1
|
Bai J, Liu G, Gao Y, Zhang X, Niu G, Zhang H. Co-culturing neural and bone mesenchymal stem cells in photosensitive hydrogel enhances spinal cord injury repair. Front Bioeng Biotechnol 2024; 12:1431420. [PMID: 39737055 PMCID: PMC11684404 DOI: 10.3389/fbioe.2024.1431420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 11/25/2024] [Indexed: 01/01/2025] Open
Abstract
In mammalian species, neural tissues cannot regenerate following severe spinal cord injury (SCI), for which stem cell transplantation is a promising treatment. Neural stem cells (NSCs) have the potential to repair SCI; however, in unfavourable microenvironments, transplanted NSCs mainly differentiate into astrocytes rather than neurons. In contrast, bone mesenchymal stem cells (BMSCs) promote the differentiation of NSCs into neurons and regulate inflammatory responses. Owing to their easily controllable mechanical properties and similarities to neural tissue, gelatin methacrylate (GelMA) hydrogels offer remarkable cell biocompatibility and regulate the differentiation of NSCs. Therefore, in this study, we propose co-culturing NSCs and BMSCs within low-modulus GelMA hydrogel scaffolds to promote regeneration following SCI. In vitro comparisons revealed that the viability, proliferation, migration, and neuron differentiation capacity of cells in these low-modulus scaffolds exhibit substantially superior performance compared to those in high-modulus hydrogel scaffolds. To the best of our knowledge, this study is the first to report that NSCs/BMSCs co-culture implants can remarkably enhance motor function recovery in SCI rats, reduce the area of spinal cord cavities, stimulate neuron regeneration, and suppress scar tissue formation. Thus, this hydrogel system loaded with co-cultured cells represents a promising therapeutic approach for SCI repair.
Collapse
Affiliation(s)
- Jianzhong Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopedics, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
| | - Guoping Liu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Spine Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yang Gao
- Department of Orthopedics, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
| | - Xishan Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
| | - Guoqi Niu
- Department of Orthopedics, The Second Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Hongtao Zhang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
2
|
Mashweu AR, Azov VA. Nanotechnology in Drug Delivery: Anatomy and Molecular Insight into the Self-Assembly of Peptide-Based Hydrogels. Molecules 2024; 29:5654. [PMID: 39683812 PMCID: PMC11643151 DOI: 10.3390/molecules29235654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
The bioavailability, release, and stability of pharmaceuticals under physicochemical conditions is the major cause of drug candidates failing during their clinical trials. Therefore, extensive efforts have been invested in the development of novel drug delivery systems that are able to transport drugs to a desired site and improve bioavailability. Hydrogels, and peptide hydrogels in particular, have been extensively investigated due to their excellent biocompatibility and biodegradability properties. However, peptide hydrogels often have weak mechanical strength, which limits their therapeutic efficacy. Therefore, a number of methods for improving their rheological properties have been established. This review will cover the broad area of drug delivery, focusing on the recent developments in this research field. We will discuss the variety of different types of nanocarrier drug delivery systems and then, more specifically, the significance and perspectives of peptide-based hydrogels. In particular, the interplay of intermolecular forces that govern the self-assembly of peptide hydrogels, progress made in understanding the distinct morphologies of hydrogels, and applications of non-canonical amino acids in hydrogel design will be discussed in more detail.
Collapse
Affiliation(s)
- Adelaide R. Mashweu
- Department of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| | - Vladimir A. Azov
- Department of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| |
Collapse
|
3
|
Calero-Castro FJ, Perez-Puyana VM, Laga I, Padillo Ruiz J, Romero A, de la Portilla de Juan F. Mechanical Stimulation and Aligned Poly(ε-caprolactone)-Gelatin Electrospun Scaffolds Promote Skeletal Muscle Regeneration. ACS APPLIED BIO MATERIALS 2024; 7:6430-6440. [PMID: 39365939 PMCID: PMC11497210 DOI: 10.1021/acsabm.4c00559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024]
Abstract
The current treatments to restore skeletal muscle defects present several injuries. The creation of scaffolds and implant that allow the regeneration of this tissue is a solution that is reaching the researchers' interest. To achieve this, electrospinning is a useful technique to manufacture scaffolds with nanofibers with different orientation. In this work, polycaprolactone and gelatin solutions were tested to fabricate electrospun scaffolds with two degrees of alignment between their fibers: random and aligned. These scaffolds can be seeded with myoblast C2C12 and then stimulated with a mechanical bioreactor that mimics the physiological conditions of the tissue. Cell viability as well as cytoskeletal morphology and functionality was measured. Myotubes in aligned scaffolds (9.84 ± 1.15 μm) were thinner than in random scaffolds (11.55 ± 3.39 μm; P = 0.001). Mechanical stimulation increased the width of myotubes (12.92 ± 3.29 μm; P < 0.001), nuclear fusion (95.73 ± 1.05%; P = 0.004), and actin density (80.13 ± 13.52%; P = 0.017) in aligned scaffolds regarding the control. Moreover, both scaffolds showed high myotube contractility, which was increased in mechanically stimulated aligned scaffolds. These scaffolds were also electrostimulated at different frequencies and they showed promising results. In general, mechanically stimulated aligned scaffolds allow the regeneration of skeletal muscle, increasing viability, fiber thickness, alignment, nuclear fusion, nuclear differentiation, and functionality.
Collapse
Affiliation(s)
- Francisco José Calero-Castro
- Department
of General and Digestive Surgery, “Virgen
del Rocío” University Hospital/IBiS/CSIC/University
of Seville, 41013 Seville, Spain
- Oncology
Surgery, Cell Therapy, and Organ Transplantation Group. Institute
of Biomedicine of Seville (IBiS), “Virgen
del Rocío” University Hospital, IBiS, CSIC/University
of Seville, 41013 Sevilla, Spain
| | | | - Imán Laga
- Department
of General and Digestive Surgery, “Virgen
del Rocío” University Hospital/IBiS/CSIC/University
of Seville, 41013 Seville, Spain
- Oncology
Surgery, Cell Therapy, and Organ Transplantation Group. Institute
of Biomedicine of Seville (IBiS), “Virgen
del Rocío” University Hospital, IBiS, CSIC/University
of Seville, 41013 Sevilla, Spain
| | - Javier Padillo Ruiz
- Department
of General and Digestive Surgery, “Virgen
del Rocío” University Hospital/IBiS/CSIC/University
of Seville, 41013 Seville, Spain
- Oncology
Surgery, Cell Therapy, and Organ Transplantation Group. Institute
of Biomedicine of Seville (IBiS), “Virgen
del Rocío” University Hospital, IBiS, CSIC/University
of Seville, 41013 Sevilla, Spain
| | - Alberto Romero
- Departamento
de Ingeniería Química, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Fernando de la Portilla de Juan
- Department
of General and Digestive Surgery, “Virgen
del Rocío” University Hospital/IBiS/CSIC/University
of Seville, 41013 Seville, Spain
- Oncology
Surgery, Cell Therapy, and Organ Transplantation Group. Institute
of Biomedicine of Seville (IBiS), “Virgen
del Rocío” University Hospital, IBiS, CSIC/University
of Seville, 41013 Sevilla, Spain
| |
Collapse
|
4
|
Bojarska J, Wolf WM. Short Peptides as Powerful Arsenal for Smart Fighting Cancer. Cancers (Basel) 2024; 16:3254. [PMID: 39409876 PMCID: PMC11476321 DOI: 10.3390/cancers16193254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Short peptides have been coming around as a strong weapon in the fight against cancer on all fronts-in immuno-, chemo-, and radiotherapy, and also in combinatorial approaches. Moreover, short peptides have relevance in cancer imaging or 3D culture. Thanks to the natural 'smart' nature of short peptides, their unique structural features, as well as recent progress in biotechnological and bioinformatics development, short peptides are playing an enormous role in evolving cutting-edge strategies. Self-assembling short peptides may create excellent structures to stimulate cytotoxic immune responses, which is essential for cancer immunotherapy. Short peptides can help establish versatile strategies with high biosafety and effectiveness. Supramolecular short peptide-based cancer vaccines entered clinical trials. Peptide assemblies can be platforms for the delivery of antigens, adjuvants, immune cells, and/or drugs. Short peptides have been unappreciated, especially in the vaccine aspect. Meanwhile, they still hide the undiscovered unlimited potential. Here, we provide a timely update on this highly active and fast-evolving field.
Collapse
Affiliation(s)
- Joanna Bojarska
- Chemistry Department, Institute of Inorganic and Ecological Chemistry, Łódź University of Technology, S. Żeromskiego Str. 116, 90-924 Łódź, Poland;
| | | |
Collapse
|
5
|
Hua Y, Shen Y. Applications of self-assembled peptide hydrogels in anti-tumor therapy. NANOSCALE ADVANCES 2024; 6:2993-3008. [PMID: 38868817 PMCID: PMC11166105 DOI: 10.1039/d4na00172a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/29/2024] [Indexed: 06/14/2024]
Abstract
Peptides are a class of active substances composed of a variety of amino acids with special physiological functions. The rational design of peptide sequences at the molecular level enables their folding into diverse secondary structures. This property has garnered significant attention in the biomedical sphere owing to their favorable biocompatibility, adaptable mechanical traits, and exceptional loading capabilities. Concurrently with advancements in modern medicine, the diagnosis and treatment of tumors have increasingly embraced targeted and personalized approaches. This review explores recent applications of self-assembled peptides derived from natural amino acids in chemical therapy, immunotherapy, and other adjunctive treatments. We highlighted the utilization of peptide hydrogels as delivery systems for chemotherapeutic drugs and other bioactive molecules and then discussed the challenges and prospects for their future application.
Collapse
Affiliation(s)
- Yue Hua
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University Nanjing Jiangsu 210009 China
| | - Yang Shen
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University Nanjing Jiangsu 210009 China
| |
Collapse
|
6
|
Yang Z, Chen L, Liu J, Zhuang H, Lin W, Li C, Zhao X. Short Peptide Nanofiber Biomaterials Ameliorate Local Hemostatic Capacity of Surgical Materials and Intraoperative Hemostatic Applications in Clinics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301849. [PMID: 36942893 DOI: 10.1002/adma.202301849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/12/2023] [Indexed: 06/18/2023]
Abstract
Short designer self-assembling peptide (dSAP) biomaterials are a new addition to the hemostat group. It may provide a diverse and robust toolbox for surgeons to integrate wound microenvironment with much safer and stronger hemostatic capacity than conventional materials and hemostatic agents. Especially in noncompressible torso hemorrhage (NCTH), diffuse mucosal surface bleeding, and internal medical bleeding (IMB), with respect to the optimal hemostatic formulation, dSAP biomaterials are the ingenious nanofiber alternatives to make bioactive neural scaffold, nasal packing, large mucosal surface coverage in gastrointestinal surgery (esophagus, gastric lesion, duodenum, and lower digestive tract), epicardiac cell-delivery carrier, transparent matrix barrier, and so on. Herein, in multiple surgical specialties, dSAP-biomaterial-based nano-hemostats achieve safe, effective, and immediate hemostasis, facile wound healing, and potentially reduce the risks in delayed bleeding, rebleeding, post-operative bleeding, or related complications. The biosafety in vivo, bleeding indications, tissue-sealing quality, surgical feasibility, and local usability are addressed comprehensively and sequentially and pursued to develop useful surgical techniques with better hemostatic performance. Here, the state of the art and all-round advancements of nano-hemostatic approaches in surgery are provided. Relevant critical insights will inspire exciting investigations on peptide nanotechnology, next-generation biomaterials, and better promising prospects in clinics.
