1
|
Phogat S, Guo TJF, Thiam F, Osei ET. Establishing a 3D Vascularized Tri-Culture Model of the Human Airways via a Digital Light Processing Bioprinter. Biotechnol Bioeng 2025. [PMID: 40298351 DOI: 10.1002/bit.29013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/12/2025] [Accepted: 04/17/2025] [Indexed: 04/30/2025]
Abstract
The rise in chronic lung diseases globally and the corresponding lag in drug discovery in this field highlights the need for In Vitro models closely mimicking In Vivo lung tissue. Efforts to date have largely focused on In Vitro coculture models, often neglecting the pulmonary vasculature's role in lung physiology and lacking perfusability. To address this gap, we utilized digital light processing bioprinting to establish a complex three-dimensional (3D) vascularized tri-culture airway model. Models were generated using a photopolymerizable bioink consisting of 80% polyethylene glycol diacrylate (PEGDA) and 20% gelatin methacrylate (GelMa) and printed using the LUMENX+ bioprinter. Stiffness, diffusivity, and gel expansion were characterized. Models were printed with MRC-5 lung fibroblasts embedded in hydrogels, while EA.hy926 endothelial cells and 1HAEo- epithelial cells were seeded on the luminal surface and on the apical domain, respectively. Endothelialization was achieved by coating lumens with matrix proteins, followed by perfusion-based endothelial cell seeding and uniform distribution via rotating the model. Structural characterization, including immunofluorescence imaging, lactate dehydrogenase (LDH) viability, interleukin-6 and interleukin-8 quantification was performed following cigarette smoke extract (CSE) exposure. PEGDA/GelMa 80:20 hydrogels had a Young's modulus of 10.7 kPa, expanded by 101.5% in volume and 107% in weight after 24 h in phosphate-buffered saline, and turned completely blue following 12 h of exposure to 0.1% methylene blue. Immunofluorescence staining revealed an intact apical epithelial and luminal endothelial layer demonstrated by E-cadherin expression. Lung fibroblasts retained their spindle shape with dendritic extensions as shown by F-actin staining. Propidium iodide staining demonstrated 80-90% cell viability. Cigarette smoke exposure significantly increased IL-6 and IL-8 release, but not LDH release. A multiplex assay revealed distinct immune mediator profiles and clustering between co-cultures and tri-cultures at baseline, underscoring differences in intercellular communication. This study successfully engineered and characterized a 3D bioprinted vascularized tri-culture model that mimics human airways. The model is adaptable to future studies by incorporating additional cell types, primary cells, or modified designs and protocols.
Collapse
Affiliation(s)
- Sakshi Phogat
- Department of Biology, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Tony Ju Feng Guo
- Department of Biology, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Fama Thiam
- Department of Biology, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Emmanule Twumasi Osei
- Department of Biology, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
El Kommos A, Magesh P, Lattanze S, Perros A, Andreopoulos F, Travascio F, Jackson A. Hybrid Hydrogels Augmented via Additive Network Integration (HANI) for Meniscal Tissue Engineering Applications. Gels 2025; 11:223. [PMID: 40277659 PMCID: PMC12027216 DOI: 10.3390/gels11040223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/08/2025] [Accepted: 03/11/2025] [Indexed: 04/26/2025] Open
Abstract
Orthopedic soft tissue injuries, such as those to the fibrocartilaginous meniscus in the knee, present a significant clinical challenge, impacting millions globally and often requiring surgical interventions that fail to fully restore mechanical function. Current bioengineered meniscal replacement options that incorporate synthetic and/or natural scaffolds have limitations in biomechanical performance and biological integration. This study introduces a novel scaffold fabrication approach, termed Hybrid Hydrogels Augmented via Additive Network Integration (HANI) with great potential for meniscal tissue engineering applications. HANI scaffolds combine cross-linked gelatin-based hydrogels with polycaprolactone (PCL) additive networks, created via Fused Deposition Modeling (FDM), to enhance mechanical strength and replicate the anisotropic properties of the meniscus. Custom Stereolithography (SLA)-printed molds ensure precise dimensional control and seamless incorporation of PCL networks within the hydrogel matrix. The mechanical evaluation of HANI scaffolds showed improvements in compressive stiffness, stress relaxation behavior, and load-bearing capacity, especially with circumferential and 3D PCL reinforcements, when compared to hydrogel scaffolds without additive networks. These findings highlight HANI's potential as a cost-effective, scalable, and tunable scaffold fabrication approach for meniscal tissue engineering applications.
Collapse
Affiliation(s)
- Anthony El Kommos
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA; (A.E.K.); (S.L.); (A.P.)
| | - Praveen Magesh
- Department of Mechanical and Aerospace Engineering, University of Miami, Coral Gables, FL 33146, USA; (P.M.); (F.T.)
| | - Samantha Lattanze
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA; (A.E.K.); (S.L.); (A.P.)
| | - Andrew Perros
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA; (A.E.K.); (S.L.); (A.P.)
| | - Fotios Andreopoulos
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA; (A.E.K.); (S.L.); (A.P.)
