1
|
Rana MM, Demirkaya C, De la Hoz Siegler H. Beyond Needles: Immunomodulatory Hydrogel-Guided Vaccine Delivery Systems. Gels 2024; 11:7. [PMID: 39851978 PMCID: PMC11764567 DOI: 10.3390/gels11010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025] Open
Abstract
Vaccines are critical for combating infectious diseases, saving millions of lives worldwide each year. Effective immunization requires precise vaccine delivery to ensure proper antigen transport and robust immune activation. Traditional vaccine delivery systems, however, face significant challenges, including low immunogenicity and undesirable inflammatory reactions, limiting their efficiency. Encapsulating or binding vaccines within biomaterials has emerged as a promising strategy to overcome these limitations. Among biomaterials, hydrogels have gained considerable attention for their biocompatibility, ability to interact with biological systems, and potential to modulate immune responses. Hydrogels offer a materials science-driven approach for targeted vaccine delivery, addressing the shortcomings of conventional methods while enhancing vaccine efficacy. This review examines the potential of hydrogel-based systems to improve immunogenicity and explores their dual role as immunomodulatory adjuvants. Innovative delivery methods, such as microneedles, patches, and inhalable systems, are discussed as minimally invasive alternatives to traditional administration routes. Additionally, this review addresses critical challenges, including safety, scalability, and regulatory considerations, offering insights into hydrogel-guided strategies for eliciting targeted immune responses and advancing global immunization efforts.
Collapse
Affiliation(s)
- Md Mohosin Rana
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
- Centre for Blood Research (CBR), Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Cigdem Demirkaya
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - Hector De la Hoz Siegler
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada;
| |
Collapse
|
2
|
Roosa CA, Lempke SL, Hannan RT, Nicklow E, Sturek JM, Ewald SE, Griffin D. Conjugation of IL-33 to Microporous Annealed Particle Scaffolds Enhances Type 2-Like Immune Responses In Vitro and In Vivo. Adv Healthc Mater 2024; 13:e2400249. [PMID: 38648258 PMCID: PMC11461124 DOI: 10.1002/adhm.202400249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/11/2024] [Indexed: 04/25/2024]
Abstract
The inflammatory foreign body response (FBR) is the main driver of biomaterial implant failure. Current strategies to mitigate the onset of a FBR include modification of the implant surface, release of anti-inflammatory drugs, and cell-scale implant porosity. The microporous annealed particle (MAP) scaffold platform is an injectable, porous biomaterial composed of individual microgels, which are annealed in situ to provide a structurally stable scaffold with cell-scale microporosity. MAP scaffold does not induce a discernible foreign body response in vivo and, therefore, can be used a "blank canvas" for biomaterial-mediated immunomodulation. Damage associated molecular patterns (DAMPs), such as IL-33, are potent regulators of type 2 immunity that play an important role in tissue repair. In this manuscript, IL-33 is conjugated to the microgel building-blocks of MAP scaffold to generate a bioactive material (IL33-MAP) capable of stimulating macrophages in vitro via a ST-2 receptor dependent pathway and modulating immune cell recruitment to the implant site in vivo, which indicates an upregulation of a type 2-like immune response and downregulation of a type 1-like immune response.
Collapse
Affiliation(s)
- Colleen A. Roosa
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd, Charlottesville, Virginia 22903, USA
| | - Samantha L. Lempke
- Department of Microbiology, Immunology, and Cancer Biology, Beirne B. Carter Immunology Center, University of Virginia, 200 Jeanette Lancaster Way, Charlottesville, Virginia 22903, USA
| | - Riley T. Hannan
- Department of Medicine, Pulmonary and Critical Care, University of Virginia, 1221 Lee St, Charlottesville, Virginia 22903, USA
| | - Ethan Nicklow
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd, Charlottesville, Virginia 22903, USA
| | - Jeffrey M. Sturek
- Department of Medicine, Pulmonary and Critical Care, University of Virginia, 1221 Lee St, Charlottesville, Virginia 22903, USA
| | - Sarah E. Ewald
- Department of Microbiology, Immunology, and Cancer Biology, Beirne B. Carter Immunology Center, University of Virginia, 200 Jeanette Lancaster Way, Charlottesville, Virginia 22903, USA
| | - Donald Griffin
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd, Charlottesville, Virginia 22903, USA
| |
Collapse
|
3
|
O’Shea TC, Croland KJ, Salem A, Urbanski R, Schultz KM. A Rheological Study on the Effect of Tethering Pro- and Anti-Inflammatory Cytokines into Hydrogels on Human Mesenchymal Stem Cell Migration, Degradation, and Morphology. Biomacromolecules 2024; 25:5121-5137. [PMID: 38961715 PMCID: PMC11956429 DOI: 10.1021/acs.biomac.4c00508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Polymer-peptide hydrogels are being designed as implantable materials that deliver human mesenchymal stem cells (hMSCs) to treat wounds. Most wounds can progress through the healing process without intervention. During the normal healing process, cytokines are released from the wound to create a concentration gradient, which causes directed cell migration from the native niche to the wound site. Our work takes inspiration from this process and uniformly tethers cytokines into the scaffold to measure changes in cell-mediated degradation and motility. This is the first step in designing cytokine concentration gradients into the material to direct cell migration. We measure changes in rheological properties, encapsulated cell-mediated pericellular degradation and migration in a hydrogel scaffold with covalently tethered cytokines, either tumor necrosis factor-α (TNF-α) or transforming growth factor-β (TGF-β). TNF-α is expressed in early stages of wound healing causing an inflammatory response. TGF-β is released in later stages of wound healing causing an anti-inflammatory response in the surrounding tissue. Both cytokines cause directed cell migration. We measure no statistically significant difference in modulus or the critical relaxation exponent when tethering either cytokine in the polymeric network without encapsulated hMSCs. This indicates that the scaffold structure and rheology is unchanged by the addition of tethered cytokines. Increases in hMSC motility, morphology and cell-mediated degradation are measured using a combination of multiple particle tracking microrheology (MPT) and live-cell imaging in hydrogels with tethered cytokines. We measure that tethering TNF-α into the hydrogel increases cellular remodeling on earlier days postencapsulation and tethering TGF-β into the scaffold increases cellular remodeling on later days. We measure tethering either TGF-β or TNF-α enhances cell stretching and, subsequently, migration. This work provides rheological characterization that can be used to design new materials that present chemical cues in the pericellular region to direct cell migration.
Collapse
Affiliation(s)
- Thomas C. O’Shea
- Purdue University, Davidson School of Chemical Engineering, West Lafayette, Indiana 47907, United States
| | - Kiera J. Croland
- University of Colorado at Boulder, Department of Chemical and Biological Engineering, Boulder, Colorado 80303, United States
| | - Ahmad Salem
- Lehigh University, Department of Chemical and Biomolecular Engineering, Bethlehem, Pennsylvania 18015, United States
| | - Rylie Urbanski
- Lehigh University, Department of Chemical and Biomolecular Engineering, Bethlehem, Pennsylvania 18015, United States
| | - Kelly M. Schultz
- Purdue University, Davidson School of Chemical Engineering, West Lafayette, Indiana 47907, United States
| |
Collapse
|
4
|
Bulondo F, Babensee JE. Optimization of Interleukin-10 incorporation for dendritic cells embedded in Poly(ethylene glycol) hydrogels. J Biomed Mater Res A 2024; 112:1317-1336. [PMID: 38562052 DOI: 10.1002/jbm.a.37714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/04/2024]
Abstract
Translational research in biomaterials and immunoengineering is leading to the development of novel advanced therapeutics to treat diseases such as cancer, autoimmunity, and viral infections. Dendritic cells (DCs) are at the center of these therapeutics given that they bridge innate and adaptive immunity. The biomaterial system developed herein uses a hydrogel carrier to deliver immunomodulatory DCs for amelioration of autoimmunity. This biomaterial vehicle is comprised of a poly (ethylene glycol)-4 arm maleimide (PEG-4MAL) hydrogels, conjugated with the immunosuppressive cytokine, interleukin-10, IL-10, and cross-linked with a collagenase-degradable peptide sequence for the injectable delivery of immunosuppressive DCs to an anatomical disease-relevant site of the cervical lymph nodes, for intended application to treat multiple sclerosis. The amount of IL-10 incorporated in the hydrogel was optimized to be 500 ng in vitro, based on immunological endpoints. At this concentration, DCs exhibited the best viability, most immunosuppressive phenotype, and protection against proinflammatory insult as compared with hydrogel-incorporated DCs with lower IL-10 loading amounts. Additionally, the effect of the degradability of the PEG-4MAL hydrogel on the release rate of incorporated IL-10 was assessed by varying the ratio of degradable peptides: VPM (degradable) and DTT (nondegradable) and measuring the IL-10 release rates. This IL-10-conjugated hydrogel delivery system for immunosuppressive DCs is set to be assessed for in vivo functionality as the immunosuppressive cytokine provides a tolerogenic environment that keeps DCs in their immature phenotype, which consequently enhances cell viability and optimizes the system's immunomodulatory functionality.
Collapse
Affiliation(s)
- Fredrick Bulondo
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
- Department of Biomedical Sciences and Engineering, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Julia E Babensee
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Li F, Ouyang J, Chen Z, Zhou Z, Milon Essola J, Ali B, Wu X, Zhu M, Guo W, Liang XJ. Nanomedicine for T-Cell Mediated Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2301770. [PMID: 36964936 DOI: 10.1002/adma.202301770] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/14/2023] [Indexed: 06/18/2023]
Abstract
T-cell immunotherapy offers outstanding advantages in the treatment of various diseases, and with the selection of appropriate targets, efficient disease treatment can be achieved. T-cell immunotherapy has made great progress, but clinical results show that only a small proportion of patients can benefit from T-cell immunotherapy. The extensive mechanistic work outlines a blueprint for using T cells as a new option for immunotherapy, but also presents new challenges, including the balance between different fractions of T cells, the inherent T-cell suppression patterns in the disease microenvironment, the acquired loss of targets, and the decline of T-cell viability. The diversity, flexibility, and intelligence of nanomedicines give them great potential for enhancing T-cell immunotherapy. Here, how T-cell immunotherapy strategies can be adapted with different nanomaterials to enhance therapeutic efficacy is discussed. For two different pathological states, immunosuppression and immune activation, recent advances in nanomedicines for T-cell immunotherapy in diseases such as cancers, rheumatoid arthritis, systemic lupus erythematosus, ulcerative colitis, and diabetes are summarized. With a focus on T-cell immunotherapy, this review highlights the outstanding advantages of nanomedicines in disease treatment, and helps advance one's understanding of the use of nanotechnology to enhance T-cell immunotherapy.
