1
|
Udupi A, Shetty S, Aranjani JM, Kumar R, Bharati S. Anticancer therapeutic potential of multimodal targeting agent- "phosphorylated galactosylated chitosan coated magnetic nanoparticles" against N-nitrosodiethylamine-induced hepatocellular carcinoma. Drug Deliv Transl Res 2025; 15:1023-1042. [PMID: 38990437 PMCID: PMC11782354 DOI: 10.1007/s13346-024-01655-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2024] [Indexed: 07/12/2024]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) are extensively used as carriers in targeted drug delivery and has several advantages in the field of magnetic hyperthermia, chemodynamic therapy and magnet assisted radionuclide therapy. The characteristics of SPIONs can be tailored to deliver drugs into tumor via "passive targeting" and they can also be coated with tissue-specific agents to enhance tumor uptake via "active targeting". In our earlier studies, we developed HCC specific targeting agent- "phosphorylated galactosylated chitosan"(PGC) for targeting asialoglycoprotein receptors. Considering their encouraging results, in this study we developed a multifunctional targeting system- "phosphorylated galactosylated chitosan-coated magnetic nanoparticles"(PGCMNPs) for targeting HCC. PGCMNPs were synthesized by co-precipitation method and characterized by DLS, XRD, TEM, VSM, elemental analysis and FT-IR spectroscopy. PGCMNPs were evaluated for in vitro antioxidant properties, uptake in HepG2 cells, biodistribution, in vivo toxicity and were also evaluated for anticancer therapeutic potential against NDEA-induced HCC in mice model in terms of tumor status, electrical properties, antioxidant defense status and apoptosis. The characterization studies confirmed successful formation of PGCMNPs with superparamagnetic properties. The internalization studies demonstrated (99-100)% uptake of PGCMNPs in HepG2 cells. These results were also supported by biodistribution studies in which increased iron content (296%) was noted inside the hepatocytes. Further, PGCMNPs exhibited no in vivo toxicity. The anticancer therapeutic potential was evident from observation that PGCMNPs treatment decreased tumor bearing animals (41.6%) and significantly (p ≤ 0.05) lowered tumor multiplicity. Overall, this study indicated that PGCMNPs with improved properties are efficiently taken-up by hepatoma cells and has therapeutic potential against HCC. Further, this agent can be tagged with 32P and hence can offer multimodal cancer treatment options via radiation ablation as well as magnetic hyperthermia.
Collapse
Affiliation(s)
- Anushree Udupi
- Department of Nuclear Medicine, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sachin Shetty
- Department of Nuclear Medicine, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Jesil Mathew Aranjani
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Rajesh Kumar
- Department of Nuclear Medicine, All India Institute of Medical Sciences, Jodhpur, 342005, Rajasthan, India
| | - Sanjay Bharati
- Department of Nuclear Medicine, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
2
|
Zheng JJ, Li QZ, Wang Z, Wang X, Zhao Y, Gao X. Computer-aided nanodrug discovery: recent progress and future prospects. Chem Soc Rev 2024; 53:9059-9132. [PMID: 39148378 DOI: 10.1039/d3cs00575e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Nanodrugs, which utilise nanomaterials in disease prevention and therapy, have attracted considerable interest since their initial conceptualisation in the 1990s. Substantial efforts have been made to develop nanodrugs for overcoming the limitations of conventional drugs, such as low targeting efficacy, high dosage and toxicity, and potential drug resistance. Despite the significant progress that has been made in nanodrug discovery, the precise design or screening of nanomaterials with desired biomedical functions prior to experimentation remains a significant challenge. This is particularly the case with regard to personalised precision nanodrugs, which require the simultaneous optimisation of the structures, compositions, and surface functionalities of nanodrugs. The development of powerful computer clusters and algorithms has made it possible to overcome this challenge through in silico methods, which provide a comprehensive understanding of the medical functions of nanodrugs in relation to their physicochemical properties. In addition, machine learning techniques have been widely employed in nanodrug research, significantly accelerating the understanding of bio-nano interactions and the development of nanodrugs. This review will present a summary of the computational advances in nanodrug discovery, focusing on the understanding of how the key interfacial interactions, namely, surface adsorption, supramolecular recognition, surface catalysis, and chemical conversion, affect the therapeutic efficacy of nanodrugs. Furthermore, this review will discuss the challenges and opportunities in computer-aided nanodrug discovery, with particular emphasis on the integrated "computation + machine learning + experimentation" strategy that can potentially accelerate the discovery of precision nanodrugs.
Collapse
Affiliation(s)
- Jia-Jia Zheng
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | - Qiao-Zhi Li
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | - Zhenzhen Wang
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | - Xiaoli Wang
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yuliang Zhao
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | - Xingfa Gao
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| |
Collapse
|
3
|
Nieves Lira C, Carpenter AP, Baio JE, Harper BJ, Harper SL, Mackiewicz MR. Size- and Shape-Dependent Interactions of Lipid-Coated Silver Nanoparticles: An Improved Mechanistic Understanding through Model Cell Membranes and In Vivo Toxicity. Chem Res Toxicol 2024; 37:968-980. [PMID: 38743843 DOI: 10.1021/acs.chemrestox.4c00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The widespread use of silver nanoparticles (AgNPs) in various applications and industries has brought to light the need for understanding the complex relationship between the physicochemical properties (shape, size, charge, and surface chemistry) of AgNPs that affect their ability to enter cells and cause toxicity. To evaluate their toxicological outcomes, this study systematically analyzed a series of homogeneous hybrid lipid-coated AgNPs spanning sizes from 5 to 100 nm with diverse shapes (spheres, triangles, and cubes). The hybrid lipid membrane comprises hydrogenated phosphatidylcholine (HPC), sodium oleate (SOA), and hexanethiol (HT), which shield the AgNP surface from surface oxidation and toxic Ag+ ion release to minimize its contribution to toxicity. To reduce any significant effects by surface chemistry, the HPC, SOA, and HT membrane composition ratio was kept constant, and the AgNPs were assessed using embryonic zebrafish (Danio rerio). While a direct comparison cannot be drawn due to the lack of complementary sizes below 40 nm for triangular plates and cubes due to synthetic challenges, significant mortality was observed for spherical AgNPs (AgNSs) of 5, 20, 40, and 60 nm at 120 h postfertilization at concentrations ≥6 mg Ag/L. In contrast, the 10, 80, and 100 nm AgNSs, 40, 70, and 100 nm triangular plate AgNPs (AgNPLs), and 55, 75, and 100 nm cubic AgNPs (AgNCs) showed no significant mortality at 5 days postfertilization following exposure to AgNPs at concentrations up to 12 mg Ag/L. With constant surface chemistry on the AgNPs, size is the dominant factor driving toxicological responses, with smaller nanoparticles (5 to 60 nm) being the most toxic. Larger AgNSs, AgNCs, and AgNPLs from 75 to 100 nm do not show any evidence of toxicity. However, when closely examining sizes between 40 and 60 nm for AgNSs, AgNCs, and AgNPLs, there is evidence that discriminates shape as a driver of toxicity since sublethal responses generally were observed to follow a pattern, suggesting toxicity is most significant for AgNSs followed by AgNPLs and then AgNCs, which is the least toxic. Sum frequency generation vibrational spectroscopy showed that irrespective of size or shape, all hybrid lipid-coated AgNPs interact with membrane surfaces and "snorkel" between phases into the lipid monolayer with minimal energetic cost. These findings decisively demonstrate that not only smaller AgNPs but also the shape of the AgNPs influences their biological compatibility.
Collapse
Affiliation(s)
- Citlali Nieves Lira
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Andrew P Carpenter
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331, United States
| | - Joe E Baio
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331, United States
| | - Bryan J Harper
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
| | - Stacey L Harper
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331, United States
- Oregon Nanoscience and Microtechnologies Institute, Corvallis, Oregon 97331, United States
| | - Marilyn R Mackiewicz
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
4
|
Morton W, Vácha R, Angioletti-Uberti S. Valency of Ligand-Receptor Binding from Pair Potentials. J Chem Theory Comput 2024; 20:2901-2907. [PMID: 38516954 PMCID: PMC11008093 DOI: 10.1021/acs.jctc.4c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024]
Abstract
Coarse grained molecular dynamics simulations have been crucial for investigating the dynamics of nanoparticle uptake by cell membranes via ligand-receptor interactions. These models have enabled researchers to evaluate the effects of nanoparticle size, shape, and ligand distribution on cellular uptake. However, when pair potentials are used to represent ligand-receptor interactions, the number of receptors interacting with one ligand, valency, may vary. We demonstrate that the curvature of a nanoparticle, strength of ligand-receptor interactions, and ligand or receptor concentration change the valency, ranging from 3.4 to 5.1 in this study. Such a change in valency can create inaccurate comparisons between nanoparticles or even result in the uptake of smaller nanoparticles than would be expected. To rectify this inconsistency, we propose the adoption of a model based on bond formation and use it to determine the extent to which previous studies may have been affected. This work recommends avoiding pair potentials for modeling ligand-receptor interactions to ensure methodological consistency in nanoparticle studies.
