1
|
Kuo SN, Wu PX, Huang SL, Hsu YC, Huang JH. Thermo-responsive methylcellulose/hyaluronic acid-mesalamine hydrogel in targeted drug delivery for ulcerative colitis. RSC Adv 2025; 15:14126-14135. [PMID: 40313324 PMCID: PMC12044526 DOI: 10.1039/d5ra00216h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/17/2025] [Indexed: 05/03/2025] Open
Abstract
Current treatments for ulcerative colitis (UC), including mesalamine (Me) enemas, face limitations such as poor colonic retention, systemic side effects, and suboptimal patient compliance. To address these challenges, this study developed a thermo-responsive hydrogel combining hyaluronic acid-mesalamine (HA-Me) conjugates with methylcellulose (MC), providing a targeted and sustained drug delivery platform for UC treatment. HA-Me conjugates were synthesized via a nucleophilic addition-elimination reaction, with FT-IR and 1H-NMR confirming successful conjugation and a grafting ratio of 12.45%. Rheological analysis revealed a lower critical solution temperature (LCST) of 36.7-37.7 °C, ensuring gelation at body temperature when the MC concentration was 5-7 wt%. The optimized hydrogel exhibits intestinal retention properties, thereby improving drug bioavailability. The results confirmed that this hydrogel not only improved drug release time but also provided a protective barrier for inflamed wounds, facilitating wound healing, reducing the risk of reinfection, and improving medical compliance. Its mucoadhesive properties further supported effective drug delivery and localized therapeutic effects. This study highlights the potential of the MC/HA-Me hydrogel as a platform for overcoming the limitations of conventional UC treatments, offering opportunities for tailored therapeutic applications and future clinical development.
Collapse
Affiliation(s)
- Sheng-Nan Kuo
- Department of Chemical Engineering, National Tsing Hua University Hsinchu 30013 Taiwan +886-3-5743051
| | - Pei-Xhan Wu
- Department of Chemical Engineering, National United University Miaoli 36003 Taiwan +886-37-382-209
| | - Shu-Ling Huang
- Department of Chemical Engineering, National United University Miaoli 36003 Taiwan +886-37-382-209
- Science/International Master Program of Translation Medicine, National United University Miaoli 36003 Taiwan
| | - Yu-Ci Hsu
- Department of Chemical Engineering, National United University Miaoli 36003 Taiwan +886-37-382-209
| | - Jen-Huang Huang
- Department of Chemical Engineering, National Tsing Hua University Hsinchu 30013 Taiwan +886-3-5743051
| |
Collapse
|
2
|
Pagliari F, Tirinato L, Di Fabrizio E. Raman spectroscopies for cancer research and clinical applications: a focus on cancer stem cells. Stem Cells 2025; 43:sxae084. [PMID: 39949042 DOI: 10.1093/stmcls/sxae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 11/20/2024] [Indexed: 04/23/2025]
Abstract
Over the last 2 decades, research has increasingly focused on cancer stem cells (CSCs), considered responsible for tumor formation, resistance to therapies, and relapse. The traditional "static" CSC model used to describe tumor heterogeneity has been challenged by the evidence of CSC dynamic nature and plasticity. A comprehensive understanding of the mechanisms underlying this plasticity, and the capacity to unambiguously identify cancer markers to precisely target CSCs are crucial aspects for advancing cancer research and introducing more effective treatment strategies. In this context, Raman spectroscopy (RS) and specific Raman schemes, including CARS, SRS, SERS, have emerged as innovative tools for molecular analyses both in vitro and in vivo. In fact, these techniques have demonstrated considerable potential in the field of cancer detection, as well as in intraoperative settings, thanks to their label-free nature and minimal invasiveness. However, the RS integration in pre-clinical and clinical applications, particularly in the CSC field, remains limited. This review provides a concise overview of the historical development of RS and its advantages. Then, after introducing the CSC features and the challenges in targeting them with traditional methods, we review and discuss the current literature about the application of RS for revealing and characterizing CSCs and their inherent plasticity, including a brief paragraph about the integration of artificial intelligence with RS. By providing the possibility to better characterize the cellular diversity in their microenvironment, RS could revolutionize current diagnostic and therapeutic approaches, enabling early identification of CSCs and facilitating the development of personalized treatment strategies.
Collapse
Affiliation(s)
- Francesca Pagliari
- Division of Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Luca Tirinato
- Department of Medical and Surgical Sciences, University Magna Graecia, 88100 Catanzaro, Italy
| | - Enzo Di Fabrizio
- PolitoBIOMed Lab DISAT Department, Polytechnic University of Turin, 10129 Turin, Italy
| |
Collapse
|
3
|
Hakala S, Hämäläinen A, Sandelin S, Giannareas N, Närvä E. Detection of Cancer Stem Cells from Patient Samples. Cells 2025; 14:148. [PMID: 39851576 PMCID: PMC11764358 DOI: 10.3390/cells14020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/26/2025] Open
Abstract
The existence of cancer stem cells (CSCs) in various tumors has become increasingly clear in addition to their prominent role in therapy resistance, metastasis, and recurrence. For early diagnosis, disease progression monitoring, and targeting, there is a high demand for clinical-grade methods for quantitative measurement of CSCs from patient samples. Despite years of active research, standard measurement of CSCs has not yet reached clinical settings, especially in the case of solid tumors. This is because detecting this plastic heterogeneous population of cells is not straightforward. This review summarizes various techniques, highlighting their benefits and limitations in detecting CSCs from patient samples. In addition, methods designed to detect CSCs based on secreted and niche-associated signaling factors are reviewed. Spatial and single-cell methods for analyzing patient tumor tissues and noninvasive techniques such as liquid biopsy and in vivo imaging are discussed. Additionally, methods recently established in laboratories, preclinical studies, and clinical assays are covered. Finally, we discuss the characteristics of an ideal method as we look toward the future.
Collapse
Affiliation(s)
| | | | | | | | - Elisa Närvä
- Institute of Biomedicine and FICAN West Cancer Centre Laboratory, University of Turku and Turku University Hospital, FI-20520 Turku, Finland; (S.H.); (A.H.); (S.S.); (N.G.)
| |
Collapse
|
4
|
Miao L, Zhu Y, Chang H, Zhang X. Nanotheranostics in Breast Cancer Bone Metastasis: Advanced Research Progress and Future Perspectives. Pharmaceutics 2024; 16:1491. [PMID: 39771471 PMCID: PMC11676679 DOI: 10.3390/pharmaceutics16121491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/27/2024] [Accepted: 11/14/2024] [Indexed: 01/11/2025] Open
Abstract
Breast cancer is the leading cause of cancer-related morbidity and mortality among women worldwide, with bone being the most common site of all metastatic breast cancer. Bone metastases are often associated with pain and skeletal-related events (SREs), indicating poor prognosis and poor quality of life. Most current therapies for breast cancer bone metastasis primarily serve palliative purposes, focusing on pain management, mitigating the risk of bone-related complications, and inhibiting tumor progression. The emergence of nanodelivery systems offers novel insights and potential solutions for the diagnosis and treatment of breast cancer-related bone metastasis. This article reviews the recent advancements and innovative applications of nanodrug delivery systems in the context of breast cancer bone metastasis and explores future directions in nanotheranostics.
Collapse
Affiliation(s)
- Lin Miao
- Department of Breast Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang 110042, China; (L.M.); (Y.Z.)
- Graduate School, China Medical University, Shenyang 110122, China
| | - Yidan Zhu
- Department of Breast Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang 110042, China; (L.M.); (Y.Z.)
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Hong Chang
- Department of Breast Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang 110042, China; (L.M.); (Y.Z.)
| | - Xinfeng Zhang
- Department of Breast Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang 110042, China; (L.M.); (Y.Z.)
- Graduate School, China Medical University, Shenyang 110122, China
| |
Collapse
|
5
|
Ashkarran AA, Lin Z, Rana J, Bumpers H, Sempere L, Mahmoudi M. Impact of Nanomedicine in Women's Metastatic Breast Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2301385. [PMID: 37269217 PMCID: PMC10693652 DOI: 10.1002/smll.202301385] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/16/2023] [Indexed: 06/04/2023]
Abstract
Metastatic breast cancer is responsible for 90% of mortalities among women suffering from various types of breast cancers. Traditional cancer treatments such as chemotherapy and radiation therapy can cause significant side effects and may not be effective in many cases. However, recent advances in nanomedicine have shown great promise in the treatment of metastatic breast cancer. For example, nanomedicine demonstrated robust capacity in detection of metastatic cancers at early stages (i.e., before the metastatic cells leave the initial tumor site), which gives clinicians a timely option to change their treatment process (for example, instead of endocrine therapy they may use chemotherapy). Here recent advances in nanomedicine technology in the identification and treatment of metastatic breast cancers are reviewed.