Collapse
Affiliation(s)
- Zehong Yang
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
- Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lihong Chen
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ji Liu
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hua Zhuang
- Department of Ultrasonography, West China Hospital of Sichuan University, No. 37 Guoxue Road, Wuhou District, Chengdu, Sichuan, 610041, China
| | - Wei Lin
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Women and Children Diseases of the Ministry of Education, Sichuan University, No. 17 People's South Road, Chengdu, Sichuan, 610041, China
| | - Changlong Li
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaojun Zhao
- Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
7
|
Miranda Alarcón YS, Jazwinska D, Lymon T, Khalili A, Browe D, Newton B, Pellegrini M, Cohen RI, Shreiber DI, Freeman JW. The Use of Collagen Methacrylate in Actuating Polyethylene Glycol Diacrylate-Acrylic Acid Scaffolds for Muscle Regeneration. Ann Biomed Eng 2023; 51:1165-1180. [PMID: 36853478 DOI: 10.1007/s10439-023-03139-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 01/03/2023] [Indexed: 03/01/2023]
Abstract
After muscle loss or injury, skeletal muscle tissue has the ability to regenerate and return its function. However, large volume defects in skeletal muscle tissue pose a challenge to regenerate due to the absence of regenerative elements such as biophysical and biochemical cues, making the development of new treatments necessary. One potential solution is to utilize electroactive polymers that can change size or shape in response to an external electric field. Poly(ethylene glycol) diacrylate (PEGDA) is one such polymer, which holds great potential as a scaffold for muscle tissue regeneration due to its mechanical properties. In addition, the versatile chemistry of this polymer allows for the conjugation of new functional groups to enhance its electroactive properties and biocompatibility. Herein, we have developed an electroactive copolymer of PEGDA and acrylic acid (AA) in combination with collagen methacrylate (CMA) to promote cell adhesion and proliferation. The electroactive properties of the CMA + PEGDA:AA constructs were investigated through actuation studies. Furthermore, the biological properties of the hydrogel were investigated in a 14-day in vitro study to evaluate myosin light chain (MLC) expression and metabolic activity of C2C12 mouse myoblast cells. The addition of CMA improved some aspects of material bioactivity, such as MLC expression in C2C12 mouse myoblast cells. However, the incorporation of CMA in the PEGDA:AA hydrogels reduced the sample movement when placed under an electric field, possibly due to steric hindrance from the CMA. Further research is needed to optimize the use of CMA in combination with PEGDA:AA as a potential scaffold for skeletal muscle tissue engineering.
Collapse
Affiliation(s)
| | - Dorota Jazwinska
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, 08854, USA
| | - Terrence Lymon
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, 08854, USA
| | - Amin Khalili
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, 08854, USA
| | - Daniel Browe
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, 08854, USA
| | - Brandon Newton
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, 08854, USA
| | - Michael Pellegrini
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, 08854, USA
| | - Rick I Cohen
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, 08854, USA
| | - David I Shreiber
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, 08854, USA
| | - Joseph W Freeman
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, 08854, USA.
| |
Collapse
|
8
|
Zhang Y, Habibovic P. Delivering Mechanical Stimulation to Cells: State of the Art in Materials and Devices Design. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110267. [PMID: 35385176 DOI: 10.1002/adma.202110267] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Biochemical signals, such as growth factors, cytokines, and transcription factors are known to play a crucial role in regulating a variety of cellular activities as well as maintaining the normal function of different tissues and organs. If the biochemical signals are assumed to be one side of the coin, the other side comprises biophysical cues. There is growing evidence showing that biophysical signals, and in particular mechanical cues, also play an important role in different stages of human life ranging from morphogenesis during embryonic development to maturation and maintenance of tissue and organ function throughout life. In order to investigate how mechanical signals influence cell and tissue function, tremendous efforts have been devoted to fabricating various materials and devices for delivering mechanical stimuli to cells and tissues. Here, an overview of the current state of the art in the design and development of such materials and devices is provided, with a focus on their design principles, and challenges and perspectives for future research directions are highlighted.
Collapse
Affiliation(s)
- Yonggang Zhang
- Department of Instructive Biomaterials Engineering, Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| | - Pamela Habibovic
- Department of Instructive Biomaterials Engineering, Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| |
Collapse
|
9
|
Hao Z, Li H, Wang Y, Hu Y, Chen T, Zhang S, Guo X, Cai L, Li J. Supramolecular Peptide Nanofiber Hydrogels for Bone Tissue Engineering: From Multihierarchical Fabrications to Comprehensive Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103820. [PMID: 35128831 PMCID: PMC9008438 DOI: 10.1002/advs.202103820] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/02/2022] [Indexed: 05/03/2023]
Abstract
Bone tissue engineering is becoming an ideal strategy to replace autologous bone grafts for surgical bone repair, but the multihierarchical complexity of natural bone is still difficult to emulate due to the lack of suitable biomaterials. Supramolecular peptide nanofiber hydrogels (SPNHs) are emerging biomaterials because of their inherent biocompatibility, satisfied biodegradability, high purity, facile functionalization, and tunable mechanical properties. This review initially focuses on the multihierarchical fabrications by SPNHs to emulate natural bony extracellular matrix. Structurally, supramolecular peptides based on distinctive building blocks can assemble into nanofiber hydrogels, which can be used as nanomorphology-mimetic scaffolds for tissue engineering. Biochemically, bioactive motifs and bioactive factors can be covalently tethered or physically absorbed to SPNHs to endow various functions depending on physiological and pharmacological requirements. Mechanically, four strategies are summarized to optimize the biophysical microenvironment of SPNHs for bone regeneration. Furthermore, comprehensive applications about SPNHs for bone tissue engineering are reviewed. The biomaterials can be directly used in the form of injectable hydrogels or composite nanoscaffolds, or they can be used to construct engineered bone grafts by bioprinting or bioreactors. Finally, continuing challenges and outlook are discussed.
Collapse
Affiliation(s)
- Zhuowen Hao
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Hanke Li
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Yi Wang
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Yingkun Hu
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Tianhong Chen
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Shuwei Zhang
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Xiaodong Guo
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Road 1277Wuhan430022China
| | - Lin Cai
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Jingfeng Li
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| |
Collapse
|
10
|
Murai K, Isobe H, Tezuka A, Nishio K. Continuous Variation of Secondary Structural Contents of Interfacial Peptides Induced by Hydrogel Fusion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3032-3039. [PMID: 35238564 DOI: 10.1021/acs.langmuir.1c01858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Three-dimensional assemblies formed by multi-biopolymers perform important biological functions by maintaining the vital activities of living organisms through biochemical reactions that occur at the interfaces of these structures. In this study, we investigated the mechanism of the continuous variation of the secondary structural contents of interfacial peptides induced by the fusion of hydrogels with different charges. The hydrogel fusion induced continuous pH changes at the interface through ionic diffusion from the hydrogel matrices, and the pH value increased rapidly during the early stage (0-200 min) of the fusion process. In addition, the secondary structural content of the interfacial peptides changed continuously between the β-sheet and random coil conformations during the early stage of the fusion process. The continuous variation in the secondary structural contents of the interfacial peptides was caused by (1) the protonation of peptide molecule amino acid side-chains in the region of pH change and (2) charge shielding due to the electrostatic interactions between the intramolecular peptides, intermolecular peptides, and intramolecular and intermolecular peptides.
Collapse
Affiliation(s)
- Kazuki Murai
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Hiroto Isobe
- Department of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Atsuya Tezuka
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Keishi Nishio
- Department of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| |
Collapse
|
11
|
Gray VP, Amelung CD, Duti IJ, Laudermilch EG, Letteri RA, Lampe KJ. Biomaterials via peptide assembly: Design, characterization, and application in tissue engineering. Acta Biomater 2022; 140:43-75. [PMID: 34710626 PMCID: PMC8829437 DOI: 10.1016/j.actbio.2021.10.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/23/2021] [Accepted: 10/20/2021] [Indexed: 12/16/2022]
Abstract
A core challenge in biomaterials, with both fundamental significance and technological relevance, concerns the rational design of bioactive microenvironments. Designed properly, peptides can undergo supramolecular assembly into dynamic, physical hydrogels that mimic the mechanical, topological, and biochemical features of native tissue microenvironments. The relatively facile, inexpensive, and automatable preparation of peptides, coupled with low batch-to-batch variability, motivates the expanded use of assembling peptide hydrogels for biomedical applications. Integral to realizing dynamic peptide assemblies as functional biomaterials for tissue engineering is an understanding of the molecular and macroscopic features that govern assembly, morphology, and biological interactions. In this review, we first discuss the design of assembling peptides, including primary structure (sequence), secondary structure (e.g., α-helix and β-sheets), and molecular interactions that facilitate assembly into multiscale materials with desired properties. Next, we describe characterization tools for elucidating molecular structure and interactions, morphology, bulk properties, and biological functionality. Understanding of these characterization methods enables researchers to access a variety of approaches in this ever-expanding field. Finally, we discuss the biological properties and applications of peptide-based biomaterials for engineering several important tissues. By connecting molecular features and mechanisms of assembling peptides to the material and biological properties, we aim to guide the design and characterization of peptide-based biomaterials for tissue engineering and regenerative medicine. STATEMENT OF SIGNIFICANCE: Engineering peptide-based biomaterials that mimic the topological and mechanical properties of natural extracellular matrices provide excellent opportunities to direct cell behavior for regenerative medicine and tissue engineering. Here we review the molecular-scale features of assembling peptides that result in biomaterials that exhibit a variety of relevant extracellular matrix-mimetic properties and promote beneficial cell-biomaterial interactions. Aiming to inspire and guide researchers approaching this challenge from both the peptide biomaterial design and tissue engineering perspectives, we also present characterization tools for understanding the connection between peptide structure and properties and highlight the use of peptide-based biomaterials in neural, orthopedic, cardiac, muscular, and immune engineering applications.
Collapse
Affiliation(s)
- Vincent P Gray
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, United States
| | - Connor D Amelung
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22903, United States
| | - Israt Jahan Duti
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, United States
| | - Emma G Laudermilch
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, United States
| | - Rachel A Letteri
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, United States.
| | - Kyle J Lampe
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, United States; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22903, United States.
| |
Collapse
|
12
|
A Novel In Vitro Simulator to Investigate Promotion of Reconstruction of Damaged Neuronal Cell Colony Differentiated from iPS Cells with the Aid of Micro Dynamic Stimulation. TECHNOLOGIES 2021. [DOI: 10.3390/technologies9040083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Neuronal cells are equipped with the function of a sensor that senses stimulation and elongates neurites to connect nearby neuronal cells in forming a neuronal network, as they are generally said to be hard to recover from physical damage, such as in the case of a spinal cord injury. Therefore, in this study, a novel in vitro simulator in which micro dynamic stimulations are applied to a damaged neuronal cell colony artificially is proposed to investigate the possibility of promoting the reconstruction of damaged neuronal cells on a colony basis. A neuronal cell colony differentiated from iPS cells is physically damaged by cutting off treatment, and micro dynamic stimulations are applied to the colony by utilizing a developed mini-vibration table system. NeuroFluor NeuO is used to establish a method for fluorescent staining of the living neuronal cells, and morphologies of the reconstructing neurons are analysed, revealing a relationship between the stimulation and the reconstructing process of the damaged neurons. It is found that significant differences are observed in the reconstructing efficiency between the statically cultured damaged neuronal cell colony and the dynamically stimulated one. The results suggest that applying appropriate micro dynamic stimulations is a promising approach to promote the reconstruction of a damaged neuronal cell colony.
Collapse
|
13
|
Towards bioengineered skeletal muscle: recent developments in vitro and in vivo. Essays Biochem 2021; 65:555-567. [PMID: 34342361 DOI: 10.1042/ebc20200149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 12/11/2022]
Abstract
Skeletal muscle is a functional tissue that accounts for approximately 40% of the human body mass. It has remarkable regenerative potential, however, trauma and volumetric muscle loss, progressive disease and aging can lead to significant muscle loss that the body cannot recover from. Clinical approaches to address this range from free-flap transfer for traumatic events involving volumetric muscle loss, to myoblast transplantation and gene therapy to replace muscle loss due to sarcopenia and hereditary neuromuscular disorders, however, these interventions are often inadequate. The adoption of engineering paradigms, in particular materials engineering and materials/tissue interfacing in biology and medicine, has given rise to the rapidly growing, multidisciplinary field of bioengineering. These methods have facilitated the development of new biomaterials that sustain cell growth and differentiation based on bionic biomimicry in naturally occurring and synthetic hydrogels and polymers, as well as additive fabrication methods to generate scaffolds that go some way to replicate the structural features of skeletal muscle. Recent advances in biofabrication techniques have resulted in significant improvements to some of these techniques and have also offered promising alternatives for the engineering of living muscle constructs ex vivo to address the loss of significant areas of muscle. This review highlights current research in this area and discusses the next steps required towards making muscle biofabrication a clinical reality.