- Department of Surgery, University of Miami, Miami, FL 33136, USA
| | - Francesco Travascio
- Department of Mechanical and Aerospace Engineering, University of Miami, Coral Gables, FL 33146, USA; (P.M.); (F.T.)
- Department of Orthopaedic Surgery, University of Miami, Miami, FL 33136, USA
| | - Alicia Jackson
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA; (A.E.K.); (S.L.); (A.P.)
| |
Collapse
|
3
|
Shukla A, Syaifie PH, Rochman NT, Jaya Syaifullah S, Jauhar MM, Mardliyati E. A recent study of natural hydrogels: improving mechanical properties for biomedical applications. Biomed Mater 2025; 20:022010. [PMID: 39908671 DOI: 10.1088/1748-605x/adb2cd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 02/05/2025] [Indexed: 02/07/2025]
Abstract
Natural polymer-based hydrogels, generally composed of hydrophilic polymers capable of absorbing large amounts of water, have garnered attention for biomedical applications because of their biocompatibility, biodegradability, and eco-friendliness. Natural polymer-based hydrogels derived from alginate, starch, cellulose, and chitosan are particularly valuable in fields such as drug delivery, wound dressing, and tissue engineering. However, compared with synthetic hydrogels, their poor mechanical properties limit their use in load-bearing applications. This review explores recent advancements in the enhancement of the mechanical strength of natural hydrogels while maintaining their biocompatibility for biomedical applications. Strategies such as chemical modification, blending with stronger materials, and optimized cross-linking are discussed. By improving their mechanical resilience, natural hydrogels can become more suitable for demanding biomedical applications, like tissue scaffolding and cartilage repair. Additionally, this review identifies the ongoing challenges and future directions for maximizing the potential of natural polymer-based hydrogels in advanced medical therapies.
Collapse
Affiliation(s)
- Atharva Shukla
- ACS (Anglo Chinese School) Jakarta-Cilangkap, Jl. Bantar Jati, Setu, Kec. Cipayung, Kota Jakarta Timur, Daerah Khusus Ibukota, Jakarta 13880, Indonesia
| | - Putri Hawa Syaifie
- Center of Excellence Life Sciences, Nano Center Indonesia, South Tangerang, Banten 15314, Indonesia
| | - Nurul Taufiqu Rochman
- Center of Excellence Applied Nanotechnology, Nano Center Indonesia Research Institute Puspiptek Street, South Tangerang, Banten 15314, Indonesia
- Research Center for Advanced Material, National Research and Innovation Agency (BRIN), Puspiptek, South Tangerang, Banten 15314, Indonesia
| | - Syahnanda Jaya Syaifullah
- Center of Excellence Applied Nanotechnology, Nano Center Indonesia Research Institute Puspiptek Street, South Tangerang, Banten 15314, Indonesia
| | - Muhammad Miftah Jauhar
- Center of Excellence Life Sciences, Nano Center Indonesia, South Tangerang, Banten 15314, Indonesia
- Biomedical Engineering, Graduate School of Universitas Gadjah Mada, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Etik Mardliyati
- Research Center for Vaccine and Drug, National Research and Innovation Agency (BRIN), Cibinong 16911, Indonesia
| |
Collapse
|
4
|
Ahmadpoor X, Sun J, Douglas N, Zhu W, Lin H. Hydrogel-Enhanced Autologous Chondrocyte Implantation for Cartilage Regeneration-An Update on Preclinical Studies. Bioengineering (Basel) 2024; 11:1164. [PMID: 39593824 PMCID: PMC11591888 DOI: 10.3390/bioengineering11111164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Autologous chondrocyte implantation (ACI) and matrix-induced ACI (MACI) have demonstrated improved clinical outcomes and reduced revision rates for treating osteochondral and chondral defects. However, their ability to achieve lasting, fully functional repair remains limited. To overcome these challenges, scaffold-enhanced ACI, particularly utilizing hydrogel-based biomaterials, has emerged as an innovative strategy. These biomaterials are intended to mimic the biological composition, structural organization, and biomechanical properties of native articular cartilage. This review aims to provide comprehensive and up-to-date information on advancements in hydrogel-enhanced ACI from the past decade. We begin with a brief introduction to cartilage biology, mechanisms of cartilage injury, and the evolution of surgical techniques, particularly looking at ACI. Subsequently, we review the diversity of hydrogel scaffolds currently undergoing development and evaluation in preclinical studies for articular cartilage regeneration, emphasizing chondrocyte-laden hydrogels applicable to ACI. Finally, we address the key challenges impeding effective clinical translation, with particular attention to issues surrounding fixation and integration, aiming to inform and guide the future progression of tissue engineering strategies.