Collapse
Affiliation(s)
- Ali Akbar Ashkarran
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Zijin Lin
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Jatin Rana
- Division of Hematology and Oncology, Michigan State University, East Lansing, MI, 48824, USA
| | - Harvey Bumpers
- Department of Surgery, Michigan State University, East Lansing, MI, 48824, USA
| | - Lorenzo Sempere
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, 48824, USA
- Connors Center for Women's Health & Gender Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
6
|
Mirzaei S, Khademi Z, Zolfaghari R, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. Dual-targeted delivery system using hollow silica nanoparticles with H +-triggered bubble generating characteristic coated with hyaluronic acid and AS1411 for cancer therapy. Drug Dev Ind Pharm 2023; 49:648-657. [PMID: 37772892 DOI: 10.1080/03639045.2023.2265484] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 09/26/2023] [Indexed: 09/30/2023]
Abstract
OBJECTIVE Herein, a dual-targeting delivery system using mesoporous silica nanoparticles with hollow structures (HMSNs) was developed for the specific delivery of epirubicin (EPI) to cancer cells and introducing a H+-triggered bubble generating nanosystem (BGNS). HMSNs containing EPI are covered by hyaluronic acid (HA) shell and AS1411 aptamer to create the BGNS-EPI-HA-Apt complex, which is highly selective against CD44 marker and nucleolin overexpressed on the surface of tumor cells. METHODS MTT assay compared the cytotoxicity of different treatments in CHO (Chinese hamster ovary) cells as well as 4T1 (murine mammary carcinoma) and MCF-7 (human breast adenocarcinoma) cells. The internalization of Epi was assessed by flow cytometry along with fluorescence imaging. In vivo studies were conducted on BALB/c mice bearing a tumor from 4T1 cell line where monitoring included measuring tumor volume, mouse weight changes over time alongside mortality rate; accumulation levels for Epi within organs were also measured during this process. RESULTS The collected data illustrated that BGNS-EPI-HA-Apt complex controlled the release of EPI in a sustained method. Afterward, receptor-mediated internalization via nucleolin and CD44 was verified in 4T1 and MCF-7 cells using fluorescence microscopy assay and flow cytometry analysis. The results of tumor inhibitory effect study exhibited that BGNS-EPI-HA-Apt complex decreased off-target effect and improved on-target effects because of its targeting ability. CONCLUSION The data acquired substantiates that HA-surface modified HMSNs functionalized with aptamers possess significant potential as a focused platform for efficient transportation of anticancer agents to neoplastic tissues.
Collapse
Affiliation(s)
- Salimeh Mirzaei
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Zahra Khademi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Zolfaghari
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Li H, Cheng S, Zhai J, Lei K, Zhou P, Cai K, Li J. Platinum based theranostics nanoplatforms for antitumor applications. J Mater Chem B 2023; 11:8387-8403. [PMID: 37581251 DOI: 10.1039/d3tb01035j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Platinum (Pt) based nanoplatforms are biocompatible nanoagents with photothermal antitumor performance, while exhibiting excellent radiotherapy sensitization properties. Pt-nanoplatforms have extensive research prospects in the realm of cancer treatment due to their highly selective and minimally invasive treatment mode with low damage, and integrated diagnosis and treatment with image monitoring and collaborative drug delivery. Platinum based anticancer chemotherapeutic drugs can kill tumor cells by damaging DNA through chemotherapy. Meanwhile, Pt-nanoplatforms also have good electrocatalytic activity, which can mediate novel electrodynamic therapy. Simultaneously, Pt(II) based compounds also have potential as photosensitizers in photodynamic therapy for malignant tumors. Pt-nanoplatforms can also modulate the immunosuppressive environment and synergistically ablate tumor cells in combination with immune checkpoint inhibitors. This article reviews the research progress of platinum based nanoplatforms in new technologies for cancer therapy, starting from widely representative examples of platinum based nanoplatforms in chemotherapy, electrodynamic therapy, photodynamic therapy, photothermal therapy, and immunotherapy. Finally, multimodal imaging techniques of platinum based nanoplatforms for biomedical diagnosis are briefly discussed.
Collapse
Affiliation(s)
- Heying Li
- College of Medical Technology and Engineering, The 1st Affiliated Hospital, Henan University of Science and Technology, Luoyang 471000, China.
| | - Shaowen Cheng
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Jingming Zhai
- College of Medical Technology and Engineering, The 1st Affiliated Hospital, Henan University of Science and Technology, Luoyang 471000, China.
| | - Kun Lei
- College of Medical Technology and Engineering, The 1st Affiliated Hospital, Henan University of Science and Technology, Luoyang 471000, China.
| | - Ping Zhou
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Jinghua Li
- College of Medical Technology and Engineering, The 1st Affiliated Hospital, Henan University of Science and Technology, Luoyang 471000, China.
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
8
|
Kazemi Y, Dehghani S, Nosrati R, Taghdisi SM, Abnous K, Alibolandi M, Ramezani M. Recent progress in the early detection of cancer based on CD44 biomarker; nano-biosensing approaches. Life Sci 2022; 300:120593. [PMID: 35500679 DOI: 10.1016/j.lfs.2022.120593] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 01/06/2023]
Abstract
CD44 is a cell matrix adhesion molecule overexpressed on the cell surfaces of the major cancers. CD44 as a cancer-related biomarker has an essential role in the invasion and metastasis of cancer. The detection and quantification of CD44 can provide essential information useful for clinical cancer diagnosis. In this regard, biosensors with sensitive and specific properties, give prominence to the development of CD44 detection platforms. To date, various aptamer-based sensitive-enhancers together with nanoparticles (NPs) have been combined into the biosensors systems to provide an innovative biosensing method (aptasensors/nano-aptasensors) with substantially improved detection limit. This review article discusses the recent advances in the field of biosensors, nanobiosensors, and aptasensors for the quantitative determination of CD44 and the detection of CD44-expressing cancer cells.
Collapse
Affiliation(s)
- Youkabed Kazemi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sadegh Dehghani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rahim Nosrati
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Subhan MA. Advances with metal oxide-based nanoparticles as MDR metastatic breast cancer therapeutics and diagnostics. RSC Adv 2022; 12:32956-32978. [PMID: 36425155 PMCID: PMC9670683 DOI: 10.1039/d2ra02005j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022] Open
Abstract
Metal oxide nanoparticles have attracted increased attention due to their emerging applications in cancer detection and therapy. This study envisioned to highlight the great potential of metal oxide NPs due to their interesting properties including high payload, response to magnetic field, affluence of surface modification to overcome biological barriers, and biocompatibility. Mammogram, ultrasound, X-ray computed tomography (CT), MRI, positron emission tomography (PET), optical or fluorescence imaging are used for breast imaging. Drug-loaded metal oxide nanoparticle delivered to the breast cancer cells leads to higher drug uptake. Thus, enhanced the cytotoxicity to target cells compared to free drug. The drug loaded metal oxide nanoparticle formulations hold great promise to enhance efficacy of breast cancer therapy including multidrug resistant (MDR) and metastatic breast cancers. Various metal oxides including magnetic metal oxides and magnetosomes are of current interests to explore cancer drug delivery and diagnostic efficacy especially for metastatic breast cancer. Metal oxide-based nanocarrier formulations are promising for their usage in drug delivery and release to breast cancer cells, cancer diagnosis and their clinical translations. Biomarker targeted therapy approaches for TNBC using metal oxide-based NPs are highly effective and promising.![]()
Collapse
Affiliation(s)
- Md Abdus Subhan
- Department of Chemistry, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| |
Collapse
|
10
|
Jain K, Ahmad J, Rizwanullah M, Suthar T, Albarqi HA, Ahmad MZ, Vuddanda PR, Khan MA. Receptor-Targeted Surface Engineered Nanomaterials for Breast Cancer Imaging and Theranostic Applications. Crit Rev Ther Drug Carrier Syst 2022; 39:1-44. [DOI: 10.1615/critrevtherdrugcarriersyst.2022040686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
11
|
Ghaderi F, Jokar N, Gholamrezanezhad A, Assadi M, Ahmadzadehfar H. Toward radiotheranostics in cancer stem cells: a promising initial step for tumour eradication. Clin Transl Imaging 2021. [DOI: 10.1007/s40336-021-00444-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Lee T, Lim J, Park K, Lim EK, Lee JJ. Peptidoglycan-Binding Protein Metamaterials Mediated Enhanced and Selective Capturing of Gram-Positive Bacteria and Their Specific, Ultra-Sensitive, and Reproducible Detection via Surface-Enhanced Raman Scattering. ACS Sens 2020; 5:3099-3108. [PMID: 32786378 DOI: 10.1021/acssensors.0c01139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Biological metamaterials with a specific size and spacing are necessary for developing highly sensitive and selective sensing systems to detect hazardous bacteria in complex solutions. Herein, the construction of peptidoglycan-binding protein (PGBP)-based metamaterials to selectively capture Gram-positive cells with high efficacy is reported. Nanoimprint lithography was used to generate a nanohole pattern as a template, the inside of which was modified with nickel(II)-nitrilotriacetic acid (Ni-NTA). Then, PGBP metamaterials were fabricated by immobilizing PGBP via chelation between Ni-NTA and six histidines on PGBP. Compared to the flat and spread PGBP-covered bare substrates, the PGBP-based metamaterials enabled selective capturing of Gram-positive bacteria with high efficacy, owing to enhanced interactions between the metamaterials and bacterial surface not shown in bulk materials. Thereafter, the specific strain and quantitative information of the captured bacteria was obtained by surface-enhanced Raman scattering mapping analysis in the 1 to 1 × 106 cfu/mL range within 30 min. It should be noted that no additional signal amplification process was required for lowly abundant bacteria, even at the single-bacterium level. The PGBP-based metamaterials could be regenerated multiple times with preserved sensing efficiency. Finally, this assay can detect specific Gram-positive bacteria, such as Staphylococcus aureus, in human plasma.