Collapse
Affiliation(s)
- William Morton
- Department
of Materials, Imperial College, London SW7 2AZ, U.K.
| | - Robert Vácha
- CEITEC—Central
European Institute of Technology, Masaryk
University, Brno 62500, Czech Republic
- National
Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno 62500, Czech Republic
- Department
of Condensed Matter Physics, Faculty of Science, Masaryk University, Brno 62500, Czech Republic
| | | |
Collapse
|
5
|
Valiallahi A, Vazifeh Z, Gatabi ZR, Davoudi M, Gatabi IR. PLGA Nanoparticles as New Drug Delivery Systems in Leishmaniasis Chemotherapy: A Review of Current Practices. Curr Med Chem 2024; 31:6371-6392. [PMID: 37612875 DOI: 10.2174/0929867331666230823094737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/03/2023] [Accepted: 07/18/2023] [Indexed: 08/25/2023]
Abstract
Although leishmaniasis is one of the most common parasitic diseases, its traditional treatments suffer from some serious problems. To solve such issues, we can take advantage of the effective nanoparticle-based approaches to deliver anti-leishmanial agents into leishmania-infected macrophages either using passive targeting or using macrophagerelated receptors. Despite the high potential of nanotechnology, Liposomal Amphotericin B (AmBisome®) is the only FDA-approved nanoparticle-based anti-leishmanial therapy. In an effort to find more anti-leishmanial nano-drugs, this 2011-2021 review study aimed to investigate the in-vivo and in-vitro effectiveness of poly (lactic-co-glycolic acid) nanoparticles (PLGA-NPs) in the delivery of some traditional anti-leishmanial drugs. Based on the results, PLGA-NPs could improve solubility, controlled release, trapping efficacy, bioavailability, selectivity, and mucosal penetration of the drugs, while they decreased resistance, dose/duration of administration and organotoxicity of the agents. However, none of these nano-formulations have been able to enter clinical trials so far. We summarized the data about the common problems of anti-leishmanial agents and the positive effects of various PLGA nano-formulations on reducing these drawbacks under both in-vitro and in-vivo conditions in three separate tables. Overall, this study proposes two AmB-loaded PLGA with a 99% reduction in parasite load as promising nanoparticles for further studies.
Collapse
Affiliation(s)
- Alaleh Valiallahi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Zahra Vazifeh
- Department of Biotechnology, Shahed University, Tehran, Iran
| | - Zahra Rezanejad Gatabi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Davoudi
- Department of Clinical Laboratory Sciences, Faculty of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
6
|
Billah MM, Deng H, Dutta P, Liu J. Effects of receptor properties on particle internalization through receptor-mediated endocytosis. SOFT MATTER 2023; 19:5907-5915. [PMID: 37483086 DOI: 10.1039/d3sm00149k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Receptor-mediated endocytosis (RME) is a highly complex process carried out by bioparticles, such as viruses and drug carriers, to enter cells. The discovery of both clathrin-dependent and clathrin-free pathways makes the RME process even more intriguing. Numerical models have been developed to facilitate the exploration of the process. However, the impacts of the receptor properties on RME have been less studied partially due to the oversimplifications of the receptor models. In this paper, we implement a stochastic model to systematically investigate the effects of mechanical (receptor flexure), geometrical (receptor length) and biochemical (ligand-receptor cutoff) properties of receptors, on RME with and without the existence of clathrin. Our simulation results show that the receptor's flexural rigidity plays an important role in RME with clathrin. There is a threshold beyond which particle internalization will not occur. Without clathrin, it is very difficult to achieve complete endocytosis with ligand-receptor interactions alone. A shorter receptor length and longer ligand-receptor reaction cutoff promote the formation of ligand-receptor bonds and facilitate particle internalization. Complete internalization can only be obtained with an extremely short receptor length and long reaction cutoff. Therefore, there are most likely some additional mechanisms to drive the membrane deformation in clathrin-free RME. Our results yield important fundamental insights into RME and provide crucial guidance when correlating the simulation results with experimental observations.
Collapse
Affiliation(s)
- Md Muhtasim Billah
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99163, USA.
| | | | - Prashanta Dutta
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99163, USA.
| | - Jin Liu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99163, USA.
| |
Collapse
|
7
|
Wei Y, Xia X, Li H, Gao H. Influence factors on and potential strategies to amplify receptor-mediated nanodrug delivery across the blood-brain barrier. Expert Opin Drug Deliv 2023; 20:1713-1730. [PMID: 37542516 DOI: 10.1080/17425247.2023.2245332] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/22/2023] [Accepted: 08/03/2023] [Indexed: 08/07/2023]
Abstract
INTRODUCTION A major challenge in treating central nervous system (CNS) disorders is to achieve adequate drug delivery across the blood-brain barrier (BBB). Receptor-mediated nanodrug delivery as a Trojan horse strategy has become an exciting approach. However, these nanodrugs do not accumulate significantly in the brain parenchyma, which greatly limits the therapeutic effect of drugs. Amplifying the efficiency of receptor-mediated nanodrug delivery across the BBB becomes the holy grail in the treatment of CNS disorders. AREAS COVERED In this review, we tend to establish links between dynamic BBB and receptor-mediated nanodrug delivery, starting with the delivery processes across the BBB, describing factors affecting nanodrug delivery efficiency, and summarizing potential strategies that may amplify delivery efficiency. EXPERT OPINION Receptor-mediated nanodrug delivery is a common approach to significantly enhance the efficiency of brain-targeting delivery. As BBB is constantly undergoing changes, it is essential to investigate the impact of diseases on the effectiveness of brain-targeting nanodrug delivery. More critically, there are several barriers to achieving brain-targeting nanodrug delivery in the five stages of receptor-mediated transcytosis (RMT), and the impacts can be conflicting, requiring intricate balance. Further studies are also needed to investigate the material toxicity of nanodrugs to address the issue of clinical translation.
Collapse
Affiliation(s)
- Ya Wei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, P. R. China
| | - Xue Xia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, P. R. China
| | - Hanmei Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, P. R. China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, P. R. China
| |
Collapse
|
8
|
Yan X, Yue T, Winkler DA, Yin Y, Zhu H, Jiang G, Yan B. Converting Nanotoxicity Data to Information Using Artificial Intelligence and Simulation. Chem Rev 2023. [PMID: 37262026 DOI: 10.1021/acs.chemrev.3c00070] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Decades of nanotoxicology research have generated extensive and diverse data sets. However, data is not equal to information. The question is how to extract critical information buried in vast data streams. Here we show that artificial intelligence (AI) and molecular simulation play key roles in transforming nanotoxicity data into critical information, i.e., constructing the quantitative nanostructure (physicochemical properties)-toxicity relationships, and elucidating the toxicity-related molecular mechanisms. For AI and molecular simulation to realize their full impacts in this mission, several obstacles must be overcome. These include the paucity of high-quality nanomaterials (NMs) and standardized nanotoxicity data, the lack of model-friendly databases, the scarcity of specific and universal nanodescriptors, and the inability to simulate NMs at realistic spatial and temporal scales. This review provides a comprehensive and representative, but not exhaustive, summary of the current capability gaps and tools required to fill these formidable gaps. Specifically, we discuss the applications of AI and molecular simulation, which can address the large-scale data challenge for nanotoxicology research. The need for model-friendly nanotoxicity databases, powerful nanodescriptors, new modeling approaches, molecular mechanism analysis, and design of the next-generation NMs are also critically discussed. Finally, we provide a perspective on future trends and challenges.
Collapse
Affiliation(s)
- Xiliang Yan
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Tongtao Yue
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Institute of Coastal Environmental Pollution Control, Ocean University of China, Qingdao 266100, China
| | - David A Winkler
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- School of Pharmacy, University of Nottingham, Nottingham NG7 2QL, U.K
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hao Zhu
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bing Yan
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
9
|
Kumar Y, Sinha ASK, Nigam KDP, Dwivedi D, Sangwai JS. Functionalized nanoparticles: Tailoring properties through surface energetics and coordination chemistry for advanced biomedical applications. NANOSCALE 2023; 15:6075-6104. [PMID: 36928281 DOI: 10.1039/d2nr07163k] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Significant advances in nanoparticle-related research have been made in the past decade, and amelioration of properties is considered of utmost importance for improving nanoparticle bioavailability, specificity, and catalytic performance. Nanoparticle properties can be tuned through in-synthesis and post-synthesis functionalization operations, with thermodynamic and kinetic parameters playing a crucial role. In spite of robust functionalization techniques based on surface chemistry, scalable technologies have not been explored well. The coordination enhancement via surface functionalization through organic/inorganic/biomolecules material has attracted much attention with morphology modification and shape tuning, which are indispensable aspects in the colloidal phase during biomedical applications. It is envisioned that surface amelioration influences the anchoring properties of nano interfaces for the immobilization of functional groups and biomolecules. In this work, various nanostructure and anchoring methodologies have been discussed, aiming to exploit their full potential in precision engineering applications. Simultaneous discussions on emerging characterization strategies for functionalized assemblies have been made to gain insights into functionalization chemistry. An overview of current advances and prospects of functionalized nanoparticles has been presented, with an emphasis on controllable attributes such as size, shape, morphology, functionality, surface features, Debye and Casimir interactions.
Collapse
Affiliation(s)
- Yogendra Kumar
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai - 600036, India.
| | - A S K Sinha
- Department of Chemical Engineering, Rajiv Gandhi Institute of Petroleum Technology, Jais - 229304, India.
| | - K D P Nigam
- Department of Chemical Engineering, Rajiv Gandhi Institute of Petroleum Technology, Jais - 229304, India.
