1
|
Metanat Y, Viktor P, Amajd A, Kaur I, Hamed AM, Abed Al-Abadi NK, Alwan NH, Chaitanya MVNL, Lakshmaiya N, Ghildiyal P, Khalaf OM, Ciongradi CI, Sârbu I. The paths toward non-viral CAR-T cell manufacturing: A comprehensive review of state-of-the-art methods. Life Sci 2024; 348:122683. [PMID: 38702027 DOI: 10.1016/j.lfs.2024.122683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/11/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Although CAR-T cell therapy has emerged as a game-changer in cancer immunotherapy several bottlenecks limit its widespread use as a front-line therapy. Current protocols for the production of CAR-T cells rely mainly on the use of lentiviral/retroviral vectors. Nevertheless, according to the safety concerns around the use of viral vectors, there are several regulatory hurdles to their clinical use. Large-scale production of viral vectors under "Current Good Manufacturing Practice" (cGMP) involves rigorous quality control assessments and regulatory requirements that impose exorbitant costs on suppliers and as a result, lead to a significant increase in the cost of treatment. Pursuing an efficient non-viral method for genetic modification of immune cells is a hot topic in cell-based gene therapy. This study aims to investigate the current state-of-the-art in non-viral methods of CAR-T cell manufacturing. In the first part of this study, after reviewing the advantages and disadvantages of the clinical use of viral vectors, different non-viral vectors and the path of their clinical translation are discussed. These vectors include transposons (sleeping beauty, piggyBac, Tol2, and Tc Buster), programmable nucleases (ZFNs, TALENs, and CRISPR/Cas9), mRNA, plasmids, minicircles, and nanoplasmids. Afterward, various methods for efficient delivery of non-viral vectors into the cells are reviewed.
Collapse
Affiliation(s)
- Yekta Metanat
- Faculty of Medicine, Zahedan University of Medical Sciences, Sistan and Baluchestan Province, Iran
| | - Patrik Viktor
- Óbuda University, Karoly Keleti faculty, Tavaszmező u. 15-17, H-1084 Budapest, Hungary
| | - Ayesha Amajd
- Faculty of Transport and Aviation Engineering, Silesian University of Technology, Krasińskiego 8 Street, 40-019 Katowice, Poland
| | - Irwanjot Kaur
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bangalore, Karnataka, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan-303012, India
| | | | | | | | - M V N L Chaitanya
- School of pharmaceutical sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab - 144411, India
| | | | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | | | - Carmen Iulia Ciongradi
- 2nd Department of Surgery-Pediatric Surgery and Orthopedics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania.
| | - Ioan Sârbu
- 2nd Department of Surgery-Pediatric Surgery and Orthopedics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania.
| |
Collapse
|
2
|
Azadpour B, Aharipour N, Paryab A, Omid H, Abdollahi S, Madaah Hosseini H, Malek Khachatourian A, Toprak MS, Seifalian AM. Magnetically-assisted viral transduction (magnetofection) medical applications: An update. BIOMATERIALS ADVANCES 2023; 154:213657. [PMID: 37844415 DOI: 10.1016/j.bioadv.2023.213657] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/23/2023] [Accepted: 10/06/2023] [Indexed: 10/18/2023]
Abstract
Gene therapy involves replacing a faulty gene or adding a new gene inside the body's cells to cure disease or improve the body's ability to fight disease. Its popularity is evident from emerging concepts such as CRISPR-based genome editing and epigenetic studies and has been moved to a clinical setting. The strategy for therapeutic gene design includes; suppressing the expression of pathogenic genes, enhancing necessary protein production, and stimulating the immune system, which can be incorporated into both viral and non-viral gene vectors. Although non-viral gene delivery provides a safer platform, it suffers from an inefficient rate of gene transfection, which means a few genes could be successfully transfected and expressed within the cells. Incorporating nucleic acids into the viruses and using these viral vectors to infect cells increases gene transfection efficiency. Consequently, more cells will respond, more genes will be expressed, and sustained and successful gene therapy can be achieved. Combining nanoparticles (NPs) and nucleic acids protects genetic materials from enzymatic degradation. Furthermore, the vectors can be transferred faster, facilitating cell attachment and cellular uptake. Magnetically assisted viral transduction (magnetofection) enhances gene therapy efficiency by mixing magnetic nanoparticles (MNPs) with gene vectors and exerting a magnetic field to guide a significant number of vectors directly onto the cells. This research critically reviews the MNPs and the physiochemical properties needed to assemble an appropriate magnetic viral vector, discussing cellular hurdles and attitudes toward overcoming these barriers to reach clinical gene therapy perspectives. We focus on the studies conducted on the various applications of magnetic viral vectors in cancer therapies, regenerative medicine, tissue engineering, cell sorting, and virus isolation.
Collapse
Affiliation(s)
- Behnam Azadpour
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Nazli Aharipour
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Amirhosein Paryab
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Hamed Omid
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Sorosh Abdollahi
- Department of Biomedical Engineering, University of Calgary, Alberta, Canada
| | | | | | - Muhammet S Toprak
- Department of Applied Physics, KTH-Royal Institute of Technology, SE10691 Stockholm, Sweden
| | - Alexander M Seifalian
- Nanotechnology & Regenerative Medicine Commercialisation Centre (NanoRegMed Ltd, Nanoloom Ltd, & Liberum Health Ltd), London BioScience Innovation Centre, London, UK.
| |
Collapse
|
3
|
Donnelley M, Cmielewski P, Morgan K, Delhove J, Reyne N, McCarron A, Rout-Pitt N, Drysdale V, Carpentieri C, Spiers K, Takeuchi A, Uesugi K, Yagi N, Parsons D. Improved in-vivo airway gene transfer via magnetic-guidance, with protocol development informed by synchrotron imaging. Sci Rep 2022; 12:9000. [PMID: 35637239 PMCID: PMC9151774 DOI: 10.1038/s41598-022-12895-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/11/2022] [Indexed: 11/24/2022] Open
Abstract
Gene vectors to treat cystic fibrosis lung disease should be targeted to the conducting airways, as peripheral lung transduction does not offer therapeutic benefit. Viral transduction efficiency is directly related to the vector residence time. However, delivered fluids such as gene vectors naturally spread to the alveoli during inspiration, and therapeutic particles of any form are rapidly cleared via mucociliary transit. Extending gene vector residence time within the conducting airways is important, but hard to achieve. Gene vector conjugated magnetic particles that can be guided to the conducting airway surfaces could improve regional targeting. Due to the challenges of in-vivo visualisation, the behaviour of such small magnetic particles on the airway surface in the presence of an applied magnetic field is poorly understood. The aim of this study was to use synchrotron imaging to visualise the in-vivo motion of a range of magnetic particles in the trachea of anaesthetised rats to examine the dynamics and patterns of individual and bulk particle behaviour in-vivo. We also then assessed whether lentiviral-magnetic particle delivery in the presence of a magnetic field increases transduction efficiency in the rat trachea. Synchrotron X-ray imaging revealed the behaviour of magnetic particles in stationary and moving magnetic fields, both in-vitro and in-vivo. Particles could not easily be dragged along the live airway surface with the magnet, but during delivery deposition was focussed within the field of view where the magnetic field was the strongest. Transduction efficiency was also improved six-fold when the lentiviral-magnetic particles were delivered in the presence of a magnetic field. Together these results show that lentiviral-magnetic particles and magnetic fields may be a valuable approach for improving gene vector targeting and increasing transduction levels in the conducting airways in-vivo.
Collapse
|
4
|
Lafuente-Gómez N, Latorre A, Milán-Rois P, Rodriguez Diaz C, Somoza Á. Stimuli-responsive nanomaterials for cancer treatment: boundaries, opportunities and applications. Chem Commun (Camb) 2021; 57:13662-13677. [PMID: 34874370 DOI: 10.1039/d1cc05056g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Small molecule drugs, including most chemotherapies, are rapidly degraded and/or eliminated from the body, which is why high doses of these drugs are necessary, potentially producing toxic effects. Several types of nanoparticles loaded with anti-cancer drugs have been designed to overcome the disadvantages of conventional therapies. Modified nanoparticles can circulate for a long time, thus improving the solubility and biodistribution of drugs. Furthermore, they also allow the controlled release of the payload once its target tissue has been reached. These mechanisms can reduce the exposure of healthy tissues to chemotherapeutics, since the drugs are only released in the presence of specific tumour stimuli. Overall, these properties can improve the effectiveness of treatments while reducing undesirable side effects. In this article, we review the recent advances in stimuli-responsive albumin, gold and magnetic nanostructures for controlled anti-cancer drug delivery. These nanostructures were designed to release drugs in response to different internal and external stimuli of the cellular environment, including pH, redox, light and magnetic fields. We also describe various examples of applications of these nanomaterials. Overall, we shed light on the properties, potential clinical translation and limitations of stimuli-responsive nanoparticles for cancer treatment.