Collapse
Affiliation(s)
- Taeksu Lee
- Department of Nano Manufacturing Technology, Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34103, Republic of Korea
| | - Jaewoo Lim
- Bionano Technology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 125 Gwahak-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Kyoungsook Park
- BioNano Health Guard Research Center, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea
- Department of General Education, Daejeon Health Institute of Technology, 21 Chungjeong-ro, Dong-gu, Daejeon 34504, Korea
| | - Eun-Kyung Lim
- Bionano Technology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 125 Gwahak-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Jae-Jong Lee
- Department of Nano Manufacturing Technology, Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34103, Republic of Korea
| |
Collapse
|
13
|
Sun CY, Zhang BB, Zhou JY. Light-activated drug release from a hyaluronic acid targeted nanoconjugate for cancer therapy. J Mater Chem B 2020; 7:4843-4853. [PMID: 31389968 DOI: 10.1039/c9tb01115c] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hyaluronic acid (HA)-based nanocarriers are of great interest in the drug delivery field due to the tumor targetability via CD44-mediated recognition and endocytosis. However, sufficient tumor-specific release of encapsulated cargoes with steady controllability is necessary to optimize their outcome for cancer therapy. In this study, we constructed a light-activated nanocarrier TKHCENPDOX to enable on-demand drug release at the desired site (tumor). Particularly, TKHCENPDOX encapsulating doxorubicin (DOX) was self-assembled from a HA-photosensitizer conjugate (HA-TK-Ce6) containing reactive oxygen species (ROS)-sensitive thioketal (TK) linkers. Following i.v. injection, TKHCENPDOX was accumulated in the MDA-MB-231 breast tumor xenograft more efficiently through preventing drug leakage in the bloodstream and the HA-mediated targeting effect. Upon internalization into tumoral cells, 660 nm laser irradiation generated ROS during a photodynamic (PDT) process to cleave the TK linker next to Ce6, resulting in light-induced TKHCENPDOX dissociation and selective DOX release in the tumor area. Consequently, TKHCENPDOX showed a remarkable therapeutic effect and minimized toxicity in vivo. This strategy might provide new insight for designing cancer-selective nanoplatforms with active targeting and locoregional drug release simultaneously.
Collapse
Affiliation(s)
- Chun-Yang Sun
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, P. R. China.
| | | | | |
Collapse
|
14
|
Ghaffari H, Atashzar MR, Abdollahi H. Molecular imaging in tracking cancer stem cells: A review. Med J Islam Repub Iran 2020; 34:90. [PMID: 33306061 PMCID: PMC7711048 DOI: 10.34171/mjiri.34.90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Indexed: 11/05/2022] Open
Abstract
Cancer stem cells (CSCs) have critical roles in tumor development, progression, and recurrence. They are responsible for current cancer treatment failure and remain questionable for the design and development of new therapeutic strategies. With this issue, medical imaging provides several clues for finding biological mechanisms and strategies to treat CSCs. This review aims to summarize current molecular imaging approaches for detecting CSCs. In addition, some promising issues for CSCs finding and explaining biological mechanisms have been addressed. Among the molecular imaging approaches, modalities including Magnetic resonance imaging (MRI) and positron emission tomography (PET) have the greatest roles and several new approaches such as optical imaging are in progress.
Collapse
Affiliation(s)
- Hamed Ghaffari
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Atashzar
- Department of Immunology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Hamid Abdollahi
- Department of Radiologic Sciences and Medical Physics, School of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
15
|
Shakil MS, Hasan MA, Sarker SR. Iron Oxide Nanoparticles for Breast Cancer Theranostics. Curr Drug Metab 2020; 20:446-456. [PMID: 30465497 DOI: 10.2174/1389200220666181122105043] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/12/2018] [Accepted: 10/12/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Breast cancer is the second leading cause of death in women worldwide. The extremely fast rate of metastasis and ability to develop resistance mechanism to all the conventional drugs make them very difficult to treat which are the causes of high morbidity and mortality of breast cancer patients. Scientists throughout the world have been focusing on the early detection of breast tumor so that treatment can be started at the very early stage. Moreover, conventional treatment processes such as chemotherapy, radiotherapy, and local surgery suffer from various limitations including toxicity, genetic mutation of normal cells, and spreading of cancer cells to healthy tissues. Therefore, new treatment regimens with minimum toxicity to normal cells need to be urgently developed. METHODS Iron oxide nanoparticles have been widely used for targeting hyperthermia and imaging of breast cancer cells. They can be conjugated with drugs, proteins, enzymes, antibodies or nucleotides to deliver them to target organs, tissues or tumors using external magnetic field. RESULTS Iron oxide nanoparticles have been successfully used as theranostic agents for breast cancer both in vitro and in vivo. Furthermore, their functionalization with drugs or functional biomolecules enhance their drug delivery efficiency and reduces the systemic toxicity of drugs. CONCLUSION This review mainly focuses on the versatile applications of superparamagnetic iron oxide nanoparticles on the diagnosis, treatment, and detecting progress of breast cancer treatment. Their wide application is because of their excellent superparamagnetic, biocompatible and biodegradable properties.
Collapse
Affiliation(s)
- Md Salman Shakil
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Md Ashraful Hasan
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Satya Ranjan Sarker
- Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| |
Collapse
|
16
|
Shahriari M, Taghdisi SM, Abnous K, Ramezani M, Alibolandi M. Synthesis of hyaluronic acid-based polymersomes for doxorubicin delivery to metastatic breast cancer. Int J Pharm 2019; 572:118835. [DOI: 10.1016/j.ijpharm.2019.118835] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/22/2019] [Accepted: 10/28/2019] [Indexed: 12/31/2022]
|
17
|
Jo YU, Lee CB, Bae SK, Na K. Acetylated Hyaluronic Acid-Poly(L-lactic acid) Conjugate Nanoparticles for Inhibition of Doxorubicinol Production from Doxorubicin. Macromol Res 2019. [DOI: 10.1007/s13233-020-8003-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Hayes AJ, Melrose J. Glycosaminoglycan and Proteoglycan Biotherapeutics in Articular Cartilage Protection and Repair Strategies: Novel Approaches to Visco‐supplementation in Orthobiologics. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Anthony J. Hayes
- Bioimaging Research HubCardiff School of BiosciencesCardiff University Cardiff CF10 3AX Wales UK
| | - James Melrose
- Graduate School of Biomedical EngineeringUNSW Sydney Sydney NSW 2052 Australia
- Raymond Purves Bone and Joint Research LaboratoriesKolling Institute of Medical ResearchRoyal North Shore Hospital and The Faculty of Medicine and HealthUniversity of Sydney St. Leonards NSW 2065 Australia
- Sydney Medical SchoolNorthernRoyal North Shore HospitalSydney University St. Leonards NSW 2065 Australia
| |
Collapse
|
19
|
Zero-Field and Field-Induced Interactions between Multicore Magnetic Nanoparticles. NANOMATERIALS 2019; 9:nano9050718. [PMID: 31075888 PMCID: PMC6566794 DOI: 10.3390/nano9050718] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/02/2019] [Accepted: 05/05/2019] [Indexed: 02/03/2023]
Abstract
In this paper, the Langevin dynamics simulation method is used to study magnetic interactions between a pair of multicore magnetic nanoparticles subjected to a uniform magnetic field. Multicore nanoparticles are modelled as spherical rigid clusters of single-domain superparamagnetic cores coupled via dipole-dipole interactions. It is shown that the magnetic force between two well-separated clusters in a strong applied field can be accurately described within the induced point-dipole approximation. However, this approximation also assumes that there are no interactions between clusters in the zero-field limit. On the contrary, simulations indicate the existence of a relatively small attractive magnetic force between clusters, even in the absence of an applied field. It is shown that this force is a direct superparamagnetic analog of the van der Waals interaction between a pair of dielectric spheres.
Collapse
|
20
|
Multifunctional hyaluronate - nanoparticle hybrid systems for diagnostic, therapeutic and theranostic applications. J Control Release 2019; 303:55-66. [PMID: 30954619 DOI: 10.1016/j.jconrel.2019.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 12/19/2022]
Abstract
Diagnostic and therapeutic nanoparticles have been actively investigated for the last few decades as new platforms for biomedical applications. Despite their great versatility and potency, nanoparticles have generally required further modification with biocompatible materials such as biopolymers and synthetic polymers for in vivo administration to improve their biological functions, stability, and biocompatibility. Among a variety of natural and synthetic biomaterials, hyaluronate (HA) has been considered a promising biomolecule with which to construct nanohybrid systems, as it can enable long-term and efficient delivery of nanoparticles to target sites as well as physiological stabilization of nanoparticles by forming hydrophilic shells. In this review, we first describe various kinds of HA derivatives and their interactions with nanoparticles, and discuss how to design and develop optimal HA-nanoparticle hybrid systems for biomedical applications. Furthermore, we show several exemplary applications of HA-nanoparticle hybrid systems and provide our perspectives to their futuristic translational applications.
Collapse
|
21
|
Kang B, Lim J, Son HY, Choi Y, Kang T, Jung J, Huh YM, Haam S, Lim EK. PEGylated Magnetic Nano-Assemblies as Contrast Agents for Effective T2-Weighted MR Imaging. NANOMATERIALS 2019; 9:nano9030410. [PMID: 30862030 PMCID: PMC6473972 DOI: 10.3390/nano9030410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 12/12/2022]
Abstract
We designed a high-sensitivity magnetic resonance imaging contrast agent that could be used to diagnose diseases. First, magnetic nanocrystals were synthesized by a thermal decomposition method on an organic solvent to obtain a high magnetism and methoxy poly(ethylene glycol)-poly(lactic acid) as an amphiphilic polymer using the ring-opening polymerization method to stably disperse the magnetic nanocrystals in an aqueous phase. Subsequently, the magnetic nanoclusters simultaneously self-assembled with methoxy poly(ethylene glycol)-poly(lactic acid) using the nano-emulsion method to form magnetic nanoclusters. Because their shape was similar to a raspberry, they were named PEGylated magnetic nano-assemblies. The PEGylated magnetic nano-assemblies were dispersed stably in the aqueous phase with a uniform size of approximately 65–70 nm for an extended period (0 days: 68.8 ± 5.1 nm, 33 days: 69.2 ± 2.0 nm, and 44 days: 63.2 ± 5.6). They exhibited both enough of a magnetic resonance (MR) contrast effect and biocompatibility. In an in vivo study, the PEGylated magnetic nano-assemblies provided a high contrast effect for magnetic resonance images for a long time after one treatment, thereby improving the diagnostic visibility of the disease site.
