/08/2014] [Indexed: 12/19/2022]
Abstract
We synthesize highly crystalline citrate-coated iron oxide superparamagnetic nanoparticles that are stable and readily dispersible in water by an extremely fast microwave-assisted route and investigate the uptake of magnetic nanoparticles by endothelial cells. Nanoparticles form large aggregates when added to complete endothelial cell medium. The size of the aggregates was controlled by adjusting the ionic strength of the medium. The internalization of nanoparticles into endothelial cells was then investigated by transmission electron microscopy, magnetometry and chemical analysis, together with cell viability assays. Interestingly, a sevenfold more efficient uptake was found for systems with larger nanoparticle aggregates, which also showed significantly higher magnetic resonance imaging effectiveness without compromising cell viability and functionality. We are thus presenting an example of a straightforward microwave synthesis of citrate-coated iron oxide nanoparticles for safe endothelial progenitor cell labeling and good magnetic resonance cell imaging with potential application for magnetic cell guidance and in vivo cell tracking.
Collapse
Affiliation(s)
- Elisa Carenza
- Institut de Ciència de Materials de Barcelona, Consejo Superior de Investigaciones Científicas (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra, Catalunya, Spain
| | - Verónica Barceló
- Neurovascular Research Laboratory and Neurovascular Unit, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129 Barcelona, 08035 Catalunya, Spain
| | - Anna Morancho
- Neurovascular Research Laboratory and Neurovascular Unit, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129 Barcelona, 08035 Catalunya, Spain
| | - Joan Montaner
- Neurovascular Research Laboratory and Neurovascular Unit, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129 Barcelona, 08035 Catalunya, Spain
| | - Anna Rosell
- Neurovascular Research Laboratory and Neurovascular Unit, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129 Barcelona, 08035 Catalunya, Spain.
| | - Anna Roig
- Institut de Ciència de Materials de Barcelona, Consejo Superior de Investigaciones Científicas (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra, Catalunya, Spain.
| |
Collapse
|
15
|
Soenen SJ, De Backer L, Manshian B, Doak S, Raemdonck K, Demeester J, Braeckmans K, De Smedt S. Unraveling the effects of siRNA carrier systems on cell physiology: a multiparametric approach demonstrated on dextran nanogels. Nanomedicine (Lond) 2014; 9:61-76. [DOI: 10.2217/nnm.12.208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: The extent of cell–nanoparticle interactions between a polycationic siRNA nanocarrier system (dextran nanogels) and cultured cells was analyzed. Materials & methods: A multiparametric methodology is introduced to examine the cytotoxic effects of a model siRNA carrier (dextran nanogels) on different cell types, including primary human cells. Using this methodology, the nontoxic concentration of nanogels could be defined and the mechanisms contributing to their toxic profile were unraveled. Results: Above the toxicity threshold, nanogels were found to induce oxidative stress and destabilize the plasma membrane. Furthermore, nanogel-induced cellular stress led to DNA damage, impeded cell functionality and intracellular signaling, resulting in unspecific regulation of gene expression. Conclusion: This methodology shows that current toxicity assays such as the 3-(4,5-dimethylthiazol-2yl-)-2,5-diphenyl tetrazolium bromide assay are not adequate to assess the full spectrum of cell–nanoparticle interactions and more in-depth studies are required. Original submitted 8 May 2012; Revised submitted 3 December 2012; Published online 12 June 2013
Collapse
Affiliation(s)
- Stefaan J Soenen
- Laboratory of General Biochemistry & Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium
- Centre for Nano- & Biophotonics, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium
| | - Lynn De Backer
- Laboratory of General Biochemistry & Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium
| | - Bella Manshian
- DNA Damage Group, Institute of Life Science, School of Medicine, Swansea University, Singleton Park, Swansea, UK
| | - Shareen Doak
- DNA Damage Group, Institute of Life Science, School of Medicine, Swansea University, Singleton Park, Swansea, UK
| | - Koen Raemdonck
- Laboratory of General Biochemistry & Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium
| | - Jo Demeester
- Laboratory of General Biochemistry & Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry & Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium
- Centre for Nano- & Biophotonics, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium
| | - Stefaan De Smedt
- Laboratory of General Biochemistry & Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium
| |
Collapse
|
16
|
Trekker J, Leten C, Struys T, Lazenka VV, Argibay B, Micholt L, Lambrichts I, Van Roy W, Lagae L, Himmelreich U. Sensitive in vivo cell detection using size-optimized superparamagnetic nanoparticles. Biomaterials 2013; 35:1627-35. [PMID: 24246643 DOI: 10.1016/j.biomaterials.2013.11.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 11/01/2013] [Indexed: 12/28/2022]
Abstract
Magnetic nanoparticle (MNP) enabled cell visualization with magnetic resonance imaging (MRI) is currently an intensively studied area of research. In the present study, we have synthesized polyethylene glycolated (PEG) MNPs and validated their suitability as MR cell labeling agents in in vitro and in vivo experiments. The labeling of therapeutic potent mesenchymal stem cells (MSCs) with small core and large core MNPs was evaluated. Both MNPs were, in combination with a transfection agent, stably internalized into the MSCs and didn't show an effect on cell metabolism. The labeled cells showed high contrast in MRI phantom studies. For quantification purposes, the MRI contrast generating properties of cells labeled with small core MNPs were compared with large core MNPs and with the commercial contrast agent Endorem. MSCs labeled with the large core MNPs showed the highest contrast generating properties in in vitro phantom studies and in in vivo intracranial stereotactic injection experiments, confirming the size-relaxivity relationship in biological systems. Finally, the distribution of MSCs pre-labeled with large core PEGylated MNPs was visualized non-invasively with MRI in a glioma model.
Collapse
Affiliation(s)
- Jesse Trekker
- IMEC, Leuven, Belgium; Department of Imaging and Pathology, Biomedical MRI/Mosaic, KU Leuven, Leuven, Belgium.
| | - Cindy Leten
- Department of Imaging and Pathology, Biomedical MRI/Mosaic, KU Leuven, Leuven, Belgium
| | - Tom Struys
- Department of Imaging and Pathology, Biomedical MRI/Mosaic, KU Leuven, Leuven, Belgium; Lab of Histology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Vera V Lazenka
- Department of Physics, Solid State Physics and Magnetism, KU Leuven, Leuven, Belgium
| | - Barbara Argibay
- Department of Neurology, Clinical Neuroscience Research Lab, Hospital Clinico Universitario, University of Santiago de Compostela, IDIS, Santiago de Compostela, Spain
| | | | - Ivo Lambrichts
- Lab of Histology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | | | - Liesbet Lagae
- IMEC, Leuven, Belgium; Department of Physics, Solid State Physics and Magnetism, KU Leuven, Leuven, Belgium
| | - Uwe Himmelreich
- Department of Imaging and Pathology, Biomedical MRI/Mosaic, KU Leuven, Leuven, Belgium
| |
Collapse
|
17
|
Fluorescent non-porous silica nanoparticles for long-term cell monitoring: cytotoxicity and particle functionality. Acta Biomater 2013; 9:9183-93. [PMID: 23664886 DOI: 10.1016/j.actbio.2013.04.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 03/27/2013] [Accepted: 04/15/2013] [Indexed: 12/12/2022]
Abstract
Inorganic nanoparticles such as silica particles offer many exciting possibilities for biomedical applications. However, the possible toxicity of these particles remains an issue of debate that seriously impedes their full exploitation. In the present work, commercially available fluorescent silica nanoparticles 25, 45 and 75 nm in diameter optimized for cell labelling (C-Spec® particles) are evaluated with regard to their effects on cultured cells using a novel multiparametric setup. The particles show clear concentration and size-dependent effects, where toxicity is caused by the number and total surface area of cell-associated particles. Cell-associated particles generate a short burst of oxidative stress that, next to inducing cell death, affects cell signalling and impedes cell functionality. For cell labelling purposes, 45 nm diameter silica particles were found to be optimally suited and no adverse effects were noticeable at concentrations of 50 μg ml(-1) or below. At this safe concentration, the particles were found to still allow fluorescence tracking of cultured cells over longer time periods. In conclusion, the data shown here provide a suitable concentration of silica particles for fluorescent cell labelling and demonstrate that at safe levels, silica particles remain perfectly suitable for fluorescent cell studies.