Collapse
Affiliation(s)
- Fangzhou Li
- Department of Minimally Invasive Interventional Radiology, the State Key Laboratory of Respiratory Disease, School of Biomedical Engineering & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
| | - Jiang Ouyang
- Department of Minimally Invasive Interventional Radiology, the State Key Laboratory of Respiratory Disease, School of Biomedical Engineering & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, P. R. China
| | - Zuqin Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
| | - Ziran Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Julien Milon Essola
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Barkat Ali
- Department of Minimally Invasive Interventional Radiology, the State Key Laboratory of Respiratory Disease, School of Biomedical Engineering & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, P. R. China
- Food Sciences Research Institute, Pakistan Agricultural Research Council, 44000, Islamabad, Pakistan
| | - Xinyue Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Mengliang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
| | - Weisheng Guo
- Department of Minimally Invasive Interventional Radiology, the State Key Laboratory of Respiratory Disease, School of Biomedical Engineering & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, P. R. China
| | - Xing-Jie Liang
- Department of Minimally Invasive Interventional Radiology, the State Key Laboratory of Respiratory Disease, School of Biomedical Engineering & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
6
|
Zhang Z, He C, Chen X. Designing Hydrogels for Immunomodulation in Cancer Therapy and Regenerative Medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308894. [PMID: 37909463 DOI: 10.1002/adma.202308894] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/26/2023] [Indexed: 11/03/2023]
Abstract
The immune system not only acts as a defense against pathogen and cancer cells, but also plays an important role in homeostasis and tissue regeneration. Targeting immune systems is a promising strategy for efficient cancer treatment and regenerative medicine. Current systemic immunomodulation therapies are usually associated with low persistence time, poor targeting to action sites, and severe side effects. Due to their extracellular matrix-mimetic nature, tunable properties and diverse bioactivities, hydrogels are intriguing platforms to locally deliver immunomodulatory agents and cells, as well as provide an immunomodulatory microenvironment to recruit, activate, and expand host immune cells. In this review, the design considerations, including polymer backbones, crosslinking mechanisms, physicochemical nature, and immunomodulation-related components, of the hydrogel platforms, are focused on. The immunomodulatory effects and therapeutic outcomes in cancer therapy and tissue regeneration of different hydrogel systems are emphasized, including hydrogel depots for delivery of immunomodulatory agents, hydrogel scaffolds for cell delivery, and immunomodulatory hydrogels depending on the intrinsic properties of materials. Finally, the remained challenges in current systems and future development of immunomodulatory hydrogels are discussed.
Collapse
Affiliation(s)
- Zhen Zhang
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Chaoliang He
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xuesi Chen
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
7
|
Bagnol R, Siverino C, Barnier V, O'Mahony L, Grijpma DW, Eglin D, Moriarty TF. Physicochemical Characterization and Immunomodulatory Activity of Polyelectrolyte Multilayer Coatings Incorporating an Exopolysaccharide from Bifidobacterium longum. Biomacromolecules 2023; 24:5589-5604. [PMID: 37983925 DOI: 10.1021/acs.biomac.3c00516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Immunoregulatory polysaccharides from probiotic bacteria have potential in biomedical engineering. Here, a negatively charged exopolysaccharide from Bifidobacterium longum with confirmed immunoregulatory activity (EPS624) was applied in multilayered polyelectrolyte coatings with positively charged chitosan. EPS624 and coatings (1, 5, and 10 layers and alginate-substituted) were characterized by the zeta potential, dynamic light scattering, size exclusion chromatography, scanning electron microscopy, and atomic force microscopy. Peripheral blood mononuclear cells (hPBMCs) and fibroblasts were exposed for 1, 3, 7, and 10 days with cytokine secretion, viability, and morphology as observations. The coatings showed an increased rugosity and exponential growth mode with an increasing number of layers. A dose/layer-dependent IL-10 response was observed in hPBMCs, which was greater than EPS624 in solution and was stable over 7 days. Fibroblast culture revealed no toxicity or metabolic change after exposure to EPS624. The EPS624 polyelectrolyte coatings are cytocompatible, have immunoregulatory properties, and may be suitable for applications in biomedical engineering.
Collapse
Affiliation(s)
- Romain Bagnol
- AO Research Institute Davos, Davos Platz 7270, Switzerland
- Technical Medical Centre, Department of Advanced Organ Engineering and Therapeutics, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, Enschede 7522 NB, The Netherlands
| | | | - Vincent Barnier
- UMR 5307 LGF, CNRS, Mines Saint-Etienne, Centre SMS, Saint-Etienne F-42023, France
| | - Liam O'Mahony
- Departments of Medicine and Microbiology, APC Microbiome Ireland, University College Cork, Cork TH12 HW58, Ireland
| | - Dirk W Grijpma
- Technical Medical Centre, Department of Advanced Organ Engineering and Therapeutics, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, Enschede 7522 NB, The Netherlands
| | - David Eglin
- Technical Medical Centre, Department of Advanced Organ Engineering and Therapeutics, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, Enschede 7522 NB, The Netherlands
- Univ Jean Monnet, INSERM, Mines Saint-Étienne, U1059 Sainbiose, Saint-Étienne F-42023, France
| | | |
Collapse
|
8
|
Salthouse D, Novakovic K, Hilkens CMU, Ferreira AM. Interplay between biomaterials and the immune system: Challenges and opportunities in regenerative medicine. Acta Biomater 2023; 155:1-18. [PMID: 36356914 DOI: 10.1016/j.actbio.2022.11.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/17/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022]
Abstract
The use of biomaterials for tissue engineering and regenerative medicine applications has increased dramatically over recent years. However, the clinical uptake of a wide variety of biomaterials remains limited due to adverse effects commonly exhibited by patients, which are caused by the host immune response. Despite this, current in vitro evaluation standards (ISO-10993) for assessing the host response to biomaterials have limitations in predicting the likelihood of in vivo biomaterial acceptance. Furthermore, endotoxin contamination of biomaterials is rarely considered, despite its ability to significantly affect the performance of biomaterials and engineered tissues. This review highlights the importance of the immune response to biomaterials and discusses existing challenges and opportunities in the development and standardised assessment of the immune response to biomaterials, including the importance of endotoxin levels. In addition, the properties of biomaterials that impact the host immune response and the exploitation of immunomodulatory biomaterials in regenerative medicine are explored. Finally, a standardised in vitro pathway of evaluating the immune response to biomaterials (hydrogels) and their regenerative potential is proposed, aiming to ensure safety and consistency, while reducing costs and the use of animals in the biomaterials research for tissue engineering and regenerative medicine. STATEMENT OF SIGNIFICANCE: This review presents a critical analysis of the role of the interactions between the immune system and biomaterials in determining the therapeutic success of biomaterial-based approaches. No such review addressing the lack of understanding of biomaterial-immune system interactions during the developmental and pre-clinical stages of biomaterials, including the impact of the endotoxin levels of biomaterials on the immune response, is published. As there is a lack of in vitro regulations to evaluate the immune response to biomaterials, a standardised in vitro pathway to evaluate the immune response to biomaterials (hydrogels) and their immunomodulatory and regenerative potential for use in tissue engineering/regenerative medicine applications is presented. The aim of the proposed pathway of biomaterial evaluation is to ensure safety and consistency in the biomaterials research community, while reducing costs and animal use (through the concept of the 3R's - reduction, refinement, and replacement of animals).
Collapse
Affiliation(s)
- Daniel Salthouse
- School of Engineering, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Katarina Novakovic
- School of Engineering, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Catharien M U Hilkens
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ana Marina Ferreira
- School of Engineering, Newcastle University, Newcastle Upon Tyne, United Kingdom.
| |
Collapse
|
9
|
Jimenez-Rosales A, Cortes-Camargo S, Acuña-Avila PE. Minireview: biocompatibility of engineered biomaterials, their interaction with the host cells, and evaluation of their properties. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2120877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
| | - Stefani Cortes-Camargo
- Department of Nanotechnology, Technological University of Zinacantepec, Zinacantepec, Mexico
| | | |
Collapse
|
10
|
Deng J, Xie Y, Shen J, Gao Q, He J, Ma H, Ji Y, He Y, Xiang M. Photocurable Hydrogel Substrate-Better Potential Substitute on Bone-Marrow-Derived Dendritic Cells Culturing. MATERIALS 2022; 15:ma15093322. [PMID: 35591655 PMCID: PMC9104740 DOI: 10.3390/ma15093322] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/06/2022] [Accepted: 04/27/2022] [Indexed: 02/06/2023]
Abstract
Dendritic cells (DCs) are recognized as the most effective antigen-presenting cells at present. DCs have corresponding therapeutic effects in tumor immunity, transplantation immunity, infection inflammation and cardiovascular diseases, and the activation of T cells is dependent on DCs. However, normal bone-marrow-derived Dendritic cells (BMDCs) cultured on conventional culture plates are easy to be activated during culturing, and it is difficult to imitate the internal immune function. Here, we reported a novel BMDCs culturing with hydrogel substrate (CCHS), where we synthesized low substituted Gelatin Methacrylate-30 (GelMA-30) hydrogels and used them as a substitute for conventional culture plates in the culture and induction of BMDCs in vitro. The results showed that 5% GelMA-30 substrate was the best culture condition for BMDCs culturing. The low level of costimulatory molecules and the level of development-related transcription factors of BMDCs by CCHS were closer to that of spleen DCs and were capable of better promoting T cell activation and exerting an immune effect. CCHS was helpful to study the transformation of DCs from initial state to activated state, which contributes to the development of DC-T cell immunotherapy.
Collapse
Affiliation(s)
- Jiewen Deng
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China; (J.D.); (Y.X.); (J.S.); (H.M.); (Y.J.)
| | - Yao Xie
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China; (J.D.); (Y.X.); (J.S.); (H.M.); (Y.J.)
| | - Jian Shen
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China; (J.D.); (Y.X.); (J.S.); (H.M.); (Y.J.)
| | - Qing Gao
- Engineering for Life Group (EFL), Suzhou 215000, China;
| | - Jing He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China;
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hong Ma
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China; (J.D.); (Y.X.); (J.S.); (H.M.); (Y.J.)
| | - Yongli Ji
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China; (J.D.); (Y.X.); (J.S.); (H.M.); (Y.J.)
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China;
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Correspondence: (Y.H.); (M.X.)
| | - Meixiang Xiang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China; (J.D.); (Y.X.); (J.S.); (H.M.); (Y.J.)