Collapse
Affiliation(s)
- Byunghoon Kang
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Korea.
| | - Jaewoo Lim
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea.
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science & Technology (UST), 125 Gwahak-ro, Yuseong-gu, Daejeon 34113, Korea.
| | - Hye-Young Son
- Department of Radiology, College of Medicine, Yonsei University, Seoul 03722, Korea.
- Severance Biomedical Science Institute, College of Medicine, Yonsei University, Seoul 03722, Korea.
| | - Yuna Choi
- Department of Radiology, College of Medicine, Yonsei University, Seoul 03722, Korea.
| | - Taejoon Kang
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea.
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science & Technology (UST), 125 Gwahak-ro, Yuseong-gu, Daejeon 34113, Korea.
| | - Juyeon Jung
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea.
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science & Technology (UST), 125 Gwahak-ro, Yuseong-gu, Daejeon 34113, Korea.
| | - Yong-Min Huh
- Department of Radiology, College of Medicine, Yonsei University, Seoul 03722, Korea.
- YUHS-KRIBB Medical Convergence Research Institute, Seoul 03722, Korea.
| | - Seungjoo Haam
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Korea.
| | - Eun-Kyung Lim
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea.
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science & Technology (UST), 125 Gwahak-ro, Yuseong-gu, Daejeon 34113, Korea.
- YUHS-KRIBB Medical Convergence Research Institute, Seoul 03722, Korea.
| |
Collapse
|
22
|
Jiang T, Chen G, Shi X, Guo R. Hyaluronic Acid-Decorated Laponite ® Nanocomposites for Targeted Anticancer Drug Delivery. Polymers (Basel) 2019; 11:E137. [PMID: 30960121 PMCID: PMC6401931 DOI: 10.3390/polym11010137] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/05/2019] [Accepted: 01/07/2019] [Indexed: 12/14/2022] Open
Abstract
In this study, hyaluronic acid (HA), a natural polysaccharide that can specifically bind to CD44 receptors, was conjugated onto laponite® (LAP) nanodisks for the encapsulation and specific delivery of the anti-cancer drug doxorubicin (DOX) to CD44-overexpressed cancer cells. The prepared LM-HA could encapsulate DOX efficiently and release drug in a continuous manner with pH-responsiveness. In vitro cell viability assay proved that LM-HA had good biocompatibility, and drug-loaded LM-HA/DOX exhibited targeted anti-tumor effects against HeLa cells with CD44 receptors overexpressed. In addition, the flow cytometric detection and confocal laser scanning microscope results confirmed that LM-HA/DOX could be specifically internalized by HeLa cells via CD44-mediated endocytosis. Therefore, the HA-modified LAP nanodisks with high drug loading efficiency, pH-sensitive drug release properties and CD44 targetability might be an efficient nanoplatform for cancer chemotherapy.
Collapse
Affiliation(s)
- Tingting Jiang
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Guangxiang Chen
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Xiangyang Shi
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Rui Guo
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| |
Collapse
|
23
|
Cai Z, Zhang H, Wei Y, Wu M, Fu A. Shear-thinning hyaluronan-based fluid hydrogels to modulate viscoelastic properties of osteoarthritis synovial fluids. Biomater Sci 2019; 7:3143-3157. [DOI: 10.1039/c9bm00298g] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Hyaluronan-based injectable fluid hydrogel was prepared and used as an artificial synovial fluid for the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Zhixiang Cai
- Advanced Rheology Institute
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Hongbin Zhang
- Advanced Rheology Institute
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Yue Wei
- Advanced Rheology Institute
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Min Wu
- Advanced Rheology Institute
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Ailing Fu
- Shanghai Jingfeng Pharmaceutical Co. Ltd
- Shanghai 200120
- China
| |
Collapse
|
24
|
Marcu LG, Reid P, Bezak E. The Promise of Novel Biomarkers for Head and Neck Cancer from an Imaging Perspective. Int J Mol Sci 2018; 19:E2511. [PMID: 30149561 PMCID: PMC6165113 DOI: 10.3390/ijms19092511] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/18/2018] [Accepted: 08/23/2018] [Indexed: 01/25/2023] Open
Abstract
It is an agreed fact that overall survival among head and neck cancer patients has increased over the last decade. Several factors however, are still held responsible for treatment failure requiring more in-depth evaluation. Among these, hypoxia and proliferation-specific parameters are the main culprits, along with the more recently researched cancer stem cells. This paper aims to present the latest developments in the field of biomarkers for hypoxia, stemness and tumour proliferation, from an imaging perspective that includes both Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT) as well as functional magnetic resonance imaging (MRI). Quantitative imaging of biomarkers is a prerequisite for accurate treatment response assessment, bringing us closer to the highly needed personalised therapy.
Collapse
Affiliation(s)
- Loredana G Marcu
- Faculty of Science, University of Oradea, 410087 Oradea, Romania.
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide, SA 5001, Australia.
| | - Paul Reid
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide, SA 5001, Australia.
| | - Eva Bezak
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide, SA 5001, Australia.
- Department of Physics, University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
25
|
Avitabile E, Bedognetti D, Ciofani G, Bianco A, Delogu LG. How can nanotechnology help the fight against breast cancer? NANOSCALE 2018; 10:11719-11731. [PMID: 29917035 DOI: 10.1039/c8nr02796j] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this review we provide a broad overview on the use of nanotechnology for the fight against breast cancer (BC). Nowadays, detection, diagnosis, treatment, and prevention may be possible thanks to the application of nanotechnology to clinical practice. Taking into consideration the different forms of BC and the disease status, nanomaterials can be designed to meet the most forefront objectives of modern therapy and diagnosis. We have analyzed in detail three main groups of nanomaterial applications for BC treatment and diagnosis. We have identified several types of drugs successfully conjugated with nanomaterials. We have analyzed the main important imaging techniques and all nanomaterials used to help the non-invasive, early detection of the lesions. Moreover, we have examined theranostic nanomaterials as unique tools, combining imaging, detection, and therapy for BC. This state of the art review provides a useful guide depicting how nanotechnology can be used to overcome the current barriers in BC clinical practice, and how it will shape the future scenario of treatments, prevention, and diagnosis, revolutionizing the current approaches, e.g., reducing the suffering related to chemotherapy.
Collapse
Affiliation(s)
- Elisabetta Avitabile
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy.
| | | | | | | | | |
Collapse
|
26
|
Xu L, Liu J, Xi J, Li Q, Chang B, Duan X, Wang G, Wang S, Wang Z, Wang L. Synergized Multimodal Therapy for Safe and Effective Reversal of Cancer Multidrug Resistance Based on Low-Level Photothermal and Photodynamic Effects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800785. [PMID: 29931728 DOI: 10.1002/smll.201800785] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/05/2018] [Indexed: 05/03/2023]
Abstract
Despite the therapeutic usefulness of near-infrared irradiation (NIR)-induced potent photothermal effects (PTE) and photodynamic effects (PDE), they inevitably damage normal tissues, often posing threat to life when treating tumors adjacent to key organs or major blood vessels. In this study, the frequently overlooked, "weak" PTE and PDE (no killing capability) are employed to synergize chemotherapy against multidrug resistance (MDR) without impairing normal tissues. An NIR-responsive nanosystem, gold (Au)-nanodot-decorated hollow carbon nanospheres coated with hyaluronic acid, is synthesized as a doxorubicin (DOX) carrier with excellent photothermal and photodynamic properties. Upon low-level infrared irradiation, the mild heat of weak PTE moderately boosts DOX unloading, meanwhile the weak PDE moderately disturbs the P-glycoprotein function for retaining intracellular DOX by impairing mitochondrial ATP production. These two "moderate" alterations are quantitatively and functionally sufficient to augment the efficacy of chemotherapy in reversing MDR without damaging neighboring tissue. Thus, this work creates a gold-dot-decorated nanocarbon spheres based nanosystem for trimodal therapy, reveals the therapeutic value of the frequently ignored weak PTE/PDE, and demonstrates that synergizing with chemotherapy to overcome drug resistance does not necessarily require potent PTE/PDE.
Collapse
Affiliation(s)
- Luming Xu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jia Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiangbo Xi
- Key laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, Department of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Qilin Li
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bingcheng Chang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xianming Duan
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Minimally Invasive Surgery Medical Research Center of Hubei Province, Wuhan, 430022, China
| | - Shuai Wang
- Key laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, Department of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Minimally Invasive Surgery Medical Research Center of Hubei Province, Wuhan, 430022, China
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
27
|
Zhang W, Tung CH. Lysosome Enlargement Enhanced Photochemotherapy Using a Multifunctional Nanogel. ACS APPLIED MATERIALS & INTERFACES 2018; 10:4343-4348. [PMID: 29356498 DOI: 10.1021/acsami.7b16575] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Large lysosomes are susceptible toward rupture because of an increased membrane tension. Here we report a strategy to first enlarge and weaken the lysosome and then destroy it to boost the efficiency of photochemotherapy using a hyaluronan nanogel, carrying chloroquine as a lysosomal expander, rhodamine B as a photosensitive lysosomal destroyer, and cisplatin as a chemotherapeutic. This all-in-one nanogel provides a facile approach and new insight into improve the photochemotherapy, by making use of lysosome's size, as a risk factor in lysosomal destabilization.