Collapse
|
14
|
Wang T, Ran R, Ma Y, Zhang M. Polymeric hydrogel as a vitreous substitute: current research, challenges, and future directions. Biomed Mater 2021; 16. [PMID: 34038870 DOI: 10.1088/1748-605x/ac058e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/26/2021] [Indexed: 02/08/2023]
Abstract
Vitreoretinal surgery is an essential approach to treat proliferative diabetic vitreopathy, retinal detachment, retinal tear, ocular trauma, and macular holes. The removal of the natural vitreous and the replacement with substitutes are critical steps for retina reattachment. Vitreous substitutes including silicone oil (SiO), air, sulfur hexafluoride (SF6), and perfluoropropane (C3F8), have been widely applied in clinical practice. However, these substitutes are reported to cause complications such as emulsification, high intraocular pressure, and lens opacification. Polymeric hydrogels are a kind of material with favorable physical, mechanical properties, and adaptable biocompatibility, thus being highly expected to be ideal vitreous substitutes. Despite years of research, very few polymeric hydrogels can be applied practically in the vitreous cavity. In this review, we focus on the development of polymeric natural-based hydrogels and synthetic hydrogels. Particularly, we pay attention to recent advances in the novel stimuli-response and self-assembly supramolecular hydrogels. Characterized by easy injectability and long residence time, this kind of hydrogel becomes the potentially promising candidates for ideal vitreous substitutes. Finally, we evaluate the current challenges and provide the future directions of vitreous substitutes.
Collapse
Affiliation(s)
- Ting Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China.,West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Ruijin Ran
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China.,Minda Hospital of Hubei Minzu University, Enshi, People's Republic of China
| | - Yan Ma
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Ming Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| |
Collapse
|
15
|
Kang MS, Kang JI, Le Thi P, Park KM, Hong SW, Choi YS, Han DW, Park KD. Three-Dimensional Printable Gelatin Hydrogels Incorporating Graphene Oxide to Enable Spontaneous Myogenic Differentiation. ACS Macro Lett 2021; 10:426-432. [PMID: 35549236 DOI: 10.1021/acsmacrolett.0c00845] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Three-dimensional (3D) bioprinting has attracted considerable attention for producing 3D engineered cellular microenvironments that replicate complex and sophisticated native extracellular matrices (ECM) as well as the spatiotemporal gradients of numerous physicochemical and biological cues. Although various hydrogel-based bioinks have been reported, the development of advanced bioink materials that can reproduce the complexity of ECM accurately and mimic the intrinsic property of laden cells is still a challenge. This paper reports 3D printable bioinks composed of phenol-rich gelatin (GHPA) and graphene oxide (GO) as a component for a myogenesis-inducing material, which can form a hydrogel network in situ by a dual enzyme-mediated cross-linking reaction. The in situ curable GO/GHPA hydrogel can be utilized successfully as 3D-printable bioinks to provide suitable cellular microenvironments with facilitated myogenic differentiation of C2C12 skeletal myoblasts. Overall, we suggest that functional bioinks may be useful in muscle tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jeon Il Kang
- Department of Bioengineering and Nano-bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Phuong Le Thi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Kyung Min Park
- Department of Bioengineering and Nano-bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Suck Won Hong
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Yu Suk Choi
- School of Human Sciences, The University of Western Australia, Western Australia 6009, Australia
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Ki Dong Park
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
16
|
Studies of osteoblast-like MG-63 cellular proliferation and differentiation with cyclic stretching cell culture system on biomimetic hydrophilic layers modified polydimethylsiloxane substrate. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.107946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Pham‐Nguyen O, Son YJ, Kwon T, Kim J, Jung YC, Park JB, Kang B, Yoo HS. Preparation of Stretchable Nanofibrous Sheets with Sacrificial Coaxial Electrospinning for Treatment of Traumatic Muscle Injury. Adv Healthc Mater 2021; 10:e2002228. [PMID: 33506655 DOI: 10.1002/adhm.202002228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Indexed: 11/09/2022]
Abstract
Traumatic muscle injury with massive loss of muscle volume requires intramuscular implantation of proper scaffolds for fast and successful recovery. Although many artificial scaffolds effectively accelerate formation and maturation of myotubes, limited studies are showing the therapeutic effect of artificial scaffolds in animal models with massive muscle injury. In this study, improved myotube differentiation is approved on stepwise stretched gelatin nanofibers and applied to damaged muscle recovery in an animal model. The gelatin nanofibers are fabricated by a two-step process composed of co-axial electrospinning of poly(ɛ-caprolactone) and gelatin and subsequent removal of the outer shells. When stepwise stretching is applied to the myoblasts on gelatin nanofibers for five days, enhanced myotube formation and polarized elongation are observed. Animal models with volumetric loss at quadriceps femoris muscles (>50%) are transplanted with the myotubes cultivated on thin and flexible gelatin nanofiber. Treated animals more efficiently recover exercising functions of the leg when myotubes and the gelatin nanofiber are co-implanted at the injury sites. This result suggests that mechanically stimulated myotubes on gelatin nanofiber is therapeutically feasible for the robust recovery of volumetric muscle loss.
Collapse
Affiliation(s)
- Oanh‐Vu Pham‐Nguyen
- Department of Biomedical Science Institute of Bioscience and Biotechnology Institute of Molecular Science and Fusion Technology Kangwon National University Chuncheon 24341 Republic of Korea
| | - Young Ju Son
- Department of Biomedical Science Institute of Bioscience and Biotechnology Institute of Molecular Science and Fusion Technology Kangwon National University Chuncheon 24341 Republic of Korea
| | - Tae‐wan Kwon
- Department of Veterinary Surgery, College of Veterinary Medicine and Institute of Veterinary Science Kangwon National University Chuncheon 24341 Republic of Korea
| | - Junhyung Kim
- Department of Veterinary Surgery, College of Veterinary Medicine and Institute of Veterinary Science Kangwon National University Chuncheon 24341 Republic of Korea
| | - Yun Chan Jung
- Chaon 331 Pangyo‐ro Bundang‐gu Seongnam Gyeonggi‐do 13488 Republic of Korea
| | - Jong Bae Park
- Jeonju Center Korea Basic Science Institute Jeonju 54907 Republic of Korea
| | - Byung‐Jae Kang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine Research Institute for Veterinary Science BK21 PLUS Program for Creative Veterinary Science Research Seoul National University Seoul 08826 Republic of Korea
| | - Hyuk Sang Yoo
- Department of Biomedical Science Institute of Bioscience and Biotechnology Institute of Molecular Science and Fusion Technology Kangwon National University Chuncheon 24341 Republic of Korea
| |
Collapse
|
18
|
Cell stretchers and the LINC complex in mechanotransduction. Arch Biochem Biophys 2021; 702:108829. [PMID: 33716002 DOI: 10.1016/j.abb.2021.108829] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/23/2021] [Accepted: 03/07/2021] [Indexed: 02/07/2023]
Abstract
How cells respond to mechanical forces from the surrounding environment is critical for cell survival and function. The LINC complex is a central component in the mechanotransduction pathway that transmits mechanical information from the cell surface to the nucleus. Through LINC complex functionality, the nucleus is able to respond to mechanical stress by altering nuclear structure, chromatin organization, and gene expression. The use of specialized devices that apply mechanical strain to cells have been central to investigating how mechanotransduction occurs, how cells respond to mechanical stress, and the role of the LINC complexes in these processes. A large variety of designs have been reported for these devices, with the most common type being cell stretchers. Here we highlight some of the salient features of cell stretchers and suggest some key parameters that should be considered when using these devices. We provide a brief overview of how the LINC complexes contribute to the cellular responses to mechanical strain. And finally, we suggest that stretchers may be a useful tool to study aging.
Collapse
|
19
|
Balasco N, Diaferia C, Morelli G, Vitagliano L, Accardo A. Amyloid-Like Aggregation in Diseases and Biomaterials: Osmosis of Structural Information. Front Bioeng Biotechnol 2021; 9:641372. [PMID: 33748087 PMCID: PMC7966729 DOI: 10.3389/fbioe.2021.641372] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/05/2021] [Indexed: 11/13/2022] Open
Abstract
The discovery that the polypeptide chain has a remarkable and intrinsic propensity to form amyloid-like aggregates endowed with an extraordinary stability is one of the most relevant breakthroughs of the last decades in both protein/peptide chemistry and structural biology. This observation has fundamental implications, as the formation of these assemblies is systematically associated with the insurgence of severe neurodegenerative diseases. Although the ability of proteins to form aggregates rich in cross-β structure has been highlighted by recent studies of structural biology, the determination of the underlying atomic models has required immense efforts and inventiveness. Interestingly, the progressive molecular and structural characterization of these assemblies has opened new perspectives in apparently unrelated fields. Indeed, the self-assembling through the cross-β structure has been exploited to generate innovative biomaterials endowed with promising mechanical and spectroscopic properties. Therefore, this structural motif has become the fil rouge connecting these diversified research areas. In the present review, we report a chronological recapitulation, also performing a survey of the structural content of the Protein Data Bank, of the milestones achieved over the years in the characterization of cross-β assemblies involved in the insurgence of neurodegenerative diseases. A particular emphasis is given to the very recent successful elucidation of amyloid-like aggregates characterized by remarkable molecular and structural complexities. We also review the state of the art of the structural characterization of cross-β based biomaterials by highlighting the benefits of the osmosis of information between these two research areas. Finally, we underline the new promising perspectives that recent successful characterizations of disease-related amyloid-like assemblies can open in the biomaterial field.
Collapse
Affiliation(s)
- Nicole Balasco
- Institute of Biostructures and Bioimaging (IBB), CNR, Naples, Italy
| | - Carlo Diaferia
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples “Federico II”, Naples, Italy
| | - Giancarlo Morelli
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples “Federico II”, Naples, Italy
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging (IBB), CNR, Naples, Italy
| | - Antonella Accardo
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples “Federico II”, Naples, Italy
| |
Collapse
|
20
|
Al-Maslamani NA, Khilan AA, Horn HF. Design of a 3D printed, motorized, uniaxial cell stretcher for microscopic and biochemical analysis of mechanotransduction. Biol Open 2021; 10:bio057778. [PMID: 33563607 PMCID: PMC7888744 DOI: 10.1242/bio.057778] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/13/2021] [Indexed: 12/14/2022] Open
Abstract
Cells respond to mechanical cues from their environment through a process of mechanosensing and mechanotransduction. Cell stretching devices are important tools to study the molecular pathways responsible for cellular responses to mechanobiological processes. We describe the development and testing of a uniaxial cell stretcher that has applications for microscopic as well as biochemical analyses. By combining simple fabrication techniques with adjustable control parameters, the stretcher is designed to fit a variety of experimental needs. The stretcher can be used for static and cyclic stretching. As a proof of principle, we visualize stretch induced deformation of cell nuclei via incremental static stretch, and changes in IEX1 expression via cyclic stretching. This stretcher is easily modified to meet experimental needs, inexpensive to build, and should be readily accessible for most laboratories with access to 3D printing.