- Correspondence: (Y.H.); (M.X.)
| |
Collapse
|
11
|
Garzón H, Suárez LJ, Muñoz S, Cardona J, Fontalvo M, Alfonso-Rodríguez CA. Biomaterials Used for Periodontal Disease Treatment: Focusing on Immunomodulatory Properties. Int J Biomater 2022; 2022:7693793. [PMID: 35528847 PMCID: PMC9072036 DOI: 10.1155/2022/7693793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/23/2022] [Accepted: 03/05/2022] [Indexed: 12/25/2022] Open
Abstract
The growing use of biomaterials with different therapeutic purposes increases the need for their physiological understanding as well as to seek its integration with the human body. Chronic inflammatory local pathologies, generally associated with infectious or autoimmunity processes, have been a current therapeutic target due to the difficulty in their treatment. The recent development of biomaterials with immunomodulatory capacity would then become one of the possible strategies for their management in local pathologies, by intervening in situ, without generating alterations in the systemic immune response. The treatment of periodontal disease as an inflammatory entity has involved the use of different approaches and biomaterials. There is no conclusive, high evidence about the use of these biomaterials in the regeneration of periodontitis sequelae, so the profession keeps looking for other different strategies. The use of biomaterials with immunomodulatory properties could be one, with a promising future. This review of the literature summarizes the scientific evidence about biomaterials used in the treatment of periodontal disease.
Collapse
Affiliation(s)
- H. Garzón
- Grupo de Investigación en Salud Oral, Departamento de Periodoncia, Universidad Antonio Nariño, Bogotá, Colombia
| | - L. J. Suárez
- Departamento de Ciencias Básicas y Medicina Oral, Universidad Nacional de Colombia, Bogotá, Colombia
| | - S. Muñoz
- Grupo de Investigación en Salud Oral, Departamento de Periodoncia, Universidad Antonio Nariño, Bogotá, Colombia
| | - J. Cardona
- Grupo de Investigación en Salud Oral, Departamento de Periodoncia, Universidad Antonio Nariño, Bogotá, Colombia
| | - M. Fontalvo
- Grupo de Investigación en Salud Oral, Departamento de Periodoncia, Universidad Antonio Nariño, Bogotá, Colombia
| | - C. A. Alfonso-Rodríguez
- Grupo de Investigación en Salud Oral, Departamento de Periodoncia, Universidad Antonio Nariño, Bogotá, Colombia
| |
Collapse
|
12
|
Shang L, Shao J, Ge S. Immunomodulatory Properties: The Accelerant of Hydroxyapatite-Based Materials for Bone Regeneration. Tissue Eng Part C Methods 2022; 28:377-392. [PMID: 35196904 DOI: 10.1089/ten.tec.2022.00111112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The immunoinflammatory response is the prerequisite step for wound healing and tissue regeneration, and the immunomodulatory effects of biomaterials have attracted increasing attention. Hydroxyapatite [Ca10(PO4)6(OH)2] (HAp), a common calcium phosphate ceramic, due to its structural and functional similarity to the inorganic constituent of natural bones, has been developed for different application purposes such as bone substitutes, tissue engineering scaffolds, and implant coatings. Recently, the interaction between HAp-based materials and the immune system (various immune cells), and the immunomodulatory effects of HAp-based materials on bone tissue regeneration have been explored extensively. Macrophages-mediated regenerative effect by HAp stimulation occupies the mainstream status of immunomodulatory strategies. The immunomodulation of HAp can be manipulated by tuning the physical, chemical, and biological cues such as surface functionalization (physical or chemical modifications), structural and textural characteristics (size, shape, and surface topography), and the incorporation of bioactive substances (cytokines, rare-earth elements, and bioactive ions). Therefore, HAp ceramic materials can contribute to bone regeneration by creating a favorable osteoimmune microenvironment, which would provide a more comprehensive theoretical basis for their further clinical applications. Considering the rapidly developed HAp-based materials as well as their excellent biological performances in the field of regenerative medicine, this review discusses the recent advances concerning the immunomodulatory methods for HAp-based biomaterials and their roles in bone tissue regeneration.
Collapse
Affiliation(s)
- Lingling Shang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Jinlong Shao
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Shaohua Ge
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| |
Collapse
|
13
|
Yu J, Lin Y, Wang G, Song J, Hayat U, Liu C, Raza A, Huang X, Lin H, Wang JY. Zein-induced immune response and modulation by size, pore structure and drug-loading: Application for sciatic nerve regeneration. Acta Biomater 2022; 140:289-301. [PMID: 34843952 DOI: 10.1016/j.actbio.2021.11.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 12/26/2022]
Abstract
Zein is a biodegradable material with great potential in biomedical applications. However, as a plant-derived protein material, body's immune response is the key factor to determine its clinical performance. Herein, for the first time, the zein-induced immune response is evaluated systemically and locally, comparing with typical materials including alginate (ALG), poly(lactic-co-glycolic) acid (PLGA) and polystyrene (PS). Zein triggers an early inflammatory response consistent with the non-degradable PS, but this response decreases to the same level of the biosafe ALG and PLGA with zein degradation. Changing sphere sizes, pore structure and encapsulating dexamethasone can effectively modulate the zein-induced immune response, especially the pore structure which also inhibits neutrophil recruitment and promotes macrophages polarizing towards M2 phenotype. Thus, porous zein conduits with high and low porosity are further fabricated for the 15 mm sciatic nerve defect repair in rats. The conduits with high porosity induce more M2 macrophages to accelerate nerve regeneration with shorter degradation period and better nerve repair efficacy. These findings suggest that the pore structure in zein materials can alleviate the zein-induced early inflammation and promote M2 macrophage polarization to accelerate nerve regeneration. STATEMENT OF SIGNIFICANCE: Zein is a biodegradable material with great potential in biomedical applications. However, as a plant protein, its possible immune response in vivo is always the key issue. Until now, the systemic study on the immune responses of zein in vivo is still very limited, especially as an implant. Herein, for the first time, the zein-induced immune response was evaluated systemically and locally, comparing with typical biomaterials including alginate, poly(lactic-co-glycolic) acid and polystyrene. Changing sphere sizes, pore structure and encapsulating dexamethasone could effectively modulate the zein-induced immune response, especially the pore structure which also inhibited neutrophil recruitment and promoted macrophages polarizing towards M2 phenotype. Furthermore, the pore structure in zein nerve conduits was proved to alleviate the early inflammation and promote M2 macrophage polarization to accelerate nerve regeneration.
Collapse
|
14
|
Arango Duque G, Dion R, Matte C, Fabié A, Descoteaux J, Stäger S, Descoteaux A. Sec22b Regulates Inflammatory Responses by Controlling the Nuclear Translocation of NF-κB and the Secretion of Inflammatory Mediators. THE JOURNAL OF IMMUNOLOGY 2021; 207:2297-2309. [PMID: 34580108 DOI: 10.4049/jimmunol.2100258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/17/2021] [Indexed: 01/24/2023]
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) regulate the vesicle transport machinery in phagocytic cells. Within the secretory pathway, Sec22b is an endoplasmic reticulum-Golgi intermediate compartment (ERGIC)-resident SNARE that controls phagosome maturation and function in macrophages and dendritic cells. The secretory pathway controls the release of cytokines and may also impact the secretion of NO, which is synthesized by the Golgi-active inducible NO synthase (iNOS). Whether ERGIC SNARE Sec22b controls NO and cytokine secretion is unknown. Using murine bone marrow-derived dendritic cells, we demonstrated that inducible NO synthase colocalizes with ERGIC/Golgi markers, notably Sec22b and its partner syntaxin 5, in the cytoplasm and at the phagosome. Pharmacological blockade of the secretory pathway hindered NO and cytokine release, and inhibited NF-κB translocation to the nucleus. Importantly, RNA interference-mediated silencing of Sec22b revealed that NO and cytokine production were abrogated at the protein and mRNA levels. This correlated with reduced nuclear translocation of NF-κB. We also found that Sec22b co-occurs with NF-κB in both the cytoplasm and nucleus, pointing to a role for this SNARE in the shuttling of NF-κB. Collectively, our data unveiled a novel function for the ERGIC/Golgi, and its resident SNARE Sec22b, in the production and release of inflammatory mediators.
Collapse
Affiliation(s)
- Guillermo Arango Duque
- INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, Quebec, Canada
| | - Renaud Dion
- INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, Quebec, Canada
| | - Christine Matte
- INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, Quebec, Canada
| | - Aymeric Fabié
- INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, Quebec, Canada
| | - Julien Descoteaux
- INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, Quebec, Canada
| | - Simona Stäger
- INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, Quebec, Canada
| | - Albert Descoteaux
- INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, Quebec, Canada
| |
Collapse
|
15
|
Khanna A, Zamani M, Huang NF. Extracellular Matrix-Based Biomaterials for Cardiovascular Tissue Engineering. J Cardiovasc Dev Dis 2021; 8:137. [PMID: 34821690 PMCID: PMC8622600 DOI: 10.3390/jcdd8110137] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/10/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Regenerative medicine and tissue engineering strategies have made remarkable progress in remodeling, replacing, and regenerating damaged cardiovascular tissues. The design of three-dimensional (3D) scaffolds with appropriate biochemical and mechanical characteristics is critical for engineering tissue-engineered replacements. The extracellular matrix (ECM) is a dynamic scaffolding structure characterized by tissue-specific biochemical, biophysical, and mechanical properties that modulates cellular behavior and activates highly regulated signaling pathways. In light of technological advancements, biomaterial-based scaffolds have been developed that better mimic physiological ECM properties, provide signaling cues that modulate cellular behavior, and form functional tissues and organs. In this review, we summarize the in vitro, pre-clinical, and clinical research models that have been employed in the design of ECM-based biomaterials for cardiovascular regenerative medicine. We highlight the research advancements in the incorporation of ECM components into biomaterial-based scaffolds, the engineering of increasingly complex structures using biofabrication and spatial patterning techniques, the regulation of ECMs on vascular differentiation and function, and the translation of ECM-based scaffolds for vascular graft applications. Finally, we discuss the challenges, future perspectives, and directions in the design of next-generation ECM-based biomaterials for cardiovascular tissue engineering and clinical translation.