Collapse
Affiliation(s)
- Weiqi Zhang
- Molecular Imaging Innovations Institute, Department of Radiology , Weill Cornell Medicine, New York, New York 10065, United States
| | - Ching-Hsuan Tung
- Molecular Imaging Innovations Institute, Department of Radiology , Weill Cornell Medicine, New York, New York 10065, United States
| |
Collapse
|
28
|
Zhang W, Tung CH. Real-Time Visualization of Lysosome Destruction Using a Photosensitive Toluidine Blue Nanogel. Chemistry 2018; 24:2089-2093. [PMID: 29314346 DOI: 10.1002/chem.201705697] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Indexed: 01/08/2023]
Abstract
Breaking the lysosome helps its sequestered payloads access their molecular targets in cells and thus enhances the intracellular drug delivery. Current strategies for lysosomal escape involve direct physical interactions with the lipid membrane. These interactions pose a systemic toxicity and uncontrolled membrane rupture risk. Here, we report a light-detonated lysosome disruption using a hyaluronan (HA) nanogel packed with toludine blue (TB). The HA/TB nanogel is concentrated within the lysosomes. The applied light assists TB in generating reactive oxygen species and destroying the lysosome in situ, both in cells and isolated lysosomes. Real time fluorescent tracking reveals that quenched TB fluorescence recovers along with lysosome explosion, relocates to the nucleus, and is presented as a fluorescent sparkling in cells. This HA/TB, composed of all clinically approved materials, represents a biocompatible and facile strategy to "bomb" lysosomes in a spatiotemporally controlled fashion.
Collapse
Affiliation(s)
- Weiqi Zhang
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, 413 East 69th Street, Box 290, New York, NY, 10021, USA
| | - Ching-Hsuan Tung
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, 413 East 69th Street, Box 290, New York, NY, 10021, USA
| |
Collapse
|
29
|
Hyaluronan-Based Nanohydrogels as Effective Carriers for Transdermal Delivery of Lipophilic Agents: Towards Transdermal Drug Administration in Neurological Disorders. NANOMATERIALS 2017; 7:nano7120427. [PMID: 29207551 PMCID: PMC5746917 DOI: 10.3390/nano7120427] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 11/26/2017] [Accepted: 11/30/2017] [Indexed: 02/04/2023]
Abstract
We suggest a convenient nanoemulsion fabrication method to create hyaluronan (HA)-based nanohydrogels for effective transdermal delivery. First, hyaluronan-conjugated dodecylamine (HA-Do) HA-based polymers to load the lipophilic agents were synthesized with hyaluronan (HA) and dodecylamine (Do) by varying the substitution ratio of Do to HA. The synthetic yield of HA-Do was more than 80% (HA-Do (A): 82.7 ± 4.7%, HA-Do (B): 87.1 ± 3.9% and HA-Do (C): 81.4 ± 4.5%). Subsequently, nanohydrogels were fabricated using the nanoemulsion method. Indocyanine green (ICG) simultaneously self-assembled with HA-Do, and the size depended on the substitution ratio of Do in HA-Do (nanohydrogel (A): 118.0 ± 2.2 nm, nanohydrogel (B): 121.9 ± 11.4 nm, and nanohydrogel (C): 142.2 ± 3.8 nm). The nanohydrogels were delivered into cells, and had excellent biocompatibility. Especially, nanohydrogel (A) could deliver and permeate ICG into the deep skin layer, the dermis. This suggests that nanohydrogels can be potent transdermal delivery systems.
Collapse
|
30
|
Mokhtarzadeh A, Hassanpour S, Vahid ZF, Hejazi M, Hashemi M, Ranjbari J, Tabarzad M, Noorolyai S, de la Guardia M. Nano-delivery system targeting to cancer stem cell cluster of differentiation biomarkers. J Control Release 2017; 266:166-186. [PMID: 28941992 DOI: 10.1016/j.jconrel.2017.09.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 02/07/2023]
Abstract
Cancer stem cells (CSCs) are one of the most important origins of cancer progression and metastasis. CSCs have unique self-renewal properties and diverse cell membrane receptors that induced the resistance to the conventional chemotherapeutic agents. Therefore, the therapeutic removal of CSCs could result in the cancer cure with lack of recurrence and metastasis. In this regard, targeting CSCs in accordance to their specific biomarkers is a talented attitude in cancer therapy. Various CSCs surface biomarkers have been described, which some of them exhibited similarities on different cancer cell types, while the others are cancer specific and have just been reported on one or a few types of cancers. In this review, the importance of CSCs in cancer development and therapeutic response has been stated. Different CSCs cluster of differentiation (CD) biomarkers and their specific function and applications in the treatment of cancers have been discussed, Special attention has been made on targeted nano-delivery systems. In this regard, several examples have been illustrated concerning specific natural and artificial ligands against CSCs CD biomarkers that could be decorated on various nanoparticulated drug delivery systems to enhance therapeutic index of chemotherapeutic agents or anticancer gene therapy. The outlook of CSCs biomarkers discovery and therapeutic/diagnostic applications was discussed.
Collapse
Affiliation(s)
- Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Soodabeh Hassanpour
- Department of Biochemistry, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | | | | | - Maryam Hashemi
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Ranjbari
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Tabarzad
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Saeed Noorolyai
- Department of Biochemistry, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain.
| |
Collapse
|
31
|
Cancer nanotheranostics: A review of the role of conjugated ligands for overexpressed receptors. Eur J Pharm Sci 2017; 104:273-292. [DOI: 10.1016/j.ejps.2017.04.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 04/07/2017] [Accepted: 04/10/2017] [Indexed: 12/13/2022]
|
32
|
Cai Z, Zhang H, Wei Y, Cong F. Hyaluronan-Inorganic Nanohybrid Materials for Biomedical Applications. Biomacromolecules 2017; 18:1677-1696. [PMID: 28485601 DOI: 10.1021/acs.biomac.7b00424] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nanomaterials, including gold, silver, and magnetic nanoparticles, carbon, and mesoporous materials, possess unique physiochemical and biological properties, thus offering promising applications in biomedicine, such as in drug delivery, biosensing, molecular imaging, and therapy. Recent advances in nanotechnology have improved the features and properties of nanomaterials. However, these nanomaterials are potentially cytotoxic and demonstrate a lack of cell-specific function. Thus, they have been functionalized with various polymers, especially polysaccharides, to reduce toxicity and improve biocompatibility and stability under physiological conditions. In particular, nanomaterials have been widely functionalized with hyaluronan (HA) to enhance their distribution in specific cells and tissues. This review highlights the most recent advances on HA-functionalized nanomaterials for biotechnological and biomedical applications, as nanocarriers in drug delivery, contrast agents in molecular imaging, and diagnostic agents in cancer therapy. A critical evaluation of barriers affecting the use of HA-functionalized nanomaterials is also discussed, and insights into the outlook of the field are explored.
Collapse
Affiliation(s)
- Zhixiang Cai
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering and ‡Department of Biochemistry and Molecular Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Hongbin Zhang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering and ‡Department of Biochemistry and Molecular Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Yue Wei
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering and ‡Department of Biochemistry and Molecular Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Fengsong Cong
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering and ‡Department of Biochemistry and Molecular Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200240, China
| |
Collapse
|
33
|
Shan XH, Wang P, Xiong F, Lu HY, Hu H. Detection of human breast cancer cells using a 2-deoxy-D-glucose-functionalized superparamagnetic iron oxide nanoparticles. Cancer Biomark 2017; 18:367-374. [PMID: 28106540 DOI: 10.3233/cbm-160258] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Xiu-Hong Shan
- Department of Radiology, The Affiliated Renmin Hospital of Jiangsu University, Zhenjiang, Jiangsu 212002, China
| | - Peng Wang
- Department of Radiology, The Affiliated Renmin Hospital of Jiangsu University, Zhenjiang, Jiangsu 212002, China
| | - Fei Xiong
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Hao-Yue Lu
- Medical college of Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Hui Hu
- Department of Radiology, The Affiliated Renmin Hospital of Jiangsu University, Zhenjiang, Jiangsu 212002, China
| |
Collapse
|
34
|
Jian YS, Chen CW, Lin CA, Yu HP, Lin HY, Liao MY, Wu SH, Lin YF, Lai PS. Hyaluronic acid-nimesulide conjugates as anticancer drugs against CD44-overexpressing HT-29 colorectal cancer in vitro and in vivo. Int J Nanomedicine 2017; 12:2315-2333. [PMID: 28392690 PMCID: PMC5376212 DOI: 10.2147/ijn.s120847] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Carrier-mediated drug delivery systems are promising therapeutics for targeted delivery and improved efficacy and safety of potent cytotoxic drugs. Nimesulide is a multifactorial cyclooxygenase 2 nonsteroidal anti-inflammatory drug with analgesic, antipyretic and potent anticancer properties; however, the low solubility of nimesulide limits its applications. Drugs conjugated with hyaluronic acid (HA) are innovative carrier-mediated drug delivery systems characterized by CD44-mediated endocytosis of HA and intracellular drug release. In this study, hydrophobic nimesulide was conjugated to HA of two different molecular weights (360 kDa as HA with high molecular weight [HAH] and 43kDa as HA with low molecular weight [HAL]) to improve its tumor-targeting ability and hydrophilicity. Our results showed that hydrogenated nimesulide (N-[4-amino-2-phenoxyphenyl]methanesulfonamide) was successfully conjugated with both HA types by carbodiimide coupling and the degree of substitution of nimesulide was 1%, which was characterized by 1H nuclear magnetic resonance 400 MHz and total correlation spectroscopy. Both Alexa Fluor® 647 labeled HAH and HAL could selectively accumulate in CD44-overexpressing HT-29 colorectal tumor area in vivo, as observed by in vivo imaging system. In the in vitro cytotoxic test, HA-nimesulide conjugate displayed >46% cell killing ability at a nimesulide concentration of 400 µM in HT-29 cells, whereas exiguous cytotoxic effects were observed on HCT-15 cells, indicating that HA-nimesulide causes cell death in CD44-overexpressing HT-29 cells. Regarding in vivo antitumor study, both HAL-nimesulide and HAH-nimesulide caused rapid tumor shrinkage within 3 days and successfully inhibited tumor growth, which reached 82.3% and 76.4% at day 24 through apoptotic mechanism in HT-29 xenografted mice, without noticeable morphologic differences in the liver or kidney, respectively. These results indicated that HA-nimesulide with improved selectivity through HA/CD44 receptor interactions has the potential to enhance the therapeutic efficacy and safety of nimesulide for cancer treatment.