Collapse
Affiliation(s)
- Xenab Ahmadpoor
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Rm 217, Pittsburgh, PA 15219, USA; (X.A.); (J.S.)
| | - Jessie Sun
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Rm 217, Pittsburgh, PA 15219, USA; (X.A.); (J.S.)
| | - Nerone Douglas
- Department of Molecular Oncology, University of Pittsburgh School of Medicine, 450 Technology Drive, Rm 217, Pittsburgh, PA 15219, USA;
| | - Weimin Zhu
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen 518025, China
- Clinical College of the Second Shenzhen Hospital, Anhui Medical University, Shenzhen 518025, China
| | - Hang Lin
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Rm 217, Pittsburgh, PA 15219, USA; (X.A.); (J.S.)
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, 450 Technology Drive, Rm 217, Pittsburgh, PA 15219, USA
- Orland Bethel Family Musculoskeletal Research Center, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
5
|
Greco I, Machrafi H, Iorio CS. Double-Network Hydrogel 3D BioPrinting Biocompatible with Fibroblast Cells for Tissue Engineering Applications. Gels 2024; 10:684. [PMID: 39590040 PMCID: PMC11594167 DOI: 10.3390/gels10110684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
The present study examines the formulation of a biocompatible hydrogel bioink for 3D bioprinting, integrating poly(ethylene glycol) diacrylate (PEGDA) and sodium alginate (SA) using a double-network approach. These materials were chosen for their synergistic qualities, with PEGDA contributing to mechanical integrity and SA ensuring biocompatibility. Fibroblast cells were included in the bioink and printed with a Reg4Life bioprinter employing micro-extrusion technology. The optimisation of printing parameters included needle size and flow velocities. This led to precise structure development and yielded results with a negligible deviation in printed angles and better control of line widths. The rheological characteristics of the bioink were evaluated, demonstrating appropriate viscosity and shear-thinning behaviour for efficient extrusion. The mechanical characterisation revealed an average compressive modulus of 0.38 MPa, suitable for tissue engineering applications. The printability of the bioink was further confirmed through the evaluations of morphology and diffusion rates, confirming structural integrity. Biocompatibility assessments demonstrated a high cell viability rate of 82.65% following 48 h of incubation, supporting the bioink's suitability for facilitating cell survival. This study introduced a reliable technique for producing tissue-engineered scaffolds that exhibit outstanding mechanical characteristics and cell viability, highlighting the promise of PEGDA-SA hydrogels in bioprinting applications.
Collapse
Affiliation(s)
- Immacolata Greco
- Center for Research and Engineering in Space Technologies, Université Libre de Bruxelles, 1050 Brussels, Belgium; (I.G.); (C.S.I.)
| | - Hatim Machrafi
- Center for Research and Engineering in Space Technologies, Université Libre de Bruxelles, 1050 Brussels, Belgium; (I.G.); (C.S.I.)
- GIGA-In Silico Medicine, Université de Liège, 4000 Liège, Belgium
| | - Carlo S. Iorio
- Center for Research and Engineering in Space Technologies, Université Libre de Bruxelles, 1050 Brussels, Belgium; (I.G.); (C.S.I.)
| |
Collapse
|
6
|
Recalde Phillips S, Perez-Ponce KD, Ruben E, Baig T, Poux E, Gregory CA, Alge DL. Impact of Annealing Chemistry on the Properties and Performance of Microporous Annealed Particle Hydrogels. Biomacromolecules 2024; 25:5798-5808. [PMID: 39190621 PMCID: PMC11388458 DOI: 10.1021/acs.biomac.4c00465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024]
Abstract
Microporous annealed particle (MAP) hydrogels are a promising class of in situ-forming scaffolds for tissue repair and regeneration. While an expansive toolkit of annealing chemistries has been described, the effects of different annealing chemistries on MAP hydrogel properties and performance have not been studied. In this study, we address this gap through a controlled head-to-head comparison of poly(ethylene glycol) (PEG)-based MAP hydrogels that were annealed using tetrazine-norbornene and thiol-norbornene click chemistry. Characterization of material properties revealed that tetrazine click annealing significantly increases MAP hydrogel shear storage modulus and results in slower in vitro degradation kinetics when microgels with a higher cross-link density are used. However, these effects are muted when the MAP hydrogels are fabricated from microgels with a lower cross-link density. In contrast, in vivo testing in murine critical-sized calvarial defects revealed that these differences in physicochemical properties do not translate to differences in bone volume or calvarial defect healing when growth-factor-loaded MAP hydrogel scaffolds are implanted into mouse calvarial defects. Nonetheless, the impact of tetrazine click annealing could be important in other applications and should be investigated further.