Collapse
Affiliation(s)
| | - Maedeh Zamani
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA;
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - Ngan F. Huang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA;
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| |
Collapse
|
16
|
Kharaziha M, Baidya A, Annabi N. Rational Design of Immunomodulatory Hydrogels for Chronic Wound Healing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100176. [PMID: 34251690 PMCID: PMC8489436 DOI: 10.1002/adma.202100176] [Citation(s) in RCA: 351] [Impact Index Per Article: 87.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/03/2021] [Indexed: 05/03/2023]
Abstract
With all the advances in tissue engineering for construction of fully functional skin tissue, complete regeneration of chronic wounds is still challenging. Since immune reaction to the tissue damage is critical in regulating both the quality and duration of chronic wound healing cascade, strategies to modulate the immune system are of importance. Generally, in response to an injury, macrophages switch from pro-inflammatory to an anti-inflammatory phenotype. Therefore, controlling macrophages' polarization has become an appealing approach in regenerative medicine. Recently, hydrogels-based constructs, incorporated with various cellular and molecular signals, have been developed and utilized to adjust immune cell functions in various stages of wound healing. Here, the current state of knowledge on immune cell functions during skin tissue regeneration is first discussed. Recent advanced technologies used to design immunomodulatory hydrogels for controlling macrophages' polarization are then summarized. Rational design of hydrogels for providing controlled immune stimulation via hydrogel chemistry and surface modification, as well as incorporation of cell and molecules, are also dicussed. In addition, the effects of hydrogels' properties on immunogenic features and the wound healing process are summarized. Finally, future directions and upcoming research strategies to control immune responses during chronic wound healing are highlighted.
Collapse
Affiliation(s)
- Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Avijit Baidya
- Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, CA, 90095, USA
| | - Nasim Annabi
- Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
17
|
Shanley LC, Mahon OR, Kelly DJ, Dunne A. Harnessing the innate and adaptive immune system for tissue repair and regeneration: Considering more than macrophages. Acta Biomater 2021; 133:208-221. [PMID: 33657453 DOI: 10.1016/j.actbio.2021.02.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/05/2021] [Accepted: 02/15/2021] [Indexed: 02/08/2023]
Abstract
Tissue healing and regeneration is a complex, choreographed, spatiotemporal process involving a plethora of cell types, the activity of which is stringently regulated in order for effective tissue repair to ensue post injury. A number of globally prevalent conditions such as heart disease, organ failure, and severe musculoskeletal disorders require new therapeutic strategies to repair damaged or diseased tissue, particularly given an ageing population in which obesity, diabetes, and consequent tissue defects have reached epidemic proportions. This is further compounded by the lack of intrinsic healing and poor regenerative capacity of certain adult tissues. While vast progress has been made in the last decade regarding tissue regenerative strategies to direct self-healing, for example, through implantation of tissue engineered scaffolds, several challenges have hampered the clinical application of these technologies. Control of the immune response is growing as an attractive approach in regenerative medicine and it is becoming increasingly apparent that an in depth understanding of the interplay between cells of the immune system and tissue specific progenitor cells is of paramount importance. Furthermore, the integration of immunology and bioengineering promises to elevate the efficacy of biomaterial-based tissue repair and regeneration. In this review, we highlight the role played by individual immune cell subsets in tissue repair processes and describe new approaches that are being taken to direct appropriate healing outcomes via biomaterial mediated targeting of immune cell activity. STATEMENT OF SIGNIFICANCE: It is becoming increasingly apparent that controlling the immune response is as an attractive approach in regenerative medicine. Here, we propose that an in-depth understanding of immune system and tissue specific progenitor cell interactions may reveal mechanisms by which tissue healing and regeneration takes place, in addition to identifying novel therapeutic targets that could be used to enhance the tissue repair process. To date, most reviews have focused solely on macrophage subsets. This manuscript details the role of other innate and adaptive immune cells such as innate lymphoid cells (ILCs), natural killer (NK) cells and γδT cells (in addition to macrophages) in tissue healing. We also describe new approaches that are being taken to direct appropriate healing outcomes via biomaterial mediated cytokine and drug delivery.
Collapse
|
18
|
Dutta S. Immunotherapy of tumors by tailored nano-zeolitic imidazolate framework protected biopharmaceuticals. Biomater Sci 2021; 9:6391-6402. [PMID: 34582540 DOI: 10.1039/d1bm01161h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In cancer immunotherapy, antibodies have acquired rapidly increasing attention due to their sustained immune effect by target specific delivery without any adverse effects. Among many recent strategies, controlled delivery of monoclonal antibodies, check point inhibitor storage and tumor-specific targeted delivery have enabled biodegradable immunotherapeutic delivery via translation of tailored nano-zeolitic imidazolate frameworks (ZIFs) with encapsulated biopharmaceuticals. In addition, a robust antitumor immunity was developed by anti-programmed death ligand-1 (anti-PD-L1) antibody delivery by ZIF-8 with polyethylene glycol (PEG) protection by forming a multiple immunoregulatory system. The unique biorecognition capability of antibodies, encapsulated in ZIFs, was recognized by using growth on different substrates, such as bioconjugates on gold nanorods, to transform them into plasmonic nanobiosensors with sensitivity of the refractive index profile of surface plasmons to track the conjugating antibody. Herein, we have discussed the mechanistic window of antibody delivery-based immunotherapy via the encapsulation of antibodies within ZIFs as an emerging tool for protecting biopharmaceuticals from the complex cellular microenvironment and hyperthermia to enable an antitumor immune response. To fully achieve the potential of antibodies upon ZIF encapsulation, more endeavors should be undertaken in the biodegradable engineering of ZIF-surfaces via forming cellular or polymeric layers to gain higher in vivo circulation time without inhibiting endocytosis by tumor cells. The possible future prognosis for achieving ZIF-protected biocompatible and biodegradable immunotherapeutic antibody delivery systems of therapeutic significance is discussed.
Collapse
Affiliation(s)
- Saikat Dutta
- Biological & Molecular Science Laboratory, Amity Institute of Click Chemistry Research & Studies, Amity University, Noida, India 201303.
| |
Collapse
|
19
|
Chung JT, Lau CML, Chau Y. The effect of polysaccharide-based hydrogels on the response of antigen-presenting cell lines to immunomodulators. Biomater Sci 2021; 9:6542-6554. [PMID: 34582528 DOI: 10.1039/d1bm00854d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogel presents as foreign material to the host and participates in immune responses, which skew the biofunctions of immunologic loads (antigen and adjuvants) during in situ DC priming. This study aims to investigate the effect of the hydrogel made from different polysaccharides on macrophage (RAW264.7) activation and DC (JAWSII) modulation. We adopted polysaccharides of different sugar chemistry to fabricate hydrogels. Hyaluronate (HA), glycol chitosan (GC) and dextran (DX) were functionalized with vinyl sulfone and chemically cross-linked with dithiothreitol via thiol-click chemistry. We found that HA reduced macrophage adhesion and activation on the hydrogel surface. GC and DX promoted M1 polarization in terms of higher CCR7 expression and TNF-α, IL-6 production. In terms of DC engagement, GC promoted antigen uptake by JAWSII and all hydrogels promoted antigen presentation on MHC-I molecules. GC and DX favoured the generation of immunogenic DC while accommodating immunostimulatory functions of IFN-γ and polyI:C or LPS during co-incubation. Particularly, the co-incubation of IP with GC promoted CCR7 expression on JAWSII. Conversely, HA was more appropriate for the construction of a tolerogenic DC priming platform. We observed that HA did not induce co-stimulatory markers expression on DC but suppressed the action of LPS in inducing TNF-α generation. Moreover, when immunosuppressive cytokines, IL-10 and TGF-β were added, cytokines' immunosuppressive action was amplified by hydrogel bedding, HA, GC and to a less extent DX in suppressing LPS-induced IL-6 generation from JAWSII. We concluded that HA is preferable for tolerogenic DC development while minimizing the macrophage response in conferring foreign body response, whereas DX and GC are more appropriate for immunogenic DC development. This study demonstrates the potential of polysaccharides in conferring in situ DC priming together with antigen and adjuvant loads while addressing the tradeoff between the foreign body responses and DC engagement by selecting appropriate polysaccharides for the hydrogel platform construction.
Collapse
Affiliation(s)
- Jin Teng Chung
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Chi Ming Laurence Lau
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Ying Chau
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
20
|
Whitaker R, Hernaez-Estrada B, Hernandez RM, Santos-Vizcaino E, Spiller KL. Immunomodulatory Biomaterials for Tissue Repair. Chem Rev 2021; 121:11305-11335. [PMID: 34415742 DOI: 10.1021/acs.chemrev.0c00895] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
All implanted biomaterials are targets of the host's immune system. While the host inflammatory response was once considered a detrimental force to be blunted or avoided, in recent years, it has become a powerful force to be leveraged to augment biomaterial-tissue integration and tissue repair. In this review, we will discuss the major immune cells that mediate the inflammatory response to biomaterials, with a focus on how biomaterials can be designed to modulate immune cell behavior to promote biomaterial-tissue integration. In particular, the intentional activation of monocytes and macrophages with controlled timing, and modulation of their interactions with other cell types involved in wound healing, have emerged as key strategies to improve biomaterial efficacy. To this end, careful design of biomaterial structure and controlled release of immunomodulators can be employed to manipulate macrophage phenotype for the maximization of the wound healing response with enhanced tissue integration and repair, as opposed to a typical foreign body response characterized by fibrous encapsulation and implant isolation. We discuss current challenges in the clinical translation of immunomodulatory biomaterials, such as limitations in the use of in vitro studies and animal models to model the human immune response. Finally, we describe future directions and opportunities for understanding and controlling the biomaterial-immune system interface, including the application of new imaging tools, new animal models, the discovery of new cellular targets, and novel techniques for in situ immune cell reprogramming.
Collapse
Affiliation(s)
- Ricardo Whitaker
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Beatriz Hernaez-Estrada
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States.,NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain
| | - Rosa Maria Hernandez
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz 01006, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz 01006, Spain
| | - Kara L Spiller
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
21
|
Applications of Functionalized Hydrogels in the Regeneration of the Intervertebral Disc. BIOMED RESEARCH INTERNATIONAL 2021; 2021:2818624. [PMID: 34458364 PMCID: PMC8397561 DOI: 10.1155/2021/2818624] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 07/26/2021] [Indexed: 02/08/2023]
Abstract
Intervertebral disc degeneration (IDD) is caused by genetics, aging, and environmental factors and is one of the leading causes of low back pain. The treatment of IDD presents many challenges. Hydrogels are biomaterials that possess properties similar to those of the natural extracellular matrix and have significant potential in the field of regenerative medicine. Hydrogels with various functional qualities have recently been used to repair and regenerate diseased intervertebral discs. Here, we review the mechanisms of intervertebral disc homeostasis and degeneration and then discuss the applications of hydrogel-mediated repair and intervertebral disc regeneration. The classification of artificial hydrogels and natural hydrogels is then briefly introduced, followed by an update on the development of functional hydrogels, which include noncellular therapeutic hydrogels, cellular therapeutic hydrogel scaffolds, responsive hydrogels, and multifunctional hydrogels. The challenges faced and future developments of the hydrogels used in IDD are discussed as they further promote their clinical translation.