Collapse
Affiliation(s)
- Nuria Lafuente-Gómez
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049 Madrid, Spain.
| | - Ana Latorre
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049 Madrid, Spain.
| | - Paula Milán-Rois
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049 Madrid, Spain.
| | - Ciro Rodriguez Diaz
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049 Madrid, Spain.
| | - Álvaro Somoza
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049 Madrid, Spain. .,Unidad Asociada al Centro Nacional de Biotecnología (CSIC), 28049 Madrid, Spain
| |
Collapse
|
5
|
Recent advances in immunotherapy, immunoadjuvant, and nanomaterial-based combination immunotherapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Yadav P, Jain J, Sherje AP. Recent advances in nanocarriers-based drug delivery for cancer therapeutics: A review. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104970] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Sharma D, Arora S, Singh J, Layek B. A review of the tortuous path of nonviral gene delivery and recent progress. Int J Biol Macromol 2021; 183:2055-2073. [PMID: 34087309 PMCID: PMC8266766 DOI: 10.1016/j.ijbiomac.2021.05.192] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023]
Abstract
Gene therapy encompasses the transfer of exogenous genetic materials into the patient's target cells to treat or prevent diseases. Nevertheless, the transfer of genetic material into desired cells is challenging and often requires specialized tools or delivery systems. For the past 40 years, scientists are mainly pursuing various viruses as gene delivery vectors, and the overall progress has been slow and far from the expectation. As an alternative, nonviral vectors have gained substantial attention due to their several advantages, including superior safety profile, enhanced payload capacity, and stealth abilities. Since nonviral vectors encounter multiple extra- and intra-cellular barriers limiting the transfer of genetic payload into the target cell nucleus, we have discussed these barriers in detail for this review. A direct approach, utilizing physical methods like electroporation, sonoporation, gene gun, eliminate the requirement for a specific carrier for gene delivery. In contrast, chemical methods of gene transfer exploit natural or synthetic compounds as carriers to increase cellular targeting and gene therapy effectiveness. We have also emphasized the recent advancements aimed at enhancing the current nonviral approaches. Therefore, in this review, we have focused on discussing the current evolving state of nonviral gene delivery systems and their future perspectives.
Collapse
Affiliation(s)
- Divya Sharma
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo 58105, ND, USA
| | - Sanjay Arora
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo 58105, ND, USA
| | - Jagdish Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo 58105, ND, USA
| | - Buddhadev Layek
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo 58105, ND, USA.
| |
Collapse
|
8
|
Sun Y, Yang J, Yang T, Li Y, Zhu R, Hou Y, Liu Y. Co-delivery of IL-12 cytokine gene and cisplatin prodrug by a polymetformin-conjugated nanosystem for lung cancer chemo-gene treatment through chemotherapy sensitization and tumor microenvironment modulation. Acta Biomater 2021; 128:447-461. [PMID: 33894351 DOI: 10.1016/j.actbio.2021.04.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/27/2022]
Abstract
The combination of chemotherapy and gene therapy has been indicated as a promising approach for cancer therapy. However, this combination strategy is still faced a challenge by the lack of suitable carriers to co-loaded chemotherapeutic drug and gene into one single nanoplatform. In this study, a tumor-targeted HC/pIL-12/polyMET micelleplexes were developed for the co-loading and co-delivery of cisplatin (CDDP) and plasmid encoding interleukin-12 gene (pIL-12), which would be utilized to generate synergistic actions through chemotherapy sensitization and microenvironment modulation. The HC/pIL-12/polyMET exhibited desirable particle size, superior serum stability, effective intracellular CDDP release and pIL-12 transfection efficiency. More important, the HC/pIL-12/polyMET generated the enhanced LLC cell proliferation inhibition and apoptosis induction efficiency. The long-circulating HC/pIL-12/polyMET micelleplexes promoted the accumulation of CDDP and pIL-12 in tumor site, which resulted in significantly inhibiting the growth of lung cancer, and prolonging the overall survival of tumor-bearing mice. The underlying immune mechanism demonstrated the combination of CDDP and pIL-12 activated immune effector cells to release IFN-γ and induced M1-type differentiation of tumor-related macrophages, thereby generating synergistic chemoimmunotherapy effect. Taken together, this study may provide an effective strategy for drug/gene co-delivery and cancer chemoimmunotherapy. STATEMENT OF SIGNIFICANCE: Chemoimmunotherapy has been indicated as an approach to improve efficacy of cancer therapy. Herein, a tumor-targeted micelleplexes (HC/pIL-12/polyMET) were developed for the co-delivery of cisplatin (CDDP) and plasmid encoding IL-12 gene (pIL-12), which can employ the synergistic effects through chemotherapy sensitization and microenvironment modulation. The HC/pIL-12/polyMET exhibited desirable particle size, superior serum stability, high gene transfection efficiency and antitumor activity on tumor cell proliferation inhibition and apoptosis induction. More importantly, the long-circulating HC/pIL-12/polyMET micelleplexes could effectively accumulate in tumor sites and then rapidly release the CDDP and pIL-12, significantly inhibit the growth of lung cancer. This strategy provides a new concept for chemo-gene combination with a strengthened overall therapeutic efficacy of chemoimmunotherapy.
Collapse
Affiliation(s)
- Yue Sun
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China
| | - Jiayu Yang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China
| | - Tong Yang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China
| | - Yifan Li
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China
| | - Rongyue Zhu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China
| | - Yanhui Hou
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China
| | - Yanhua Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China; Key Laboratory of Hui Ethnic Medicine Modernization, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
9
|
Persano S, Das P, Pellegrino T. Magnetic Nanostructures as Emerging Therapeutic Tools to Boost Anti-Tumour Immunity. Cancers (Basel) 2021; 13:2735. [PMID: 34073106 PMCID: PMC8198238 DOI: 10.3390/cancers13112735] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/19/2022] Open
Abstract
Cancer immunotherapy has shown remarkable results in various cancer types through a range of immunotherapeutic approaches, including chimeric antigen receptor-T cell (CAR-T) therapy, immune checkpoint blockade (ICB), and therapeutic vaccines. Despite the enormous potential of cancer immunotherapy, its application in various clinical settings has been limited by immune evasion and immune suppressive mechanisms occurring locally or systemically, low durable response rates, and severe side effects. In the last decades, the rapid advancement of nanotechnology has been aiming at the development of novel synthetic nanocarriers enabling precise and enhanced delivery of immunotherapeutics, while improving drug stability and effectiveness. Magnetic nanostructured formulations are particularly intriguing because of their easy surface functionalization, low cost, and robust manufacturing procedures, together with their suitability for the implementation of magnetically-guided and heat-based therapeutic strategies. Here, we summarize and discuss the unique features of magnetic-based nanostructures, which can be opportunely designed to potentiate classic immunotherapies, such as therapeutic vaccines, ICB, adoptive cell therapy (ACT), and in situ vaccination. Finally, we focus on how multifunctional magnetic delivery systems can facilitate the anti-tumour therapies relying on multiple immunotherapies and/or other therapeutic modalities. Combinatorial magnetic-based therapies are indeed offering the possibility to overcome current challenges in cancer immunotherapy.
Collapse
Affiliation(s)
- Stefano Persano
- Nanomaterials for Biomedical Applications, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy;
| | | | - Teresa Pellegrino
- Nanomaterials for Biomedical Applications, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy;
| |
Collapse
|
10
|
Sizikov AA, Kharlamova MV, Nikitin MP, Nikitin PI, Kolychev EL. Nonviral Locally Injected Magnetic Vectors for In Vivo Gene Delivery: A Review of Studies on Magnetofection. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1078. [PMID: 33922066 PMCID: PMC8143545 DOI: 10.3390/nano11051078] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/20/2022]
Abstract
Magnetic nanoparticles have been widely used in nanobiomedicine for diagnostics and the treatment of diseases, and as carriers for various drugs. The unique magnetic properties of "magnetic" drugs allow their delivery in a targeted tumor or tissue upon application of a magnetic field. The approach of combining magnetic drug targeting and gene delivery is called magnetofection, and it is very promising. This method is simple and efficient for the delivery of genetic material to cells using magnetic nanoparticles controlled by an external magnetic field. However, magnetofection in vivo has been studied insufficiently both for local and systemic routes of magnetic vector injection, and the relevant data available in the literature are often merely descriptive and contradictory. In this review, we collected and systematized the data on the efficiency of the local injections of magnetic nanoparticles that carry genetic information upon application of external magnetic fields. We also investigated the efficiency of magnetofection in vivo, depending on the structure and coverage of magnetic vectors. The perspectives of the development of the method were also considered.