Collapse
Affiliation(s)
- Sarea
Y. Recalde Phillips
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
| | - Kiara D. Perez-Ponce
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
| | - Elizabeth Ruben
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
| | - Talia Baig
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
| | - Emily Poux
- Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Carl A. Gregory
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
- Department
of Medical Physiology, School of Medicine, Texas A&M University, Bryan, Texas 77807, United States
| | - Daniel L. Alge
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
- Department
of Materials Science and Engineering, Texas
A&M University, College Station, Texas 77843, United States
| |
Collapse
|
7
|
Garciamendez-Mijares CE, Aguilar FJ, Hernandez P, Kuang X, Gonzalez M, Ortiz V, Riesgo RA, Ruiz DSR, Rivera VAM, Rodriguez JC, Mestre FL, Castillo PC, Perez A, Cruz LM, Lim KS, Zhang YS. Design considerations for digital light processing bioprinters. APPLIED PHYSICS REVIEWS 2024; 11:031314. [PMID: 39221036 PMCID: PMC11284760 DOI: 10.1063/5.0187558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 07/02/2024] [Indexed: 09/04/2024]
Abstract
With the rapid development and popularization of additive manufacturing, different technologies, including, but not limited to, extrusion-, droplet-, and vat-photopolymerization-based fabrication techniques, have emerged that have allowed tremendous progress in three-dimensional (3D) printing in the past decades. Bioprinting, typically using living cells and/or biomaterials conformed by different printing modalities, has produced functional tissues. As a subclass of vat-photopolymerization bioprinting, digital light processing (DLP) uses digitally controlled photomasks to selectively solidify liquid photocurable bioinks to construct complex physical objects in a layer-by-layer manner. DLP bioprinting presents unique advantages, including short printing times, relatively low manufacturing costs, and decently high resolutions, allowing users to achieve significant progress in the bioprinting of tissue-like complex structures. Nevertheless, the need to accommodate different materials while bioprinting and improve the printing performance has driven the rapid progress in DLP bioprinters, which requires multiple pieces of knowledge ranging from optics, electronics, software, and materials beyond the biological aspects. This raises the need for a comprehensive review to recapitulate the most important considerations in the design and assembly of DLP bioprinters. This review begins with analyzing unique considerations and specific examples in the hardware, including the resin vat, optical system, and electronics. In the software, the workflow is analyzed, including the parameters to be considered for the control of the bioprinter and the voxelizing/slicing algorithm. In addition, we briefly discuss the material requirements for DLP bioprinting. Then, we provide a section with best practices and maintenance of a do-it-yourself DLP bioprinter. Finally, we highlight the future outlooks of the DLP technology and their critical role in directing the future of bioprinting. The state-of-the-art progress in DLP bioprinter in this review will provide a set of knowledge for innovative DLP bioprinter designs.
Collapse
Affiliation(s)
- Carlos Ezio Garciamendez-Mijares
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Francisco Javier Aguilar
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Pavel Hernandez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Xiao Kuang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Mauricio Gonzalez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Vanessa Ortiz
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Ricardo A. Riesgo
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - David S. Rendon Ruiz
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Victoria Abril Manjarrez Rivera
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Juan Carlos Rodriguez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Francisco Lugo Mestre
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Penelope Ceron Castillo
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Abraham Perez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Lourdes Monserrat Cruz
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Khoon S. Lim
- School of Medical Sciences, University of Sydney, Sydney 2006, Australia
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
8
|
Ajam A, Huang Y, Islam MS, Kilian KA, Kruzic JJ. Mechanical and biological behavior of double network hydrogels reinforced with alginate versus gellan gum. J Mech Behav Biomed Mater 2024; 157:106642. [PMID: 38963998 DOI: 10.1016/j.jmbbm.2024.106642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/06/2024] [Accepted: 06/22/2024] [Indexed: 07/06/2024]
Abstract
Alginate and gellan gum have both been used by researchers as reinforcing networks to create tough and biocompatible polyethylene glycol (PEG) based double network (DN) hydrogels; however, the relative advantages and disadvantages of each approach are not understood. This study directly compares the mechanical and biological properties of polyethylene glycol di-methacrylate (PEGDMA) hybrid DN hydrogels reinforced with either gellan gum or sodium alginate using PEGDMA concentrations from 10 to 20 wt% and reinforcing network concentrations of 1 and 2 wt%. The findings demonstrate that gellan gum reinforcement is more effective at increasing the strength, stiffness, and toughness of PEGDMA DN hydrogels. In contrast, alginate reinforcement yields DN hydrogels with greater stretchability compared to gellan gum reinforced PEGDMA. Furthermore, separate measurements of toughness via unnotched work of rupture testing and notched fracture toughness testing showed a strong correlation of these two properties for a single reinforcing network type, but not across the two types of reinforcing networks. This suggests that additional notched fracture toughness experiments are important for understanding the full mechanical response when comparing different tough DN hydrogel systems. Regarding the biological response, after conjugation of matrix protein to the surface of both materials robust cell attachment and spreading was supported with higher yes associated protein (YAP) nuclear expression observed in populations adhering to the stiffer gellan gum-PEGDMA material. This study provides valuable insights regarding how to design double network hydrogels for specific property requirements, e.g., for use in biomedical devices, as scaffolding for tissue engineering, or in soft robotic applications.