Collapse
|
22
|
Chung CH, Lau CML, Sin DT, Chung JT, Zhang Y, Chau Y, Yao S. Droplet-Based Microfluidic Synthesis of Hydrogel Microparticles via Click Chemistry-Based Cross-Linking for the Controlled Release of Proteins. ACS APPLIED BIO MATERIALS 2021; 4:6186-6194. [DOI: 10.1021/acsabm.1c00509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Casper H.Y. Chung
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Chi Ming Laurence Lau
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Dixon T. Sin
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Jin Teng Chung
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Yuzi Zhang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Ying Chau
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Shuhuai Yao
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| |
Collapse
|
23
|
Bender EC, Kraynak CA, Huang W, Suggs LJ. Cell-Inspired Biomaterials for Modulating Inflammation. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:279-294. [PMID: 33528306 DOI: 10.1089/ten.teb.2020.0276] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Inflammation is a crucial part of wound healing and pathogen clearance. However, it can also play a role in exacerbating chronic diseases and cancer progression when not regulated properly. A subset of current innate immune engineering research is focused on how molecules such as lipids, proteins, and nucleic acids native to a healthy inflammatory response can be harnessed in the context of biomaterial design to promote healing, decrease disease severity, and prolong survival. The engineered biomaterials in this review inhibit inflammation by releasing anti-inflammatory cytokines, sequestering proinflammatory cytokines, and promoting phenotype switching of macrophages in chronic inflammatory disease models. Conversely, other biomaterials discussed here promote inflammation by mimicking pathogen invasion to inhibit tumor growth in cancer models. The form that these biomaterials take spans a spectrum from nanoparticles to large-scale hydrogels to surface coatings on medical devices. Cell-inspired molecules have been incorporated in a variety of creative ways, including loaded into or onto the surface of biomaterials or used as the biomaterials themselves.
Collapse
Affiliation(s)
- Elizabeth C Bender
- Department of Biomedical Engineering and The University of Texas at Austin, Austin, Texas, USA
| | - Chelsea A Kraynak
- Department of Biomedical Engineering and The University of Texas at Austin, Austin, Texas, USA
| | - Wenbai Huang
- Department of Biomedical Engineering and The University of Texas at Austin, Austin, Texas, USA.,Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas, USA
| | - Laura J Suggs
- Department of Biomedical Engineering and The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
24
|
Heydari P, Kharaziha M, Varshosaz J, Javanmard SH. Current knowledge of immunomodulation strategies for chronic skin wound repair. J Biomed Mater Res B Appl Biomater 2021; 110:265-288. [PMID: 34318595 DOI: 10.1002/jbm.b.34921] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/11/2022]
Abstract
In orchestrating the wound healing process, the immune system plays a critical role. Hence, controlling the immune system to repair skin defects is an attractive approach. The highly complex immune system includes the coordinated actions of several immune cells, which can produce various inflammatory and antiinflammatory cytokines and affect the healing of skin wounds. This process can be optimized using biomaterials, bioactive molecules, and cell delivery. The present review discusses various immunomodulation strategies for supporting the healing of chronic wounds. In this regard, following the evolution of the immune system and its role in the wound healing mechanism, the interaction between the extracellular mechanism and immune cells for acceleration wound healing will be firstly investigated. Consequently, the immune-based chronic wounds will be briefly examined and the mechanism of progression, and conventional methods of their treatment are evaluated. In the following, various biomaterials-based immunomodulation strategies are introduced to stimulate and control the immune system to treat and regenerate skin defects. Other effective methods of controlling the immune system in wound healing which is the release of bioactive agents (such as antiinflammatory, antigens, and immunomodulators) and stem cell therapy at the site of injury are reviewed.
Collapse
Affiliation(s)
- Parisa Heydari
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Jaleh Varshosaz
- School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
25
|
Petrus-Reurer S, Romano M, Howlett S, Jones JL, Lombardi G, Saeb-Parsy K. Immunological considerations and challenges for regenerative cellular therapies. Commun Biol 2021; 4:798. [PMID: 34172826 PMCID: PMC8233383 DOI: 10.1038/s42003-021-02237-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
The central goal of regenerative medicine is to replace damaged or diseased tissue with cells that integrate and function optimally. The capacity of pluripotent stem cells to produce unlimited numbers of differentiated cells is of considerable therapeutic interest, with several clinical trials underway. However, the host immune response represents an important barrier to clinical translation. Here we describe the role of the host innate and adaptive immune responses as triggers of allogeneic graft rejection. We discuss how the immune response is determined by the cellular therapy. Additionally, we describe the range of available in vitro and in vivo experimental approaches to examine the immunogenicity of cellular therapies, and finally we review potential strategies to ameliorate immune rejection. In conclusion, we advocate establishment of platforms that bring together the multidisciplinary expertise and infrastructure necessary to comprehensively investigate the immunogenicity of cellular therapies to ensure their clinical safety and efficacy.
Collapse
Affiliation(s)
- Sandra Petrus-Reurer
- Department of Surgery, University of Cambridge, and NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom.
| | - Marco Romano
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Sarah Howlett
- Department of Clinical Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Joanne Louise Jones
- Department of Clinical Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Giovanna Lombardi
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, and NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom.
| |
Collapse
|
26
|
Sapudom J, Alatoom A, Mohamed WKE, Garcia-Sabaté A, McBain I, Nasser RA, Teo JCM. Dendritic cell immune potency on 2D and in 3D collagen matrices. Biomater Sci 2021; 8:5106-5120. [PMID: 32812979 DOI: 10.1039/d0bm01141j] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Dendritic cells (DCs) are antigen-presenting cells capable of either activating the immune response or inducing and maintaining immune tolerance. Understanding how biophysical properties affect DC behaviors will provide insight into the biology of a DC and its applications. In this work, we studied how cell culture dimensionality (two-dimensional (2D) and three-dimensional (3D)), and matrix density of 3D collagen matrices modulate differentiation and functions of DCs. Besides, we aimed to point out the different conceptual perspectives in modern immunological research, namely tissue-centric and cell-centric perspectives. The tissue-centric perspective intends to reveal how specific microenvironments dictate DC differentiation and in turn modulate DC functionalities, while the cell-centric perspective aims to demonstrate how pre-differentiated DCs behave in specific microenvironments. DC plasticity was characterized in terms of cell surface markers and cytokine secretion profiles. Subsequently, antigen internalization and T cell activation were quantified to demonstrate the cellular functions of immature DCs (iDCs) and mature DCs (mDCs), respectively. In the tissue-centric perspective, we found that expressed surface markers and secreted cytokines of both iDCs and mDCs are generally higher in 2D culture, while they are regulated by matrix density in 3D culture. In contrast, in the cell-centric perspective, we found enhanced expression of cell surface markers as well as distinct cytokine secretion profiles in both iDCs and mDCs. By analyzing cellular functions of cells in the tissue-centric perspective, we found matrix density dependence in antigen uptake by iDCs, as well as on mDC-mediated T cell proliferation in 3D cell culture. On the other hand, in the cell-centric perspective, both iDCs and mDCs appeared to lose their functional potentials to internalization antigen and T cell stimulation. Additionally, mDCs from tissue- and cell-centric perspectives modulated T cell differentiation by their distinct cytokine secretion profiles towards Th1 and Th17, respectively. In sum, our work emphasizes the importance of dimensionality, as well as collagen fibrillar density in the regulation of the immune response of DCs. Besides this, we demonstrated that the conceptual perspective of the experimental design could be an essential key point in research in immune cell-material interactions and biomaterial-based disease models of immunity.
Collapse
Affiliation(s)
- Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | - Aseel Alatoom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | - Walaa K E Mohamed
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | - Anna Garcia-Sabaté
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | - Ian McBain
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | - Rasha A Nasser
- Department of Microbiology Immunology, College of Medicine, United Arab Emirates University, United Arab Emirates
| | - Jeremy C M Teo
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates. and Department of Biomedical and Mechanical Engineering, Tandon School of Engineering, New York University, USA
| |
Collapse
|
27
|
Caldwell AS, Rao VV, Golden AC, Bell DJ, Grim JC, Anseth KS. Mesenchymal stem cell-inspired microgel scaffolds to control macrophage polarization. Bioeng Transl Med 2021; 6:e10217. [PMID: 34027099 PMCID: PMC8126823 DOI: 10.1002/btm2.10217] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
There is a desire in regenerative medicine to create biofunctional materials that can control and direct cell function in a precise manner. One particular stem cell of interest, human mesenchymal stem cells (hMSCs), can function as regulators of the immunogenic response and aid in tissue regeneration and wound repair. Here, a porous hydrogel scaffold assembled from microgel subunits was used to recapitulate part of this immunomodulatory behavior. The scaffolds were used to culture a macrophage cell line, while cytokines were delivered exogenously to polarize the macrophages to either a pro-inflammatory (M1) or alternatively activated (M2a) phenotypes. Using a cytokine array, interleukin 10 (IL-10) was identified as one key anti-inflammatory factor secreted by hMSCs in pro-inflammatory conditions; it was elevated (125 ± 25 pg/ml) in pro-inflammatory conditions compared to standard medium (6 ± 10 pg/ml). The ability of hMSC laden scaffolds to reverse the M1 phenotype was then examined, even in the presence of exogenous pro-inflammatory cytokines. Co-culture of M1 and M2 macrophages with hMSCs reduced the secretion of TNFα, a pro-inflammatory cytokine even in the presence of pro-inflammatory stimulatory factors. Next, IL-10 was supplemented in the medium or tethered directly to the microgel subunits; both methods limited the secretion of pro-inflammatory cytokines of encapsulated macrophages even in pro-inflammatory conditions. Cumulatively, these results reveal the potential of biofunctional microgel-based scaffolds as acellular therapies to present anti-inflammatory cytokines and control the immunogenic cascade.