Collapse
Affiliation(s)
- Artem A. Sizikov
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (A.A.S.); (M.V.K.); (M.P.N.)
| | - Marianna V. Kharlamova
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (A.A.S.); (M.V.K.); (M.P.N.)
| | - Maxim P. Nikitin
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (A.A.S.); (M.V.K.); (M.P.N.)
- Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Petr I. Nikitin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 117942 Moscow, Russia
| | - Eugene L. Kolychev
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (A.A.S.); (M.V.K.); (M.P.N.)
| |
Collapse
|
11
|
Sun Y, Davis E. Nanoplatforms for Targeted Stimuli-Responsive Drug Delivery: A Review of Platform Materials and Stimuli-Responsive Release and Targeting Mechanisms. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:746. [PMID: 33809633 PMCID: PMC8000772 DOI: 10.3390/nano11030746] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022]
Abstract
To achieve the promise of stimuli-responsive drug delivery systems for the treatment of cancer, they should (1) avoid premature clearance; (2) accumulate in tumors and undergo endocytosis by cancer cells; and (3) exhibit appropriate stimuli-responsive release of the payload. It is challenging to address all of these requirements simultaneously. However, the numerous proof-of-concept studies addressing one or more of these requirements reported every year have dramatically expanded the toolbox available for the design of drug delivery systems. This review highlights recent advances in the targeting and stimuli-responsiveness of drug delivery systems. It begins with a discussion of nanocarrier types and an overview of the factors influencing nanocarrier biodistribution. On-demand release strategies and their application to each type of nanocarrier are reviewed, including both endogenous and exogenous stimuli. Recent developments in stimuli-responsive targeting strategies are also discussed. The remaining challenges and prospective solutions in the field are discussed throughout the review, which is intended to assist researchers in overcoming interdisciplinary knowledge barriers and increase the speed of development. This review presents a nanocarrier-based drug delivery systems toolbox that enables the application of techniques across platforms and inspires researchers with interdisciplinary information to boost the development of multifunctional therapeutic nanoplatforms for cancer therapy.
Collapse
Affiliation(s)
| | - Edward Davis
- Materials Engineering Program, Mechanical Engineering Department, Auburn University, 101 Wilmore Drive, Auburn, AL 36830, USA;
| |
Collapse
|
12
|
Lin G, Revia RA, Zhang M. Inorganic Nanomaterial-Mediated Gene Therapy in Combination with Other Antitumor Treatment Modalities. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2007096. [PMID: 34366761 PMCID: PMC8336227 DOI: 10.1002/adfm.202007096] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Indexed: 05/05/2023]
Abstract
Cancer is a genetic disease originating from the accumulation of gene mutations in a cellular subpopulation. Although many therapeutic approaches have been developed to treat cancer, recent studies have revealed an irrefutable challenge that tumors evolve defenses against some therapies. Gene therapy may prove to be the ultimate panacea for cancer by correcting the fundamental genetic errors in tumors. The engineering of nanoscale inorganic carriers of cancer therapeutics has shown promising results in the efficacious and safe delivery of nucleic acids to treat oncological diseases in small-animal models. When these nanocarriers are used for co-delivery of gene therapeutics along with auxiliary treatments, the synergistic combination of therapies often leads to an amplified health benefit. In this review, an overview of the inorganic nanomaterials developed for combinatorial therapies of gene and other treatment modalities is presented. First, the main principles of using nucleic acids as therapeutics, inorganic nanocarriers for medical applications and delivery of gene/drug payloads are introduced. Next, the utility of recently developed inorganic nanomaterials in different combinations of gene therapy with each of chemo, immune, hyperthermal, and radio therapy is examined. Finally, current challenges in the clinical translation of inorganic nanomaterial-mediated therapies are presented and outlooks for the field are provided.
Collapse
Affiliation(s)
- Guanyou Lin
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Richard A Revia
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
13
|
Skočaj M, Bizjak M, Strojan K, Lojk J, Erdani Kreft M, Miš K, Pirkmajer S, Bregar VB, Veranič P, Pavlin M. Proposing Urothelial and Muscle In Vitro Cell Models as a Novel Approach for Assessment of Long-Term Toxicity of Nanoparticles. Int J Mol Sci 2020; 21:ijms21207545. [PMID: 33066271 PMCID: PMC7589566 DOI: 10.3390/ijms21207545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022] Open
Abstract
Many studies evaluated the short-term in vitro toxicity of nanoparticles (NPs); however, long-term effects are still not adequately understood. Here, we investigated the potential toxic effects of biomedical (polyacrylic acid and polyethylenimine coated magnetic NPs) and two industrial (SiO2 and TiO2) NPs following different short-term and long-term exposure protocols on two physiologically different in vitro models that are able to differentiate: L6 rat skeletal muscle cell line and biomimetic normal porcine urothelial (NPU) cells. We show that L6 cells are more sensitive to NP exposure then NPU cells. Transmission electron microscopy revealed an uptake of NPs into L6 cells but not NPU cells. In L6 cells, we obtained a dose-dependent reduction in cell viability and increased reactive oxygen species (ROS) formation after 24 h. Following continuous exposure, more stable TiO2 and polyacrylic acid (PAA) NPs increased levels of nuclear factor Nrf2 mRNA, suggesting an oxidative damage-associated response. Furthermore, internalized magnetic PAA and TiO2 NPs hindered the differentiation of L6 cells. We propose the use of L6 skeletal muscle cells and NPU cells as a novel approach for assessment of the potential long-term toxicity of relevant NPs that are found in the blood and/or can be secreted into the urine.
Collapse
Affiliation(s)
- Matej Skočaj
- Group for nano and biotechnological applications, Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (M.S.); (M.B.); (K.S.); (J.L.); (V.B.B.)
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (K.M.); (S.P.)
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| | - Maruša Bizjak
- Group for nano and biotechnological applications, Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (M.S.); (M.B.); (K.S.); (J.L.); (V.B.B.)
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Klemen Strojan
- Group for nano and biotechnological applications, Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (M.S.); (M.B.); (K.S.); (J.L.); (V.B.B.)
| | - Jasna Lojk
- Group for nano and biotechnological applications, Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (M.S.); (M.B.); (K.S.); (J.L.); (V.B.B.)
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| | - Katarina Miš
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (K.M.); (S.P.)
| | - Sergej Pirkmajer
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (K.M.); (S.P.)
| | - Vladimir Boštjan Bregar
- Group for nano and biotechnological applications, Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (M.S.); (M.B.); (K.S.); (J.L.); (V.B.B.)
| | - Peter Veranič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
- Correspondence: (P.V.); (M.P.)
| | - Mojca Pavlin
- Group for nano and biotechnological applications, Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (M.S.); (M.B.); (K.S.); (J.L.); (V.B.B.)
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
- Correspondence: (P.V.); (M.P.)
| |
Collapse
|
14
|
Alginate-Based Platforms for Cancer-Targeted Drug Delivery. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1487259. [PMID: 33083451 PMCID: PMC7563048 DOI: 10.1155/2020/1487259] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/15/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022]
Abstract
As an acidic, ocean colloid polysaccharide, alginate is both a biopolymer and a polyelectrolyte that is considered to be biocompatible, nontoxic, nonimmunogenic, and biodegradable. A significant number of studies have confirmed the potential use of alginate-based platforms as effective vehicles for drug delivery for cancer-targeted treatment. In this review, the focus is on the formation of alginate-based cancer-targeted delivery systems. Specifically, some general chemical and physical properties of alginate and different types of alginate-based delivery systems are discussed, and various kinds of alginate-based carriers are introduced. Finally, recent innovative strategies to functionalize alginate-based vehicles for cancer targeting are described to highlight research towards the optimization of alginate.
Collapse
|
15
|
Luther DC, Huang R, Jeon T, Zhang X, Lee YW, Nagaraj H, Rotello VM. Delivery of drugs, proteins, and nucleic acids using inorganic nanoparticles. Adv Drug Deliv Rev 2020; 156:188-213. [PMID: 32610061 PMCID: PMC8559718 DOI: 10.1016/j.addr.2020.06.020] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 01/03/2023]
Abstract
Inorganic nanoparticles provide multipurpose platforms for a broad range of delivery applications. Intrinsic nanoscopic properties provide access to unique magnetic and optical properties. Equally importantly, the structural and functional diversity of gold, silica, iron oxide, and lanthanide-based nanocarriers provide unrivalled control of nanostructural properties for effective transport of therapeutic cargos, overcoming biobarriers on the cellular and organismal level. Taken together, inorganic nanoparticles provide a key addition to the arsenal of delivery vectors for fighting disease and improving human health.