Collapse
Affiliation(s)
- Alaa Ajam
- School of Mechanical and Manufacturing Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Yuwan Huang
- School of Mechanical and Manufacturing Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Md Shariful Islam
- School of Materials Science and Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Kristopher A Kilian
- School of Materials Science and Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia; School of Chemistry, Australian Centre for NanoMedicine, University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Jamie J Kruzic
- School of Mechanical and Manufacturing Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia.
| |
Collapse
|
9
|
Chang CW, Dargaville BL, Momot KI, Hutmacher DW. An investigation of water status in gelatin methacrylate hydrogels by means of water relaxometry and differential scanning calorimetry. J Mater Chem B 2024; 12:6328-6341. [PMID: 38628083 DOI: 10.1039/d4tb00053f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The relationship between molecular structure and water dynamics is a fundamental yet often neglected subject in the field of hydrogels for drug delivery, bioprinting, as well as biomaterial science and tissue engineering & regenerative medicine (TE&RM). Water is a fundamental constituent of hydrogel systems and engages via hydrogen bonding with the macromolecular network. The methods and techniques to measure and reveal the phenomena and dynamics of water within hydrogels are still limited. In this work, differential scanning calorimetry (DSC) was used as a quantitative method to analyze freezable (including free and freezable bound) and non-freezable bound water within gelatin methacrylate (GelMA) hydrogels. Nuclear magnetic resonance (NMR) is a complementary method for the study of water behavior and can be used to measure the spin-relaxation of water hydrogen nuclei, which is related to water dynamics. In this research, nuclear magnetic resonance relaxometry was employed to investigate the molecular state of water in GelMA hydrogels using spin-lattice (T1) and spin-spin (T2) spin-relaxation time constants. The data displays a trend of increasing bound water content with increasing GelMA concentration. In addition, T2 values were further applied to calculate microviscosity and translational diffusion coefficients. Water relaxation under various chemical environments, including different media, temperatures, gelatin sources, as well as crosslinking effects, were also examined. These comprehensive physical data sets offer fundamental insight into biomolecule transport within the GelMA hydrogel system, which ultimately are important for drug delivery, bioprinting, as well as biomaterial science and TE&RM communities.
Collapse
Affiliation(s)
- Chun-Wei Chang
- Max Planck Queensland Centre on the Materials Science for Extracellular Matrices, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia.
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), QLD 4059, Australia
| | - Bronwin L Dargaville
- Max Planck Queensland Centre on the Materials Science for Extracellular Matrices, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia.
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), QLD 4059, Australia
| | - Konstantin I Momot
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
| | - Dietmar W Hutmacher
- Max Planck Queensland Centre on the Materials Science for Extracellular Matrices, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia.
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), QLD 4059, Australia
| |
Collapse
|
10
|
Gonella S, Domingues MF, Miguel F, Moura CS, Rodrigues CAV, Ferreira FC, Silva JC. Fabrication and Characterization of Porous PEGDA Hydrogels for Articular Cartilage Regeneration. Gels 2024; 10:422. [PMID: 39057446 PMCID: PMC11276562 DOI: 10.3390/gels10070422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/25/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Functional articular cartilage regeneration remains an unmet medical challenge, increasing the interest for innovative biomaterial-based tissue engineering (TE) strategies. Hydrogels, 3D macromolecular networks with hydrophilic groups, present articular cartilage-like features such as high water content and load-bearing capacity. In this study, 3D porous polyethylene glycol diacrylate (PEGDA) hydrogels were fabricated combining the gas foaming technique and a UV-based crosslinking strategy. The 3D porous PEGDA hydrogels were characterized in terms of their physical, structural and mechanical properties. Our results showed that the size of the hydrogel pores can be modulated by varying the initiator concentration. In vitro cytotoxicity tests showed that 3D porous PEGDA hydrogels presented high biocompatibility both with human chondrocytes and osteoblast-like cells. Importantly, the 3D porous PEGDA hydrogels supported the viability and chondrogenic differentiation of human bone marrow-derived mesenchymal stem/stromal cell (hBM-MSC)-based spheroids as demonstrated by the positive staining of typical cartilage extracellular matrix (ECM) (glycosaminoglycans (GAGs)) and upregulation of chondrogenesis marker genes. Overall, the produced 3D porous PEGDA hydrogels presented cartilage-like mechanical properties and supported MSC spheroid chondrogenesis, highlighting their potential as suitable scaffolds for cartilage TE or disease modelling strategies.