Collapse
Affiliation(s)
- Noor A Al-Maslamani
- Biological and Biomedical Sciences Division, College of Health and Life Sciences, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar
| | - Abdulghani A Khilan
- Biological and Biomedical Sciences Division, College of Health and Life Sciences, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar
| | - Henning F Horn
- Biological and Biomedical Sciences Division, College of Health and Life Sciences, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar
| |
Collapse
|
21
|
Raja N, Park H, Choi YJ, Yun HS. Multifunctional Calcium-Deficient Hydroxyl Apatite-Alginate Core-Shell-Structured Bone Substitutes as Cell and Drug Delivery Vehicles for Bone Tissue Regeneration. ACS Biomater Sci Eng 2021; 7:1123-1133. [PMID: 33541070 DOI: 10.1021/acsbiomaterials.0c01341] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In this work, we fabricated unique coiled-structured bioceramics contained in hydrogel beads for simultaneous drug and cell delivery using a combination of bone cement chemistry and bioprinting and characterized them. The core of the calcium-deficient hydroxyl apatite (CDHA) contains quercetin, which is a representative phytoestrogen isolated from onions and apples, to control the metabolism of bone tissue regeneration through sustained release over a long period of time. The shell consists of an alginate hydrogel that includes preosteoblast MC3T3-E1 cells. Ceramic paste and hydrogel were simultaneously extruded to fabricate core-shell beads through the inner and outer nozzles, respectively, of a concentric nozzle system based on a material-extruding-based three-dimensional (3D) printing system. The formation of beads and the coiled ceramic core is related to both alginate concentration and printing conditions. The size of the microbeads and the thickness of the coiled structure could be controlled by adjusting the nozzle conditions. The whole process was carried out at physiological conditions (37 °C) to be gentle on the cells. The alginate shell undergoes solidification by cross-linking in CaCl2 or monocalcium phosphate monohydrate (MCPM) solution, while the hardening and cementation of the α-tricalcium phosphate (α-TCP) core to CDHA are subsequently initiated by immersion in phosphate-buffered saline solution. This process replaces the typical sintering of ceramic processing to prevent damage to the hydrogel, cells, and drugs in the beads. The cell-loaded beads were then cultured in cell culture media where the cells could maintain good viability during the entire testing period, which was over 50 days. Cell growth and elongation were observed even in the alginate along the CDHA coiled structure over time. Sustained release of quercetin without any initial burst was also confirmed during a test period of 120 days. These novel structured microbeads with multibiofunctionality can be used as new bone substitutes for hard tissue regeneration in indeterminate defect sites.
Collapse
Affiliation(s)
- Naren Raja
- Department of Advanced Biomaterials Research, Ceramic Materials Division, Korea Institute of Materials Science (KIMS), 797 Changwon-daero, Seongsan-gu, Changwon-si 51508, Gyeongsangnam-do, Republic of Korea
| | - Honghyun Park
- Department of Advanced Biomaterials Research, Ceramic Materials Division, Korea Institute of Materials Science (KIMS), 797 Changwon-daero, Seongsan-gu, Changwon-si 51508, Gyeongsangnam-do, Republic of Korea
| | - Yeong-Jin Choi
- Department of Advanced Biomaterials Research, Ceramic Materials Division, Korea Institute of Materials Science (KIMS), 797 Changwon-daero, Seongsan-gu, Changwon-si 51508, Gyeongsangnam-do, Republic of Korea
| | - Hui-Suk Yun
- Department of Advanced Biomaterials Research, Ceramic Materials Division, Korea Institute of Materials Science (KIMS), 797 Changwon-daero, Seongsan-gu, Changwon-si 51508, Gyeongsangnam-do, Republic of Korea.,Korea University of Science and Technology (UST), 217 Gajeong-ro, Yeseong-gu, Daejeon 305-350, Republic of Korea
| |
Collapse
|
22
|
Blanco‐Fernandez B, Gaspar VM, Engel E, Mano JF. Proteinaceous Hydrogels for Bioengineering Advanced 3D Tumor Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003129. [PMID: 33643799 PMCID: PMC7887602 DOI: 10.1002/advs.202003129] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/13/2020] [Indexed: 05/14/2023]
Abstract
The establishment of tumor microenvironment using biomimetic in vitro models that recapitulate key tumor hallmarks including the tumor supporting extracellular matrix (ECM) is in high demand for accelerating the discovery and preclinical validation of more effective anticancer therapeutics. To date, ECM-mimetic hydrogels have been widely explored for 3D in vitro disease modeling owing to their bioactive properties that can be further adapted to the biochemical and biophysical properties of native tumors. Gathering on this momentum, herein the current landscape of intrinsically bioactive protein and peptide hydrogels that have been employed for 3D tumor modeling are discussed. Initially, the importance of recreating such microenvironment and the main considerations for generating ECM-mimetic 3D hydrogel in vitro tumor models are showcased. A comprehensive discussion focusing protein, peptide, or hybrid ECM-mimetic platforms employed for modeling cancer cells/stroma cross-talk and for the preclinical evaluation of candidate anticancer therapies is also provided. Further development of tumor-tunable, proteinaceous or peptide 3D microtesting platforms with microenvironment-specific biophysical and biomolecular cues will contribute to better mimic the in vivo scenario, and improve the predictability of preclinical screening of generalized or personalized therapeutics.
Collapse
Affiliation(s)
- Barbara Blanco‐Fernandez
- Department of Chemistry, CICECO – Aveiro Institute of Materials, University of AveiroCampus Universitário de SantiagoAveiro3810‐193Portugal
- Institute for Bioengineering of Catalonia (IBEC)The Barcelona Institute of Science and TechnologyBaldiri Reixac 10–12Barcelona08028Spain
| | - Vítor M. Gaspar
- Department of Chemistry, CICECO – Aveiro Institute of Materials, University of AveiroCampus Universitário de SantiagoAveiro3810‐193Portugal
| | - Elisabeth Engel
- Institute for Bioengineering of Catalonia (IBEC)The Barcelona Institute of Science and TechnologyBaldiri Reixac 10–12Barcelona08028Spain
- Materials Science and Metallurgical EngineeringPolytechnical University of Catalonia (UPC)Eduard Maristany 16Barcelona08019Spain
- CIBER en BioingenieríaBiomateriales y NanomedicinaCIBER‐BBNMadrid28029Spain
| | - João F. Mano
- Department of Chemistry, CICECO – Aveiro Institute of Materials, University of AveiroCampus Universitário de SantiagoAveiro3810‐193Portugal
| |
Collapse
|
23
|
Chen CH, Hsu EL, Stupp SI. Supramolecular self-assembling peptides to deliver bone morphogenetic proteins for skeletal regeneration. Bone 2020; 141:115565. [PMID: 32745692 PMCID: PMC7680412 DOI: 10.1016/j.bone.2020.115565] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 12/15/2022]
Abstract
Recombinant human bone morphogenetic proteins (BMPs) have shown clinical success in promoting bone healing, but they are also associated with unwanted side effects. The development of improved BMP carriers that can retain BMP at the defect site and maximize its efficacy would decrease the therapeutic BMP dose and thus improve its safety profile. In this review, we discuss the advantages of using self-assembling peptides, a class of synthetic supramolecular biomaterials, to deliver recombinant BMPs. Peptide amphiphiles (PAs) are a broad class of self-assembling peptides, and the use of PAs for BMP delivery and bone regeneration has been explored extensively over the past decade. Like many self-assembling peptide systems, PAs can be designed to form nanofibrous supramolecular biomaterials in which molecules are held together by non-covalent bonds. Chemical and biological functionality can be added to PA nanofibers, through conjugation of chemical moieties or biological epitopes to PA molecules. For example, PA nanofibers have been designed to bind heparan sulfate, a natural polysaccharide that is known to bind BMPs and potentiate their signal. Alternatively, PA nanofibers have been designed to synthetically mimic the structure and function of heparan sulfate, or to directly bind BMP specifically. In small animal models, these bio-inspired PA materials have shown the capacity to promote bone regeneration using BMP at doses 10-100 times lower than established therapeutic doses. These promising results have motivated further evaluation of PAs in large animal models, where their safety and efficacy must be established before clinical translation. We conclude with a discussion on the possiblity of combining PAs with other materials used in orthopaedic surgery to maximize their utility for clinical translation.
Collapse
Affiliation(s)
- Charlotte H Chen
- Simpson Querrey Institute, Northwestern University, 303 East Superior Street, Chicago, IL 60611, USA; Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL 60208, USA
| | - Erin L Hsu
- Simpson Querrey Institute, Northwestern University, 303 East Superior Street, Chicago, IL 60611, USA; Department of Orthopaedic Surgery, Northwestern University, 676 North St. Clair Street, Chicago, IL 60611, USA
| | - Samuel I Stupp
- Simpson Querrey Institute, Northwestern University, 303 East Superior Street, Chicago, IL 60611, USA; Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL 60208, USA; Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA; Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA; Department of Medicine, Northwestern University, 676 North St. Clair Street, Chicago, IL 60611, USA.
| |
Collapse
|
24
|
Polymeric hydrogels as a vitreous replacement strategy in the eye. Biomaterials 2020; 268:120547. [PMID: 33307366 DOI: 10.1016/j.biomaterials.2020.120547] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/15/2022]
Abstract
Vitreous endo-tamponades are commonly used in the treatment of retinal detachments and tears. They function by providing a tamponading force to support the retina after retina surgery. Current clinical vitreous endo-tamponades include expansile gases (such as sulfur hexafluoride (SF6) and perfluoropropane (C3F8)) and also sislicone oil (SiO). They are effective in promoting recovery but are disadvantaged by their lower refractive indices and lower densities as compared to the native vitreous, resulting in immediate blurred vision after surgery and necessitating patients to assume prolonged face-down positioning respectively. While the gas implants diffuse out over time, the SiO implants are non-biodegradable and require surgical removal. Therefore, there is much demand to develop an ideal vitreous endo-tamponade that can combine therapeutic effectiveness with patient comfort. Polymeric hydrogels have since attracted much attention due to their favourable properties such as high water content, high clarity, suitable refractive indices, suitable density, tuneable rheological properties, injectability, and biocompatibility. Many design strategies have been employed to design polymeric hydrogel-based vitreous endo-tamponades and they can be classified into four main strategies. This review seeks to analyse these various strategies and evaluate their effectiveness and also propose the key criteria to design successful polymeric hydrogel vitreous endo-tamponades.
Collapse
|
25
|
Alvarado-Hidalgo F, Ramírez-Sánchez K, Starbird-Perez R. Smart Porous Multi-Stimulus Polysaccharide-Based Biomaterials for Tissue Engineering. Molecules 2020; 25:E5286. [PMID: 33202707 PMCID: PMC7697121 DOI: 10.3390/molecules25225286] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 01/01/2023] Open
Abstract
Recently, tissue engineering and regenerative medicine studies have evaluated smart biomaterials as implantable scaffolds and their interaction with cells for biomedical applications. Porous materials have been used in tissue engineering as synthetic extracellular matrices, promoting the attachment and migration of host cells to induce the in vitro regeneration of different tissues. Biomimetic 3D scaffold systems allow control over biophysical and biochemical cues, modulating the extracellular environment through mechanical, electrical, and biochemical stimulation of cells, driving their molecular reprogramming. In this review, first we outline the main advantages of using polysaccharides as raw materials for porous scaffolds, as well as the most common processing pathways to obtain the adequate textural properties, allowing the integration and attachment of cells. The second approach focuses on the tunable characteristics of the synthetic matrix, emphasizing the effect of their mechanical properties and the modification with conducting polymers in the cell response. The use and influence of polysaccharide-based porous materials as drug delivery systems for biochemical stimulation of cells is also described. Overall, engineered biomaterials are proposed as an effective strategy to improve in vitro tissue regeneration and future research directions of modified polysaccharide-based materials in the biomedical field are suggested.
Collapse
Affiliation(s)
- Fernando Alvarado-Hidalgo
- Centro de Investigación en Servicios Químicos y Microbiológicos, CEQIATEC, Escuela de Química, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
- Master Program in Medical Devices Engineering, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| | - Karla Ramírez-Sánchez
- Centro de Investigación en Servicios Químicos y Microbiológicos, CEQIATEC, Escuela de Química, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
- Centro de Investigación en Enfermedades Tropicales, CIET, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica
| | - Ricardo Starbird-Perez
- Centro de Investigación en Servicios Químicos y Microbiológicos, CEQIATEC, Escuela de Química, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| |
Collapse
|
26
|
Peng F, Zhang W, Qiu F. Self-assembling Peptides in Current Nanomedicine: Versatile Nanomaterials for Drug Delivery. Curr Med Chem 2020; 27:4855-4881. [PMID: 31309877 DOI: 10.2174/0929867326666190712154021] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/27/2019] [Accepted: 06/11/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND The development of modern nanomedicine greatly depends on the involvement of novel materials as drug delivery system. In order to maximize the therapeutic effects of drugs and minimize their side effects, a number of natural or synthetic materials have been widely investigated for drug delivery. Among these materials, biomimetic self-assembling peptides (SAPs) have received more attention in recent years. Considering the rapidly growing number of SAPs designed for drug delivery, a summary of how SAPs-based drug delivery systems were designed, would be beneficial. METHOD We outlined research works on different SAPs that have been investigated as carriers for different drugs, focusing on the design of SAPs nanomaterials and how they were used for drug delivery in different strategies. RESULTS Based on the principle rules of chemical complementarity and structural compatibility, SAPs such as ionic self-complementary peptide, peptide amphiphile and surfactant-like peptide could be designed. Determined by the features of peptide materials and the drugs to be delivered, different strategies such as hydrogel embedding, hydrophobic interaction, electrostatic interaction, covalent conjugation or the combination of them could be employed to fabricate SAPs-drug complex, which could achieve slow release, targeted or environment-responsive delivery of drugs. Furthermore, some SAPs could also be combined with other types of materials for drug delivery, or even act as drug by themselves. CONCLUSION Various types of SAPs have been designed and used for drug delivery following various strategies, suggesting that SAPs as a category of versatile nanomaterials have promising potential in the field of nanomedicine.