- School of Chemical Engineering, University of Adelaide, North Terrace Campus, Adelaide (SA) 5005, Australia
| | - Deepak Dwivedi
- Department of Chemical Engineering, Rajiv Gandhi Institute of Petroleum Technology, Jais - 229304, India.
| | - Jitendra S Sangwai
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai - 600036, India.
| |
Collapse
|
10
|
Gupta S, Santangelo CD, Patteson AE, Schwarz JM. How cells wrap around virus-like particles using extracellular filamentous protein structures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526272. [PMID: 36778225 PMCID: PMC9915516 DOI: 10.1101/2023.01.30.526272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Nanoparticles, such as viruses, can enter cells via endocytosis. During endocytosis, the cell surface wraps around the nanoparticle to effectively eat it. Prior focus has been on how nanoparticle size and shape impacts endocytosis. However, inspired by the noted presence of extracellular vimentin affecting viral and bacteria uptake, as well as the structure of coronaviruses, we construct a computational model in which both the cell-like construct and the virus-like construct contain filamentous protein structures protruding from their surfaces. We then study the impact of these additional degrees of freedom on viral wrapping. We find that cells with an optimal density of filamentous extracellular components (ECCs) are more likely to be infected as they uptake the virus faster and use relatively less cell surface area per individual virus. At the optimal density, the cell surface folds around the virus, and folds are faster and more efficient at wrapping the virus than crumple-like wrapping. We also find that cell surface bending rigidity helps generate folds, as bending rigidity enhances force transmission across the surface. However, changing other mechanical parameters, such as the stretching stiffness of filamentous ECCs or virus spikes, can drive crumple-like formation of the cell surface. We conclude with the implications of our study on the evolutionary pressures of virus-like particles, with a particular focus on the cellular microenvironment that may include filamentous ECCs.
Collapse
Affiliation(s)
- Sarthak Gupta
- Physics Department and BioInspired Institute, Syracuse University Syracuse, NY USA
| | | | - Alison E Patteson
- Physics Department and BioInspired Institute, Syracuse University Syracuse, NY USA
| | - J M Schwarz
- Physics Department and BioInspired Institute, Syracuse University Syracuse, NY USA
- Indian Creek Farm, Ithaca, NY USA
| |
Collapse
|
11
|
Development of a liquid chromatography-tandem mass spectrometry method for the analysis of docetaxel-loaded Poly(lactic-co-glycolic acid) nanoparticles. J Pharm Biomed Anal 2023; 223:115114. [DOI: 10.1016/j.jpba.2022.115114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 10/11/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
|
12
|
He J, Pang W, Gu B, Lin X, Ye J. The stiffness-dependent tumor cell internalization of liquid metal nanoparticles. NANOSCALE 2022; 14:16902-16917. [PMID: 36342434 DOI: 10.1039/d2nr04293b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The properties of nanoparticle (NP) carriers, such as size, shape and surface state, have been proven to dramatically affect their uptake by tumor cells, thereby influencing and determining the effect of nanomedicine on tumor theranostics. However, the effect of the stiffness of NPs on their cellular internalization remains unclear, especially for circumstances involving active or passive NP targeting. In this work, we constructed eutectic gallium indium liquid metal NPs with the same particle size, shape and surface charge properties but distinct stiffness via tailoring the surface oxidation and silica coating. It has been found that the softer NPs would be endocytosed much slower than their stiffer counterparts in the presence of specific ligand-receptor interaction. Interestingly, once the interaction is eliminated, softer NPs are internalized faster than the stiffer ones. Based on experimental observations and theoretical verification, we demonstrate that this phenomenon is mainly caused by varying degrees of deformation of soft NPs induced by ligand-receptor interactions. Such a finding of the stiffness effect of NPs implies great potential for fundamental biomedical applications, such as the rational design of nanomedicines.
Collapse
Affiliation(s)
- Jing He
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.
| | - Wen Pang
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.
| | - Bobo Gu
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.
| | - Xubo Lin
- Institute of Single Cell Engineering, Key Laboratory of Ministry of Education for Biomechanics and Mechanobiology, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing 100191, P. R. China
| | - Jian Ye
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| |
Collapse
|
13
|
Jayasinghe MK, Lee CY, Tran TTT, Tan R, Chew SM, Yeo BZJ, Loh WX, Pirisinu M, Le MTN. The Role of in silico Research in Developing Nanoparticle-Based Therapeutics. Front Digit Health 2022; 4:838590. [PMID: 35373184 PMCID: PMC8965754 DOI: 10.3389/fdgth.2022.838590] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/16/2022] [Indexed: 12/12/2022] Open
Abstract
Nanoparticles (NPs) hold great potential as therapeutics, particularly in the realm of drug delivery. They are effective at functional cargo delivery and offer a great degree of amenability that can be used to offset toxic side effects or to target drugs to specific regions in the body. However, there are many challenges associated with the development of NP-based drug formulations that hamper their successful clinical translation. Arguably, the most significant barrier in the way of efficacious NP-based drug delivery systems is the tedious and time-consuming nature of NP formulation—a process that needs to account for downstream effects, such as the onset of potential toxicity or immunogenicity, in vivo biodistribution and overall pharmacokinetic profiles, all while maintaining desirable therapeutic outcomes. Computational and AI-based approaches have shown promise in alleviating some of these restrictions. Via predictive modeling and deep learning, in silico approaches have shown the ability to accurately model NP-membrane interactions and cellular uptake based on minimal data, such as the physicochemical characteristics of a given NP. More importantly, machine learning allows computational models to predict how specific changes could be made to the physicochemical characteristics of a NP to improve functional aspects, such as drug retention or endocytosis. On a larger scale, they are also able to predict the in vivo pharmacokinetics of NP-encapsulated drugs, predicting aspects such as circulatory half-life, toxicity, and biodistribution. However, the convergence of nanomedicine and computational approaches is still in its infancy and limited in its applicability. The interactions between NPs, the encapsulated drug and the body form an intricate network of interactions that cannot be modeled with absolute certainty. Despite this, rapid advancements in the area promise to deliver increasingly powerful tools capable of accelerating the development of advanced nanoscale therapeutics. Here, we describe computational approaches that have been utilized in the field of nanomedicine, focusing on approaches for NP design and engineering.
Collapse
Affiliation(s)
- Migara Kavishka Jayasinghe
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Program, Cancer Program and Nanomedicine Translational Program, Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chang Yu Lee
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Life Sciences Undergraduate Program, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Trinh T T Tran
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Program, Cancer Program and Nanomedicine Translational Program, Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Vingroup Science and Technology Scholarship Program, Vin University, Hanoi, Vietnam
| | - Rachel Tan
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Life Sciences Undergraduate Program, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Sarah Min Chew
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Life Sciences Undergraduate Program, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Brendon Zhi Jie Yeo
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Life Sciences Undergraduate Program, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Wen Xiu Loh
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Program, Cancer Program and Nanomedicine Translational Program, Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Marco Pirisinu
- Jotbody (HK) Pte Limited, Hong Kong, Hong Kong SAR, China
| | - Minh T N Le
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Program, Cancer Program and Nanomedicine Translational Program, Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
14
|
|
15
|
Hu B, Liu R, Liu Q, Lin Z, Shi Y, Li J, Wang L, Li L, Xiao X, Wu Y. Engineering surface patterns on nanoparticles: New insights on nano-bio interactions. J Mater Chem B 2022; 10:2357-2383. [DOI: 10.1039/d1tb02549j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The surface properties of nanoparticles affect their fates in biological systems. Based on nanotechnology and methodology, pioneering works have explored the effects of chemical surface patterns on the behavior of...
Collapse
|
16
|
Shi P, Qin J, Luo S, Hao P, Li N, Zan X. Effect of the stiffness of one-layer protein-based microcapsules on dendritic cell uptake and endocytic mechanism. Biomater Sci 2021; 10:178-188. [PMID: 34813636 DOI: 10.1039/d1bm01448j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microcapsules are one of the most promising microscale drug carriers due to their facile fabrication, excellent deformability, and high efficacy in drug storage and delivery. Understanding the effects of their physicochemical properties (size, shape, rigidity, charge, surface chemistry, etc.) on both in vitro and in vivo performance is not only highly significant and interesting but also very challenging. Stiffness, an important design parameter, has been extensively explored in recent years, but how the rigidity of particles influences cellular internalization and uptake mechanisms remains controversial. Here, one-layered lysozyme-based microcapsules with well-controlled stiffness (modulus ranging from 3.49 ± 0.18 MPa to 26.14 ± 1.09 MPa) were prepared and used to investigate the effect of stiffness on the uptake process in dendritic cells and the underlying mechanism. The cellular uptake process and endocytic mechanism were investigated with laser scanning confocal microscopy, mechanism inhibitors, and pathway-specific antibody staining. Our data demonstrated that the stiffness of protein-based microcapsules could be a strong regulator of intracellular uptake and endocytic kinetics but had no obvious effect on the endocytic mechanism. We believe our results will provide a basic understanding of the intracellular uptake process of microcapsules and the endocytic mechanism and inspire strategies for the further design of potential drug delivery microcarriers.