Collapse
Affiliation(s)
- Silvia Gonella
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (S.G.); (M.F.D.); (F.M.); (C.A.V.R.); (F.C.F.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Margarida F. Domingues
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (S.G.); (M.F.D.); (F.M.); (C.A.V.R.); (F.C.F.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Filipe Miguel
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (S.G.); (M.F.D.); (F.M.); (C.A.V.R.); (F.C.F.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Carla S. Moura
- Polytechnic Institute of Coimbra, Applied Research Institute, Rua da Misericórdia, Lagar dos Cortiços—S. Martinho do Bispo, 3045-093 Coimbra, Portugal;
- CDRSP—Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Rua de Portugal-Zona Industrial, 2430-028 Marinha Grande, Portugal
- Research Centre for Natural Resources Environment and Society (CERNAS), Polytechnic Institute of Coimbra, Bencanta, 3045-601 Coimbra, Portugal
| | - Carlos A. V. Rodrigues
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (S.G.); (M.F.D.); (F.M.); (C.A.V.R.); (F.C.F.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Frederico Castelo Ferreira
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (S.G.); (M.F.D.); (F.M.); (C.A.V.R.); (F.C.F.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - João C. Silva
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (S.G.); (M.F.D.); (F.M.); (C.A.V.R.); (F.C.F.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
11
|
Saito R, Tamesue S. Development of a Self-Healing Gel with Self-Healing Kinetics That Can Be Controlled by Heat. Gels 2024; 10:410. [PMID: 38920956 PMCID: PMC11202672 DOI: 10.3390/gels10060410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
A self-healing gel with self-healing kinetics that can be regulated by heat is developed. The gel is composed of a polymer having benzophenone (BP) substituents, which are cross-linked with a main alkyl chain via ester bonds, titanium chloride, and zinc. This gel material shows a self-healing property at room temperature. Also, its self-healing behavior can be accelerated by heating the gel. This gel having self-healing kinetics that can be regulated by heat is favorable for practical use. When we want to use a self-healing property as a stop-gap measure, a rapid self-healing property is demanded. On the other hand, when we want materials repaired beautifully or decomposed surfaces need to be attached beautifully, a slow self-healing property is favorable. These opposite demands can be answered by the gel with self-healing kinetics that can be regulated by heat.
Collapse
Affiliation(s)
| | - Shingo Tamesue
- Division of Engineering and Agriculture, Graduate School of Regional Development and Creativity, Utsunomiya University, Yoto 7-1-2, Utsunomiya 321-0904, Tochigi, Japan;
| |
Collapse
|
12
|
Ebrahimi M, Arreguín-Campos M, Dookhith AZ, Aldana AA, Lynd NA, Sanoja GE, Baker MB, Pitet LM. Tailoring Network Topology in Mechanically Robust Hydrogels for 3D Printing and Injection. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38712527 DOI: 10.1021/acsami.4c03209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Tissue engineering and regenerative medicine are confronted with a persistent challenge: the urgent demand for robust, load-bearing, and biocompatible scaffolds that can effectively endure substantial deformation. Given that inadequate mechanical performance is typically rooted in structural deficiencies─specifically, the absence of energy dissipation mechanisms and network uniformity─a crucial step toward solving this problem is generating synthetic approaches that enable exquisite control over network architecture. This work systematically explores structure-property relationships in poly(ethylene glycol)-based hydrogels constructed utilizing thiol-yne chemistry. We systematically vary polymer concentration, constituent molar mass, and cross-linking protocols to understand the impact of architecture on hydrogel mechanical properties. The network architecture was resolved within the molecular model of Rubinstein-Panyukov to obtain the densities of chemical cross-links and entanglements. We employed both nucleophilic and radical pathways, uncovering notable differences in mechanical response, which highlight a remarkable degree of versatility achievable by tuning readily accessible parameters. Our approach yielded hydrogels with good cell viability and remarkably robust tensile and compression profiles. Finally, the hydrogels are shown to be amenable to advanced processing techniques by demonstrating injection- and extrusion-based 3D printing. Tuning the mechanism and network regularity during the cell-compatible formation of hydrogels is an emerging strategy to control the properties and processability of hydrogel biomaterials by making simple and rational design choices.