Collapse
Affiliation(s)
- Alexander S. Caldwell
- Department of Chemical and Biological EngineeringUniversity of ColoradoBoulderColoradoUSA
- BioFrontiers Institute, University of ColoradoBoulderColoradoUSA
| | - Varsha V. Rao
- Department of Chemical and Biological EngineeringUniversity of ColoradoBoulderColoradoUSA
- BioFrontiers Institute, University of ColoradoBoulderColoradoUSA
| | - Alyxandra C. Golden
- Department of Chemical and Biological EngineeringUniversity of ColoradoBoulderColoradoUSA
| | - Daniel J. Bell
- Department of Chemical and Biological EngineeringUniversity of ColoradoBoulderColoradoUSA
- BioFrontiers Institute, University of ColoradoBoulderColoradoUSA
| | - Joseph C. Grim
- Department of Chemical and Biological EngineeringUniversity of ColoradoBoulderColoradoUSA
- BioFrontiers Institute, University of ColoradoBoulderColoradoUSA
| | - Kristi S. Anseth
- Department of Chemical and Biological EngineeringUniversity of ColoradoBoulderColoradoUSA
- BioFrontiers Institute, University of ColoradoBoulderColoradoUSA
| |
Collapse
|
28
|
Wu P, Liang Y, Sun G. Engineering immune-responsive biomaterials for skin regeneration. BIOMATERIALS TRANSLATIONAL 2021; 2:61-71. [PMID: 35837252 PMCID: PMC9255827 DOI: 10.3877/cma.j.issn.2096-112x.2021.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/10/2020] [Accepted: 12/29/2020] [Indexed: 01/17/2023]
Abstract
The progress of biomaterials and tissue engineering has led to significant advances in wound healing, but the clinical therapy to regenerate perfect skin remains a great challenge. The implantation of biomaterial scaffolds to heal wounds inevitably leads to a host immune response. Many recent studies revealed that the immune system plays a significant role in both the healing process and the outcome. Immunomodulation or immuno-engineering has thus become a promising approach to develop pro-regenerative scaffolds for perfect skin regeneration. In this paper, we will review recent advancements in immunomodulating biomaterials in the field of skin repair and regeneration, and discuss strategies to modulate the immune response by tailoring the chemical, physical and biological properties of the biomaterials. Understanding the important role of immune responses and manipulating the inherent properties of biomaterials to regulate the immune reaction are approaches to overcome the current bottleneck of skin repair and regeneration.
Collapse
Affiliation(s)
- Pingli Wu
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei Province, China
| | - Yangyang Liang
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei Province, China
| | - Guoming Sun
- Affiliated Hospital of Hebei University, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei Province, China,Corresponding author: Guoming Sun,
| |
Collapse
|
29
|
Schoonraad SA, Trombold ML, Bryant SJ. The Effects of Stably Tethered BMP-2 on MC3T3-E1 Preosteoblasts Encapsulated in a PEG Hydrogel. Biomacromolecules 2021; 22:1065-1079. [PMID: 33555180 DOI: 10.1021/acs.biomac.0c01085] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bone morphogenetic protein-2 (BMP-2) is a clinically used osteoinductive growth factor. With a short half-life and side effects, alternative delivery approaches are needed. This work examines thiolation of BMP-2 for chemical attachment to a poly(ethylene glycol) hydrogel using thiol-norbornene click chemistry. BMP-2 retained bioactivity post-thiolation and was successfully tethered into the hydrogel. To assess tethered BMP-2 on osteogenesis, MC3T3-E1 preosteoblasts were encapsulated in matrix metalloproteinase (MMP)-sensitive hydrogels containing RGD and either no BMP-2, soluble BMP-2 (5 nM), or tethered BMP-2 (40-200 nM) and cultured in a chemically defined medium containing dexamethasone for 7 days. The hydrogel culture supported MC3T3-E1 osteogenesis regardless of BMP-2 presentation, but tethered BMP-2 augmented the osteogenic response, leading to significant increases in osteomarkers, Bglap and Ibsp. The ratio, Ibsp-to-Dmp1, highlighted differences in the extent of differentiation, revealing that without BMP-2, MC3T3-E1 cells showed a higher expression of Dmp1 (low ratio), but an equivalent expression with tethered BMP-2 and more abundant bone sialoprotein. In addition, this work identified that dexamethasone contributed to Ibsp expression but not Bglap or Dmp1 and confirmed that tethered BMP-2 induced the BMP canonical signaling pathway. This work presents an effective method for the modification and incorporation of BMP-2 into hydrogels to enhance osteogenesis.
Collapse
Affiliation(s)
- Sarah A Schoonraad
- Materials Science & Engineering Program, University of Colorado, Boulder, Colorado 80309, United States
| | - Michael L Trombold
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Stephanie J Bryant
- Materials Science & Engineering Program, University of Colorado, Boulder, Colorado 80309, United States.,Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States.,Biofrontiers Institute, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
30
|
Sok MCP, Baker N, McClain C, Lim HS, Turner T, Hymel L, Ogle M, Olingy C, Palacios JI, Garcia JR, Srithar K, García AJ, Qiu P, Botchwey EA. Dual delivery of IL-10 and AT-RvD1 from PEG hydrogels polarize immune cells towards pro-regenerative phenotypes. Biomaterials 2021; 268:120475. [PMID: 33321293 PMCID: PMC11129952 DOI: 10.1016/j.biomaterials.2020.120475] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 09/29/2020] [Accepted: 10/18/2020] [Indexed: 02/06/2023]
Abstract
Inflammation after traumatic injury or surgical intervention is both a protective tissue response leading to regeneration and a potential cause of wound complications. One potentially successful strategy to harness to pro-regenerative roles of host inflammation is the localized delivery of bioactive materials to induce immune suppressive cellular responses by cells responding to injury. In this study, we designed a fully synthetic poly (ethylene) glycol (PEG)-based hydrogel to release the specialized pro-resolving lipid mediator aspirin-triggered resolvin-D1 (AT-RvD1) and recombinant human interleukin 10 (IL-10). We utilized a unique side-by-side internally controlled implant design wherein bioactive hydrogels were implanted adjacent to control hydrogels devoid of immune modulatory factors in the dorsal skinfold window chamber. We also explored single-immune cell data with unsupervised approaches such as SPADE. First, we show that RGD-presenting hydrogel delivery results in enhanced immune cell recruitment to the site of injury. We then use intra-vital imaging to assess cellular recruitment and microvascular remodeling to show an increase in the caliber and density of local microvessels. Finally, we show that the recruitment and re-education of mononuclear phagocytes by combined delivery IL-10 and AT-RvD1 localizes immune suppressive subsets to the hydrogel, including CD206+ macrophages (M2a/c) and IL-10 expressing dendritic cells in the context of chronic inflammation following surgical tissue disruption. These data demonstrate the potential of combined delivery on the recruitment of regenerative cell subsets involved in wound healing complications.
Collapse
Affiliation(s)
- Mary Caitlin P Sok
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University, Atlanta, GA, USA; Emory University Medical Scientist Training Program, USA
| | - Nusaiba Baker
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University, Atlanta, GA, USA; Emory University Medical Scientist Training Program, USA
| | - Claire McClain
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Hong Seo Lim
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Thomas Turner
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Lauren Hymel
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Molly Ogle
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Claire Olingy
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Joshua I Palacios
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - José R Garcia
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Krithik Srithar
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Andrés J García
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Peng Qiu
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University, Atlanta, GA, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Edward A Botchwey
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University, Atlanta, GA, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
31
|
Yong U, Lee S, Jung S, Jang J. Interdisciplinary approaches to advanced cardiovascular tissue engineering: ECM-based biomaterials, 3D bioprinting, and its assessment. ACTA ACUST UNITED AC 2020. [DOI: 10.1088/2516-1091/abb211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
32
|
Eslami-Kaliji F, Sarafbidabad M, Rajadas J, Mohammadi MR. Dendritic Cells as Targets for Biomaterial-Based Immunomodulation. ACS Biomater Sci Eng 2020; 6:2726-2739. [PMID: 33463292 DOI: 10.1021/acsbiomaterials.9b01987] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Various subtypes of immunocytes react against implanted biomaterials to eliminate the foreign body object from the host's body. Among these cells, dendritic cells (DCs) play a key role in early immune response, later engaging lymphocytes through antigens presentation. Due to their capability to induce tolerogenic or immunogenic responses, DCs have been considered as key therapeutic targets for immunomodulatory products. For instance, tolerogenic DCs are applied in the treatment of autoimmune diseases, rejection of allograft transplantation, and implanted biomaterial. Due to the emerging importance of DCs in immunomodulatory biomaterials, this Review summarizes DCs' responses-such as adhesion, migration, and maturation-to biomaterials. We also review some examples of key molecules and their applications in DCs' immunoengineering. These evaluations would pave the way for designing advanced biomaterials and nanomaterials to modulate the immune system, applicable in tissue engineering, transplantation, and drug delivery technologies.
Collapse
Affiliation(s)
- Farshid Eslami-Kaliji
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan 81746-73441, Iran
| | - Mohsen Sarafbidabad
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan 81746-73441, Iran
| | - Jayakumar Rajadas
- Biomaterials and Advanced Drug Delivery Laboratory, Stanford University School of Medicine, Stanford, California 94305, United States.,Department of Bioengineering and Therapeutic Sciences, University of California San Francisco School of Pharmacy, San Francisco, California 94158, United States
| | - M Rezaa Mohammadi
- Biomaterials and Advanced Drug Delivery Laboratory, Stanford University School of Medicine, Stanford, California 94305, United States
| |
Collapse
|
33
|
Immunomodulatory properties of photopolymerizable fucoidan and carrageenans. Carbohydr Polym 2020; 230:115691. [DOI: 10.1016/j.carbpol.2019.115691] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/18/2019] [Accepted: 11/27/2019] [Indexed: 12/15/2022]
|
34
|
Jivan F, Alge DL. Bio-orthogonal, Site-Selective Conjugation of Recombinant Proteins to Microporous Annealed Particle Hydrogels for Tissue Engineering. ADVANCED THERAPEUTICS 2020; 3:1900148. [PMID: 38882245 PMCID: PMC11178337 DOI: 10.1002/adtp.201900148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Indexed: 06/18/2024]
Abstract
Protein conjugation to biomaterial scaffolds is a powerful approach for tissue engineering. However, typical chemical conjugation methods lack site-selectivity and can negatively impact protein bioactivity. To overcome this problem, a site-selective strategy is reported here for installing tetrazine groups on terminal poly-histidines (His-tags) of recombinant proteins. These tetrazine groups are then leveraged for bio-orthogonal conjugation to poly(ethylene glycol) (PEG) hydrogel microparticles, which are subsequently assembled into microporous annealed particle (MAP) hydrogels. Efficacy of the strategy is demonstrated using recombinant, green fluorescent protein with a His tag (His-GFP), which enhanced fluorescence of the MAP hydrogels compared to control protein lacking tetrazine groups. Subsequently, to demonstrate efficacy with a therapeutic protein, recombinant human bone morphogenetic protein-2 (His-BMP2) was conjugated. Human mesenchymal stem cells growing in the MAP hydrogels responded to the conjugated BMP2 and significantly increased mineralization after 21 days compared to controls. Thus, this site-selective protein modification strategy coupled with bio-orthogonal click chemistry is expected to be useful for bone defect repair and regeneration therapies. Broader application to the integration of protein therapeutics with biomaterials is also envisioned.