Collapse
Affiliation(s)
- Pengzhong Shi
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, PR China.,Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences (Wenzhou Institute of Biomaterials & Engineering), Wenzhou, Zhejiang Province, 325001, P. R. China.
| | - Jianghui Qin
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, PR China
| | - Shan Luo
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, PR China
| | - Pengyan Hao
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, PR China
| | - Na Li
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences (Wenzhou Institute of Biomaterials & Engineering), Wenzhou, Zhejiang Province, 325001, P. R. China.
| | - Xingjie Zan
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, PR China.,Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences (Wenzhou Institute of Biomaterials & Engineering), Wenzhou, Zhejiang Province, 325001, P. R. China.
| |
Collapse
|
17
|
Binu NM, Prema D, Prakash J, Balagangadharan K, Balashanmugam P, Selvamurugan N, Venkatasubbu GD. Folic acid decorated pH sensitive polydopamine coated honeycomb structured nickel oxide nanoparticles for targeted delivery of quercetin to triple negative breast cancer cells. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
18
|
Size, geometry and mobility of protein assemblage regulate the kinetics of membrane wrapping on nanoparticles. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
19
|
Lin X, Lin X. Surface ligand rigidity modulates lipid raft affinity of ultra-small hydrophobic nanoparticles: insights from molecular dynamics simulations. NANOSCALE 2021; 13:9825-9833. [PMID: 34032262 DOI: 10.1039/d1nr01563j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Differential preferences between lipids and proteins drive the formation of dynamical nanoscale membrane domains (lipid rafts), which play key roles in the proper functioning of cells. On the other hand, due to the potent physicochemical properties of nanoparticles (NPs), they have been widely used in drug delivery, bio-imaging and regulating various essential biological processes of the cells. Hence, in this work, we aim to design ultra-small hydrophobic NPs with tunable raft affinity, which is supposed to partition into the hydrophobic region of lipid membranes and be able to regulate the dynamics of the lipid raft domains. A series of μs-scale coarse-grained molecular dynamics simulations and umbrella sampling free energy calculations were performed to investigate the role of surface ligand rigidity of ultra-small hydrophobicNPs in their raft affinity. Our results indicated that the preferred localization of NPs can be tuned by adjusting their surface ligand rigidity. Generally, rigid NPs tended to target the raft domain, while soft NPs preferred the interface of the raft and non-raft domains. The free energy analysis further indicated that the surface ligand rigidity of NPs can enhance their targeting to lipid raft domains. Besides, we found that these ultra-small NPs had no significant effects on the phase separation of the lipid membrane although they might cause some local interference to surrounding lipids. These results indicate that the targeting to the lipid raft domain can be achieved by the surface ligand rigidity of NPs, which provides helpful insights for further regulations of lipid raft-mediated biological processes.
Collapse
Affiliation(s)
- Xiaoqian Lin
- Institute of Single Cell Engineering, Key Laboratory of Ministry of Education for Biomechanics and Mechanobiology, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.
| | | |
Collapse
|
20
|
Ruan S, Zhou Y, Jiang X, Gao H. Rethinking CRITID Procedure of Brain Targeting Drug Delivery: Circulation, Blood Brain Barrier Recognition, Intracellular Transport, Diseased Cell Targeting, Internalization, and Drug Release. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004025. [PMID: 33977060 PMCID: PMC8097396 DOI: 10.1002/advs.202004025] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/03/2020] [Indexed: 05/06/2023]
Abstract
The past decades have witnessed great progress in nanoparticle (NP)-based brain-targeting drug delivery systems, while their therapeutic potentials are yet to be fully exploited given that the majority of them are lost during the delivery process. Rational design of brain-targeting drug delivery systems requires a deep understanding of the entire delivery process along with the issues that they may encounter. Herein, this review first analyzes the typical delivery process of a systemically administrated NPs-based brain-targeting drug delivery system and proposes a six-step CRITID delivery cascade: circulation in systemic blood, recognizing receptor on blood-brain barrier (BBB), intracellular transport, diseased cell targeting after entering into parenchyma, internalization by diseased cells, and finally intracellular drug release. By dissecting the entire delivery process into six steps, this review seeks to provide a deep understanding of the issues that may restrict the delivery efficiency of brain-targeting drug delivery systems as well as the specific requirements that may guarantee minimal loss at each step. Currently developed strategies used for troubleshooting these issues are reviewed and some state-of-the-art design features meeting these requirements are highlighted. The CRITID delivery cascade can serve as a guideline for designing more efficient and specific brain-targeting drug delivery systems.
Collapse
Affiliation(s)
- Shaobo Ruan
- Key laboratory of Drug Targeting and Drug Delivery Systems of the Education MinistrySichuan Engineering Laboratory for Plant‐sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan UniversityChengdu610041China
- Department of PharmaceuticsCollege of PharmacyUniversity of FloridaGainesvilleFlorida32610USA
| | - Yang Zhou
- Key laboratory of Drug Targeting and Drug Delivery Systems of the Education MinistrySichuan Engineering Laboratory for Plant‐sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan UniversityChengdu610041China
| | - Xinguo Jiang
- Key laboratory of Smart Drug DeliveryMinistry of EducationSchool of PharmacyFudan UniversityShanghai201203China
| | - Huile Gao
- Key laboratory of Drug Targeting and Drug Delivery Systems of the Education MinistrySichuan Engineering Laboratory for Plant‐sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan UniversityChengdu610041China
| |
Collapse
|
21
|
de Castro RR, do Carmo FA, Martins C, Simon A, de Sousa VP, Rodrigues CR, Cabral LM, Sarmento B. Clofazimine functionalized polymeric nanoparticles for brain delivery in the tuberculosis treatment. Int J Pharm 2021; 602:120655. [PMID: 33915184 DOI: 10.1016/j.ijpharm.2021.120655] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/31/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023]
Abstract
Central nervous system tuberculosis (CNS-TB) is the most severe form of the disease especially due to the inability of therapeutics to cross the blood-brain barrier (BBB). Clofazimine (CFZ) stands out for presenting high in vitro activity against multi-drug resistant strains of Mycobacterium tuberculosis, however, CFZ physicochemical and pharmacokinetics properties limit drug penetration into the CNS and, consequently, its clinical use. The aim of this work was to develop polymeric nanoparticles (NPs) of poly(lactic-co-glycolic acid) (PLGA) and polyethylene glycol (PEG) loaded with CFZ and functionalized with a transferrin receptor (TfR)-binding peptide, aiming brain drug delivery for CNS-TB treatment by the intravenous route. The poor water solubility and high lipophilicity of CFZ was overcome through its entrapment into PLGA-PEG NPs manufactured by both conventional and microfluidic techniques using the nanoprecipitation principle. In vitro studies in brain endothelial hCMEC/D3 cells demonstrated that CFZ incorporation into the NPs was advantageous to reduce drug cytotoxicity. The TfR-binding peptide-functionalized NPs showed superior cell interaction and higher CFZ permeability across hCMEC/D3 cell monolayers compared to the non-functionalized NP control, thus indicating the efficacy of the functionalization strategy on providing CFZ transport through the BBB in vitro. The functionalized NPs demonstrate suitability for CFZ biological administration, suggested with low plasma protein binding, off-target biodistribution and precise delivery of CFZ towards the brain parenchyma.
Collapse
Affiliation(s)
- Renata Ribeiro de Castro
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, 21941-902 Rio de Janeiro, Brazil; Laboratory of Molecular Pharmacology, Institute of Drug Technology (Farmanguinhos), Oswaldo Cruz Foundation, Rua Sizenando Nabuco 100, 21041-250 Rio de Janeiro, Brazil
| | - Flavia Almada do Carmo
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, 21941-902 Rio de Janeiro, Brazil
| | - Cláudia Martins
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Alice Simon
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, 21941-902 Rio de Janeiro, Brazil
| | - Valeria Pereira de Sousa
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, 21941-902 Rio de Janeiro, Brazil
| | - Carlos Rangel Rodrigues
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, 21941-902 Rio de Janeiro, Brazil
| | - Lucio Mendes Cabral
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, 21941-902 Rio de Janeiro, Brazil
| | - Bruno Sarmento
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde and Instituto Universitário de Ciências da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal.
| |
Collapse
|
22
|
Frey F, Idema T. More than just a barrier: using physical models to couple membrane shape to cell function. SOFT MATTER 2021; 17:3533-3549. [PMID: 33503097 DOI: 10.1039/d0sm01758b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The correct execution of many cellular processes, such as division and motility, requires the cell to adopt a specific shape. Physically, these shapes are determined by the interplay of the plasma membrane and internal cellular driving factors. While the plasma membrane defines the boundary of the cell, processes inside the cell can result in the generation of forces that deform the membrane. These processes include protein binding, the assembly of protein superstructures, and the growth and contraction of cytoskeletal networks. Due to the complexity of the cell, relating observed membrane deformations back to internal processes is a challenging problem. Here, we review cell shape changes in endocytosis, cell adhesion, cell migration and cell division and discuss how by modeling membrane deformations we can investigate the inner working principles of the cell.
Collapse
Affiliation(s)
- Felix Frey
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands.
| | | |
Collapse
|
23
|
Zare EN, Zheng X, Makvandi P, Gheybi H, Sartorius R, Yiu CKY, Adeli M, Wu A, Zarrabi A, Varma RS, Tay FR. Nonspherical Metal-Based Nanoarchitectures: Synthesis and Impact of Size, Shape, and Composition on Their Biological Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007073. [PMID: 33710754 DOI: 10.1002/smll.202007073] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Indexed: 06/12/2023]
Abstract
Metal-based nanoentities, apart from being indispensable research tools, have found extensive use in the industrial and biomedical arena. Because their biological impacts are governed by factors such as size, shape, and composition, such issues must be taken into account when these materials are incorporated into multi-component ensembles for clinical applications. The size and shape (rods, wires, sheets, tubes, and cages) of metallic nanostructures influence cell viability by virtue of their varied geometry and physicochemical interactions with mammalian cell membranes. The anisotropic properties of nonspherical metal-based nanoarchitectures render them exciting candidates for biomedical applications. Here, the size-, shape-, and composition-dependent properties of nonspherical metal-based nanoarchitectures are reviewed in the context of their potential applications in cancer diagnostics and therapeutics, as well as, in regenerative medicine. Strategies for the synthesis of nonspherical metal-based nanoarchitectures and their cytotoxicity and immunological profiles are also comprehensively appraised.