Collapse
Affiliation(s)
| | | | - Chih-An Lin
- PhD Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung
| | | | - Hua-Yang Lin
- Preclinical Development Research Department, Holy Stone Healthcare Co., Ltd., Taipei
| | | | | | | | - Ping-Shan Lai
- Department of Chemistry; PhD Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung; Research Center for Sustainable Energy and Nanotechnology; Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
35
|
Ramamonjisoa N, Ackerstaff E. Characterization of the Tumor Microenvironment and Tumor-Stroma Interaction by Non-invasive Preclinical Imaging. Front Oncol 2017; 7:3. [PMID: 28197395 PMCID: PMC5281579 DOI: 10.3389/fonc.2017.00003] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/05/2017] [Indexed: 12/13/2022] Open
Abstract
Tumors are often characterized by hypoxia, vascular abnormalities, low extracellular pH, increased interstitial fluid pressure, altered choline-phospholipid metabolism, and aerobic glycolysis (Warburg effect). The impact of these tumor characteristics has been investigated extensively in the context of tumor development, progression, and treatment response, resulting in a number of non-invasive imaging biomarkers. More recent evidence suggests that cancer cells undergo metabolic reprograming, beyond aerobic glycolysis, in the course of tumor development and progression. The resulting altered metabolic content in tumors has the ability to affect cell signaling and block cellular differentiation. Additional emerging evidence reveals that the interaction between tumor and stroma cells can alter tumor metabolism (leading to metabolic reprograming) as well as tumor growth and vascular features. This review will summarize previous and current preclinical, non-invasive, multimodal imaging efforts to characterize the tumor microenvironment, including its stromal components and understand tumor-stroma interaction in cancer development, progression, and treatment response.
Collapse
Affiliation(s)
- Nirilanto Ramamonjisoa
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ellen Ackerstaff
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
36
|
Kim JE, Park YJ. Paclitaxel-loaded hyaluronan solid nanoemulsions for enhanced treatment efficacy in ovarian cancer. Int J Nanomedicine 2017; 12:645-658. [PMID: 28176896 PMCID: PMC5261556 DOI: 10.2147/ijn.s124158] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Paclitaxel-loaded hyaluronan solid nanoemulsions (PTX-HSNs) were successfully fabricated for the delivery of PTX to improve ovarian cancer treatment via active tumor targeting. PTX-HSNs were fabricated using high-pressure homogenization with a microfluidizer and were lyophilized with d-mannitol. Hyaluronan was coated on the outside of the PTX-HSN sphere. The mean size of the PTX-HSNs was maintained less than 100 nm, with a relatively narrow size distribution. The PTX loading content was 3 mg/mL, and encapsulation efficiency (EE) was close to 100%. In vitro cell affinity studies using SK-OV-3 (cluster of differentiation 44 [CD44+]) and OVCAR-3 (CD44−) cells showed that PTX-HSN had a targeting capability hundredfold higher than that of PTX-loaded solid nanoemulsions (PTX-SNs) without hyaluronan. Further, the in vitro PTX release by PTX-SNs and PTX-HSNs lasted more than 6 days without showing a release burst, which was more sustained than that of Taxol®, suggesting a more constant effect on cancer cells at the tumor site than was observed for Taxol. The in vivo toxicity, in vivo antitumor effects, and pharmacokinetics of PTX-HSNs and Taxol were evaluated in nude mice and rats. The maximum tolerated dose (MTD) for PTX-HSNs, PTX-SNs, and Taxol was determined by measuring changes in clinical symptoms after administering 20–50 mg/kg PTX via the caudal vein. The MTD of PTX-HSNs had a dosing capacity greater than 50 mg PTX/kg, which was 2.5-fold higher than that of Taxol when administered as a PTX injection. In vivo, PTX-HSN treatment effectively inhibited tumor growth and showed less toxicity in tumor-transplanted mice compared to that observed for Taxol treatments. The pharmacokinetic parameters of PTX-HSNs were more desirable than those of Taxol. After PTX-HSN treatment, the circulation time of PTX was prolonged and retention of PTX in ovarian tumor tissues increased. Therefore, PTX-HSN is a highly effective nanosystem with a high MTD for delivering PTX to ovarian cancers characterized by CD44 overexpression, enhanced active tumor targeting, and low toxicity.
Collapse
Affiliation(s)
- Joo-Eun Kim
- College of Pharmacy, Ajou University, Suwon City, Republic of Korea
| | - Young-Joon Park
- College of Pharmacy, Ajou University, Suwon City, Republic of Korea
| |
Collapse
|
37
|
Mu Q, Wang H, Zhang M. Nanoparticles for imaging and treatment of metastatic breast cancer. Expert Opin Drug Deliv 2017; 14:123-136. [PMID: 27401941 PMCID: PMC5835024 DOI: 10.1080/17425247.2016.1208650] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/29/2016] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Metastatic breast cancer is one of the most devastating cancers that have no cure. Many therapeutic and diagnostic strategies have been extensively studied in the past decade. Among these strategies, cancer nanotechnology has emerged as a promising strategy in preclinical studies by enabling early identification of primary tumors and metastases, and by effective killing of cancer cells. Areas covered: This review covers the recent progress made in targeting and imaging of metastatic breast cancer with nanoparticles, and treatment using nanoparticle-enabled chemo-, gene, photothermal- and radio-therapies. This review also discusses recent developments of nanoparticle-enabled stem cell therapy and immunotherapy. Expert opinion: Nanotechnology is expected to play important roles in modern therapy for cancers, including metastatic breast cancer. Nanoparticles are able to target and visualize metastasis in various organs, and deliver therapeutic agents. Through targeting cancer stem cells, nanoparticles are able to treat resistant tumors with minimal toxicity to healthy tissues/organs. Nanoparticles are also able to activate immune cells to eliminate tumors. Owing to their multifunctional, controllable and trackable features, nanotechnology-based imaging and therapy could be a highly potent approach for future cancer research and treatment.
Collapse
Affiliation(s)
- Qingxin Mu
- Departments of Materials Science and Engineering, University of Washington, Seattle, 98195 USA
| | - Hui Wang
- Departments of Materials Science and Engineering, University of Washington, Seattle, 98195 USA
| | - Miqin Zhang
- Departments of Materials Science and Engineering, University of Washington, Seattle, 98195 USA
| |
Collapse
|
38
|
Lee T, Son HY, Choi Y, Shin Y, Oh S, Kim J, Huh YM, Haam S. Minimum hyaluronic acid (HA) modified magnetic nanocrystals with less facilitated cancer migration and drug resistance for targeting CD44 abundant cancer cells by MR imaging. J Mater Chem B 2017; 5:1400-1407. [DOI: 10.1039/c6tb02306a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We report minimal amount of hyaluronic acid (HA) conjugated magnetic nanocrystals (mHMs) for targeted imaging of CD44 abundant breast cancer cells with less side effects via MRI.
Collapse
Affiliation(s)
- Taeksu Lee
- Department of Chemical and Biomolecular Engineering
- College of Engineering
- Yonsei University
- Seoul 120-749
- Republic of Korea
| | - Hye Young Son
- Department of Radiology
- College of Medicine
- Yonsei University
- Seoul 120-752
- Republic of Korea
| | - Yuna Choi
- Department of Radiology
- College of Medicine
- Yonsei University
- Seoul 120-752
- Republic of Korea
| | - Youngmin Shin
- Department of Radiology
- College of Medicine
- Yonsei University
- Seoul 120-752
- Republic of Korea
| | - Seungjae Oh
- YUHS-KRIBB Medical Convergence Research Institute
- Yonsei University
- Seoul 120-752
- Republic of Korea
| | - Jinyoung Kim
- Department of Chemical and Biomolecular Engineering
- College of Engineering
- Yonsei University
- Seoul 120-749
- Republic of Korea
| | - Yong-Min Huh
- Department of Radiology
- College of Medicine
- Yonsei University
- Seoul 120-752
- Republic of Korea
| | - Seungjoo Haam
- Department of Chemical and Biomolecular Engineering
- College of Engineering
- Yonsei University
- Seoul 120-749
- Republic of Korea
| |
Collapse
|
39
|
Sohn JS, Yoon DS, Sohn JY, Park JS, Choi JS. Development and evaluation of targeting ligands surface modified paclitaxel nanocrystals. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 72:228-237. [PMID: 28024581 DOI: 10.1016/j.msec.2016.11.065] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/15/2016] [Accepted: 11/17/2016] [Indexed: 02/08/2023]
Abstract
To overcome the toxicity of excipient or blank nanoparticles for drug delivery nano-system, the surface modified paclitaxel nanocrystals (PTX-NC) have been developed. PTX-NCs were prepared by nano-precipitation method. The surface of PTX-NCs were modified by grafting with apo-transferrin (Tf) or hyaluronic acid (HA). The physical properties of PTX-NCs were evaluated by field emission scanning electron microscope (FE-SEM), zeta-sizer, zeta-potential, differential scanning calorimetry (DSC) and Fourier transform infrared (FT-IR) spectrometry. In vitro drug release study was performed in phosphate buffered saline (PBS) with or without 0.5% (w/v) Tween 80 for 24h. Cellular uptake was studied at time intervals of 0.5, 1, and 2h in MCF-7 cells, and cell growth inhibition study was performed for 24h using MCF-7 cells (cancer cells), and HaCaT cells (normal cells). Three different types of PTX-NCs with a mean size of 236.0±100.6nm (PTX-NC), 302.0±152.0nm (Tf-PTX-NC) and 339±180.6nm (HA-PTX-NC) were successfully prepared. The drug release profiles showed 29.1%/6.9% (PTX (pure)), 40.7%/23.9% (PTX-NC), 50.5%/25.1% (Tf-PTX-NC) and 46.8/24.8% (HA-PTX-NC) in PBS with/without 0.5% (w/v) Tween 80 for 24h, respectively. As per the results, the drug release of PTX-NCs showed the faster release as compared to that of PTX (pure). Surface modified PTX-NCs exhibited higher values for cell permeability than unmodified PTX-NC in the cellular uptake study. Surface modified PTX-NCs inhibited the cell growth approximately to 60% in MCF-7 cells, however effect of surface modified PTX-NCs on normal cell line was lower than the PTX-NC and PTX (pure). In conclusion, biological macromolecules (Tf or HA) surface modified PTX-NC enhanced the cellular uptake and the cell growth inhibition.