Collapse
Affiliation(s)
- Mahsa Ebrahimi
- Advanced Functional Polymers (AFP) Laboratory, Institute for Materials Research (imo-imomec), Hasselt University, Martelarenlaan 42, Hasselt 3500, Belgium
- Department of Instructive Biomaterials Engineering and Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, Maastricht 6229 ET, The Netherlands
| | - Mariana Arreguín-Campos
- Advanced Functional Polymers (AFP) Laboratory, Institute for Materials Research (imo-imomec), Hasselt University, Martelarenlaan 42, Hasselt 3500, Belgium
- Department of Instructive Biomaterials Engineering and Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, Maastricht 6229 ET, The Netherlands
| | - Aaliyah Z Dookhith
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ana A Aldana
- Department of Instructive Biomaterials Engineering and Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, Maastricht 6229 ET, The Netherlands
| | - Nathaniel A Lynd
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Gabriel E Sanoja
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Matthew B Baker
- Department of Instructive Biomaterials Engineering and Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, Maastricht 6229 ET, The Netherlands
| | - Louis M Pitet
- Advanced Functional Polymers (AFP) Laboratory, Institute for Materials Research (imo-imomec), Hasselt University, Martelarenlaan 42, Hasselt 3500, Belgium
| |
Collapse
|
13
|
Belda-Perez R, Heras S, Cimini C, Romero-Aguirregomezcorta J, Valbonetti L, Colosimo A, Colosimo BM, Santoni S, Barboni B, Bernabò N, Coy P. Advancing bovine in vitro fertilization through 3D printing: the effect of the 3D printed materials. Front Bioeng Biotechnol 2023; 11:1260886. [PMID: 37929185 PMCID: PMC10621798 DOI: 10.3389/fbioe.2023.1260886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/15/2023] [Indexed: 11/07/2023] Open
Abstract
Nowadays there is an increasing demand for assisted reproductive technologies due to the growth of infertility problems. Naturally, fertilization occurs in the oviduct, where the oviductal epithelial cells (OECs) secrete many molecules that affect the embryo's metabolism and protect it from oxidative stress. When the OECs are grown in 3D culture systems, they maintain a great part of their functional characteristics, making them an excellent model for in vitro fertilization (IVF) studies. In this work, we aimed to evaluate the suitability of different 3D-printing processes in conjunction with the corresponding set of commercially available biomaterials: extrusion-based processing using polylactic acid (PLA) and polycaprolactone (PCL) and stereolithography or digital-light processing using polyethylene-glycol-diacrylate (PEGDA) with different stiffness (PEGDA500, PEGDA200, PEGDA PhotoInk). All the 3D-printed scaffolds were used to support IVF process in a bovine embryo assay. Following fertilization, embryo development and quality were assessed in terms of cleavage, blastocyst rate at days 7 and 8, total cell number (TCN), inner cell mass/trophectoderm ratio (ICN/TE), and apoptotic cell ratio (ACR). We found a detrimental effect on cleavage and blastocyst rates when the IVF was performed on any medium conditioned by most of the materials available for digital-light processing (PEGDA200, PEGDA500). The observed negative effect could be possibly due to some leaked compound used to print and stabilize the scaffolds, which was not so evident however with PEGDA PhotoInk. On the other hand, all the extrusion-based processable materials did not cause any detrimental effect on cleavage or blastocyst rates. The principal component analysis reveals that embryos produced in presence of 3D-printed scaffolds produced via extrusion exhibit the highest similarity with the control embryos considering cleavage, blastocyst rates, TCN, ICN/TE and ACR per embryo. Conversely, all the photo-cross linkable materials or medium conditioned by PLA, lead to the highest dissimilarities. Since the use of PCL scaffolds, as well as its conditioned medium, bring to embryos that are more similar to the control group. Our results suggest that extrusion-based 3D printing of PCL could be the best option to be used for new IVF devices, possibly including the support of OECs, to enhance bovine embryo development.
Collapse
Affiliation(s)
- Ramses Belda-Perez
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Physiology of Reproduction Group, Department of Physiology, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), University of Murcia, Murcia, Spain
| | - Sonia Heras
- Physiology of Reproduction Group, Department of Physiology, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), University of Murcia, Murcia, Spain
| | - Costanza Cimini
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Jon Romero-Aguirregomezcorta
- Physiology of Reproduction Group, Department of Physiology, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), University of Murcia, Murcia, Spain
| | - Luca Valbonetti
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Institute of Biochemistry and Cell Biology (CNRIBBC/EMMA/Infrafrontier/IMPC), National Research Council, Rome, Italy
| | - Alessia Colosimo
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | | | - Silvia Santoni
- Department of Mechanical Engineering, Politecnico di Milano, Milano, Italy
| | - Barbara Barboni
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Nicola Bernabò
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Institute of Biochemistry and Cell Biology (CNRIBBC/EMMA/Infrafrontier/IMPC), National Research Council, Rome, Italy
| | - Pilar Coy
- Physiology of Reproduction Group, Department of Physiology, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), University of Murcia, Murcia, Spain
| |
Collapse
|
14
|
Jha A, Larkin J, Moore E. SOCS1-KIR Peptide in PEGDA Hydrogels Reduces Pro-Inflammatory Macrophage Activation. Macromol Biosci 2023; 23:e2300237. [PMID: 37337867 DOI: 10.1002/mabi.202300237] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Indexed: 06/21/2023]
Abstract
Macrophages modulate the wound healing cascade by adopting different phenotypes such as pro-inflammatory (M1) or pro-wound healing (M2). To reduce M1 activation, the JAK/STAT pathway can be targeted by using suppressors of cytokine signaling (SOCS1) proteins. Recently a peptide mimicking the kinase inhibitory region (KIR) of SOCS1 has been utilized to manipulate the adaptive immune response. However, the utilization of SOCS1-KIR to reduce pro-inflammatory phenotype in macrophages is yet to be investigated in a biomaterial formulation. This study introduces a PEGDA hydrogel platform to investigate SOCS1-KIR as a macrophage phenotype manipulating peptide. Immunocytochemistry, cytokine secretion assays, and gene expression analysis for pro-inflammatory macrophage markers in 2D and 3D experiments demonstrate a reduction in M1 activation due to SOCS1-KIR treatment. The retention of SOCS1-KIR in the hydrogel through release assays and diffusion tests is demonstrated. The swelling ratio of the hydrogel also remains unaffected with the entrapment of SOCS1-KIR. This study elucidates how SOCS1-KIR peptide in PEGDA hydrogels can be utilized as an effective therapeutic for macrophage manipulation.