Collapse
Affiliation(s)
- Fei Peng
- Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wensheng Zhang
- Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Feng Qiu
- Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
27
|
Shankar S, Junaid Ur Rahim, Rai R. Self-Assembly in Peptides Containing β-and γ-amino Acids. Curr Protein Pept Sci 2020; 21:584-597. [DOI: 10.2174/1389203721666200127112244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/07/2019] [Accepted: 10/07/2019] [Indexed: 12/17/2022]
Abstract
The peptides containing β-and γ-amino acids as building blocks display well-defined secondary
structures with unique morphologies. The ability of such peptides to self-assemble into complex
structures of controlled geometries has been exploited in biomedical applications. Herein, we have
provided an updated overview about the peptides containing β-and γ-amino acids considering the significance
and advancement in the area of development of peptide-based biomaterials having diverse
applications.
Collapse
Affiliation(s)
- Sudha Shankar
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India
| | - Junaid Ur Rahim
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India
| | - Rajkishor Rai
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India
| |
Collapse
|
28
|
Katzengold R, Orlov A, Gefen A. A novel system for dynamic stretching of cell cultures reveals the mechanobiology for delivering better negative pressure wound therapy. Biomech Model Mechanobiol 2020; 20:193-204. [PMID: 32803464 DOI: 10.1007/s10237-020-01377-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/05/2020] [Indexed: 12/20/2022]
Abstract
Serious wounds, both chronic and acute (e.g., surgical), are among the most common, expensive and difficult-to-treat health problems. Negative pressure wound therapy (NPWT) is considered a mainstream procedure for treating both wound types. Soft tissue deformation stimuli are the crux of NPWT, enhancing cell proliferation and migration from peri-wound tissues which contributes to healing. We developed a dynamic stretching device (DSD) contained in a miniature incubator for applying controlled deformations to fibroblast wound assays. Prior to the stretching experiments, fibroblasts were seeded in 6-well culture plates with elastic substrata and let to reach confluency. Squashing damage was then induced at the culture centers, and the DSD was activated to deliver stretching regimes that represented common clinical NPWT protocols at two peak strain levels, 0.5% and 3%. Analyses of the normalized maximal migration rate (MMR) data for the collective cell movement revealed that for the 3% strain level, the normalized MMR of cultures subjected to a 0.1 Hz stretch frequency regime was ~ 1.4 times and statistically significantly greater (p < 0.05) than that of the cultures subjected to no-stretch (control) or to static stretch (2nd control). Correspondingly, analysis of the time to gap closure data indicated that the closure time of the wound assays subjected to the 0.1 Hz regime was ~ 30% shorter than that of the cultures subjected to the control regimes (p < 0.05). Other simulated NPWT protocols did not emerge as superior to the controls. The present method and system are a powerful platform for further revealing the mechanobiology of NPWT and for improving this technology.
Collapse
Affiliation(s)
- Rona Katzengold
- The Herbert J. Berman Chair in Vascular Bioengineering, Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Alexey Orlov
- The Herbert J. Berman Chair in Vascular Bioengineering, Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Amit Gefen
- The Herbert J. Berman Chair in Vascular Bioengineering, Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, 6997801, Tel Aviv, Israel.
| |
Collapse
|
29
|
Matsushita K, Kawashima R, Uesugi K, Okada H, Sakaguchi H, Quantock AJ, Nishida K. Assessment of a self-assembling peptide gel, SPG-178, in providing a clear operative field for trabeculectomy surgery for glaucoma in an animal model. Sci Rep 2020; 10:11326. [PMID: 32647319 PMCID: PMC7347556 DOI: 10.1038/s41598-020-68171-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/10/2020] [Indexed: 11/18/2022] Open
Abstract
The presence of blood during ophthalmic surgery is problematic, as it can obstruct a surgeon’s view of the operative field. This is particularly true when performing trabeculectomy surgery to enhance ocular fluid outflow and reduce intraocular pressure as a treatment for glaucoma, one of the most common vision loss conditions worldwide. In this study, we investigated the performance of a transparent, self-assembling peptide gel (SPG-178) and its ability to maintain visibility during trabeculectomy surgery. Unlike the hyaluronic acid gel commonly used in ophthalmic surgery, SPG-178 did not permit the ingress of blood into the gel itself. Rather, it forced blood to flow peripherally to the gel. Moreover, if bleeding occurred under the SPG-178 gel, perfusion with saline was able to effectively flush the blood away along the interface between the SPG-178 and the ocular tissue (in this case scleral) to clear the surgical field of view. In experimental trabeculectomy surgeries with mitomycin C used as an adjuvant, there were no differences in the postoperative recovery of intraocular pressure or bleb morphology with or without the use of SPG-178. SPG-178, therefore, when used in a gel formulation, represents a new material for use in intraocular surgery to ensure a clear operative field with likely beneficial treatment outcomes.
Collapse
Affiliation(s)
- Kenji Matsushita
- Department of Ophthalmology, Osaka University Graduate School of Medicine, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan.
| | - Rumi Kawashima
- Department of Ophthalmology, Osaka University Graduate School of Medicine, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Koji Uesugi
- Department of Ophthalmology, Osaka University Graduate School of Medicine, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan.,Menicon Co., Ltd., 5-1-10 Takamoridai, Kasugai, Aichi, 487-0032, Japan
| | - Haruka Okada
- Menicon Co., Ltd., 5-1-10 Takamoridai, Kasugai, Aichi, 487-0032, Japan
| | - Hirokazu Sakaguchi
- Department of Advanced Device Medicine, Osaka University Graduate School of Medicine, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Andrew J Quantock
- School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, Wales, UK
| | - Kohji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, 2-2, Yamada-oka, Suita, Osaka, 565-0871, Japan. .,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan.
| |
Collapse
|
30
|
De Leon-Rodriguez LM, Park YE, Naot D, Musson DS, Cornish J, Brimble MA. Design, characterization and evaluation of β-hairpin peptide hydrogels as a support for osteoblast cell growth and bovine lactoferrin delivery. RSC Adv 2020; 10:18222-18230. [PMID: 35692623 PMCID: PMC9122575 DOI: 10.1039/d0ra03011b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/04/2020] [Indexed: 11/21/2022] Open
Abstract
The use of peptide hydrogels is of growing interest in bone regeneration. Self-assembling peptides form hydrogels and can be used as injectable drug delivery matrices. Injected into the defect site, they can gel in situ, and release factors that aid bone growth. We report on the design, synthesis and characterization of three β-hairpin peptide hydrogels, and on their osteoblast cytocompatibility as well as delivery of the lactoferrin glycoprotein, a bone anabolic factor. Osteoblasts cultured in hydrogels of the peptide with sequence NH2-Leu-His-Leu-His-Leu-Lys-Leu-Lys-Val-dPro-Pro-Thr-Lys-Leu-Lys-Leu-His-Leu-His-Leu-Arg-Gly-Asp-Ser-CONH2 (H4LMAX-RGDS) increased the osteoblast cell number and the cells appeared healthy after seven days. Furthermore, we showed that H4LMAX-RGDS was capable of releasing up to 60% of lactoferrin (pre-encapsulated in the gel) over five days while retaining the rest of the glycoprotein. Thus, H4LMAX-RGDS hydrogels are cytocompatible with primary osteoblasts and capable of delivering bio-active lactoferrin that increases osteoblast cell number. Self-assembling peptide H4LMAX-RGDS hydrogels, designed to enhance bone regeneration, are cytocompatible and capable of delivering the bone anabolic factor lactoferrin to increase osteoblast cell number.![]()
Collapse
Affiliation(s)
| | - Young-Eun Park
- Department of Medicine
- University of Auckland
- Auckland 1023
- New Zealand
| | - Dorit Naot
- Department of Medicine
- University of Auckland
- Auckland 1023
- New Zealand
| | - David S. Musson
- Department of Medicine
- University of Auckland
- Auckland 1023
- New Zealand
| | - Jillian Cornish
- Department of Medicine
- University of Auckland
- Auckland 1023
- New Zealand
| | - Margaret A. Brimble
- School of Chemical Sciences
- The University of Auckland
- Auckland 1010
- New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery
| |
Collapse
|
31
|
Yoshida W, Matsugami D, Murakami T, Bizenjima T, Imamura K, Seshima F, Saito A. Combined effects of systemic parathyroid hormone (1-34) and locally delivered neutral self-assembling peptide hydrogel in the treatment of periodontal defects: An experimental in vivo investigation. J Clin Periodontol 2019; 46:1030-1040. [PMID: 31292977 DOI: 10.1111/jcpe.13170] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/05/2019] [Accepted: 07/06/2019] [Indexed: 12/13/2022]
Abstract
AIM To evaluate in vivo combination therapy of systemic parathyroid hormone (PTH) and locally delivered neutral self-assembling peptide (SAP) hydrogel for periodontal treatment. MATERIALS AND METHODS Viability/proliferation of rat periodontal ligament cells in a neutral SAP nanofibre hydrogel (SPG-178) was evaluated using WST-1 assay. Periodontal defects were created mesially to the maxillary first molars in 40 Wistar rats. Defects were filled with 1.5% SPG-178 or left unfilled. Animals received PTH (1-34) or saline injections every 2 days. Microcomputed tomography, histological, and immunohistochemical examinations were used to evaluate healing at 2 or 4 weeks postoperative. RESULTS At 72 hr, cells in 1.5% SPG-178 showed increased viability/proliferation compared to cells in 0.8% SPG-178 or untreated controls. In vivo, systemic PTH resulted in significantly greater bone volume in the Unfilled group at 2 weeks (p = .01) and 4 weeks (p < .0001) than in the saline control. At 4 weeks, a significantly greater bone volume was observed in the PTH/SPG-178 (p = .0003) and PTH/Unfilled (p = .004) groups than in Saline/SPG-178 group. Histologically, greater bone formation was observed in PTH/SPG-178 at 4 weeks than in other groups. In the PTH/SPG-178 group, increased proportions of PCNA-, VEGF-, and Osterix-positive cells were observed in the treated sites. CONCLUSIONS These findings suggest that intermittent systemic PTH and locally delivered neutral SAP hydrogel enhance periodontal healing.
Collapse
Affiliation(s)
- Wataru Yoshida
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan
| | | | - Tasuku Murakami
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan
| | | | - Kentaro Imamura
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan.,Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - Fumi Seshima
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan
| | - Atsushi Saito
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan.,Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| |
Collapse
|
32
|
Hiew SH, Mohanram H, Ning L, Guo J, Sánchez‐Ferrer A, Shi X, Pervushin K, Mu Y, Mezzenga R, Miserez A. A Short Peptide Hydrogel with High Stiffness Induced by 3 10-Helices to β-Sheet Transition in Water. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901173. [PMID: 31728282 PMCID: PMC6839752 DOI: 10.1002/advs.201901173] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/23/2019] [Indexed: 05/24/2023]
Abstract
Biological gels generally require polymeric chains that produce long-lived physical entanglements. Low molecular weight colloids offer an alternative to macromolecular gels, but often require ad-hoc synthetic procedures. Here, a short biomimetic peptide composed of eight amino acid residues derived from squid sucker ring teeth proteins is demonstrated to form hydrogel in water without any cross-linking agent or chemical modification and exhibits a stiffness on par with the stiffest peptide hydrogels. Combining solution and solid-state NMR, circular dichroism, infrared spectroscopy, and X-ray scattering, the peptide is shown to form a supramolecular, semiflexible gel assembled from unusual right-handed 310-helices stabilized in solution by π-π stacking. During gelation, the 310-helices undergo conformational transition into antiparallel β-sheets with formation of new interpeptide hydrophobic interactions, and molecular dynamic simulations corroborate stabilization by cross β-sheet oligomerization. The current study broadens the range of secondary structures available to create supramolecular hydrogels, and introduces 310-helices as transient building blocks for gelation via a 310-to-β-sheet conformational transition.