Collapse
|
18
|
De Temmerman ML, Soenen SJ, Symens N, Lucas B, Vandenbroucke RE, Libert C, Demeester J, De Smedt SC, Himmelreich U, Rejman J. Magnetic layer-by-layer coated particles for efficient MRI of dendritic cells and mesenchymal stem cells. Nanomedicine (Lond) 2013; 9:1363-76. [PMID: 24102328 DOI: 10.2217/nnm.13.88] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM Cell detection by MRI requires high doses of contrast agent for generating image contrast. Therefore, there is a constant need to develop improved systems that further increase sensitivity, and which could be used in clinical settings. In this study, we devised layer-by-layer particles and tested their potential for cell labeling. MATERIALS & METHODS The advantages of layer-by-layer technology were exploited to obtain magnetic particles of controllable size, surface chemistry and magnetic payload. RESULTS Flexibility in size and surface charge enabled efficient intracellular delivery of magnetic particles in mesenchymal stem cells and dendritic cells. Owing to the high magnetic payload of the particles, high MRI contrast was generated, even for very low cell numbers. Subcutaneous injection of the particles and subsequent uptake by dendritic cells enabled clear visualization of dendritic cells homing towards nearby lymph nodes in mice. CONCLUSION The magnetic particles offer several possibilities as efficient cellular MRI contrast agents for direct in vitro or in vivo cell labeling.
Collapse
Affiliation(s)
- Marie-Luce De Temmerman
- Laboratory of General Biochemistry & Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Hühn D, Kantner K, Geidel C, Brandholt S, De Cock I, Soenen SJH, Rivera Gil P, Montenegro JM, Braeckmans K, Müllen K, Nienhaus GU, Klapper M, Parak WJ. Polymer-coated nanoparticles interacting with proteins and cells: focusing on the sign of the net charge. ACS NANO 2013; 7:3253-63. [PMID: 23566380 DOI: 10.1021/nn3059295] [Citation(s) in RCA: 400] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
To study charge-dependent interactions of nanoparticles (NPs) with biological media and NP uptake by cells, colloidal gold nanoparticles were modified with amphiphilic polymers to obtain NPs with identical physical properties except for the sign of the charge (negative/positive). This strategy enabled us to solely assess the influence of charge on the interactions of the NPs with proteins and cells, without interference by other effects such as different size and colloidal stability. Our study shows that the number of adsorbed human serum albumin molecules per NP was not influenced by their surface charge. Positively charged NPs were incorporated by cells to a larger extent than negatively charged ones, both in serum-free and serum-containing media. Consequently, with and without protein corona (i.e., in serum-free medium) present, NP internalization depends on the sign of charge. The uptake rate of NPs by cells was higher for positively than for negatively charged NPs. Furthermore, cytotoxicity assays revealed a higher cytotoxicity for positively charged NPs, associated with their enhanced uptake.
Collapse
Affiliation(s)
- Dominik Hühn
- Department of Physics, Philipps-University Marburg, Marburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Research advancements for magnetically guided drug delivery encompass not only the improvement of the design, synthesis and evaluation of more selective nanomaterials bearing magnetic properties, but also the optimization of the transport and delivery of magnetic agents. Such versatile platforms can be utilized for simultaneously carrying therapeutics and diagnostics.