Collapse
Affiliation(s)
- Jeong Sun Sohn
- Division of Undeclared Majors, Chosun University, Gwangju 501-759, South Korea
| | - Doo-Soo Yoon
- Department of Bioenvironmental & Chemical Engineering, Chosun College of Science & Technology, Gwangju 501-744, South Korea
| | - Jun Youn Sohn
- Department of Bioenvironmental & Chemical Engineering, Chosun College of Science & Technology, Gwangju 501-744, South Korea
| | - Jeong-Sook Park
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea.
| | - Jin-Seok Choi
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea.
| |
Collapse
|
40
|
Wang J, Ma W, Guo Q, Li Y, Hu Z, Zhu Z, Wang X, Zhao Y, Chai X, Tu P. The effect of dual-functional hyaluronic acid-vitamin E succinate micelles on targeting delivery of doxorubicin. Int J Nanomedicine 2016; 11:5851-5870. [PMID: 27853369 PMCID: PMC5106232 DOI: 10.2147/ijn.s113882] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Tumor-targeted delivery system has been developed as an attractive strategy for effective tumor therapy. In this study, in order to enhance the antitumor effects of doxorubicin (DOX), amphiphilic hyaluronic acid (HA)-conjugated vitamin E succinate (VES) copolymers (HA-VES) with different degrees of substitution (DS) were prepared with synergistic antitumor effects and active targeting activities, and utilized as nanocarriers for the efficient delivery of DOX. DOX-loaded HA-VES polymeric micelles (HA-VES/DOX) self-assembled from dual-functional HA-VES copolymer and exhibited excellent loading efficiency and superior colloidal stability. In vitro, HA-VES/DOX displayed enhanced cytotoxicity with synergistic anticancer effects of HA-VES copolymer, high apoptosis-inducing activities of tumor cells, and reversal effects of DOX on multidrug resistance, in comparison with DOX. Also, in vitro cellular uptake and subcellular localization studies revealed that HA-VES/DOX could more efficiently internalize into cancer cells and selectively release DOX within lysosomes, thereby enhancing the distribution of DOX in nuclei and facilitating its interactions with DNA. Specifically, HA-VES/DOX decreased the activity of CD44 mRNA and improved the targeting efficiency on MCF-7 cells, based on the active recognition between HA and CD44 receptor. More importantly, HA-VES/DOX displayed better tumor accumulation and targeting, and enhanced antitumor efficacy with reduced systemic toxicity in 4T1 tumor-bearing mice. In summary, the developed HA-VES-based drug delivery system, which increased drug targeting on the tumor site and exhibited preferable anticancer activity, could hold great potential as an effective and promising strategy for efficient tumor therapy.
Collapse
Affiliation(s)
- Jinling Wang
- Modern Research Center for Traditional Chinese Medicine
| | - Wenzhuan Ma
- Modern Research Center for Traditional Chinese Medicine; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Qiang Guo
- Modern Research Center for Traditional Chinese Medicine; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Ying Li
- Modern Research Center for Traditional Chinese Medicine; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Zhongdong Hu
- Modern Research Center for Traditional Chinese Medicine
| | - Zhixiang Zhu
- Modern Research Center for Traditional Chinese Medicine
| | - Xiaohui Wang
- Modern Research Center for Traditional Chinese Medicine
| | - Yunfang Zhao
- Modern Research Center for Traditional Chinese Medicine
| | - Xingyun Chai
- Modern Research Center for Traditional Chinese Medicine
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine
| |
Collapse
|
41
|
Nanovesicle-mediated systemic delivery of microRNA-34a for CD44 overexpressing gastric cancer stem cell therapy. Biomaterials 2016; 105:12-24. [DOI: 10.1016/j.biomaterials.2016.07.036] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/24/2016] [Accepted: 07/29/2016] [Indexed: 12/22/2022]
|
42
|
Hong Y, Lee E, Choi J, Haam S, Suh JS, Yang J. Biomarker-specific conjugated nanopolyplexes for the active coloring of stem-like cancer cells. NANOTECHNOLOGY 2016; 27:225101. [PMID: 27098318 DOI: 10.1088/0957-4484/27/22/225101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Stem-like cancer cells possess intrinsic features and their CD44 regulate redox balance in cancer cells to survive under stress conditions. Thus, we have fabricated biomarker-specific conjugated polyplexes using CD44-targetable hyaluronic acid and redox-sensible polyaniline based on a nanoemulsion method. For the most sensitive recognition of the cellular redox at a single nanoparticle scale, a nano-scattering spectrum imaging analyzer system was introduced. The conjugated polyplexes showed a specific targeting ability toward CD44-expressing cancer cells as well as a dramatic change in its color, which depended on the redox potential in the light-scattered images. Therefore, these polyaniline-based conjugated polyplexes as well as analytical processes that include light-scattering imaging and measurements of scattering spectra, clearly establish a systematic method for the detection and monitoring of cancer microenvironments.
Collapse
Affiliation(s)
- Yoochan Hong
- Department of Radiology, College of Medicine, Yonsei University, Seoul 03722, Korea
| | | | | | | | | | | |
Collapse
|
43
|
Ulbrich K, Holá K, Šubr V, Bakandritsos A, Tuček J, Zbořil R. Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies. Chem Rev 2016; 116:5338-431. [DOI: 10.1021/acs.chemrev.5b00589] [Citation(s) in RCA: 1120] [Impact Index Per Article: 124.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Karel Ulbrich
- Institute
of Macromolecular Chemistry, The Czech Academy of Sciences, v.v.i., Heyrovsky Square 2, 162 06 Prague 6, Czech Republic
| | - Kateřina Holá
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Vladimir Šubr
- Institute
of Macromolecular Chemistry, The Czech Academy of Sciences, v.v.i., Heyrovsky Square 2, 162 06 Prague 6, Czech Republic
| | - Aristides Bakandritsos
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Jiří Tuček
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Radek Zbořil
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| |
Collapse
|
44
|
Hou L, Yang X, Ren J, Wang Y, Zhang H, Feng Q, Shi Y, Shan X, Yuan Y, Zhang Z. A novel redox-sensitive system based on single-walled carbon nanotubes for chemo-photothermal therapy and magnetic resonance imaging. Int J Nanomedicine 2016; 11:607-24. [PMID: 26917960 PMCID: PMC4751899 DOI: 10.2147/ijn.s98476] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Recently, nanomaterials with multiple functions, such as drug carrier, magnetic resonance imaging (MRI) and optical imaging, and photothermal therapy, have become more and more popular in cancer research. In this work, a novel redox-sensitive system constructed from hyaluronic acid (HA), single-walled carbon nanotubes (SWCNTs), doxorubicin (DOX), and gadolinium (Gd) was successfully developed. Herein, HA-modified SWCNTs (SWCNTs-HA) was first synthesized, and then DOX was conjugated with HA by disulfide bond (SWCNTs-HA-ss-DOX). Finally, MRI contrast agents, Gd3+-ion loading occurred through the sidewall defects of SWCNTs, whose cytotoxicity could be sequestered within the SWCNTs. In vitro release of DOX showed that this system accomplished much faster drug release under reducing condition. Confocal microscopy analysis confirmed that Gd/SWCNTs-HA-ss-DOX were capable of simultaneously delivering DOX and SWCNTs into Michigan Cancer Foundation-7 cells via HA receptor-mediated endocytosis followed by rapid transport of cargoes into the cytosol. Enhanced cytotoxicity of Gd/SWCNTs-HA-ss-DOX further proved that the sensitive system was more potent for intracellular drug delivery as compared with the insensitive control. Meanwhile, tumor cell killing potency was improved when Gd/SWCNTs-HA-ss-DOX were combined with near-infrared irradiation, with IC50 of 0.61 µg/mL at 48 hours. In vivo investigation demonstrated that Gd/SWCNTs-HA-ss-DOX could effectively accumulate in tumor sites and possessed the greatest synergistic antitumor efficacy, especially under the 808 nm laser irradiation. More importantly, this system could be used as a contrast agent for MRI to identify the location and extent of tumor tissues. These results suggested that Gd/SWCNTs-HA-ss-DOX might be a promising system for targeting chemo-photothermal therapy and MRI diagnosis in future clinical anticancer applications.