Collapse
Affiliation(s)
| | - Xuanqi Zheng
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Micro-BioRobotics, viale Rinaldo Piaggio 34, Pontedera, Pisa, 56025, Italy
| | - Homa Gheybi
- Institute of Polymeric Materials and Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, 53318-17634, Iran
| | - Rossella Sartorius
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Naples, 80131, Italy
| | - Cynthia K Y Yiu
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong SAR, China
| | - Mohsen Adeli
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, 68151-44316, Iran
| | - Aimin Wu
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, 34956, Turkey
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Palacký University in Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic
| | - Franklin R Tay
- College of Graduate Studies, Augusta University, Augusta, GA, 30912, USA
| |
Collapse
|
24
|
Yu C, Bao H, Chen Z, Li X, Liu X, Wang W, Huang J, Zhang Z. Enhanced and long-term CT imaging tracking of transplanted stem cells labeled with temperature-responsive gold nanoparticles. J Mater Chem B 2021; 9:2854-2865. [PMID: 33711088 DOI: 10.1039/d0tb02997a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gold nanoparticles (AuNPs) have been extensively employed for computed tomography (CT) imaging in cell labeling and tracking because of their strong X-ray attenuation coefficient and excellent biocompatibility. However, the design and synthesis of stimuli-responsive AuNPs to modulate their endocytosis and exocytosis for optimal cell labeling and tracking are promising but challenging. Herein, we report an innovative labeling strategy based on temperature-responsive AuNPs (TRAuNPs) with high cell labeling efficiency and extended intracellular retention duration. We have manifested that the TRAuNP labeling imposes a negligible adverse effect on the function of human mesenchymal stem cells (hMSCs). Further experiment with idiopathic pulmonary fibrosis (IPF) model mice has demonstrated the feasibility of TRAuNP labeling for long time CT imaging tracking of transplanted hMSCs. What's more, the survival of transplanted hMSCs could also be monitored simultaneously using bioluminescence imaging after the expression of luciferase reporter genes. Therefore, we believe that this dual-modal labeling and tracking strategy enables visualization of the transplanted hMSCs in vivo, which may provide an important insight into the role of stem cells in the IPF therapy.
Collapse
Affiliation(s)
- Chenggong Yu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Song C, Zhang X, Wei W, Ma G. Principles of regulating particle multiscale structures for controlling particle-cell interaction process. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Hajimolaali M, Mohammadian H, Torabi A, Shirini A, Khalife Shal M, Barazandeh Nezhad H, Iranpour S, Baradaran Eftekhari R, Dorkoosh F. Application of chloroquine as an endosomal escape enhancing agent: new frontiers for an old drug. Expert Opin Drug Deliv 2021; 18:877-889. [PMID: 33455479 DOI: 10.1080/17425247.2021.1873272] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Adequate transfection efficiency is indispensable to safe and effective delivery of therapeutically active agents, particularly in cancer. Endosomal escape is regarded as a critical and determining step devoted a significant number of studies of the drug/gene delivery field. AREAS COVERED This paper critically reviews the fundamental properties of chloroquine (CQ), its pharmacokinetics, pharmacodynamics, and clinical applications and the present knowledge of CQ application as an endosomal escape enhancing agent. Different approaches to enhance the endosomal escape process of nanoparticles have been introduced including use of endosomal escape enhancing agents. Application of CQ as either a pre-treatment modality in which cells or animals are exposed to CQ prior to the main treatment or a component of co-delivery systems where CQ and other anti-cancer agents are simultaneously entered the cancer cells, is discussed with recent studies. EXPERT OPINION CQ is founded to intervene with the natural process of endosomal maturation. Moreover, CQ seems to increase the effectiveness of gene delivery by its electrostatic interaction with negatively charged components of the transferred genetic molecules. Endosomal escape might be regarded as the bottleneck of efficient gene delivery and CQ as an effective and available endosomal escape enhancing agent deserves more sophisticated studies.
Collapse
Affiliation(s)
- Mohammad Hajimolaali
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, Pátrai, Greece
| | - Hosein Mohammadian
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Torabi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Shirini
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Khalife Shal
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Sheida Iranpour
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Baradaran Eftekhari
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Medical Biomaterial Research Center (MBRC), Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Farid Dorkoosh
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Medical Biomaterial Research Center (MBRC), Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Guyon L, Groo AC, Malzert-Fréon A. Relevant Physicochemical Methods to Functionalize, Purify, and Characterize Surface-Decorated Lipid-Based Nanocarriers. Mol Pharm 2020; 18:44-64. [PMID: 33244972 DOI: 10.1021/acs.molpharmaceut.0c00857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Surface functionalization of lipid-based nanocarriers (LBNCs) with targeting ligands has attracted huge interest in the field of nanomedicines for their ability to overcome some physiological barriers and their potential to deliver an active molecule to a specific target without causing damage to healthy tissues. The principal objective of this review is to summarize the present knowledge on LBNC decoration used for biomedical applications, with an emphasis on the ligands used, the functionalization approaches, and the purification methods after ligand corona formation. The most potent experimental techniques for the LBNC surface characterization are described. The potential of promising methods such as nuclear magnetic resonance spectroscopy and isothermal titration calorimetry to characterize ligand surface corona is also outlined.
Collapse
Affiliation(s)
- Léna Guyon
- CERMN, UNICAEN Université de Caen Normandie, F-14000 Caen, France
| | - Anne-Claire Groo
- CERMN, UNICAEN Université de Caen Normandie, F-14000 Caen, France
| | | |
Collapse
|
28
|
Bunker A, Róg T. Mechanistic Understanding From Molecular Dynamics Simulation in Pharmaceutical Research 1: Drug Delivery. Front Mol Biosci 2020; 7:604770. [PMID: 33330633 PMCID: PMC7732618 DOI: 10.3389/fmolb.2020.604770] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022] Open
Abstract
In this review, we outline the growing role that molecular dynamics simulation is able to play as a design tool in drug delivery. We cover both the pharmaceutical and computational backgrounds, in a pedagogical fashion, as this review is designed to be equally accessible to pharmaceutical researchers interested in what this new computational tool is capable of and experts in molecular modeling who wish to pursue pharmaceutical applications as a context for their research. The field has become too broad for us to concisely describe all work that has been carried out; many comprehensive reviews on subtopics of this area are cited. We discuss the insight molecular dynamics modeling has provided in dissolution and solubility, however, the majority of the discussion is focused on nanomedicine: the development of nanoscale drug delivery vehicles. Here we focus on three areas where molecular dynamics modeling has had a particularly strong impact: (1) behavior in the bloodstream and protective polymer corona, (2) Drug loading and controlled release, and (3) Nanoparticle interaction with both model and biological membranes. We conclude with some thoughts on the role that molecular dynamics simulation can grow to play in the development of new drug delivery systems.
Collapse
Affiliation(s)
- Alex Bunker
- Division of Pharmaceutical Biosciences, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Tomasz Róg
- Department of Physics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
29
|
Jiao F, Sang J, Liu Z, Liu W, Liang W. Effect of concentration of PEG coated gold nanoparticle on lung surfactant studied with coarse-grained molecular dynamics simulations. Biophys Chem 2020; 266:106457. [PMID: 32890945 DOI: 10.1016/j.bpc.2020.106457] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 11/25/2022]
Abstract
The surface modification of nanoparticles can not only change the physical and chemical properties of particles, such as the hydrophilic and hydrophobic properties and surface charges of nanoparticles to a certain extent, but also bring new functions to nanoparticles, such as membrane permeability and targeting. Inhaled nanoparticles (NPs) are experienced by the first biological barrier inside the alveolus known as lung surfactant (LS), consisting of phospholipids and proteins in the form of the monolayer at the air-water interface. Inhaled NPs can reach deep into the lungs and interfere with the biophysical properties of the lung components. The interaction mechanisms of bare gold nanoparticles (AuNPs) with the LS monolayer are not well understood. Coarse-grained molecular dynamics simulations were carried out to have a study on the interactions of PEG coated AuNPs with LS monolayers. It was observed that the interactions of AuNPs and LS components make the monolayer structure deform and change the biophysical properties of LS monolayer. The results also indicate that AuNPs with high concentrations hinder the lowering of the LS surface tension and reduce lateral mobility of lipids. Overall, the simulation results can provide guidance for the design of ligand protected NPs as drug carriers and can identify the nanoparticles potential side effect on lung surfactant.
Collapse
Affiliation(s)
- Fengxuan Jiao
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Jianbing Sang
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| | - Zhaoyang Liu
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Wei Liu
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| | - Weiguang Liang
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, PR China
| |
Collapse
|
30
|
Xia PP, Shan Y, He LL, Ji YY, Wang XH, Li SB. Multinanoparticle translocations in phospholipid membranes: Translocation modes and dynamic processes. CHINESE J CHEM PHYS 2020. [DOI: 10.1063/1674-0068/cjcp1910174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Ping-ping Xia
- Department of Physics, Wenzhou University, Wenzhou 325035, China
| | - Yue Shan
- Department of Physics, Wenzhou University, Wenzhou 325035, China
| | - Lin-li He
- Department of Physics, Wenzhou University, Wenzhou 325035, China
| | - Yong-yun Ji
- Department of Physics, Wenzhou University, Wenzhou 325035, China
| | - Xiang-hong Wang
- Department of Physics, Wenzhou University, Wenzhou 325035, China
| | - Shi-ben Li
- Department of Physics, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
31
|
Baschieri F, Porshneva K, Montagnac G. Frustrated clathrin-mediated endocytosis – causes and possible functions. J Cell Sci 2020; 133:133/11/jcs240861. [DOI: 10.1242/jcs.240861] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
ABSTRACT
Clathrin-mediated endocytosis is the main entry route for most cell surface receptors and their ligands. It is regulated by clathrin-coated structures that are endowed with the ability to cluster receptors and to locally bend the plasma membrane, resulting in the formation of receptor-containing vesicles that bud into the cytoplasm. This canonical role of clathrin-coated structures has been shown to play a fundamental part in many different aspects of cell physiology. However, it has recently become clear that the ability of clathrin-coated structures to deform membranes can be perturbed. In addition to chemical or genetic alterations, numerous environmental conditions can physically prevent or slow down membrane bending and/or budding at clathrin-coated structures. The resulting ‘frustrated endocytosis’ is emerging as not merely a passive consequence, but one that actually fulfils some very specific and important cellular functions. In this Review, we provide an historical and defining perspective on frustrated endocytosis in the clathrin pathway of mammalian cells, before discussing its causes and highlighting the possible functional consequences in physiology and diseases.