Collapse
|
21
|
Yang FY, Yu MX, Zhou Q, Chen WL, Gao P, Huang Z. Effects of Iron Oxide Nanoparticle Labeling on Human Endothelial Cells. Cell Transplant 2012; 21:1805-20. [PMID: 22776829 DOI: 10.3727/096368912x652986] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Iron oxide nanoparticles (INOPS) are a potential contrast agent for magnetic resonance (MR) tracking of transplanted endothelial cells. The objective of this study was to examine the effect of INOPS labeling on endothelial cells. The mixture of INOPS and poly-l-lysine (PLL) was used to label human endothelial cells. Labeling efficiency was examined by Prussian blue staining, transmission electron microscopy, and atomic absorption spectrometry. The effect of iron oxide concentration on cell viability and proliferation were determined. The correlation of reactive oxygen species (ROS) and apoptosis was also examined. In vitro MRI scanning was carried out using a 1.5T MR system. INOPS-PLL could be readily taken up by endothelial cells and subsequently induce MRI signal intensity changes. However, higher labeling concentration (>50 μg/ml) and longer incubation (48 h) can affect cell viability and proliferation. Mitochondrial damage, apoptosis, and autolysosmes were observed under high INOPS-PLL concentrations, which were correlated to ROS production. INOPS-PLL nanoparticles can be used to label transplanted endothelial cells. However, high concentration of INOPS can impair cell viability, possibly through ROS-mediated apoptosis and autophagy.
Collapse
Affiliation(s)
- Fu-Yuan Yang
- MOE Key Laboratory of Laser Life Science, South China Normal University, Guangzhou, China
| | - Ming-Xi Yu
- MOE Key Laboratory of Laser Life Science, South China Normal University, Guangzhou, China
| | - Quan Zhou
- Medical Imaging Center, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Wen-Li Chen
- MOE Key Laboratory of Laser Life Science, South China Normal University, Guangzhou, China
| | - Peng Gao
- Medical Imaging Center, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zheng Huang
- School of Medicine and School of Engineering and Applied Science, University of Colorado-Denver, Denver, CO, USA
| |
Collapse
|
22
|
Dextran and polymer polyethylene glycol (PEG) coating reduce both 5 and 30 nm iron oxide nanoparticle cytotoxicity in 2D and 3D cell culture. Int J Mol Sci 2012; 13:5554-5570. [PMID: 22754315 PMCID: PMC3382777 DOI: 10.3390/ijms13055554] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 04/15/2012] [Accepted: 04/30/2012] [Indexed: 01/22/2023] Open
Abstract
Superparamagnetic iron oxide nanoparticles are widely used in biomedical applications, yet questions remain regarding the effect of nanoparticle size and coating on nanoparticle cytotoxicity. In this study, porcine aortic endothelial cells were exposed to 5 and 30 nm diameter iron oxide nanoparticles coated with either the polysaccharide, dextran, or the polymer polyethylene glycol (PEG). Nanoparticle uptake, cytotoxicity, reactive oxygen species (ROS) formation, and cell morphology changes were measured. Endothelial cells took up nanoparticles of all sizes and coatings in a dose dependent manner, and intracellular nanoparticles remained clustered in cytoplasmic vacuoles. Bare nanoparticles in both sizes induced a more than 6 fold increase in cell death at the highest concentration (0.5 mg/mL) and led to significant cell elongation, whereas cell viability and morphology remained constant with coated nanoparticles. While bare 30 nm nanoparticles induced significant ROS formation, neither 5 nm nanoparticles (bare or coated) nor 30 nm coated nanoparticles changed ROS levels. Furthermore, nanoparticles were more toxic at lower concentrations when cells were cultured within 3D gels. These results indicate that both dextran and PEG coatings reduce nanoparticle cytotoxicity, however different mechanisms may be important for different size nanoparticles.
Collapse
|