Collapse
Affiliation(s)
- Shu Hui Hiew
- Center for Biomimetic Sensor ScienceSchool of Materials Science and EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Harini Mohanram
- Center for Biomimetic Sensor ScienceSchool of Materials Science and EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Lulu Ning
- School of Biological SciencesNanyang Technological UniversitySingapore637551Singapore
| | - Jingjing Guo
- School of Biological SciencesNanyang Technological UniversitySingapore637551Singapore
| | | | - Xiangyan Shi
- School of Biological SciencesNanyang Technological UniversitySingapore637551Singapore
| | - Konstantin Pervushin
- School of Biological SciencesNanyang Technological UniversitySingapore637551Singapore
| | - Yuguang Mu
- School of Biological SciencesNanyang Technological UniversitySingapore637551Singapore
| | - Raffaele Mezzenga
- Department of Health Sciences & TechnologyETH ZurichZurichCH‐8092Switzerland
| | - Ali Miserez
- Center for Biomimetic Sensor ScienceSchool of Materials Science and EngineeringNanyang Technological UniversitySingapore639798Singapore
- School of Biological SciencesNanyang Technological UniversitySingapore637551Singapore
| |
Collapse
|
33
|
Kihara T, Umezu C, Sawada K, Furutani Y. Osteogenic cells form mineralized particles, a few μm in size, in a 3D collagen gel culture. PeerJ 2019; 7:e7889. [PMID: 31660270 PMCID: PMC6815190 DOI: 10.7717/peerj.7889] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/13/2019] [Indexed: 02/03/2023] Open
Abstract
Osteogenic cells form mineralized matrices in vitro, as well as in vivo. The formation and shape of the mineralized matrices are highly regulated by the cells. In vitro formation of mineralized matrices by osteogenic cells can be a model for in vivo osteogenesis. In this study, using a three-dimensional (3D) collagen gel culture system, we developed a new in vitro model for the formation of mineralized particles, a few µm in size, by the osteogenic cells. Human osteosarcoma (HOS) cells formed spherical mineralized matrices (about 12 µm) at approximately 7 days when cultured with β-glycerophosphate (β-GP)-containing culture media on 2D tissue culture plates. Alternately, when they were cultured in a 3D collagen gel containing β-GP, they formed mineralized particles with about 1.7 µm in the gel at approximately 3 days. Calcium precipitation in the gel was evaluated by measuring the gel turbidity. This type of mineralization of HOS cells, which formed mineralized particles inside the gel, was also observed in a peptide-based hydrogel culture. The mineralized particles were completely diminished by inhibiting the activity of Pit-1, phosphate cotransporter, of the HOS cells. When mouse osteoblast-like MC3T3-E1 cells, which form large and flat mineralized matrices in 2D osteogenic conditions at approximately 3 weeks of culture, were cultured in a 3D collagen gel, they also formed mineralized particles in the gel, similar to those in HOS cells, at approximately 18 days. Thus, osteogenic cells cultured in the 3D collagen gel form mineralized particles over a shorter period, and the mineralization could be easily determined by gel turbidity. This 3D gel culture system of osteogenic cells acts as a useful model for cells forming particle-type mineralized matrices, and we assume that the mineralized particles in the 3D hydrogel are calcospherulites, which are derived from matrix vesicles secreted by osteogenic cells.
Collapse
Affiliation(s)
- Takanori Kihara
- Department of Life and Environment Engineering, Faculty of Environmental Engineering, The University of Kitakyushu, Kitakyushu, Fukuoka, Japan
| | - Chiya Umezu
- Department of Life and Environment Engineering, Faculty of Environmental Engineering, The University of Kitakyushu, Kitakyushu, Fukuoka, Japan
| | - Karin Sawada
- Department of Life and Environment Engineering, Faculty of Environmental Engineering, The University of Kitakyushu, Kitakyushu, Fukuoka, Japan
| | - Yukari Furutani
- Department of Life and Environment Engineering, Faculty of Environmental Engineering, The University of Kitakyushu, Kitakyushu, Fukuoka, Japan
| |
Collapse
|
34
|
Naruse K. MECHANOMEDICINE: applications of mechanobiology to medical sciences and next-generation medical technologies. J Smooth Muscle Res 2019; 54:83-90. [PMID: 30210090 PMCID: PMC6135919 DOI: 10.1540/jsmr.54.83] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mechanical stress underlies most aspects of cell and organismal biology. Mechanomedicine is a field of biology that seeks to understand molecular, cellular, tissue, organ, and individual responses to mechanical stimuli and aims to apply the gained knowledge to improve health. Combining biology and engineering, we explore research areas including mechanosensitive ion channels, heart failure, and regenerative medicine.This review will describe our findings in mechanobiology, our establishment of a joint venture business as we developed devices responding to medical needs, and our alliance with other companies.
Collapse
Affiliation(s)
- Keiji Naruse
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| |
Collapse
|
35
|
Huang LC, Wang HC, Chen LH, Ho CY, Hsieh PH, Huang MY, Wu HC, Wang TW. Bioinspired Self-assembling Peptide Hydrogel with Proteoglycan-assisted Growth Factor Delivery for Therapeutic Angiogenesis. Theranostics 2019; 9:7072-7087. [PMID: 31660087 PMCID: PMC6815956 DOI: 10.7150/thno.35803] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/14/2019] [Indexed: 01/04/2023] Open
Abstract
Critical challenges still exist in surgical theaters and emergency rooms to stop bleeding effectively and facilitate wound healing efficiently. In circumstances of tissue ischemia, it is essential to induce proper angiogenesis to provide adequate vascular supply to the injury site. Methods: In view of these clinical unmet needs, we propose an applicable approach by designing functionalized self-assembling peptide (SAP) hydrogel with two sequences of RADA16-GGQQLK (QLK) and RADA16-GGLRKKLGKA (LRK) in this study. The SAP hydrogel conjugated with QLK functional motif could be crosslinked by endogenous transglutaminase, one of the intrinsic factors secreted during the coagulation process, the mechanical property of the hydrogel can then be enhanced without the need of external support. On the other hand, the LRK sequence exhibited a good binding affinity with the proteoglycan heparan sulfate and could act as a cofactor by sustaining the release of embedded growth factors. Results: The results showed that this SAP solution underwent self-assembling process in a physiological environment, formed hydrogel in situ, and possessed good shear thinning property with injectability. After pH adjustment, the SAP developed densely-compacted fiber entanglement that closely mimicked the three-dimensional fibrous framework of natural extracellular matrix. Such scaffold could not only support the survival of encapsulating cells but also promote the capillary-like tubular structure formation by dual angiogenic growth factors. The ex ovo chicken chorioallantoic membrane assay demonstrated that the growth factor-loaded hydrogel promoted the sprout of surrounding vessels in a spoke-wheel pattern compared to growth factor-free counterparts. Conclusion: The designer bioinspired SAP hydrogel may be an attractive and promising therapeutic modality for minimally-invasive surgery, ischemic tissue disorders and chronic wound healing.
Collapse
Affiliation(s)
- Lu-Chieh Huang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Huan-Chih Wang
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
- College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Liang-Hsin Chen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Chia-Yu Ho
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Pei-Hsuan Hsieh
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Ming-Yuan Huang
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
- Department of Emergency, Mackay Memorial Hospital, Taipei, Taiwan
| | - Hsi-Chin Wu
- Department of Materials Engineering, Tatung University, Taipei, Taiwan
| | - Tzu-Wei Wang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
36
|
Adak A, Ghosh S, Gupta V, Ghosh S. Biocompatible Lipopeptide-Based Antibacterial Hydrogel. Biomacromolecules 2019; 20:1889-1898. [PMID: 30978285 DOI: 10.1021/acs.biomac.8b01836] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Anindyasundar Adak
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata700032, West Bengal, India
| | - Subhajit Ghosh
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata700032, West Bengal, India
| | - Varsha Gupta
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata700032, West Bengal, India
| | - Surajit Ghosh
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata700032, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
37
|
Rivas M, Del Valle LJ, Alemán C, Puiggalí J. Peptide Self-Assembly into Hydrogels for Biomedical Applications Related to Hydroxyapatite. Gels 2019; 5:E14. [PMID: 30845674 PMCID: PMC6473879 DOI: 10.3390/gels5010014] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 02/19/2019] [Accepted: 02/25/2019] [Indexed: 01/02/2023] Open
Abstract
Amphiphilic peptides can be self-assembled by establishing physical cross-links involving hydrogen bonds and electrostatic interactions with divalent ions. The derived hydrogels have promising properties due to their biocompatibility, reversibility, trigger capability, and tunability. Peptide hydrogels can mimic the extracellular matrix and favor the growth of hydroxyapatite (HAp) as well as its encapsulation. Newly designed materials offer great perspectives for applications in the regeneration of hard tissues such as bones, teeth, and cartilage. Furthermore, development of drug delivery systems based on HAp and peptide self-assembly is attracting attention.
Collapse
Affiliation(s)
- Manuel Rivas
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, 08019 Barcelona, Spain.
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, 08019 Barcelona, Spain.
| | - Luís J Del Valle
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, 08019 Barcelona, Spain.
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, 08019 Barcelona, Spain.
| | - Carlos Alemán
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, 08019 Barcelona, Spain.
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, 08019 Barcelona, Spain.
| | - Jordi Puiggalí
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, 08019 Barcelona, Spain.
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, 08019 Barcelona, Spain.
| |
Collapse
|
38
|
Scelsi A, Bochicchio B, Smith A, Workman VL, Castillo Diaz LA, Saiani A, Pepe A. Tuning of hydrogel stiffness using a two-component peptide system for mammalian cell culture. J Biomed Mater Res A 2019; 107:535-544. [PMID: 30456777 PMCID: PMC6587839 DOI: 10.1002/jbm.a.36568] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/19/2018] [Accepted: 09/28/2018] [Indexed: 01/18/2023]
Abstract
Self-assembling peptide hydrogels (SAPHs) represent emerging cell cultures systems in several biomedical applications. The advantages of SAPHs are mainly ascribed to the absence of toxic chemical cross-linkers, the presence of ECM-like fibrillar structures and the possibility to produce hydrogels with a large range of different mechanical properties. We will present a two-component peptide system with tuneable mechanical properties, consisting of a small pentapeptide (SFFSF-NH2 , SA5N) that acts as a gelator and a larger 21-mer peptide (SFFSF-GVPGVGVPGVG-SFFSF, SA21) designed as a physical cross-linker. The hydrogels formed by different mixtures of the two peptides are made up mainly of antiparallel β-sheet nanofibers entangling in an intricate network. The effect of the addition of SA21 on the morphology of the hydrogels was investigated by atomic force microscopy and transmission electron microscopy and correlated to the mechanical properties of the hydrogel. Finally, the biocompatibility of the hydrogels using 2D cell cultures was tested. © 2018 The Authors. journal Of Biomedical Materials Research Part A Published By Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 535-544, 2019.