Collapse
Affiliation(s)
- Faraz Jivan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Daniel L Alge
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
35
|
Zhu FJ, Tong YL, Sheng ZY, Yao YM. Role of dendritic cells in the host response to biomaterials and their signaling pathways. Acta Biomater 2019; 94:132-144. [PMID: 31108257 DOI: 10.1016/j.actbio.2019.05.038] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/09/2019] [Accepted: 05/15/2019] [Indexed: 12/15/2022]
Abstract
Strategies to enhance, inhibit, or qualitatively modulate immune responses are important for diverse biomedical applications such as vaccine adjuvant, drug delivery, immunotherapy, cell transplant, tissue engineering, and regenerative medicine. However, the clinical efficiency of these biomaterial systems is affected by the limited understanding of their interaction with complex host microenvironments, for example, excessive foreign body reaction and immunotoxicity. Biomaterials and biomedical devices implanted in the body may induce a highly complicated and orchestrated series of host responses. As macrophages are among the first cells to infiltrate and respond to implanted biomaterials, the macrophage-mediated host response to biomaterials has been well studied. Dendritic cells (DCs) are the most potent antigen-presenting cells that activate naive T cells and bridge innate and adaptive immunity. The potential interaction of DCs with biomaterials appears to be critical for exerting the function of biomaterials and has become an important, developing area of investigation. Herein, we summarize the effects of the physicochemical properties of biomaterials on the immune function of DCs together with their receptors and signaling pathways. This review might provide a complete understanding of the interaction of DCs with biomaterials and serve as a reference for the design and selection of biomaterials with particular effects on targeted cells. STATEMENT OF SIGNIFICANCE: Biomaterials implanted in the body are increasingly applied in clinical practice. The performance of these implanted biomaterials is largely dependent on their interaction with the host immune system. As antigen-presenting cells, dendritic cells (DCs) directly interact with biomaterials through pattern recognition receptors (PRRs) recognizing "biomaterial-associated molecular patterns" and generate a battery of immune responses. In this review, the physicochemical properties of biomaterials that regulate the immune function of DCs together with their receptors and signaling pathways of biomaterial-DC interactions are summarized and discussed. We believe that knowledge of the interplay of DC and biomaterials may spur clinical translation by guiding the design and selection of biomaterials with particular effects on targeted cell for tissue engineering, vaccine delivery, and cancer therapy.
Collapse
|
36
|
Togarrati PP, Dinglasan N, Yee E, Heitman JW, Jackman RP, Geisberg M, Norris PJ, Bárcena A, Muench MO. Potential of Membranes Surrounding the Fetus as Immunoprotective Cell-Carriers for Allogeneic Transplantations. Transplant Direct 2019; 5:e460. [PMID: 31321294 PMCID: PMC6553624 DOI: 10.1097/txd.0000000000000901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Membranes surrounding the fetus play a crucial role in providing a physical and immunological barrier between a semiallogeneic fetus and mother during pregnancy. In this study, we tested whether cotransplantation of fetal membranes (FMs) and allogeneic donor cells would improve the retention and function of allografts in mice. METHODS Intact and enzyme-digested membranes obtained from E18-E19 pregnant mice were subcutaneously cotransplanted with 10F7MN hybridoma cells that are of BALB/cByJ (Balb) origin and secrete anti-human CD235a antibody. Cells were transplanted into C57BL/6J (B6, allogeneic), Balb (syngeneic), and FVB/NJ (third-party) mice. Serum was collected after 1 and 3 weeks of cell transplantation and tested using flow cytometry for the presence of anti-human CD235a antibody. Immunosuppressive functions of membranes were further investigated by analyzing the cytokine profile of supernatants collected from allo-reactive mixed lymphocyte reactions (MLRs) using a multiplex cytokine assay. RESULTS B6 mice transplanted with 10F7MN cells along with membranes syngeneic to the host had significantly higher levels of CD235a antibody when compared to B6 mice that received cells without membranes, allogenic membranes, or third-party membranes. Syngeneic membranes significantly inhibited T-cell proliferation in the presence of allogeneic stimuli and suppressed the release of Th1-cytokines such as IFNγ, TNFα, and IL-2 in MLRs. Additionally, increases in the levels of Th2-cytokines were found in MLRs containing membrane-derived cells. CONCLUSIONS Our study highlights the potential use of syngeneic FMs to act as potent cell-carriers that could improve graft retention as well as graft-specific immunoprotection during allograft transplantation.
Collapse
Affiliation(s)
| | | | | | | | - Rachael P. Jackman
- Vitalant Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California, San Francisco, CA
| | | | - Philip J. Norris
- Vitalant Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California, San Francisco, CA
| | - Alicia Bárcena
- The Ely and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA
- Center of Reproductive Sciences, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, CA
| | - Marcus O. Muench
- Vitalant Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California, San Francisco, CA
| |
Collapse
|
37
|
Stabler CL, Li Y, Stewart JM, Keselowsky BG. Engineering immunomodulatory biomaterials for type 1 diabetes. NATURE REVIEWS. MATERIALS 2019; 4:429-450. [PMID: 32617176 PMCID: PMC7332200 DOI: 10.1038/s41578-019-0112-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
A cure for type 1 diabetes (T1D) would help millions of people worldwide, but remains elusive thus far. Tolerogenic vaccines and beta cell replacement therapy are complementary therapies that seek to address aberrant T1D autoimmune attack and subsequent beta cell loss. However, both approaches require some form of systematic immunosuppression, imparting risks to the patient. Biomaterials-based tools enable localized and targeted immunomodulation, and biomaterial properties can be designed and combined with immunomodulatory agents to locally instruct specific immune responses. In this Review, we discuss immunomodulatory biomaterial platforms for the development of T1D tolerogenic vaccines and beta cell replacement devices. We investigate nano- and microparticles for the delivery of tolerogenic agents and autoantigens, and as artificial antigen presenting cells, and highlight how bulk biomaterials can be used to provide immune tolerance. We examine biomaterials for drug delivery and as immunoisolation devices for cell therapy and islet transplantation, and explore synergies with other fields for the development of new T1D treatment strategies.
Collapse
Affiliation(s)
- CL Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Interdisciplinary Graduate Program in Biomedical Sciences, University of Florida, Gainesville, FL, USA
- University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Y Li
- Interdisciplinary Graduate Program in Biomedical Sciences, University of Florida, Gainesville, FL, USA
| | - JM Stewart
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - BG Keselowsky
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Interdisciplinary Graduate Program in Biomedical Sciences, University of Florida, Gainesville, FL, USA
- University of Florida Diabetes Institute, Gainesville, FL, USA
| |
Collapse
|
38
|
Becker MW, Simonovich JA, Phelps EA. Engineered microenvironments and microdevices for modeling the pathophysiology of type 1 diabetes. Biomaterials 2019; 198:49-62. [DOI: 10.1016/j.biomaterials.2018.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 06/21/2018] [Accepted: 07/01/2018] [Indexed: 01/09/2023]
|
39
|
Biomaterials: Foreign Bodies or Tuners for the Immune Response? Int J Mol Sci 2019; 20:ijms20030636. [PMID: 30717232 PMCID: PMC6386828 DOI: 10.3390/ijms20030636] [Citation(s) in RCA: 383] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 12/11/2022] Open
Abstract
The perspectives of regenerative medicine are still severely hampered by the host response to biomaterial implantation, despite the robustness of technologies that hold the promise to recover the functionality of damaged organs and tissues. In this scenario, the cellular and molecular events that decide on implant success and tissue regeneration are played at the interface between the foreign body and the host inflammation, determined by innate and adaptive immune responses. To avoid adverse events, rather than the use of inert scaffolds, current state of the art points to the use of immunomodulatory biomaterials and their knowledge-based use to reduce neutrophil activation, and optimize M1 to M2 macrophage polarization, Th1 to Th2 lymphocyte switch, and Treg induction. Despite the fact that the field is still evolving and much remains to be accomplished, recent research breakthroughs have provided a broader insight on the correct choice of biomaterial physicochemical modifications to tune the reaction of the host immune system to implanted biomaterial and to favor integration and healing.
Collapse
|
40
|
Izadi Z, Hajizadeh-Saffar E, Hadjati J, Habibi-Anbouhi M, Ghanian MH, Sadeghi-Abandansari H, Ashtiani MK, Samsonchi Z, Raoufi M, Moazenchi M, Izadi M, Nejad ASSH, Namdari H, Tahamtani Y, Ostad SN, Akbari-Javar H, Baharvand H. Tolerance induction by surface immobilization of Jagged-1 for immunoprotection of pancreatic islets. Biomaterials 2018; 182:191-201. [DOI: 10.1016/j.biomaterials.2018.08.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/25/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022]
|
41
|
Renz AF, Reichmuth AM, Stauffer F, Thompson-Steckel G, Vörös J. A guide towards long-term functional electrodes interfacing neuronal tissue. J Neural Eng 2018; 15:061001. [DOI: 10.1088/1741-2552/aae0c2] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
42
|
Huang G, Li F, Zhao X, Ma Y, Li Y, Lin M, Jin G, Lu TJ, Genin GM, Xu F. Functional and Biomimetic Materials for Engineering of the Three-Dimensional Cell Microenvironment. Chem Rev 2017; 117:12764-12850. [PMID: 28991456 PMCID: PMC6494624 DOI: 10.1021/acs.chemrev.7b00094] [Citation(s) in RCA: 521] [Impact Index Per Article: 65.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cell microenvironment has emerged as a key determinant of cell behavior and function in development, physiology, and pathophysiology. The extracellular matrix (ECM) within the cell microenvironment serves not only as a structural foundation for cells but also as a source of three-dimensional (3D) biochemical and biophysical cues that trigger and regulate cell behaviors. Increasing evidence suggests that the 3D character of the microenvironment is required for development of many critical cell responses observed in vivo, fueling a surge in the development of functional and biomimetic materials for engineering the 3D cell microenvironment. Progress in the design of such materials has improved control of cell behaviors in 3D and advanced the fields of tissue regeneration, in vitro tissue models, large-scale cell differentiation, immunotherapy, and gene therapy. However, the field is still in its infancy, and discoveries about the nature of cell-microenvironment interactions continue to overturn much early progress in the field. Key challenges continue to be dissecting the roles of chemistry, structure, mechanics, and electrophysiology in the cell microenvironment, and understanding and harnessing the roles of periodicity and drift in these factors. This review encapsulates where recent advances appear to leave the ever-shifting state of the art, and it highlights areas in which substantial potential and uncertainty remain.