Collapse
Affiliation(s)
- David C Luther
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA
| | - Rui Huang
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA
| | - Taewon Jeon
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA; Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA
| | - Xianzhi Zhang
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA
| | - Yi-Wei Lee
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA
| | - Harini Nagaraj
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA.
| |
Collapse
|
16
|
Vilas-Boas V, Carvalho F, Espiña B. Magnetic Hyperthermia for Cancer Treatment: Main Parameters Affecting the Outcome of In Vitro and In Vivo Studies. Molecules 2020; 25:E2874. [PMID: 32580417 PMCID: PMC7362219 DOI: 10.3390/molecules25122874] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 12/22/2022] Open
Abstract
Magnetic hyperthermia (MHT) is being investigated as a cancer treatment since the 1950s. Recent advancements in the field of nanotechnology have resulted in a notable increase in the number of MHT studies. Most of these studies explore MHT as a stand-alone treatment or as an adjuvant therapy in a preclinical context. However, despite all the scientific effort, only a minority of the MHT-devoted nanomaterials and approaches made it to clinical context. The outcome of an MHT experiment is largely influenced by a number of variables that should be considered when setting up new MHT studies. This review highlights and discusses the main parameters affecting the outcome of preclinical MHT, aiming to provide adequate assistance in the design of new, more efficient MHT studies.
Collapse
Affiliation(s)
- Vânia Vilas-Boas
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (V.V.-B.); (F.C.)
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Félix Carvalho
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (V.V.-B.); (F.C.)
| | - Begoña Espiña
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| |
Collapse
|
17
|
Sosa-Acosta JR, Iriarte-Mesa C, Ortega GA, Díaz-García AM. DNA–Iron Oxide Nanoparticles Conjugates: Functional Magnetic Nanoplatforms in Biomedical Applications. Top Curr Chem (Cham) 2020; 378:13. [DOI: 10.1007/s41061-019-0277-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/20/2019] [Indexed: 02/08/2023]
|
18
|
Palanisamy S, Wang YM. Superparamagnetic iron oxide nanoparticulate system: synthesis, targeting, drug delivery and therapy in cancer. Dalton Trans 2019; 48:9490-9515. [PMID: 31211303 DOI: 10.1039/c9dt00459a] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer is a global epidemic and is considered a leading cause of death. Various cancer treatments such as chemotherapy, surgery, and radiotherapy are available for the cure but those are generally associated with poor long-term survival rates. Consequently, more advanced and selective methods that have better outcomes, fewer side effects, and high efficacies are highly in demand. Among these is the use of superparamagnetic iron oxide nanoparticles (SPIONs) which act as an innovative kit for battling cancer. Low cost, magnetic properties and toxicity properties enable SPIONs to be widely utilized in biomedical applications. For example, magnetite and maghemite (Fe3O4 and γ-Fe2O3) exhibit superparamagnetic properties and are widely used in drug delivery, diagnosis, and therapy. These materials are termed SPIONs when their size is smaller than 20 nm. This review article aims to provide a brief introduction on SPIONs, focusing on their fundamental magnetism and biological applications. The quality and surface chemistry of SPIONs are crucial in biomedical applications; therefore an in-depth survey of synthetic approaches and surface modifications of SPIONs is provided along with their biological applications such as targeting, site-specific drug delivery and therapy.
Collapse
Affiliation(s)
- Sathyadevi Palanisamy
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, 75 Bo-Ai Street, Hsinchu 300, Taiwan.
| | | |
Collapse
|
19
|
Nuzhina JV, Shtil AA, Prilepskii AY, Vinogradov VV. Preclinical Evaluation and Clinical Translation of Magnetite-Based Nanomedicines. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101282] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Wang R, Dai X, Duan S, Zhao N, Xu FJ. A flexible bowl-shaped magnetic assembly for multifunctional gene delivery systems. NANOSCALE 2019; 11:16463-16475. [PMID: 31453620 DOI: 10.1039/c9nr04763h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Magnetic assemblies with special morphologies are promising for versatile biomedical applications due to their intriguing properties and performances. In this work, a polycation-functionalized bowl-shaped magnetic assembly (b-MNP-PGEA) was constructed for magnetic resonance imaging (MRI)-guided synergistic cancer therapy. Taking advantage of distinct properties of Fe3O4 nanoparticles, self-assembly concept, morphology control, and appropriate surface functionalization, the as-prepared magnetic assembly with special morphology was expected to work as a multifunctional carrier to realize the combination of magnetofection and photothermal therapy (PTT). The morphology effect of the magnetic assembly on cellular uptake and the subsequent gene transfection were investigated. The feasibility of the magnetic and photothermal carriers for MRI and complementary PTT/gene therapy was also studied. In addition, the excellent in vivo performance of the proposed bowl-shaped multifunctional carriers was demonstrated using a mouse breast cancer model. Interestingly, synergistic effects based on PTT-enhanced gene therapy were achieved. The facile assembly strategy for the development of special bowl-shaped magnetic carriers for synergistic PTT/gene therapy provides a new avenue for the versatile construction of efficient theranostic platforms.
Collapse
Affiliation(s)
- Ranran Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China. and Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoguang Dai
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China. and Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shun Duan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China. and Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Nana Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China. and Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China. and Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
21
|
Zhang T, Li F, Xu Q, Wang Q, Jiang X, Liang Z, Liao H, Kong X, Liu J, Wu H, Zhang D, An C, Dong L, Lu Y, Cao H, Kim D, Sun J, Hyeon T, Gao J, Ling D. Ferrimagnetic Nanochains‐Based Mesenchymal Stem Cell Engineering for Highly Efficient Post‐Stroke Recovery. ADVANCED FUNCTIONAL MATERIALS 2019; 29. [DOI: 10.1002/adfm.201900603] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Indexed: 03/10/2025]
Abstract
AbstractUnsatisfactory post‐stroke recovery has long been a negative factor in the prognosis of ischemic stroke due to the lack of pharmacological treatments. Mesenchymal stem cells (MSCs)‐based therapy has recently emerged as a promising strategy redefining stroke treatment; however, its effectiveness has been largely restricted by insufficient therapeutic gene expression and inadequate cell numbers in the ischemic cerebrum. Herein, a non‐viral and magnetic field‐independent gene transfection approach is reported, using magnetosome‐like ferrimagnetic iron oxide nanochains (MFIONs), to genetically engineer MSCs for highly efficient post‐stroke recovery. The 1D MFIONs show efficient cellular uptake by MSCs, which results in highly efficient genetic engineering of MSCs to overexpress brain‐derived neurotrophic factor for treating ischemic cerebrum. Moreover, the internalized MFIONs promote the homing of MSCs to the ischemic cerebrum by upregulating CXCR4. Consequently, a pronounced recovery from ischemic stroke is achieved using MFION‐engineered MSCs in a mouse model.
Collapse
Affiliation(s)
- Tianyuan Zhang
- College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine Zhejiang University Hangzhou 310058 China
| | - Fangyuan Li
- College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 China
| | - Qianhao Xu
- College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 China
| | - Qiyue Wang
- College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 China
| | - Xinchi Jiang
- College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 China
| | - Zeyu Liang
- College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 China
| | - Hongwei Liao
- College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 China
| | - Xianglei Kong
- Department of Radiology Sir Run Run Shaw Hospital School of Medicine Zhejiang University Hangzhou 310016 China
| | - Jianan Liu
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering Seoul National University Seoul 08826 Republic of Korea
| | - Honghui Wu
- College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 China
| | - Danping Zhang
- College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 China
| | - Changhua An
- School of Chemistry and Chemical Engineering Tianjin University of Technology Tianjin 300384 China
| | - Liang Dong
- Division of Nanomaterials and Chemistry Hefei National Research Centre for Physical Sciences at the Microscale Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Yang Lu
- School of Chemistry and Chemical Engineering Hefei University of Technology Hefei 230009 China
| | - Hongcui Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases the First Affiliated Hospital School of Medicine Zhejiang University Hangzhou 310003 China
| | - Dokyoon Kim
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering Seoul National University Seoul 08826 Republic of Korea
| | - Jihong Sun
- Department of Radiology Sir Run Run Shaw Hospital School of Medicine Zhejiang University Hangzhou 310016 China
| | - Taeghwan Hyeon
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering Seoul National University Seoul 08826 Republic of Korea
| | - Jianqing Gao
- College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine Zhejiang University Hangzhou 310058 China
| | - Daishun Ling
- College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 China
- Key Laboratory of Biomedical Engineering of the Ministry of Education College of Biomedical Engineering & Instrument Science Zhejiang University Hangzhou 310027 China
- Hangzhou Institute of Innovative Medicine Zhejiang University Hangzhou 310012 China
| |
Collapse
|
22
|
One-pot synthesis of hydrophilic flower-shaped iron oxide nanoclusters (IONCs) based ferrofluids for magnetic fluid hyperthermia applications. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.11.108] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Smolková B, Uzhytchak M, Lynnyk A, Kubinová Š, Dejneka A, Lunov O. A Critical Review on Selected External Physical Cues and Modulation of Cell Behavior: Magnetic Nanoparticles, Non-thermal Plasma and Lasers. J Funct Biomater 2018; 10:jfb10010002. [PMID: 30586923 PMCID: PMC6463085 DOI: 10.3390/jfb10010002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/13/2018] [Accepted: 12/21/2018] [Indexed: 12/18/2022] Open
Abstract
Physics-based biomedical approaches have proved their importance for the advancement of medical sciences and especially in medical diagnostics and treatments. Thus, the expectations regarding development of novel promising physics-based technologies and tools are very high. This review describes the latest research advances in biomedical applications of external physical cues. We overview three distinct topics: using high-gradient magnetic fields in nanoparticle-mediated cell responses; non-thermal plasma as a novel bactericidal agent; highlights in understanding of cellular mechanisms of laser irradiation. Furthermore, we summarize the progress, challenges and opportunities in those directions. We also discuss some of the fundamental physical principles involved in the application of each cue. Considerable technological success has been achieved in those fields. However, for the successful clinical translation we have to understand the limitations of technologies. Importantly, we identify the misconceptions pervasive in the discussed fields.