Collapse
Affiliation(s)
- Alessandra Scelsi
- Laboratory of Bioinspired Materials, Department of ScienceUniversity of BasilicataPotenzaItaly
- PhD School of Science, University of BasilicataPotenzaItaly
| | - Brigida Bochicchio
- Laboratory of Bioinspired Materials, Department of ScienceUniversity of BasilicataPotenzaItaly
| | - Andrew Smith
- School of Materials and Manchester Institute of Biotechnology, The University of ManchesterManchesterUnited Kingdom
| | - Victoria L. Workman
- School of Materials and Manchester Institute of Biotechnology, The University of ManchesterManchesterUnited Kingdom
| | - Luis A. Castillo Diaz
- School of Materials and Manchester Institute of Biotechnology, The University of ManchesterManchesterUnited Kingdom
- Biotecnología Médica y Farmacéutica. Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ)GuadalajaraMexico
| | - Alberto Saiani
- School of Materials and Manchester Institute of Biotechnology, The University of ManchesterManchesterUnited Kingdom
| | - Antonietta Pepe
- Laboratory of Bioinspired Materials, Department of ScienceUniversity of BasilicataPotenzaItaly
| |
Collapse
|
39
|
Gagni P, Romanato A, Bergamaschi G, Bettotti P, Vanna R, Piotto C, Morasso CF, Chiari M, Cretich M, Gori A. A self-assembling peptide hydrogel for ultrarapid 3D bioassays. NANOSCALE ADVANCES 2019; 1:490-497. [PMID: 36132256 PMCID: PMC9473263 DOI: 10.1039/c8na00158h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/22/2018] [Indexed: 05/08/2023]
Abstract
Biosensing analytical platforms rely on the intimate structure-function relationship of immobilized probes. In this context, hydrogels are appealing semi-wet systems to locally confine biomolecules while preserving their structural integrity and function. Yet, limitations imposed by biomolecule diffusion rates or fabrication difficulties still hamper their broad application. Here, using a self-assembling peptide, a printable and self-adhesive hydrogel was obtained and applied to fabricate arrays of localized bio-functional 3D microenvironments on analytical interfaces. This soft matrix represents a robust and versatile material, allowing fast and selective tuning of analyte diffusion, which is exploited here to run in-gel immunoassays under solution-like conditions in an unprecedented (<10 min) time frame. The developed material overcomes major limitations associated with hydrogels for bioassays, widening the prospects for easy fabrication of multifunctional bio-interfaces for high-throughput, molecular recognition assays.
Collapse
Affiliation(s)
- Paola Gagni
- National Research Council of Italy, Istituto di Chimica del Riconoscimento Molecolare (ICRM) Via Mario Bianco, 9 20131-Milano Italy
| | - Alessandro Romanato
- National Research Council of Italy, Istituto di Chimica del Riconoscimento Molecolare (ICRM) Via Mario Bianco, 9 20131-Milano Italy
| | - Greta Bergamaschi
- National Research Council of Italy, Istituto di Chimica del Riconoscimento Molecolare (ICRM) Via Mario Bianco, 9 20131-Milano Italy
| | - Paolo Bettotti
- Nanoscience Laboratory, Department of Physics, University of Trento Via Sommarive 14 38123 Povo Italy
| | - Renzo Vanna
- Istituti Clinici Scientifici Maugeri IRCCS Via Maugeri 4 27100 Pavia Italy
| | - Chiara Piotto
- Nanoscience Laboratory, Department of Physics, University of Trento Via Sommarive 14 38123 Povo Italy
| | - Carlo F Morasso
- Istituti Clinici Scientifici Maugeri IRCCS Via Maugeri 4 27100 Pavia Italy
| | - Marcella Chiari
- National Research Council of Italy, Istituto di Chimica del Riconoscimento Molecolare (ICRM) Via Mario Bianco, 9 20131-Milano Italy
| | - Marina Cretich
- National Research Council of Italy, Istituto di Chimica del Riconoscimento Molecolare (ICRM) Via Mario Bianco, 9 20131-Milano Italy
| | - Alessandro Gori
- National Research Council of Italy, Istituto di Chimica del Riconoscimento Molecolare (ICRM) Via Mario Bianco, 9 20131-Milano Italy
| |
Collapse
|
40
|
Marom A, Berkovitch Y, Toume S, Alvarez-Elizondo MB, Weihs D. Non-damaging stretching combined with sodium pyruvate supplement accelerate migration of fibroblasts and myoblasts during gap closure. Clin Biomech (Bristol, Avon) 2019; 62:96-103. [PMID: 30711737 DOI: 10.1016/j.clinbiomech.2019.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 01/09/2019] [Accepted: 01/27/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Sustained, low- and mid-level (3-6%), radial stretching combined with varying concentrations of sodium pyruvate (NaPy) supplement increase the migration rate during microscale gap closure following an in vitro injury; NaPy is a physiological supplement often used in cell-culture media. Recently we showed that low-level tensile strains accelerate in vitro kinematics during en masse cell migration; topically applied mechanical deformations also accelerate in vivo healing in larger wounds. The constituents and nutrients at injury sites change. Thus, we combine a supplement with stretching conditions to effectively accelerate wound healing. METHODS Monolayers of murine fibroblasts (NIH3T3) or myoblasts (C2C12) were cultured in 1 mM NaPy on stretchable, linear-elastic substrates. Monolayers were subjected to 0, 3, or 6% stretching using a custom three-dimensionally printed stretching apparatus, micro-damage was immediately induced, media was replaced with fresh media containing 0, 1, or 5 mM NaPy, and cell migration kinematics during gap-closure were quantitatively evaluated. FINDINGS In myoblasts, the smallest evaluated strain (3%, minimal risk of damage) combined with preinjury (1 mM) and post-injury exogenous NaPy supplements accelerated gap closure in a statistically significant manner; response was NaPy concentration dependent. In both fibroblasts and myoblasts, when cells were pre-exposed to NaPy, yet no supplement was provided post-injury, mid-level stretches (6%) compensated for post-injury deficiency in exogenous NaPy and accelerated gap-closure in a statistically significant manner. INTERPRETATION Small deformations combined with NaPy supplement prior-to and following cell-damage accelerate en masse cell migration and can be applied in wound healing, e.g. to preventatively accelerate closure of microscale gaps.
Collapse
Affiliation(s)
- Anat Marom
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yulia Berkovitch
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Samer Toume
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | | | - Daphne Weihs
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
41
|
Jeong D, Han S, Lim YB, Kim SH. Investigation of the Hydration State of Self-Assembled Peptide Nanostructures with Advanced Electron Paramagnetic Resonance Spectroscopy. ACS OMEGA 2019; 4:114-120. [PMID: 31459317 PMCID: PMC6648812 DOI: 10.1021/acsomega.8b02450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/07/2018] [Indexed: 06/10/2023]
Abstract
Probing the intermolecular interactions and local environments of self-assembled peptide nanostructures (SPNs) is crucial for a better understanding of the underlying molecular details of self-assembling phenomena. In particular, investigation of the hydration state is important to understand the nanoscale structural and functional characteristics of SPNs. In this report, we examined the local hydration environments of SPNs in detail to understand the driving force of the discrete geometric structural self-assembling phenomena for peptide nanostructures. Advanced electron paramagnetic resonance spectroscopy was used to probe the hydrogen bond formation and geometry as well as the hydrophobicity of the local environments at various spin-labeled sites in SPNs. The experimental results supplement the sparse experimental data regarding local structures of SPNs, such as the hydrogen bonding and the hydrophobicity of the local environment, providing important information on the formation of SPNs, which have immense potential for bioactive materials.
Collapse
Affiliation(s)
- Donghyuk Jeong
- Western
Seoul Center, Korea Basic Science Institute
(KBSI), Seoul 03759, Republic of Korea
| | - Sanghun Han
- Department
of Materials Science & Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Yong-beom Lim
- Department
of Materials Science & Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sun Hee Kim
- Western
Seoul Center, Korea Basic Science Institute
(KBSI), Seoul 03759, Republic of Korea
| |
Collapse
|
42
|
Pampaloni NP, Giugliano M, Scaini D, Ballerini L, Rauti R. Advances in Nano Neuroscience: From Nanomaterials to Nanotools. Front Neurosci 2019; 12:953. [PMID: 30697140 PMCID: PMC6341218 DOI: 10.3389/fnins.2018.00953] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 11/30/2018] [Indexed: 01/04/2023] Open
Abstract
During the last decades, neuroscientists have increasingly exploited a variety of artificial, de-novo synthesized materials with controlled nano-sized features. For instance, a renewed interest in the development of prostheses or neural interfaces was driven by the availability of novel nanomaterials that enabled the fabrication of implantable bioelectronics interfaces with reduced side effects and increased integration with the target biological tissue. The peculiar physical-chemical properties of nanomaterials have also contributed to the engineering of novel imaging devices toward sophisticated experimental settings, to smart fabricated scaffolds and microelectrodes, or other tools ultimately aimed at a better understanding of neural tissue functions. In this review, we focus on nanomaterials and specifically on carbon-based nanomaterials, such as carbon nanotubes (CNTs) and graphene. While these materials raise potential safety concerns, they represent a tremendous technological opportunity for the restoration of neuronal functions. We then describe nanotools such as nanowires and nano-modified MEA for high-performance electrophysiological recording and stimulation of neuronal electrical activity. We finally focus on the fabrication of three-dimensional synthetic nanostructures, used as substrates to interface biological cells and tissues in vitro and in vivo.
Collapse
Affiliation(s)
| | - Michele Giugliano
- Department of Biomedical Sciences and Institute Born-Bunge, Molecular, Cellular, and Network Excitability, Universiteit Antwerpen, Antwerpen, Belgium
| | - Denis Scaini
- Neuroscience Area, International School for Advanced Studies (SISSA), Trieste, Italy
- ELETTRA Synchrotron Light Source, Nanoinnovation Lab, Trieste, Italy
| | - Laura Ballerini
- Neuroscience Area, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Rossana Rauti
- Neuroscience Area, International School for Advanced Studies (SISSA), Trieste, Italy
| |
Collapse
|
43
|
Hong A, Aguilar MI, Del Borgo MP, Sobey CG, Broughton BRS, Forsythe JS. Self-assembling injectable peptide hydrogels for emerging treatment of ischemic stroke. J Mater Chem B 2019. [DOI: 10.1039/c9tb00257j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ischaemic stroke remains one of the leading causes of death and disability worldwide, without any long-term effective treatments targeted at regeneration. This has led to developments of novel, biomaterial-based strategies using self-assembling peptide hydrogels.
Collapse
Affiliation(s)
- Andrew Hong
- Department of Materials Science and Engineering
- Monash Institute of Medical Engineering
- Monash University
- Clayton
- Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry & Molecular Biology
- Monash Biomedicine Discovery Institute
- Monash University
- Clayton
- Australia
| | - Mark P. Del Borgo
- Department of Biochemistry & Molecular Biology
- Monash Biomedicine Discovery Institute
- Monash University
- Clayton
- Australia
| | - Christopher G. Sobey
- Vascular Biology and Immunopharmacology Group
- Department of Physiology
- Anatomy and Microbiology
- La Trobe University
- Bundoora
| | - Brad R. S. Broughton
- Cardiovascular & Pulmonary Pharmacology Group
- Biomedicine Discovery Institute and Department of Pharmacology
- Monash University
- Clayton
- Australia
| | - John S. Forsythe
- Department of Materials Science and Engineering
- Monash Institute of Medical Engineering
- Monash University
- Clayton
- Australia
| |
Collapse
|
44
|
Ando K, Imagama S, Kobayashi K, Ito K, Tsushima M, Morozumi M, Tanaka S, Machino M, Ota K, Nishida K, Nishida Y, Ishiguro N. Feasibility and effects of a self-assembling peptide as a scaffold in bone healing: An in vivo study in rabbit lumbar posterolateral fusion and tibial intramedullary models. J Orthop Res 2018; 36:3285-3293. [PMID: 30054932 DOI: 10.1002/jor.24109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 07/13/2018] [Indexed: 02/04/2023]
Abstract
Spinal fusion and bone defects after injuries, removal of bone tumors, and infections require repair by implantation. In this study, we show self-assembling peptide (SPG-178) hydrogel-induced bone healing in vivo. Posterolateral lumbar fusion and tibial intramedullary models of rabbits were prepared. In the tibia model, micro-CT analysis revealed a significantly higher degree of newly formed bone matrix in the SPG-178 group compared to the other groups. SEM/3D micrographs showed that the cavity filled with SPG-178 had collagen fibers attached to host bone. After 28 days, samples from the SPG-178 group showed significant repair of the defect. In the posterolateral lumbar fusion models, micro-CT showed a tendency for a higher degree of newly formed bone matrix in the SPG-178 group compared to the β-TCP and bone chips only groups. Von Kossa staining showed marked new bone formation attached to the lamina that was most prominent at the implanted SPG-178 composite margin. SPG-178 is a material that is likely to be used in clinical applications because it has several benefits. These include its favorable bone conduction properties, its ability to act as a support for various cells and growth factors, its lack of infection risk compared with materials of animal origin such as ECM, and the ease with which it can be used to fill defects with complex shapes and be combined with a wide range of other materials. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:3285-3293, 2018.