Collapse
Affiliation(s)
- Francesco Baschieri
- Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, Villejuif 94805, France
| | - Kseniia Porshneva
- Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, Villejuif 94805, France
| | - Guillaume Montagnac
- Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, Villejuif 94805, France
| |
Collapse
|
32
|
Kalelkar PP, Collard DM. Tricomponent Amphiphilic Poly(oligo(ethylene glycol) methacrylate) Brush-Grafted Poly(lactic acid): Synthesis, Nanoparticle Formation, and In Vitro Uptake and Release of Hydrophobic Dyes. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02467] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Pranav P. Kalelkar
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - David M. Collard
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| |
Collapse
|
33
|
Lin J, Miao L, Zhong G, Lin CH, Dargazangy R, Alexander-Katz A. Understanding the synergistic effect of physicochemical properties of nanoparticles and their cellular entry pathways. Commun Biol 2020; 3:205. [PMID: 32355216 PMCID: PMC7192949 DOI: 10.1038/s42003-020-0917-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 03/20/2020] [Indexed: 01/06/2023] Open
Abstract
Gaining precise control over the cellular entry pathway of nanomaterials is key in achieving cytosolic delivery, accessing subcellular environments, and regulating toxicity. However, this precise control requires a fundamental understanding of the behavior of nanomaterials at the bio-nano interface. Herein, we report a computational study investigating the synergistic effect of several key physicochemical properties of nanomaterials on their cellular entry pathways. By examining interactions between monolayer-protected nanoparticles and model cell membranes in a three-dimensional parameter space of size, surface charge/pKa, and ligand chemistry, we observed four different types of nanoparticle translocation for cellular entry which are: outer wrapping, free translocation, inner attach, and embedment. Nanoparticle size, surface charge/pKa, and ligand chemistry each play a unique role in determining the outcome of translocation. Specifically, membrane local curvature induced by nanoparticles upon contact is critical for initiating the translocation process. A generalized paradigm is proposed to describe the fundamental mechanisms underlying the bio-nano interface. Lin et al. investigate interactions between monolayer-protected nanoparticles and model cell membranes, and show four different types of nanoparticle translocation, i.e., outer wrapping, free translocation, inner attach, and embedment. The different translocation types greatly depend on synergism between nanoparticle size, surface charge, and ligand chemistry.
Collapse
Affiliation(s)
- Jiaqi Lin
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Department of Chemical Engineering, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Lei Miao
- Department of Chemical Engineering, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Grace Zhong
- Department of Chemical Engineering, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Chih-Hsin Lin
- Department of Chemical Engineering, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Roozbeh Dargazangy
- College of Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Alfredo Alexander-Katz
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
34
|
Xia QS, Zhu T, Jiang ZY, Ding HM, Ma YQ. Enhancing the targeting ability of nanoparticles via protected copolymers. NANOSCALE 2020; 12:7804-7813. [PMID: 32219265 DOI: 10.1039/d0nr01176b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
It is important to maintain the balance between therapeutic efficiency and cytotoxicity when using nanomaterials for biomedical applications. Here, we propose a new method (i.e., non-covalent coating of protected copolymers onto the nanoparticle surface) to enhance the active targeting of nanoparticles to the cancer cells by combining the dissipative particle dynamics simulation and in vitro experiments. When coating the protected copolymer onto the nanoparticle surface, the uptake efficiency could be greatly altered due to the competition between the copolymer-ligand interaction and the receptor-ligand interaction-the non-covalent coating is more efficient than the covalent coating. Furthermore, the effect of the physicochemical properties of the protected copolymer on the targeting ability of nanoparticles was also investigated. This study offers useful insight into the optimal design of nanocarriers in biomedicine.
Collapse
Affiliation(s)
- Qiang-Sheng Xia
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| | | | | | | | | |
Collapse
|
35
|
Arai N, Kobayashi Y, Yasuoka K. A biointerface effect on the self-assembly of ribonucleic acids: a possible mechanism of RNA polymerisation in the self-replication cycle. NANOSCALE 2020; 12:6691-6698. [PMID: 32163058 DOI: 10.1039/c9nr09537c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Despite decades of intensive research, many questions remain on the formation and growth of the first cells on Earth. Here, we used computer simulation to compare the self-assembly process of ribonucleic acids in two environments: enclosed in a vesicle-cell membrane and in the bulk. The self-assembly was found to be more favoured in the former environment, and the origin of such a biointerface effect was identified. These results will contribute to a better understanding of the origin of life on the primitive Earth.
Collapse
Affiliation(s)
- Noriyoshi Arai
- Department of Engineering, Keio University, Yokohama 223-8522, Japan.
| | | | | |
Collapse
|
36
|
Lin X, Lin X, Gu N. Optimization of hydrophobic nanoparticles to better target lipid rafts with molecular dynamics simulations. NANOSCALE 2020; 12:4101-4109. [PMID: 32022059 DOI: 10.1039/c9nr09226a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Due to different interactions between lipids and proteins, a plasma membrane can segregate into different membrane domains. Among them, ordered functional membrane domains are defined as "lipid rafts", which play key roles in many biological processes (e.g., signal transduction, endocytosis, etc.) in the cell. Hence, it will be of much biological significance to monitor and even regulate the dynamics of lipid rafts. In this work, we designed a ligand-modified spherical nanoparticle with coarse-grained molecular dynamics simulations, which can be encapsulated into the hydrophobic region of the lipid membrane and specifically target either raft or non-raft membrane domains. The preferred localization of the nanoparticle can be tuned by adjusting ligand hydrophobicity, length and density. Generally, more hydrophobic nanoparticles tend to target the raft domain, while less hydrophobic nanoparticles prefer the non-raft domain. Besides, ligand length and density jointly determine the exposure of nanoparticle cores and thus affect the roles of ligands in nanoparticles' final localization. Our results may provide insights into the experimental design of functional nanoparticles, targeting the lipid raft and regulating its dynamics.
Collapse
Affiliation(s)
- Xiaoqian Lin
- Institute of Nanotechnology for Single Cell Analysis (INSCA), Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China. and School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Xubo Lin
- Institute of Nanotechnology for Single Cell Analysis (INSCA), Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China. and School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
37
|
Gao Y, Shi Y, Wang L, Kong S, Du J, Lin G, Feng Y. Advances in mathematical models of the active targeting of tumor cells by functional nanoparticles. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 184:105106. [PMID: 31670178 DOI: 10.1016/j.cmpb.2019.105106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVE The process of nanoparticles (NPs) entering blood circulation to actively target tumor cells involves four stages-the transport of NPs in blood vessels, transvascular transport of NPs, transport of NPs in the tumor interstitial matrix and entry of NPs into tumor cells. These four stages are a complex process involving mechanical, physical, biochemical, and biophysical factors, the tumor microenvironment (TME) and properties of NPs play important roles in this process. Because this process involves a large number of factors and is very complex, it is difficult to study with conventional methods. METHODS Using mathematical models for simulation is suitable for addressing this complex situation and can describe the complexity well. RESULTS This work focuses on the theoretical simulation of NPs that target tumor cells to illustrate the effects of the abnormal microenvironment of tumors and properties of NPs on the transport process. Mathematical models constructed by different methods are enumerated. Through studying these mathematical models, different methods to overcome nanoparticle (NP) transport obstacles are illustrated. CONCLUSIONS It is necessary to construct a theoretical model of active targeting nanodrug delivery under the coupling of micro-flow field and specific binding force field, and to simulate and analyze the delivery process at mesoscopic scale using computational fluid dynamics (CFD) method, so as to reveal the law and characteristics of drug delivery and cell uptake in the micro-environment of tumors in vivo. The methods and techniques discussed can serve as the basis for systematic studies of active targeting of functional nanoparticles to tumor cells.