Collapse
Affiliation(s)
- Barbora Smolková
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic.
| | - Mariia Uzhytchak
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic.
| | - Anna Lynnyk
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic.
| | - Šárka Kubinová
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic.
- Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic.
| | - Alexandr Dejneka
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic.
| | - Oleg Lunov
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic.
| |
Collapse
|
24
|
Sahle FF, Gulfam M, Lowe TL. Design strategies for physical-stimuli-responsive programmable nanotherapeutics. Drug Discov Today 2018; 23:992-1006. [PMID: 29653291 PMCID: PMC6195679 DOI: 10.1016/j.drudis.2018.04.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 03/31/2018] [Accepted: 04/04/2018] [Indexed: 12/22/2022]
Abstract
Nanomaterials that respond to externally applied physical stimuli such as temperature, light, ultrasound, magnetic field and electric field have shown great potential for controlled and targeted delivery of therapeutic agents. However, the body of literature on programming these stimuli-responsive nanomaterials to attain the desired level of pharmacologic responses is still fragmented and has not been systematically reviewed. The purpose of this review is to summarize and synthesize the literature on various design strategies for simple and sophisticated programmable physical-stimuli-responsive nanotherapeutics.
Collapse
Affiliation(s)
- Fitsum Feleke Sahle
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Muhammad Gulfam
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Tao L Lowe
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA.
| |
Collapse
|
25
|
Systematic investigations on heating effects of carboxyl-amine functionalized superparamagnetic iron oxide nanoparticles (SPIONs) based ferrofluids for in vitro cancer hyperthermia therapy. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.02.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Hu Y, Mignani S, Majoral JP, Shen M, Shi X. Construction of iron oxide nanoparticle-based hybrid platforms for tumor imaging and therapy. Chem Soc Rev 2018; 47:1874-1900. [DOI: 10.1039/c7cs00657h] [Citation(s) in RCA: 229] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review highlights the most recent progress in the construction of iron oxide nanoparticle-based hybrid platforms for tumor imaging and therapy.
Collapse
Affiliation(s)
- Yong Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| | - Serge Mignani
- PRES Sorbonne Paris Cité
- CNRS UMR 860
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique
- Université Paris Descartes
- Paris
| | | | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| |
Collapse
|
27
|
Abstract
Although viral vectors comprise the majority of gene delivery vectors, their various safety, production, and other practical concerns have left a research gap to be addressed. The non-viral vector space encompasses a growing variety of physical and chemical methods capable of gene delivery into the nuclei of target cells. Major physical methods described in this chapter are microinjection, electroporation, and ballistic injection, magnetofection, sonoporation, optical transfection, and localized hyperthermia. Major chemical methods described in this chapter are lipofection, polyfection, gold complexation, and carbon-based methods. Combination approaches to improve transfection efficiency or reduce immunological response have shown great promise in expanding the scope of non-viral gene delivery.
Collapse
Affiliation(s)
- Chi Hong Sum
- University of Waterloo, School of Pharmacy, Waterloo, ON, Canada
| | | | - Shirley Wong
- University of Waterloo, School of Pharmacy, Waterloo, ON, Canada
| | | |
Collapse
|
28
|
Systematic magnetic fluid hyperthermia studies of carboxyl functionalized hydrophilic superparamagnetic iron oxide nanoparticles based ferrofluids. J Colloid Interface Sci 2017; 514:534-543. [PMID: 29289736 DOI: 10.1016/j.jcis.2017.12.064] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/05/2017] [Accepted: 12/22/2017] [Indexed: 10/18/2022]
Abstract
We have systematically studied heating efficiencies (via specific absorption rate-SAR/intrinsic loss power-ILP) of carboxyl (terephthalic acid-TA) functionalized hydrophilic SPIONs based ferrofluids (with good biocompatibility/high magnetization) and influence of following key factors in magnetic fluid hyperthermia (MFH): (i) alternating magnetic fields (AMFs - H)/frequencies (f) - chosen below/above Hergt's biological safety limit, (ii) concentrations (0.5-8 mg/ml) and (iii) dispersion media (water, a cell-culture medium and triethylene glycol (TEG)) for in vitro cancer therapy. In calorimetric MFH, aqueous ferrofluids have displayed excellent time-dependent temperature rise for the applied AMFs, which resulted in high SAR ranging from 23.4 to 160.7 W/gFe, attributed to the enhanced magnetic responses via π-conjugations of short-chained TA molecules on the surface of SPIONs. Moreover, ILP values up-to 2.5 nHm2/kg (higher than the best commercial ferrofluids) are attained for the aqueous ferrofluids when excited below the recommended safety limit. Besides, the SPIONs dispersed in high viscous TEG have exhibited the highest SAR value (178.8 W/gFe) and reached therapeutic temperatures at faster rates for the lowest concentration due to prominent Neel relaxations. Moreover, these SPIONs have higher killing efficiency towards MCF-7 cancer cells in in vitro studies. Thus, the TA-based ferrofluids have great potential for in vivo/clinical MFH cancer therapies.
Collapse
|
29
|
Mosayebi J, Kiyasatfar M, Laurent S. Synthesis, Functionalization, and Design of Magnetic Nanoparticles for Theranostic Applications. Adv Healthc Mater 2017; 6. [PMID: 28990364 DOI: 10.1002/adhm.201700306] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/14/2017] [Indexed: 12/13/2022]
Abstract
In order to translate nanotechnology into medical practice, magnetic nanoparticles (MNPs) have been presented as a class of non-invasive nanomaterials for numerous biomedical applications. In particular, MNPs have opened a door for simultaneous diagnosis and brisk treatment of diseases in the form of theranostic agents. This review highlights the recent advances in preparation and utilization of MNPs from the synthesis and functionalization steps to the final design consideration in evading the body immune system for therapeutic and diagnostic applications with addressing the most recent examples of the literature in each section. This study provides a conceptual framework of a wide range of synthetic routes classified mainly as wet chemistry, state-of-the-art microfluidic reactors, and biogenic routes, along with the most popular coating materials to stabilize resultant MNPs. Additionally, key aspects of prolonging the half-life of MNPs via overcoming the sequential biological barriers are covered through unraveling the biophysical interactions at the bio-nano interface and giving a set of criteria to efficiently modulate MNPs' physicochemical properties. Furthermore, concepts of passive and active targeting for successful cell internalization, by respectively exploiting the unique properties of cancers and novel targeting ligands are described in detail. Finally, this study extensively covers the recent developments in magnetic drug targeting and hyperthermia as therapeutic applications of MNPs. In addition, multi-modal imaging via fusion of magnetic resonance imaging, and also innovative magnetic particle imaging with other imaging techniques for early diagnosis of diseases are extensively provided.