Collapse
Affiliation(s)
- Guoyou Huang
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Fei Li
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Department of Chemistry, School of Science,
Xi’an Jiaotong University, Xi’an 710049, People’s Republic
of China
| | - Xin Zhao
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Interdisciplinary Division of Biomedical
Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong,
People’s Republic of China
| | - Yufei Ma
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Yuhui Li
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Min Lin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Guorui Jin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Tian Jian Lu
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- MOE Key Laboratory for Multifunctional Materials
and Structures, Xi’an Jiaotong University, Xi’an 710049,
People’s Republic of China
| | - Guy M. Genin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Department of Mechanical Engineering &
Materials Science, Washington University in St. Louis, St. Louis 63130, MO,
USA
- NSF Science and Technology Center for
Engineering MechanoBiology, Washington University in St. Louis, St. Louis 63130,
MO, USA
| | - Feng Xu
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| |
Collapse
|
43
|
Combinatorial drug delivery approaches for immunomodulation. Adv Drug Deliv Rev 2017; 114:161-174. [PMID: 28532690 DOI: 10.1016/j.addr.2017.05.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/05/2017] [Accepted: 05/17/2017] [Indexed: 12/19/2022]
Abstract
Immunotherapy has been widely explored for applications to both augment and suppress intrinsic host immunity. Clinical achievements have seen a number of immunotherapeutic drugs displace established strategies like chemotherapy in treating immune-associated diseases. However, single drug approaches modulating an individual arm of the immune system are often incompletely effective. Imperfect mechanistic understanding and heterogeneity within disease pathology have seen monotherapies inadequately equipped to mediate complete disease remission. Recent success in applications of combinatorial immunotherapy has suggested that targeting multiple biological pathways simultaneously may be critical in treating complex immune pathologies. Drug delivery approaches through engineered biomaterials offer the potential to augment desired immune responses while mitigating toxic side-effects by localizing immunotherapy. This review discusses recent advances in immunotherapy and highlights newly explored combinatorial drug delivery approaches. Furthermore, prospective future directions for immunomodulatory drug delivery to exploit are provided.
Collapse
|
44
|
Delcassian D, Sattler S, Dunlop IE. T cell immunoengineering with advanced biomaterials. Integr Biol (Camb) 2017; 9:211-222. [PMID: 28252135 PMCID: PMC6034443 DOI: 10.1039/c6ib00233a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 02/15/2017] [Indexed: 12/25/2022]
Abstract
Recent advances in biomaterials design offer the potential to actively control immune cell activation and behaviour. Many human diseases, such as infections, cancer, and autoimmune disorders, are partly mediated by inappropriate or insufficient activation of the immune system. T cells play a central role in the host immune response to these diseases, and so constitute a promising cell type for manipulation. In vivo, T cells are stimulated by antigen presenting cells (APC), therefore to design immunoengineering biomaterials that control T cell behaviour, artificial interfaces that mimic the natural APC-T cell interaction are required. This review draws together research in the design and fabrication of such biomaterial interfaces, and highlights efforts to elucidate key parameters in T cell activation, such as substrate mechanical properties and spatial organization of receptors, illustrating how they can be manipulated by bioengineering approaches to alter T cell function.
Collapse
Affiliation(s)
- Derfogail Delcassian
- School of Pharmacy, University of Nottingham, NG7 2RD, UK. and Koch Institute for Integrative Cancer Research, MIT, Massachusetts, 02139, USA
| | - Susanne Sattler
- Imperial College London National Heart and Lung Institute, Du Cane Road, W12 0NN, London, UK
| | - Iain E Dunlop
- Department of Materials, Imperial College London, SW7 2AZ, UK.
| |
Collapse
|
45
|
Leifer CA. Dendritic cells in host response to biologic scaffolds. Semin Immunol 2017; 29:41-48. [PMID: 28214177 DOI: 10.1016/j.smim.2017.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 01/23/2017] [Accepted: 01/31/2017] [Indexed: 02/03/2023]
Abstract
Tissue regeneration and repair require a highly complex and orchestrated series of events that require inflammation, but can be compromised when inflammation is excessive or becomes chronic. Macrophages are one of the first cells to contact and respond to implanted materials, and mediate the inflammatory response. The series of events following macrophage association with biomaterials has been well-studied. Dendritic cells (DCs) also directly interact with biomaterials, are critical for specific immune responses, and can be activated in response to interactions with biomaterials. Yet, much less is known about the responses by DCs. This review discusses what we know about DC response to biomaterials, the underlying mechanisms involved, and how DCs can be influenced by the macrophage response to biomaterials. Lastly, I will discuss how biomaterials can be manipulated to enhance or suppress DC function to promote a specific desirable immune response - a major goal for implantable biologically active therapeutics.
Collapse
Affiliation(s)
- Cynthia A Leifer
- Department of Microbiology and Immunology College of Veterinary Medicine, C5-153 Cornell University, Ithaca, NY, USA.
| |
Collapse
|
46
|
Keselowsky BG, Lewis JS. Dendritic cells in the host response to implanted materials. Semin Immunol 2017; 29:33-40. [PMID: 28487131 PMCID: PMC5612375 DOI: 10.1016/j.smim.2017.04.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 03/29/2017] [Accepted: 04/18/2017] [Indexed: 12/28/2022]
Abstract
The role of dendritic cells (DCs) and their targeted manipulation in the body's response to implanted materials is an important and developing area of investigation, and a large component of the emerging field of biomaterials-based immune engineering. The key position of DCs in the immune system, serving to bridge innate and adaptive immunity, is facilitated by rich diversity in type and function and places DCs as a critical mediator to biomaterials of both synthetic and natural origins. This review presents current views regarding DC biology and summarizes recent findings in DC responses to implanted biomaterials. Based on these findings, there is promise that the directed programming of application-specific DC responses to biomaterials can become a reality, enabling and enhancing applications almost as diverse as the larger field of biomaterials itself.
Collapse
Affiliation(s)
- Benjamin G Keselowsky
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611 USA.
| | - Jamal S Lewis
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA
| |
Collapse
|
47
|
Wang X, Mei Z, Wang Y, Tang L. Comparison of four methods for the biofunctionalization of gold nanorods by the introduction of sulfhydryl groups to antibodies. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2017; 8:372-380. [PMID: 28326226 PMCID: PMC5331181 DOI: 10.3762/bjnano.8.39] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/16/2017] [Indexed: 05/17/2023]
Abstract
Introducing sulfhydryl groups to biomolecules to functionalize gold nanorods (GNRs) is an attractive method that involves the creation of a strong Au-S bond. Previously, we developed a facile method to functionalize GNR surfaces by thiolating antibodies using Traut's reagent. In the current study, we evaluated several methods for the introduction of thiol groups onto the surface of GNRs by using Traut's reagent, dithiotreitol (DTT), dithiolaromatic PEG6-CONHNH2, and thiol-polyethylene glycolamine (SH-PEG-NH2) combined with EDC reaction. We showed that the four above-mentioned thiolation methods can efficiently functionalize GNRs and simplify the functionalization procedures. The formed GNR-bioconjugates showed superior stability without compromising the biological activity. The GNR nanochip prepared with these four thiolated antibodies can detect human IgG targets with specificity. However, SH-PEG-NH2 combined with EDC reaction may affect the amount of functionalized GNRs because of the efficiency of thiol moiety linkage to antibodies, thereby affecting the sensitivity of the GNR sensor. The introduction of a thiol group to antibodies by using Traut's reagent, DTT, and PEG6-CONHNH2 allowed for direct immobilization onto the GNR surface, improved the efficacy of functionalized GNRs, and increased the sensitivity in response to target detection as a biosensor. Given that PEG6-CONHNH2 modification requires glycosylated biomolecules, Traut's reagent and DTT thiolation are recommended as universal applications of GNR biofunctionalization and can be easily extended to other sensing applications based on other gold nanostructures or new biomolecules.
Collapse
Affiliation(s)
- Xuefeng Wang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Zhong Mei
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Yanyan Wang
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Liang Tang
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
48
|
Bagherifard S. Mediating bone regeneration by means of drug eluting implants: From passive to smart strategies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 71:1241-1252. [PMID: 27987680 DOI: 10.1016/j.msec.2016.11.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/06/2016] [Accepted: 11/02/2016] [Indexed: 02/03/2023]
Abstract
In addition to excellent biocompatibility and mechanical performance, the new generation of bone and craniofacial implants are expected to proactively contribute to the regeneration process and dynamically interact with the host tissue. To this end, integration and sustained delivery of therapeutic agents has become a rapidly expanding area. The incorporated active molecules can offer supplementary features including promoting oteoconduction and angiogenesis, impeding bacterial infection and modulating host body reaction. Major limitations of the current practices consist of low drug stability overtime, poor control of release profile and kinetics as well as complexity of finding clinically appropriate drug dosage. In consideration of the multifaceted cascade of bone regeneration process, this research is moving towards dual/multiple drug delivery, where precise control on simultaneous or sequential delivery, considering the possible synergetic interaction of the incorporated bioactive factors is of utmost importance. Herein, recent advancements in fabrication of synthetic load bearing implants equipped with various drug delivery systems are reviewed. Smart drug delivery solutions, newly developed to provide higher tempo-spatial control on the delivery of the pharmaceutical agents for targeted and stimuli responsive delivery are highlighted. The future trend of implants with bone drug delivery mechanisms and the most common challenges hindering commercialization and the bench to bedside progress of the developed technologies are covered.
Collapse
Affiliation(s)
- Sara Bagherifard
- Politecnico di Milano, Department of Mechanical Engineering, Milan, Italy.
| |
Collapse
|
49
|
Vishwakarma A, Bhise NS, Evangelista MB, Rouwkema J, Dokmeci MR, Ghaemmaghami AM, Vrana NE, Khademhosseini A. Engineering Immunomodulatory Biomaterials To Tune the Inflammatory Response. Trends Biotechnol 2016; 34:470-482. [DOI: 10.1016/j.tibtech.2016.03.009] [Citation(s) in RCA: 348] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 03/27/2016] [Accepted: 03/29/2016] [Indexed: 11/24/2022]
|
50
|
Moghadasi Boroujeni S, Mashayekhan S, Vakilian S, Ardeshirylajimi A, Soleimani M. The synergistic effect of surface topography and sustained release of TGF-β1 on myogenic differentiation of human mesenchymal stem cells. J Biomed Mater Res A 2016; 104:1610-21. [DOI: 10.1002/jbm.a.35686] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 02/01/2016] [Accepted: 02/10/2016] [Indexed: 01/20/2023]
Affiliation(s)
| | - Shohreh Mashayekhan
- Department of Chemical and Petroleum Engineering; Sharif University of Technology; Tehran 11365-8639 Iran
| | - Saeid Vakilian
- Department of Chemical and Petroleum Engineering; Sharif University of Technology; Tehran 11365-8639 Iran
- Stem Cell Technology Research Center; Tehran 1997775555 Iran
| | | | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences; Tarbiat Modarres University; Tehran 14115-111 Iran
| |
Collapse
|