Collapse
Affiliation(s)
- Kei Ando
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Shiro Imagama
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Kazuyoshi Kobayashi
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Kenyu Ito
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Mikito Tsushima
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Masayoshi Morozumi
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Satoshi Tanaka
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Masaaki Machino
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Kyotaro Ota
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Koji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshihiro Nishida
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Naoki Ishiguro
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| |
Collapse
|
45
|
Abstract
It has been a long time since the term mechanobiology became widely accepted, and broad research approaches, ranging from basic biology to medical research, have been conducted from the perspective of mechanobiology. Our group created the term “mechanomedicine” focusing on the field encompassing studies of the pathology and treatment of various diseases based on the knowledge obtained from mechanobiological studies and have promoted studies in this field. In the respiratory and cardiovascular systems, not only humoral factors but also physical factors such as contraction and expansion phenomena, and feedback from such phenomena to tissues and cells are important stimuli for maintaining homeostasis. Loss of homeostasis is considered to lead to pathological conditions. This review aims to provide an overview of mechanomedicine by introducing several mechanosensitive channels including one particular type of mechanosensor that we discovered in the cardiovascular system and by describing stretchable three-dimensional cell culture scaffolds using self-assembled peptides, a highly motile sperm sorter using a sperm sorting technique based on microfluidic mechanics, and a device to promote the development of fertilized ova.
Collapse
|
46
|
Sheikholeslam M, Wheeler SD, Duke KG, Marsden M, Pritzker M, Chen P. Peptide and peptide-carbon nanotube hydrogels as scaffolds for tissue & 3D tumor engineering. Acta Biomater 2018; 69:107-119. [PMID: 29248638 DOI: 10.1016/j.actbio.2017.12.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 11/28/2017] [Accepted: 12/08/2017] [Indexed: 12/21/2022]
Abstract
The use of hybrid self-assembling peptide (EFK8)-carbon nanotube (SWNT) hydrogels for tissue engineering and in vitro 3D cancer spheroid formation is reported. These hybrid hydrogels are shown to enhance the attachment, spreading, proliferation and movement of NIH-3T3 cells relative to that observed using EFK8-only hydrogels. After five days, ∼30% more cells are counted when the hydrogel contains SWNTs. Also, 3D encapsulation of these cells when injected in hydrogels does not adversely affect their behavior. Compressive modulus measurements and microscopic examination suggest that SWNTs have this beneficial effect by providing sites for cell anchorage, spreading and movement rather than by increasing hydrogel stiffness. This shows that the cells have a particular interaction with SWNTs not shared with EFK8 nanofibers despite a similar morphology. The effect of EFK8 and EFK8-SWNT hydrogels on A549 lung cancer cell behavior is also investigated. Increasing stiffness of EFK8-only hydrogels from about 44 Pa to 104 Pa promotes a change in A549 morphology from spheroidal to a stretched one similar to migratory phenotype. EFK8-SWNT hydrogels also promote a stretched morphology, but at lower stiffness. These results are discussed in terms of the roles of both microenvironment stiffness and cell-scaffold adhesion in cancer cell invasion. Overall, this study demonstrates that applications of peptide hydrogels in vitro can be expanded by incorporating SWNTs into their structure which further provides insight into cell-biomaterial interactions. STATEMENT OF SIGNIFICANCE For the first time we used hybrid self-assembling peptide-carbon nanotube hybrid hydrogels (that we have recently introduced briefly in the "Carbon" journal in 2014) for tissue engineering and 3D tumor engineering. We showed the potential of these hybrid hydrogels to enhance the efficiency of the peptide hydrogels for tissue engineering application in terms of cell behavior (cell attachment, spreading and migration). This opens up new rooms for the peptide hydrogels and can expand their applications. Also our system (peptide and peptide-CNT hydrogels) was used for cancer cell spheroid formation showing the effect of both tumor microenvironment stiffness and cell-scaffold adhesion on cancer cell invasion. This was only possible based on the presence of CNTs in the hydrogel while the stiffness kept constant. Finally it should be noted that these hybrid hydrogels expand applications of peptide hydrogels through enhancing their capabilities and/or adding new properties to them.
Collapse
|
47
|
Ando K, Imagama S, Kobayashi K, Ito K, Tsushima M, Morozumi M, Tanaka S, Machino M, Ota K, Nishida K, Nishida Y, Ishiguro N. Effects of a self-assembling peptide as a scaffold on bone formation in a defect. PLoS One 2018; 13:e0190833. [PMID: 29304115 PMCID: PMC5755907 DOI: 10.1371/journal.pone.0190833] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 12/20/2017] [Indexed: 11/19/2022] Open
Abstract
Spinal fusion and bone defect after injuries, removal of bone tumors, and infections need to be repaired by implantation. In an aging society, recovery from these procedures is often difficult. In this study, we found that injection of SPG-178 leads to expression of several bone marker genes and mineralization in vitro, and revealed a significantly higher degree of newly formed bone matrix with use of SPG-178 in vivo. MC3T3-E1 cells were used to evaluate osteoblast differentiation promoted by SPG-178. To analyze gene expression, total RNA was isolated from MC3T3-E1 cells cultured for 7 and 14 days with control medium or SPG-178 medium. Among the several bone marker genes examined, SPG-178 significantly increased the mRNA levels for ALP, BMP-2 and Osteocalcin, OPN, BSP and for the Osterix. Ten-week-old female Wistar rats were used for all transplantation procedures. A PEEK cage was implanted into a bony defect (5 mm) within the left femoral mid-shaft, and stability was maintained by an external fixator. The PEEK cages were filled with either a SPG-178 hydrogel plus allogeneic bone chips (n = 4) or only allogeneic bone chips (n = 4). The rats were then kept for 56 days. Newly formed bone matrix was revealed inside the PEEK cage and there was an increased bone volume per total volume with the cage filled with SPG-178, compared to the control group. SPG-178 has potential in clinical applications because it has several benefits. These include its favorable bone conduction properties its ability to act as a support for various different cells and growth factors, its lack of infection risk compared with materials of animal origin such as ECM, and the ease with which it can be used to fill defects with complex shapes and combined with a wide range of other materials.
Collapse
Affiliation(s)
- Kei Ando
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, Japan
| | - Shiro Imagama
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, Japan
- * E-mail:
| | - Kazuyoshi Kobayashi
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, Japan
| | - Kenyu Ito
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, Japan
| | - Mikito Tsushima
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, Japan
| | - Masayoshi Morozumi
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, Japan
| | - Satoshi Tanaka
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, Japan
| | - Masaaki Machino
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, Japan
| | - Kyotaro Ota
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, Japan
| | - Koji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshihiro Nishida
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, Japan
| | - Naoki Ishiguro
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, Japan
| |
Collapse
|
48
|
Tsukamoto J, Naruse K, Nagai Y, Kan S, Nakamura N, Hata M, Omi M, Hayashi T, Kawai T, Matsubara T. Efficacy of a Self-Assembling Peptide Hydrogel, SPG-178-Gel, for Bone Regeneration and Three-Dimensional Osteogenic Induction of Dental Pulp Stem Cells. Tissue Eng Part A 2017; 23:1394-1402. [DOI: 10.1089/ten.tea.2017.0025] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Jun Tsukamoto
- Division of Medical-Dental Regenerative Medicine, Center for Advanced Oral Science, Graduate of Dentistry, Aichi Gakuin University, Nagoya, Japan
- Menicon Co., Ltd., Nagoya, Japan
| | - Keiko Naruse
- Division of Medical-Dental Regenerative Medicine, Center for Advanced Oral Science, Graduate of Dentistry, Aichi Gakuin University, Nagoya, Japan
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Yusuke Nagai
- Division of Medical-Dental Regenerative Medicine, Center for Advanced Oral Science, Graduate of Dentistry, Aichi Gakuin University, Nagoya, Japan
- Menicon Co., Ltd., Nagoya, Japan
| | - Shuhei Kan
- Division of Medical-Dental Regenerative Medicine, Center for Advanced Oral Science, Graduate of Dentistry, Aichi Gakuin University, Nagoya, Japan
- Menicon Co., Ltd., Nagoya, Japan
| | - Nobuhisa Nakamura
- Division of Medical-Dental Regenerative Medicine, Center for Advanced Oral Science, Graduate of Dentistry, Aichi Gakuin University, Nagoya, Japan
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Masaki Hata
- Division of Medical-Dental Regenerative Medicine, Center for Advanced Oral Science, Graduate of Dentistry, Aichi Gakuin University, Nagoya, Japan
- Department of Removable Prosthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Maiko Omi
- Division of Medical-Dental Regenerative Medicine, Center for Advanced Oral Science, Graduate of Dentistry, Aichi Gakuin University, Nagoya, Japan
- Department of Removable Prosthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Tatsuhide Hayashi
- Division of Medical-Dental Regenerative Medicine, Center for Advanced Oral Science, Graduate of Dentistry, Aichi Gakuin University, Nagoya, Japan
- Department of Dental Materials Science, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Tatsushi Kawai
- Division of Medical-Dental Regenerative Medicine, Center for Advanced Oral Science, Graduate of Dentistry, Aichi Gakuin University, Nagoya, Japan
- Department of Dental Materials Science, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Tatsuaki Matsubara
- Division of Medical-Dental Regenerative Medicine, Center for Advanced Oral Science, Graduate of Dentistry, Aichi Gakuin University, Nagoya, Japan
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| |
Collapse
|
49
|
Beyond mouse cancer models: Three-dimensional human-relevant in vitro and non-mammalian in vivo models for photodynamic therapy. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 773:242-262. [DOI: 10.1016/j.mrrev.2016.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/09/2016] [Indexed: 02/08/2023]
|
50
|
Gan Y, Li P, Wang L, Mo X, Song L, Xu Y, Zhao C, Ouyang B, Tu B, Luo L, Zhu L, Dong S, Li F, Zhou Q. An interpenetrating network-strengthened and toughened hydrogel that supports cell-based nucleus pulposus regeneration. Biomaterials 2017; 136:12-28. [PMID: 28505597 DOI: 10.1016/j.biomaterials.2017.05.017] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 05/06/2017] [Accepted: 05/08/2017] [Indexed: 12/12/2022]
Abstract
Hydrogel is a suitable scaffold for the nucleus pulposus (NP) regeneration. However, its unmatched mechanical properties lead to implant failure in late-stage disc degeneration because of structural failure and implant extrusion after long-term compression. In this study, we evaluated an interpenetrating network (IPN)-strengthened and toughened hydrogel for NP regeneration, using dextran and gelatin as the primary network while poly (ethylene glycol) as the secondary network. The aim of this study was to realize the NP regeneration using the hydrogel. To achieve this, we optimized its properties by adjusting the mass ratios of the secondary/primary networks and determining the best preparation conditions for NP regeneration in a series of biomechanical, cytocompatibility, tissue engineering, and in vivo study. We found the optimal formulation of the IPN hydrogel, at a secondary/primary network ratio of 1:4, exhibited high toughness (the compressive strain reached 86%). The encapsulated NP cells showed increasing proliferation, cell clustering and matrix deposition. Furthermore, the hydrogel could support long-term cell retention and survival in the rat IVDs. It facilitated rehydration and regeneration of porcine degenerative NPs. In conclusion, this study demonstrates the tough IPN hydrogel could be a promising candidate for functional disc regeneration in future.
Collapse
Affiliation(s)
- Yibo Gan
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Pei Li
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Liyuan Wang
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Xiumei Mo
- College of Chemistry and Chemical Engineering and Biological Engineering, Donghua University, Shanghai 201620, PR China
| | - Lei Song
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Yuan Xu
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing, PR China
| | - Chen Zhao
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Bin Ouyang
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Bing Tu
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Lei Luo
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Linyong Zhu
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237, PR China
| | - Shiwu Dong
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing 400038, PR China
| | - Fuyou Li
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, PR China
| | - Qiang Zhou
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China.
| |
Collapse
|