Collapse
Affiliation(s)
- Jalal Mosayebi
- Department of Mechanical Engineering; Urmia University; Urmia 5756151818 Iran
| | - Mehdi Kiyasatfar
- Department of Mechanical Engineering; Urmia University; Urmia 5756151818 Iran
| | - Sophie Laurent
- Laboratory of NMR and Molecular Imaging; University of Mons; Mons Belgium
| |
Collapse
|
30
|
Price DN, Stromberg LR, Kunda NK, Muttil P. In Vivo Pulmonary Delivery and Magnetic-Targeting of Dry Powder Nano-in-Microparticles. Mol Pharm 2017; 14:4741-4750. [PMID: 29068693 PMCID: PMC5717619 DOI: 10.1021/acs.molpharmaceut.7b00532] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This brief communication evaluates the cytotoxicity and targeting capability of a dry powder chemotherapeutic. Nano-in-microparticles (NIMs) are a dry powder drug delivery vehicle containing superparamagnetic iron oxide nanoparticles (SPIONs) and either doxorubicin (w/w solids) or fluorescent nanospheres (w/v during formulation; as a drug surrogate) in a lactose matrix. In vitro cytotoxicity was evaluated in A549 adenocarcinoma cells using MTS and LDH assays to assess viability and toxicity after 48 h of NIMs exposure. In vivo magnetic-field-dependent targeting of inhaled NIMs was evaluated in a healthy mouse model. Mice were endotracheally administered fluorescently labeled NIMs either as a dry powder or a liquid aerosol in the presence of an external magnet placed over the left lung. Quantification of fluorescence and iron showed a significant increase in both fluorescence intensity and iron content to the left magnetized lung. In comparison, we observed decreased targeting of fluorescent nanospheres to the left lung from an aerosolized liquid suspension, due to the dissociation of SPIONs and nanoparticles during pulmonary administration. We conclude that dry powder NIMs maintain the therapeutic cytotoxicity of doxorubicin and can be better targeted to specific regions of the lung in the presence of a magnetic field, compared to a liquid suspension.
Collapse
Affiliation(s)
- Dominique N Price
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center , Albuquerque, New Mexico 87131, United States
| | - Loreen R Stromberg
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center , Albuquerque, New Mexico 87131, United States.,Department of Mechanical Engineering, Iowa State University , Ames, Iowa 50011, United States
| | - Nitesh K Kunda
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center , Albuquerque, New Mexico 87131, United States
| | - Pavan Muttil
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center , Albuquerque, New Mexico 87131, United States.,The University of New Mexico Comprehensive Cancer Center , Albuquerque, New Mexico 87131, United States
| |
Collapse
|
31
|
Lojk J, Bregar VB, Strojan K, Hudoklin S, Veranič P, Pavlin M, Kreft ME. Increased endocytosis of magnetic nanoparticles into cancerous urothelial cells versus normal urothelial cells. Histochem Cell Biol 2017; 149:45-59. [PMID: 28821965 DOI: 10.1007/s00418-017-1605-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2017] [Indexed: 11/28/2022]
Abstract
The blood-urine barrier is the tightest and most impermeable barrier in the body and as such represents a problem for intravesical drug delivery applications. Differentiation-dependent low endocytotic rate of urothelial cells has already been noted; however, the differences in endocytosis of normal and cancer urothelial cells have not been exploited yet. Here we analysed the endocytosis of rhodamine B isothiocyanate-labelled polyacrylic acid-coated cobalt ferrite nanoparticles (NPs) in biomimetic urothelial in vitro models, i.e., in highly and partially differentiated normal urothelial cells, and in cancer cells of the papillary and invasive urothelial neoplasm. We demonstrated that NPs enter papillary and invasive urothelial neoplasm cells by ruffling of the plasma membrane and engulfment of NP aggregates by macropinocytotic mechanism. Transmission electron microscopy (TEM) and spectrophotometric analyses showed that the efficacy of NPs delivery into normal urothelial cells and intercellular space is largely restricted, while it is significantly higher in cancer urothelial cells. Moreover, we showed that the quantification of fluorescent NP internalization in cells or tissues based on fluorescence detection could be misleading and overestimated without TEM analysis. Our findings contribute to the understanding of endocytosis-mediated cellular uptake of NPs in cancer urothelial cells and reveal a highly selective mechanism to distinguish cancer and normal urothelial cells.
Collapse
Affiliation(s)
- Jasna Lojk
- Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, Trzaska cesta 25, 1000, Ljubljana, Slovenia.,Faculty of Medicine, Institute of Cell Biology, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| | - Vladimir Boštjan Bregar
- Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, Trzaska cesta 25, 1000, Ljubljana, Slovenia
| | - Klemen Strojan
- Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, Trzaska cesta 25, 1000, Ljubljana, Slovenia
| | - Samo Hudoklin
- Faculty of Medicine, Institute of Cell Biology, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| | - Peter Veranič
- Faculty of Medicine, Institute of Cell Biology, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| | - Mojca Pavlin
- Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, Trzaska cesta 25, 1000, Ljubljana, Slovenia. .,Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, Ljubljana, Slovenia.
| | - Mateja Erdani Kreft
- Faculty of Medicine, Institute of Cell Biology, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia.
| |
Collapse
|
32
|
Hatakeyama H. Recent Advances in Endogenous and Exogenous Stimuli-Responsive Nanocarriers for Drug Delivery and Therapeutics. Chem Pharm Bull (Tokyo) 2017; 65:612-617. [PMID: 28674332 DOI: 10.1248/cpb.c17-00068] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Significant progress has been achieved in the development of stimuli-responsive nanocarriers for drug delivery, diagnosis, and therapy. Various types of triggers are utilized in the development of nanocarrier delivery. Endogenous factors such as changes in pH, redox, gradient, and enzyme concentration which are linked to disease progression have been utilized for controlling biodistribution and releasing drugs from nanocarriers, as well as increasing subsequent pharmacological activity at the disease site. Nanocarriers which respond to artificially-induced exogenous factors (such as temperature, light, magnetic field, and ultrasound) have also been developed. This review aims to discuss recent advances in the design of stimuli-responsive nanocarriers which appear to have a promising future in medicine.
Collapse
Affiliation(s)
- Hiroto Hatakeyama
- Laboratory of Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University
| |
Collapse
|
33
|
Affiliation(s)
- Anjusha Mohan
- Centre for Nanosciences and Molecular Medicine, School of Medicine, Amrita University, Kochi campus, India
| | - Shantikumar V. Nair
- Centre for Nanosciences and Molecular Medicine, School of Medicine, Amrita University, Kochi campus, India
| | - Vinoth-Kumar Lakshmanan
- Centre for Nanosciences and Molecular Medicine, School of Medicine, Amrita University, Kochi campus, India
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, Republic of Korea
| |
Collapse
|
34
|
Chakraborty S, Dhakshinamurthy GS, Misra SK. Tailoring of physicochemical properties of nanocarriers for effective anti-cancer applications. J Biomed Mater Res A 2017. [PMID: 28643475 DOI: 10.1002/jbm.a.36141] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Nanotechnology has emerged strongly as a viable option to overcome the challenge of early diagnosis and effective drug delivery, for cancer treatment. Emerging research articles have expounded the advantages of using a specific type of nanomaterial-based system called as "nanocarriers," for anti-cancer therapy. The nanocarrier system is used as a transport unit for targeted drug delivery of the therapeutic drug moiety. In order for the nanocarriers to be effective for anticancer therapy, their physicochemical parameter needs to be tuned so that bio-functionalisation can be achieved to (1) allow drugs being attached to the substrate and for their controlled release, (2) ensure the stability of the nanocarrier up to the point of delivery, and (3) clearance of the nanocarrier after the delivery. It is therefore envisaged that tailoring of the physicochemical properties of nanocarriers can greatly influence their reactivity and interaction in the biological milieu, and this is becoming an important parameter for increasing the efficacy of cancer therapy. This review emphasizes the importance of physicochemical properties of nanocarriers, and how they influence its usage as chemotherapeutic drug carriers. The goal of this review is to present a correlation between the physicochemical properties of the nanocarriers and its intended action, and how their design based on these properties can enhance their cancer combating abilities while minimizing damage to the healthy tissues. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2906-2928, 2017.
Collapse
Affiliation(s)
- Swaroop Chakraborty
- Biological Engineering, Indian Institute of Technology-Gandhinagar, Ahmedabad, 382424, India
| | | | - Superb K Misra
- Materials Science and Engineering, Indian Institute of Technology-Gandhinagar, Ahmedabad, 382424, India
| |
Collapse
|
35
|
Strojan K, Lojk J, Bregar VB, Veranič P, Pavlin M. Glutathione reduces cytotoxicity of polyethyleneimine coated magnetic nanoparticles in CHO cells. Toxicol In Vitro 2017; 41:12-20. [DOI: 10.1016/j.tiv.2017.02.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/13/2017] [Accepted: 02/14/2017] [Indexed: 01/27/2023]
|
36
|
Lojk J, Prpar Mihevc S, Bregar VB, Pavlin M, Rogelj B. The Effect of Different Types of Nanoparticles on FUS and TDP-43 Solubility and Subcellular Localization. Neurotox Res 2017; 32:325-339. [PMID: 28444573 DOI: 10.1007/s12640-017-9734-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 04/03/2017] [Accepted: 04/05/2017] [Indexed: 11/25/2022]
Abstract
Increased environmental pollution has been suggested as one of the possible causes for increased incidence of neurodegenerative and developmental disorders. Through the environmental pollution, everyday consumer products and nanomedical applications, we are also exposed to various nanoparticles (NPs). Specific types of NPs have been shown to be able to cause neural damage in vivo through processes such as disruption of the blood-brain barrier, induction of neuroinflammation, increase in oxidative stress and protein aggregation. In this study, we analysed the influence of PEI-coated magnetic NPs designed for biotechnological applications and industrial SiO2, TiO2 N and TiO2 P25 NPs on intracellular localization and solubility of fused in farcoma (FUS) and TAR-DNA binding protein 43 (TDP-43) that are important pathological hallmarks of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). SH-SY5Y neuroblastoma cells and B16 mouse melanoma cells were exposed to NPs for 24 h and analysed using confocal microscopy and Western blot. Exposure to 50 μg/ml TiO2 N and 4 μg/ml PEI NPs in SH-SY5Y cells caused cell toxicity-induced changes in expression in different biochemical/cellular fractions for both FUS and TDP-43 proteins. TiO2 N induced a drop in nuclear levels of TDP-43 and increase in cytoplasmic levels of FUS, while PEI NPs increased nuclear levels of FUS. Furthermore, TiO2 N and PEI induced a reduction of FUS and TDP-43 quantity in the less soluble urea fraction. No formation of stress granules was observed. These results demonstrate that TiO2 N and PEI NPs can affect the behaviour of FUS and TDP-43 proteins; however, the changes were relatively minor compared to pathological changes even for the high NP concentrations (50 μg/ml) used in this study.