Collapse
Affiliation(s)
- Lin Hou
- School of Pharmaceutical Sciences, Zhengzhou University, Henan Province, Zhengzhou, People's Republic of China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou, People's Republic of China
| | - Xiaomin Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Henan Province, Zhengzhou, People's Republic of China
| | - Junxiao Ren
- School of Pharmaceutical Sciences, Zhengzhou University, Henan Province, Zhengzhou, People's Republic of China
| | - Yongchao Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Henan Province, Zhengzhou, People's Republic of China
| | - Huijuan Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Henan Province, Zhengzhou, People's Republic of China
| | - Qianhua Feng
- School of Pharmaceutical Sciences, Zhengzhou University, Henan Province, Zhengzhou, People's Republic of China
| | - Yuyang Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Henan Province, Zhengzhou, People's Republic of China
| | - Xiaoning Shan
- School of Pharmaceutical Sciences, Zhengzhou University, Henan Province, Zhengzhou, People's Republic of China
| | - Yujie Yuan
- School of Pharmaceutical Sciences, Zhengzhou University, Henan Province, Zhengzhou, People's Republic of China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Henan Province, Zhengzhou, People's Republic of China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou, People's Republic of China
| |
Collapse
|
45
|
Lim EK, Chung BH. Preparation of pyrenyl-based multifunctional nanocomposites for biomedical applications. Nat Protoc 2016; 11:236-51. [DOI: 10.1038/nprot.2015.135] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
46
|
Du B, Cao X, Zhao F, Su X, Wang Y, Yan X, Jia S, Zhou J, Yao H. Multimodal imaging-guided, dual-targeted photothermal therapy for cancer. J Mater Chem B 2016; 4:2038-2050. [DOI: 10.1039/c6tb00215c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The multimodal imaging-guided, dual-targeted photothermal therapy.
Collapse
Affiliation(s)
- Bin Du
- School of Pharmaceutical Sciences
- Zhengzhou University
- Zhengzhou 450001
- China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation
| | - Xiaohui Cao
- School of Pharmaceutical Sciences
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Feifei Zhao
- School of Pharmaceutical Sciences
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Xiangjie Su
- School of Pharmaceutical Sciences
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Yuhui Wang
- School of Pharmaceutical Sciences
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Xiaosa Yan
- School of Pharmaceutical Sciences
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Shaona Jia
- School of Pharmaceutical Sciences
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Jie Zhou
- School of Pharmaceutical Sciences
- Zhengzhou University
- Zhengzhou 450001
- China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation
| | - Hanchun Yao
- School of Pharmaceutical Sciences
- Zhengzhou University
- Zhengzhou 450001
- China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation
| |
Collapse
|
47
|
Guk K, Kim H, Kim Y, Kang T, Lim EK, Jung J. Label-free nanoprobe for antibody detection through an antibody catalysed water oxidation pathway. RSC Adv 2016. [DOI: 10.1039/c6ra16911b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We developed a nanoprobe for the label-free detection of antibodies associated with infectious diseases, through a method based on the antibody catalyzed water oxidation pathway (ACWOP).
Collapse
Affiliation(s)
- Kyeonghye Guk
- Hazards Monitoring BioNano Research Center
- Korea Research Institute of Bioscience and Biotechnology
- Daejeon 34141
- Republic of Korea
- Major of Nanobiotechnology and Bioinformatics
| | - Hyeran Kim
- BioNano Health Guard Research Center
- Korea Research Institute of Bioscience and Biotechnology (KRIBB)
- Daejeon 34141
- Republic of Korea
| | - Yujeong Kim
- Hazards Monitoring BioNano Research Center
- Korea Research Institute of Bioscience and Biotechnology
- Daejeon 34141
- Republic of Korea
- Major of Nanobiotechnology and Bioinformatics
| | - Taejoon Kang
- Hazards Monitoring BioNano Research Center
- Korea Research Institute of Bioscience and Biotechnology
- Daejeon 34141
- Republic of Korea
- BioNano Health Guard Research Center
| | - Eun-Kyung Lim
- Hazards Monitoring BioNano Research Center
- Korea Research Institute of Bioscience and Biotechnology
- Daejeon 34141
- Republic of Korea
- BioNano Health Guard Research Center
| | - Juyeon Jung
- Hazards Monitoring BioNano Research Center
- Korea Research Institute of Bioscience and Biotechnology
- Daejeon 34141
- Republic of Korea
- Major of Nanobiotechnology and Bioinformatics
| |
Collapse
|
48
|
Yang H, Bremner DH, Tao L, Li H, Hu J, Zhu L. Carboxymethyl chitosan-mediated synthesis of hyaluronic acid-targeted graphene oxide for cancer drug delivery. Carbohydr Polym 2015; 135:72-8. [PMID: 26453853 DOI: 10.1016/j.carbpol.2015.08.058] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 08/14/2015] [Accepted: 08/19/2015] [Indexed: 11/17/2022]
Abstract
In order to enhance the efficiency and specificity of anticancer drug delivery and realize intelligently controlled release, a new drug carrier was developed. Graphene oxide (GO) was first modified with carboxymethyl chitosan (CMC), followed by conjugation of hyaluronic acid (HA) and fluorescein isothiocyanate (FI). The resulting GO-CMC-FI-HA conjugate was characterized and used as a carrier to encapsulate the anticancer drug doxorubicin (DOX) to study in vitro release behavior. The drug loading capacity is as high as 95% and the drug release rate under tumor cell microenvironment of pH 5.8 is significantly higher than that under physiological conditions of pH 7.4. Cell uptake studies show that the GO-CMC-FI-HA/DOX complex can specifically target cancer cells, which are over-expressing CD44 receptors and effectively inhibit their growth. The above results suggest that the functionalized graphene-based material has potential applications for targeted delivery and controlled release of anticancer drugs.
Collapse
Affiliation(s)
- Huihui Yang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China.
| | - David H Bremner
- School of Science, Engineering and Technology, Kydd Building, Abertay University, Dundee DD1 1HG, Scotland, UK.
| | - Lei Tao
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China.
| | - Heyu Li
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China.
| | - Juan Hu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China.
| | - Limin Zhu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China.
| |
Collapse
|
49
|
Lee N, Yoo D, Ling D, Cho MH, Hyeon T, Cheon J. Iron Oxide Based Nanoparticles for Multimodal Imaging and Magnetoresponsive Therapy. Chem Rev 2015; 115:10637-89. [PMID: 26250431 DOI: 10.1021/acs.chemrev.5b00112] [Citation(s) in RCA: 618] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Nohyun Lee
- School of Advanced Materials Engineering, Kookmin University , Seoul 136-702, Korea
| | - Dongwon Yoo
- Department of Chemistry, Yonsei University , Seoul 120-749, Korea
| | - Daishun Ling
- Center for Nanoparticle Research, Institute for Basic Science (IBS) , Seoul 151-742, Korea.,School of Chemical and Biological Engineering, Seoul National University , Seoul 151-742, Korea.,Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou 310058, PR China
| | - Mi Hyeon Cho
- Department of Chemistry, Yonsei University , Seoul 120-749, Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS) , Seoul 151-742, Korea.,School of Chemical and Biological Engineering, Seoul National University , Seoul 151-742, Korea
| | - Jinwoo Cheon
- Department of Chemistry, Yonsei University , Seoul 120-749, Korea
| |
Collapse
|
50
|
Jeong HY, Baek SH, Chang SJ, Cheon SA, Park TJ. Robust fluorescence sensing platform for detection of CD44 cells based on graphene oxide/gold nanoparticles. Colloids Surf B Biointerfaces 2015; 135:309-315. [PMID: 26263218 DOI: 10.1016/j.colsurfb.2015.07.083] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/04/2015] [Accepted: 07/30/2015] [Indexed: 11/24/2022]
Abstract
Gold-coated graphene oxide hybrid material (GO/AuNPs) has exceptional physical and chemical properties like π-π stacking interaction and plays a role in quencher of fluorescence dye. Therefore, GO/AuNPs could enhance the signal-to-background ratio with fluorescence dye that was the point in this fluorescent biosensor. In this study, tetramethyl-6-carboxy-rhodamine (TAMRA)-labeled aptamers that specifically interact with the hyaluronic acid binding domain of CD44 were used as targets to investigate the applicability of the method. GO/AuNPs-TAMRA-aptamer complexes could detect CD44 target cancer cells within a concentration range of 1 × 10(1) to 1 × 10(7) CFU/mL. A linear relationship was observed between target cell concentration and relative fluorescence intensity. The more mounted up CD44 target cell concentrations, relative fluorescence intensity of GO/AuNPs-TAMRA-aptamer complexes was increased even more, which was superior to that of GO alone. Sensitivity of the detection system displayed a low detection limit of 1 × 10(1) CFU/mL. Additionally, this method is specific in that fluorescence is not much enhanced in CD44 negative cancer cell line. Thus, the fluorescence sensing based on GO/AuNPs could be developed to receptive and robust detection tool for various target molecules.
Collapse
Affiliation(s)
- Ha Young Jeong
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 156-756, Republic of Korea
| | - Seung Hun Baek
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 156-756, Republic of Korea
| | - Sung-Jin Chang
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 156-756, Republic of Korea
| | - Seon Ah Cheon
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 156-756, Republic of Korea
| | - Tae Jung Park
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 156-756, Republic of Korea.
| |
Collapse
|