Collapse
Affiliation(s)
- Yan Gao
- School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yanbin Shi
- School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Li Wang
- School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Shengli Kong
- School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jian Du
- School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Guimei Lin
- School of Pharmaceutical Science, Shandong University, Jinan 250012, China
| | - Yihua Feng
- School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
38
|
Yan Z, Wu Z, Li S, Zhang X, Yi X, Yue T. Curvature-mediated cooperative wrapping of multiple nanoparticles at the same and opposite membrane sides. NANOSCALE 2019; 11:19751-19762. [PMID: 31384870 DOI: 10.1039/c9nr03554k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cell membrane interactions with nanoparticles (NPs) are essential to cellular functioning and mostly accompanied by membrane curvature generation and sensing. Multiple NPs inducing curvature from one side of a membrane are believed to be wrapped cooperatively by the membrane through curvature-mediated interactions. However, little is known about another biologically ubiquitous and important case, i.e., NPs binding to opposite membrane sides induce a curved bend of different directions. Combining coarse-grained molecular dynamics and theoretical analysis, here we systematically investigate the cooperative effect in the wrapping of multiple adhesive NPs at the same and opposite membrane sides and demonstrate the importance of the magnitude and direction of the membrane bend in regulating curvature-mediated NP interactions. Effects of the NP size, size difference, initial distance, number, and strength of adhesion with the membrane on the wrapping cooperativity and wrapping states are analyzed. For NPs binding to the same membrane side, rich membrane wrapping and NP aggregation states are observed, and the curvature-mediated interactions could be either attractive or repulsive, depending on the initial NP distance and the competition between the membrane bending, NP binding and membrane protrusion. In sharp contrast, the interaction between two NPs binding to opposite membrane sides is always attractive and the cooperative wrapping of NPs is promoted, as the curved membrane regions induced by the NPs are shared in a manner that the NP-membrane contact is increased and the energy cost of membrane bending is reduced. Owing to the ubiquity and heterogeneity of membrane shaping proteins in biology, our results enrich the cutting-edge knowledge on the curvature-mediated interaction of NPs for better and profound understanding on high-order cooperative assemblies of NPs or proteins in numerous biological processes.
Collapse
Affiliation(s)
- Zengshuai Yan
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Zeming Wu
- Department of Mechanics and Engineering Science, Beijing Innovation Center for Engineering Science and Advanced Technology, College of Engineering, Peking University, Beijing 100871, China.
| | - Shixin Li
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Xianren Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin Yi
- Department of Mechanics and Engineering Science, Beijing Innovation Center for Engineering Science and Advanced Technology, College of Engineering, Peking University, Beijing 100871, China.
| | - Tongtao Yue
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| |
Collapse
|
39
|
Casalini T, Limongelli V, Schmutz M, Som C, Jordan O, Wick P, Borchard G, Perale G. Molecular Modeling for Nanomaterial-Biology Interactions: Opportunities, Challenges, and Perspectives. Front Bioeng Biotechnol 2019; 7:268. [PMID: 31681746 PMCID: PMC6811494 DOI: 10.3389/fbioe.2019.00268] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/27/2019] [Indexed: 12/17/2022] Open
Abstract
Injection of nanoparticles (NP) into the bloodstream leads to the formation of a so-called "nano-bio" interface where dynamic interactions between nanoparticle surfaces and blood components take place. A common consequence is the formation of the protein corona, that is, a network of adsorbed proteins that can strongly alter the surface properties of the nanoparticle. The protein corona and the resulting structural changes experienced by adsorbed proteins can lead to substantial deviations from the expected cellular uptake as well as biological responses such as NP aggregation and NP-induced protein fibrillation, NP interference with enzymatic activity, or the exposure of new antigenic epitopes. Achieving a detailed understanding of the nano-bio interface is still challenging due to the synergistic effects of several influencing factors like pH, ionic strength, and hydrophobic effects, to name just a few. Because of the multiscale complexity of the system, modeling approaches at a molecular level represent the ideal choice for a detailed understanding of the driving forces and, in particular, the early events at the nano-bio interface. This review aims at exploring and discussing the opportunities and perspectives offered by molecular modeling in this field through selected examples from literature.
Collapse
Affiliation(s)
- Tommaso Casalini
- Polymer Engineering Laboratory, Department of Innovative Technologies, Institute for Mechanical Engineering and Materials Technology, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Manno, Switzerland
| | - Vittorio Limongelli
- Faculty of Biomedical Sciences, Center for Computational Medicine in Cardiology, Institute of Computational Science, Università della Svizzera italiana (USI), Lugano, Switzerland
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Mélanie Schmutz
- Technology and Society Laboratory, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland
| | - Claudia Som
- Technology and Society Laboratory, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland
| | - Olivier Jordan
- School of Pharmaceutical Sciences, University of Geneva, Genève, Switzerland
| | - Peter Wick
- Laboratory for Particles – Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland
| | - Gerrit Borchard
- School of Pharmaceutical Sciences, University of Geneva, Genève, Switzerland
| | - Giuseppe Perale
- Polymer Engineering Laboratory, Department of Innovative Technologies, Institute for Mechanical Engineering and Materials Technology, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Manno, Switzerland
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Wien, Austria
| |
Collapse
|
40
|
Ni SD, Yin YW, Li XL, Ding HM, Ma YQ. Controlling the Interaction of Nanoparticles with Cell Membranes by the Polymeric Tether. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:12851-12857. [PMID: 31474103 DOI: 10.1021/acs.langmuir.9b02010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The well control over the cell-nanoparticle interaction can be of great importance and necessity for different biomedical applications. In this work, we propose a new and simple way (i.e., polymeric tether) to tuning the interaction between nanoparticles and cell membranes by dissipative particle dynamics simulations. It is found that the linked nanoparticles (via polymeric tether) can show some cooperation during the cellular uptake and thereby have a higher wrapping degree than the single nanoparticle. The effect of the property of the polymer on the wrapping is also investigated, and it is found that the length, rigidity, and hydrophobicity of the polymer play an important role. More interestingly, the uptake of linked nanoparticles could be adjusted to the firm adhesion via two rigid polymeric tethers. The present study may provide some useful guidelines for novel design of functional nanomaterials in the experiments.
Collapse
Affiliation(s)
- Song-di Ni
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology , Soochow University , Suzhou 215006 , China
| | - Yue-Wen Yin
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology , Soochow University , Suzhou 215006 , China
| | - Xiao-Lei Li
- Institute of Functional Nano & Soft Materials (FUNSOM) , Soochow University , Suzhou 215123 , China
| | - Hong-Ming Ding
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology , Soochow University , Suzhou 215006 , China
| | - Yu-Qiang Ma
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210093 , China
| |
Collapse
|
41
|
Khosravanizadeh A, Sens P, Mohammad-Rafiee F. Wrapping of a nanowire by a supported lipid membrane. SOFT MATTER 2019; 15:7490-7500. [PMID: 31513228 DOI: 10.1039/c9sm00618d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Internalization of particles by cells plays a crucial role for adsorbing nutrients and fighting infection. Endocytosis is one of the most important mechanisms of particle uptake, which encompasses multiple pathways. Although endocytosis is a complex mechanism involving biochemical signaling and active force generation, the energetic cost associated with the large deformations of the cell membrane wrapping around a foreign particle is an important factor controlling this process, which can be studied using quantitative physical models. Of particular interest is the competition between membrane-cytoskeleton and membrane-target adhesion. This competitive adhesion mechanism can be reproduced to some extent by studying particle wrapping by a membrane adhered to a substrate. We propose a theoretical analysis of this process. Here, we explore the wrapping of a lipid membrane around a long cylindrical object in the presence of a substrate mimicking the cytoskeleton. Using discretization of the Helfrich elastic energy, which accounts for the membrane bending rigidity and surface tension, we obtain a wrapping phase diagram as a function of the membrane-cytoskeleton and the membrane-target adhesion energy, which includes unwrapped, partially wrapped and fully wrapped states. We provide an analytical expression for the boundary between the different regimes. While the transition to partial wrapping is independent of the membrane tension, the transition to full wrapping is very much influenced by the membrane tension. We also show that target wrapping may proceed in an asymmetric fashion in the full wrapping regime.
Collapse
Affiliation(s)
- Amir Khosravanizadeh
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran.
| | | | | |
Collapse
|
42
|
Shen Z, Ye H, Kröger M, Tang S, Li Y. Interplay between ligand mobility and nanoparticle geometry during cellular uptake of PEGylated liposomes and bicelles. NANOSCALE 2019; 11:15971-15983. [PMID: 31424067 DOI: 10.1039/c9nr02408e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We explore the cellular uptake process of PEGylated liposomes and bicelles by investigating their membrane wrapping process using large-scale molecular dynamics simulations. We find that due to the mobility of ligands on the liposome/bicelle, the membrane wrapping process of a PEGylated liposome/bicelle can be divided into two stages, whose transition is determined by a critical wrapping fraction fc; it is reached when all the ligands are exhausted and bound to receptors within the cell membrane. Before this critical scenario is approached, the grafted polyethylene glycol (PEG) polymers aggregate together within the membrane-wrapped region of the liposome/bicelle, driven by ligand-receptor binding. For wrapping fractions f > fc, membrane wrapping cannot proceed unless a compressive membrane tension is provided. By systematically varying the membrane tension and PEG molar ratio, we establish phase diagrams about wrapping states for both PEGylated liposomes and bicelles. According to these diagrams, we find that the absolute value of the compressive membrane tension required by a fully wrapped PEGylated bicelle is smaller than that of the PEGylated liposome, indicating that the PEGylated bicelle is easily internalized by cells. Further theoretical analysis reveals that compared to a liposome, the flatter surface at the top of a bicelle makes it energetically more favored beyond the critical wrapping fraction fc. Our simulations confirm that the interplay between ligand mobility and NP geometry can significantly change the understanding about the influence of NP geometry on the membrane wrapping process. It can help us to better understand the cellular uptake process of the PEGylated liposome/bicelle and to improve the design of lipid-like NPs for drug delivery.