Collapse
Affiliation(s)
- Jasna Lojk
- Biomedical Research Institute (BRIS), Puhova 10, 1000, Ljubljana, Slovenia.,Faculty of Electrical Engineering, University of Ljubljana, Trzaska cesta 25, 1000, Ljubljana, Slovenia
| | - Sonja Prpar Mihevc
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Vladimir Boštjan Bregar
- Faculty of Electrical Engineering, University of Ljubljana, Trzaska cesta 25, 1000, Ljubljana, Slovenia
| | - Mojca Pavlin
- Faculty of Electrical Engineering, University of Ljubljana, Trzaska cesta 25, 1000, Ljubljana, Slovenia. .,Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia.
| | - Boris Rogelj
- Biomedical Research Institute (BRIS), Puhova 10, 1000, Ljubljana, Slovenia. .,Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia. .,Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia.
| |
Collapse
|
37
|
Degradable Polyethylenimine-Based Gene Carriers for Cancer Therapy. Top Curr Chem (Cham) 2017; 375:34. [DOI: 10.1007/s41061-017-0124-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 02/20/2017] [Indexed: 12/22/2022]
|
38
|
Lojk J, Strojan K, Miš K, Bregar BV, Hafner Bratkovič I, Bizjak M, Pirkmajer S, Pavlin M. Cell stress response to two different types of polymer coated cobalt ferrite nanoparticles. Toxicol Lett 2017; 270:108-118. [DOI: 10.1016/j.toxlet.2017.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 01/09/2017] [Accepted: 02/07/2017] [Indexed: 10/20/2022]
|
39
|
Tiptiri-Kourpeti A, Spyridopoulou K, Pappa A, Chlichlia K. DNA vaccines to attack cancer: Strategies for improving immunogenicity and efficacy. Pharmacol Ther 2016; 165:32-49. [DOI: 10.1016/j.pharmthera.2016.05.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
40
|
Czugala M, Mykhaylyk O, Böhler P, Onderka J, Stork B, Wesselborg S, Kruse FE, Plank C, Singer BB, Fuchsluger TA. Efficient and safe gene delivery to human corneal endothelium using magnetic nanoparticles. Nanomedicine (Lond) 2016; 11:1787-800. [DOI: 10.2217/nnm-2016-0144] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aim: To develop a safe and efficient method for targeted, anti-apoptotic gene therapy of corneal endothelial cells (CECs). Materials & methods: Magnetofection (MF), a combination of lipofection with magnetic nanoparticles (MNPs; PEI-Mag2, SO-Mag5, PalD1-Mag1), was tested in human CECs and in explanted human corneas. Effects on cell viability and function were investigated. Immunocompatibility was assessed in human peripheral blood mononuclear cells. Results: Silica iron-oxide MNPs (SO-Mag5) combined with X-tremeGENE-HP achieved high transfection efficiency in human CECs and explanted human corneas, without altering cell viability or function. Magnetofection caused no immunomodulatory effects in human peripheral blood mononuclear cells. Magnetofection with anti-apoptotic P35 gene effectively blocked apoptosis in CECs. Conclusion: Magnetofection is a promising tool for gene therapy of corneal endothelial cells with potential for targeted on-site delivery.
Collapse
Affiliation(s)
- Marta Czugala
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Institute of Anatomy, University Duisburg-Essen, Essen, Germany
| | - Olga Mykhaylyk
- Institute of Immunology & Experimental Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Philip Böhler
- Institute of Molecular Medicine I, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jasmine Onderka
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Björn Stork
- Institute of Molecular Medicine I, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sebastian Wesselborg
- Institute of Molecular Medicine I, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Friedrich E Kruse
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Plank
- Institute of Immunology & Experimental Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | | | - Thomas A Fuchsluger
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
41
|
Prosen L, Hudoklin S, Cemazar M, Stimac M, Lampreht Tratar U, Ota M, Scancar J, Romih R, Sersa G. Magnetic field contributes to the cellular uptake for effective therapy with magnetofection using plasmid DNA encoding against Mcam in B16F10 melanoma in vivo. Nanomedicine (Lond) 2016; 11:627-41. [PMID: 27021639 DOI: 10.2217/nnm.16.4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AIM We explored the distribution and cellular uptake of intratumorally injected SPIONs-PAA-PEI-pDNA (magnetofection complexes), and antitumor effectiveness of magnetofection with plasmid DNA encoding short hairpin RNA (shRNA) against Mcam (pDNA(anti-MCAM)). MATERIALS & METHODS Analyses were made based on the histology, ultrastructure and quantitative measurements of magnetofection complexes, and quantification of the antitumor effectiveness in B16F10 melanoma in vivo. RESULTS Injected magnetofection complexes were distributed around the injection site. Exposure of tumors to external magnetic field contributed to the uptake of magnetofection complexes from extracellular matrix into melanoma cells. Three consecutive magnetofections of tumors with pDNA(anti-MCAM) resulted in significant reduction of tumor volume. CONCLUSION Magnetofection is effective for gene delivery to melanoma tumors, but requires a magnetic field for cellular uptake and antitumor effect.
Collapse
Affiliation(s)
- Lara Prosen
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia
| | - Samo Hudoklin
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia.,Faculty of Health Sciences, University of Primorska, Polje 42, SI-6310 Izola, Slovenia
| | - Monika Stimac
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia
| | - Ursa Lampreht Tratar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia
| | - Maja Ota
- Department of Pathology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia
| | - Janez Scancar
- Department of Environmental Sciences, Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Rok Romih
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
42
|
Wang Z, Wu H, Shi H, Wang M, Huang C, Jia N. A novel multifunctional biomimetic Au@BSA nanocarrier as a potential siRNA theranostic nanoplatform. J Mater Chem B 2016; 4:2519-2526. [DOI: 10.1039/c5tb02326b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A novel siRNA nanocarrier based on biomimetic Au@BSA nanoflowers is fabricated which could serve as a potential theranostic nanoplatform.
Collapse
Affiliation(s)
- Zhiming Wang
- The Education Ministry Key Laboratory of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors
- Department of Chemistry
- Shanghai Normal University
- Shanghai 200234
| | - Hui Wu
- The Education Ministry Key Laboratory of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors
- Department of Chemistry
- Shanghai Normal University
- Shanghai 200234
| | - Hongyuan Shi
- Department of Radiology
- Ruijin Hospital
- School of Medicine
- Shanghai Jiaotong University
- Shanghai 200025
| | - Mingliang Wang
- Department of Radiology
- Zhongshan Hospital
- School of Medicine
- Fudan University
- Shanghai 200032
| | - Chusen Huang
- The Education Ministry Key Laboratory of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors
- Department of Chemistry
- Shanghai Normal University
- Shanghai 200234
| | - Nengqin Jia
- The Education Ministry Key Laboratory of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors
- Department of Chemistry
- Shanghai Normal University
- Shanghai 200234
| |
Collapse
|
43
|
Bohara RA, Thorat ND, Pawar SH. Role of functionalization: strategies to explore potential nano-bio applications of magnetic nanoparticles. RSC Adv 2016. [DOI: 10.1039/c6ra02129h] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Strategies to bridge the gap between magnetic nanoparticles for their nano bio applications.
Collapse
Affiliation(s)
| | | | - Shivaji H. Pawar
- Centre for Interdisciplinary Research
- D. Y. Patil University
- Kolhapur
- India
| |
Collapse
|
44
|
Kandasamy G, Surendran S, Chakrabarty A, Kale SN, Maity D. Facile synthesis of novel hydrophilic and carboxyl-amine functionalized superparamagnetic iron oxide nanoparticles for biomedical applications. RSC Adv 2016. [DOI: 10.1039/c6ra18567c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We report a one-step facile synthesis of novel water-soluble and functionalized SPIONs, which could be promising candidates for cancer theranostics.