Collapse
Affiliation(s)
- Zhiqiang Shen
- Department of Mechanical Engineering and Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA.
| | | | | | | | | |
Collapse
|
43
|
Deng H, Dutta P, Liu J. Stochastic modeling of nanoparticle internalization and expulsion through receptor-mediated transcytosis. NANOSCALE 2019; 11:11227-11235. [PMID: 31157808 PMCID: PMC6634982 DOI: 10.1039/c9nr02710f] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Receptor-mediated transcytosis (RMT) is a fundamental mechanism for the transcellular transport of nanoparticles. RMT is a complex process, during which the nanoparticles actively interact with the membrane and the membrane profile undergoes extreme deformations for particle internalization and expulsion. In this work, we developed a stochastic model to study the endocytosis and exocytosis of nanoparticles across soft membranes. The model is based on the combination of a stochastic particle binding model with a membrane model, and accounts for both clathrin-mediated endocytosis for internalization and actin-mediated exocytosis for expulsion. Our results showed that nanoparticles must have certain avidity with enough ligand density and ligand-receptor binding affinity to be taken up, while too high avidity limited the particle release from the cell surface. We further explored the functional roles of actin during exocytosis, which has been a topic under active debate. Our simulations indicated that the membrane compression due to the actin induced tension tended to break the ligand-receptor bonds and to shrink the fusion pore. Therefore, an intermediate tension promoted the fusion pore expansion and nanoparticle release, while high tension prohibits particle release. Our model provides new and critical mechanistic insights into RMT, and represents a powerful platform for aiding the rational design of nanocarriers for controlled drug delivery.
Collapse
Affiliation(s)
- Hua Deng
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99163, USA.
| | - Prashanta Dutta
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99163, USA.
| | - Jin Liu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99163, USA.
| |
Collapse
|
44
|
Ligand density on nanoparticles: A parameter with critical impact on nanomedicine. Adv Drug Deliv Rev 2019; 143:22-36. [PMID: 31158406 DOI: 10.1016/j.addr.2019.05.010] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/25/2019] [Accepted: 05/29/2019] [Indexed: 12/19/2022]
Abstract
Nanoparticles modified with ligands for specific targeting towards receptors expressed on the surface of target cells are discussed in literature towards improved delivery strategies. In such concepts the ligand density on the surface of the nanoparticles plays an important role. How many ligands per nanoparticle are best for the most efficient delivery? Importantly, this number may be different for in vitro and in vivo scenarios. In this review first viruses as "biological" nanoparticles are analyzed towards their ligand density, which is then compared to the ligand density of engineered nanoparticles. Then, experiments are reviewed in which in vitro and in vivo nanoparticle delivery has been analyzed in terms of ligand density. These results help to understand which ligand densities should be attempted for better targeting. Finally synthetic methods for controlling the ligand density of nanoparticles are described.
Collapse
|
45
|
Donahue ND, Acar H, Wilhelm S. Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Adv Drug Deliv Rev 2019; 143:68-96. [PMID: 31022434 DOI: 10.1016/j.addr.2019.04.008] [Citation(s) in RCA: 574] [Impact Index Per Article: 95.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/14/2019] [Accepted: 04/19/2019] [Indexed: 12/12/2022]
Abstract
Nanoparticle-based therapeutics and diagnostics are commonly referred to as nanomedicine and may significantly impact the future of healthcare. However, the clinical translation of these technologies is challenging. One of these challenges is the efficient delivery of nanoparticles to specific cell populations and subcellular targets in the body to elicit desired biological and therapeutic responses. It is critical for researchers to understand the fundamental concepts of how nanoparticles interact with biological systems to predict and control in vivo nanoparticle transport for improved clinical benefit. In this overview article, we review and discuss cellular internalization pathways, summarize the field`s understanding of how nanoparticle physicochemical properties affect cellular interactions, and explore and discuss intracellular nanoparticle trafficking and kinetics. Our overview may provide a valuable resource for researchers and may inspire new studies to expand our current understanding of nanotechnology-biology interactions at cellular and subcellular levels with the goal to improve clinical translation of nanomedicines.
Collapse
Affiliation(s)
- Nathan D Donahue
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Handan Acar
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States; Stephenson Cancer Center, Oklahoma City, Oklahoma 73104, United States.
| | - Stefan Wilhelm
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States; Stephenson Cancer Center, Oklahoma City, Oklahoma 73104, United States.
| |
Collapse
|
46
|
Wang S, Guo H, Li Y, Li X. Penetration of nanoparticles across a lipid bilayer: effects of particle stiffness and surface hydrophobicity. NANOSCALE 2019; 11:4025-4034. [PMID: 30768108 DOI: 10.1039/c8nr09381d] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The cellular uptake of nanoparticles (NPs) has drawn significant attention due to their great importance and potential in drug delivery, bioimaging, and specific targeting. Here, we conduct a computational study on the translocation process of soft nanoparticles with different elasticities and surface hydrophobicities through a lipid bilayer membrane. It is shown that the translocation abilities of hydrophilic NPs can be enhanced by increasing their stiffness, while the penetrability of hydrophobic NPs is weakened by increasing the particle stiffness. The free energy analysis indicates that rigid hydrophilic NPs and soft hydrophobic NPs encounter lower energy barriers during penetration. In direct translocation, different deformation modes are observed for NPs with different surface hydrophobicities during cellular internalization. Further, deformation analysis demonstrates that hydrophilic NPs are flattened in the membrane plane, while hydrophobic NPs are elongated along the membrane norm during penetration. We conclude that the elasticity of NPs has an obvious impact on their ability to penetrate across the lipid bilayer membrane through different morphological responses of hydrophilic and hydrophobic NPs. These results shed light on the coupled effects of particle elasticity and surface hydrophobicity on the cellular uptake of elastic NPs, which may provide useful guidelines for designing effective nanocarrier systems for drug delivery.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering (State Key Laboratory of Ocean Engineering, MOE Key Laboratory of Hydrodynamics), Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Hui Guo
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yinfeng Li
- Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering (State Key Laboratory of Ocean Engineering, MOE Key Laboratory of Hydrodynamics), Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Xuejin Li
- Department of Engineering Mechanics and Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou 310027, P. R. China.
| |
Collapse
|
47
|
Huang LY, Yu YS, Lu X, Ding HM, Ma YQ. Designing a nanoparticle-containing polymeric substrate for detecting cancer cells by computer simulations. NANOSCALE 2019; 11:2170-2178. [PMID: 30376020 DOI: 10.1039/c8nr06340k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Efficient and accurate detection of cancer cells (from normal cells) is of great importance in cancer diagnosis and prognosis. In this work, we design a new type of polymeric substrate containing nanoparticles for detecting cancers by the dissipative particle dynamics (DPD) simulation. It is found that the cancer cells and the normal cells can be indeed distinguished since the uptake number of nanoparticles from the substrate is different. The competition between the nanoparticle-cell specific interaction and nanoparticle-polymer non-specific interaction is the main factor for different uptake behaviors. Moreover, the dynamics of the nanoparticle diffusion in the polymer layer also plays an important role in the detection. To improve the detection accuracy, we further investigate the effect of the polymer type and density as well as the ligand type on the detection, and find that there may exist an optimal parameter to maximize the difference between cancer cells and normal cells. The present study may provide useful insights into the design of functionalized substrate-based nanodevices in biomedicine.
Collapse
Affiliation(s)
- Lu-Yi Huang
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
| | | | | | | | | |
Collapse
|
48
|
Van Lehn RC, Alexander-Katz A. Energy landscape for the insertion of amphiphilic nanoparticles into lipid membranes: A computational study. PLoS One 2019; 14:e0209492. [PMID: 30625163 PMCID: PMC6326551 DOI: 10.1371/journal.pone.0209492] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/30/2018] [Indexed: 11/19/2022] Open
Abstract
Amphiphilic, monolayer-protected gold nanoparticles (NPs) have been shown to enter cells via a non-endocytic, non-disruptive pathway that could be valuable for biomedical applications. The same NPs were also found to insert into a series of model cell membranes as a precursor to cellular uptake, but the insertion mechanism remains unclear. Previous simulations have demonstrated that an amphiphilic NP can insert into a single leaflet of a planar lipid bilayer, but in this configuration all charged end groups are localized to one side of the bilayer and it is unknown if further insertion is thermodynamically favorable. Here, we use atomistic molecular dynamics simulations to show that an amphiphilic NP can reach the bilayer midplane non-disruptively if charged ligands iteratively "flip" across the bilayer. Ligand flipping is a favorable process that relaxes bilayer curvature, decreases the nonpolar solvent-accessible surface area of the NP monolayer, and increases attractive ligand-lipid electrostatic interactions. Analysis of end group hydration further indicates that iterative ligand flipping can occur on experimentally relevant timescales. Supported by these results, we present a complete energy landscape for the non-disruptive insertion of amphiphilic NPs into lipid bilayers. These findings will help guide the design of NPs to enhance bilayer insertion and non-endocytic cellular uptake, and also provide physical insight into a possible pathway for the translocation of charged biomacromolecules.
Collapse
Affiliation(s)
- Reid C. Van Lehn
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Alfredo Alexander-Katz
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| |
Collapse
|
49
|
Shi X, Tian F. Multiscale Modeling and Simulation of Nano‐Carriers Delivery through Biological Barriers—A Review. ADVANCED THEORY AND SIMULATIONS 2018. [DOI: 10.1002/adts.201800105] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xinghua Shi
- CAS Key Laboratory for Nanosystem and Hierarchy FabricationCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyChinese Academy of Sciences Beijing 100190 China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of Sciences NO.19A Yuquan Road Beijing 100049 China
| | - Falin Tian
- CAS Key Laboratory for Nanosystem and Hierarchy FabricationCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyChinese Academy of Sciences Beijing 100190 China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of Sciences NO.19A Yuquan Road Beijing 100049 China
| |
Collapse
|
50
|
Water permeation in polymeric membranes: Mechanism and synthetic strategy for water-inhibiting functional polymers. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|