Collapse
Affiliation(s)
| | | | | | - S. N. Kale
- Department of Applied Physics
- Defence Institute of Advanced Technology
- Pune 411025
- India
| | - Dipak Maity
- Department of Mechanical Engineering
- Shiv Nadar University
- India
| |
Collapse
|
45
|
Kandasamy G, Maity D. Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics. Int J Pharm 2015; 496:191-218. [PMID: 26520409 DOI: 10.1016/j.ijpharm.2015.10.058] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 12/15/2022]
Abstract
Recently superparamagnetic iron oxide nanoparticles (SPIONs) have been extensively used in cancer therapy and diagnosis (theranostics) via magnetic targeting, magnetic resonance imaging, etc. due to their remarkable magnetic properties, chemical stability, and biocompatibility. However, the magnetic properties of SPIONs are influenced by various physicochemical and synthesis parameters. So, this review mainly focuses on the influence of spin canting effects, introduced by the variations in size, shape, and organic/inorganic surface coatings, on the magnetic properties of SPIONs. This review also describes the several predominant chemical synthesis procedures and role of the synthesis parameters for monitoring the size, shape, crystallinity and composition of the SPIONs. Moreover, this review discusses about the latest developments of the inorganic materials and organic polymers for encapsulation of the SPIONs. Finally, the most recent advancements of the SPIONs and their nanopackages in combination with other imaging/therapeutic agents have been comprehensively discussed for their effective usage as in vitro and in vivo theranostic agents in cancer treatments.
Collapse
Affiliation(s)
- Ganeshlenin Kandasamy
- Nanomaterials Lab, Department of Mechanical Engineering, Shiv Nadar University, Uttar Pradesh 201314, India
| | - Dipak Maity
- Nanomaterials Lab, Department of Mechanical Engineering, Shiv Nadar University, Uttar Pradesh 201314, India.
| |
Collapse
|
46
|
Kim M, Lin MM, Sohn Y, Kim J, Kang BS, Kim DK. Polyethyleneimine‐associated polycaprolactone—Superparamagnetic iron oxide nanoparticles as a gene delivery vector. J Biomed Mater Res B Appl Biomater 2015; 105:145-154. [DOI: 10.1002/jbm.b.33519] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 08/17/2015] [Accepted: 08/23/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Min‐Cheol Kim
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridge Massachusetts02139
| | - Meng Meng Lin
- Department of Chemical EngineeringTsinghua UniversityBeijing100084 People's Republic of China
| | - Youngjoo Sohn
- Department of Anatomy, College of Korean MedicineKyung Hee UniversitySeoul130‐701 South Korea
| | - Jwa‐Jin Kim
- Department of Anatomy, College of MedicineKonyang UniversityDaejeon302‐718 South Korea
| | - Bo Sun Kang
- Department of Radiological ScienceKonyang UniversityDaejeon302‐718 South Korea
| | - Do Kyung Kim
- Department of Pharmacology, College of MedicineKonyang UniversityDaejeon302‐718 South Korea
| |
Collapse
|
47
|
Tracking Transplanted Stem Cells Using Magnetic Resonance Imaging and the Nanoparticle Labeling Method in Urology. BIOMED RESEARCH INTERNATIONAL 2015; 2015:231805. [PMID: 26413510 PMCID: PMC4564577 DOI: 10.1155/2015/231805] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 03/10/2015] [Accepted: 03/17/2015] [Indexed: 12/23/2022]
Abstract
A reliable in vivo imaging method to localize transplanted cells and monitor their viability would enable a systematic investigation of cell therapy. Most stem cell transplantation studies have used immunohistological staining, which does not provide information about the migration of transplanted cells in vivo in the same host. Molecular imaging visualizes targeted cells in a living host, which enables determining the biological processes occurring in transplanted stem cells. Molecular imaging with labeled nanoparticles provides the opportunity to monitor transplanted cells noninvasively without sacrifice and to repeatedly evaluate them. Among several molecular imaging techniques, magnetic resonance imaging (MRI) provides high resolution and sensitivity of transplanted cells. MRI is a powerful noninvasive imaging modality with excellent image resolution for studying cellular dynamics.
Several types of nanoparticles including superparamagnetic iron oxide nanoparticles and magnetic nanoparticles have been used to magnetically label stem cells and monitor viability by MRI in the urologic field. This review focuses on the current role and limitations of MRI with labeled nanoparticles for tracking transplanted stem cells in urology.
Collapse
|
48
|
Demirer GS, Okur AC, Kizilel S. Synthesis and design of biologically inspired biocompatible iron oxide nanoparticles for biomedical applications. J Mater Chem B 2015; 3:7831-7849. [PMID: 32262898 DOI: 10.1039/c5tb00931f] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
During the last couple of decades considerable research efforts have been directed towards the synthesis and coating of iron oxide nanoparticles (IONPs) for biomedical applications. To address the current limitations, recent studies have focused on the design of new generation nanoparticle systems whose internalization and targeting capabilities have been improved through surface modifications. This review covers the most recent challenges and advances in the development of IONPs with enhanced quality, and biocompatibility for various applications in biotechnology and medicine.
Collapse
Affiliation(s)
- Gozde S Demirer
- Koc University, Chemical and Biological Engineering, Istanbul 34450, Turkey.
| | | | | |
Collapse
|
49
|
Licciardi M, Li Volsi A, Sardo C, Mauro N, Cavallaro G, Giammona G. Inulin-Ethylenediamine Coated SPIONs Magnetoplexes: A Promising Tool for Improving siRNA Delivery. Pharm Res 2015; 32:3674-87. [PMID: 26085039 DOI: 10.1007/s11095-015-1726-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/26/2015] [Indexed: 01/19/2023]
Abstract
PURPOSE An inulin based polycation (Inu-EDA) has been synthesized by the grafting of ethylenediamine molecules onto inulin backbone. The obtained inulin copolymer has been though to coat SPIONs (IC-SPIONs) and obtain stable magnetoplexes by complexation of IC-SPIONs with a model duplexed siRNA, for improving oligonucleotide transfection efficiency. METHODS The physical-chemical characteristics of IC-SPIONs and IC-SPIONs/siRNA magnetoplexes have been investigated by scanning and transmission electron microscopies, dynamic light scattering, FT-IR and qualitative surface elementary analysis. Cell compatibility and internalization in vitro of IC-SPIONs have been evaluated by MTS and fluorescence microscopy respectively on cancer (HCT116) and normal human (16HBE) cells. The efficiency of gene silencing effect of magnetoplexes was studied on both tumoral (JHH6) and non tumoral (16HBE) cell lines also by applying an external magnet. RESULTS IC-SPIONs showed dimension of 30 nm and resulted cytocompatible on the tested cell lines; in the presence of an external magnet, the magnetic force enhanced the IC-SPIONs uptake inside cells. Magnetically improved transfection was observed in 16HBE cells under magnetofective conditions, in accordance with the IC-SPIONs uptake enhancement in the presence of an external magnet. CONCLUSIONS These findings support the potential application of this system as a magnetically targeted drug delivery system. Graphical Abstract Magnetically improved siRNA transfection in cells under magnetofective conditions upon uptake enhancement of IC-SPIONs in the presence of an external magnet.
Collapse
Affiliation(s)
- Mariano Licciardi
- Department of Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), University of Palermo, Palermo, Italy.
- Mediterranean Center for Human Health Advanced Biotechnologies (Med-CHAB), Palermo, Italy.
- Laboratory of Biocompatible Polymers, Department of Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), University of Palermo, Via Archirafi, 32 90123, Palermo, Italy.
| | - Anna Li Volsi
- Department of Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), University of Palermo, Palermo, Italy
| | - Carla Sardo
- Department of Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), University of Palermo, Palermo, Italy
| | - Nicolò Mauro
- Department of Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), University of Palermo, Palermo, Italy
| | - Gennara Cavallaro
- Department of Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), University of Palermo, Palermo, Italy
| | - Gaetano Giammona
- Department of Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), University of Palermo, Palermo, Italy
- Mediterranean Center for Human Health Advanced Biotechnologies (Med-CHAB), Palermo, Italy
| |
Collapse
|
50
|
Markelc B, Skvarca E, Dolinsek T, Kloboves VP, Coer A, Sersa G, Cemazar M. Inhibitor of endocytosis impairs gene electrotransfer to mouse muscle in vivo. Bioelectrochemistry 2015; 103:111-9. [DOI: 10.1016/j.bioelechem.2014.08.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 08/01/2014] [Accepted: 08/12/2014] [Indexed: 01/22/2023]
|