Collapse
Affiliation(s)
- Aakanksha Jha
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Joseph Larkin
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32603, USA
| | - Erika Moore
- Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
15
|
Grübel J, L Albernaz V, Tsianaka A, Jauch CO, Quirin S, Kerger C, Kohl CG, Burger-Kentischer A, Tovar GEM, Southan A. Preparation of multifunctional hydrogels with accessible isothiouronium groups via radical cross-linking copolymerization. Sci Rep 2023; 13:10361. [PMID: 37365250 PMCID: PMC10293292 DOI: 10.1038/s41598-023-36956-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023] Open
Abstract
Hydrogels can be equipped with functional groups for specific purposes. Isothiouronium groups can enhance adsorptivity, or allow coupling of other functional groups through mild reactions after transformation to thiol groups. Here we present a method to prepare multifunctional hydrogels by introducing isothiouronium groups into poly(ethylene glycol) diacrylate (PEGDA) hydrogels, and convert them into thiol-functionalized hydrogels by the reduction of the isothiouronium groups. For this purpose, the amphiphilic monomer 2-(11-(acryloyloxy)-undecyl)isothiouronium bromide (AUITB), containing an isothiouronium group, was synthesized and copolymerized with PEGDA. In this convenient way, it was possible to incorporate up to 3 wt% AUITB into the hydrogels without changing their equilibrium swelling degree. The successful functionalization was demonstrated by surface analysis of the hydrogels with water contact angle measurements and increased isoelectric points of the hydrogel surfaces from 4.5 to 9.0 due to the presence of the isothiouronium groups. The hydrogels showed a suitability as an adsorbent, as exemplified by the pronounced adsorption of the anionic drug diclofenac. The potential of the functionalization for (bio)conjugation reactions was demonstrated by the reduction of isothiouronium groups to thiols and subsequent immobilization of the functional enzyme horseradish peroxidase on the hydrogels. The results show that fully accessible isothiouronium groups can be introduced into radically cross-linked hydrogels.
Collapse
Affiliation(s)
- Jana Grübel
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Nobelstr. 12, 70569, Stuttgart, Germany
| | - Vanessa L Albernaz
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Nobelstr. 12, 70569, Stuttgart, Germany
| | - Anastasia Tsianaka
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Nobelstr. 12, 70569, Stuttgart, Germany
| | - Corinna O Jauch
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Nobelstr. 12, 70569, Stuttgart, Germany
| | - Silia Quirin
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Nobelstr. 12, 70569, Stuttgart, Germany
| | - Christian Kerger
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstr. 12, 70569, Stuttgart, Germany
| | - Christina G Kohl
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstr. 12, 70569, Stuttgart, Germany
| | - Anke Burger-Kentischer
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstr. 12, 70569, Stuttgart, Germany
| | - Günter E M Tovar
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Nobelstr. 12, 70569, Stuttgart, Germany.
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstr. 12, 70569, Stuttgart, Germany.
| | - Alexander Southan
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Nobelstr. 12, 70569, Stuttgart, Germany.
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany.
| |
Collapse
|
16
|
Allen BN, Wendland RJ, Thompson JD, Tucker BA, Worthington KS. Photopolymerization Parameters Influence Mechanical, Microstructural, and Cell Loading Properties of Rapidly Fabricated Cell Scaffolds. ACS Biomater Sci Eng 2023; 9:2663-2671. [PMID: 37075323 PMCID: PMC10170473 DOI: 10.1021/acsbiomaterials.3c00408] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Engineered scaffolds are commonly used to assist in cellular transplantations, providing crucial support and specific architecture for a variety of tissue engineering applications. Photopolymerization as a fabrication technique for cell scaffolds enables precise spatial and temporal control of properties and structure. One simple technique to achieve a two-dimensional structure is the use of a patterned photomask, which results in regionally selective photo-cross-linking. However, the relationships between photopolymerization parameters like light intensity and exposure time and outcomes like structural fidelity and mechanical properties are not well-established. In this work, we used photopolymerization to generate degradable polycaprolactone triacrylate (PCLTA) scaffolds with a defined microstructure. We examined the impact of light intensity and exposure time on scaffold properties such as shear modulus and micropore structure. To assess feasibility in a specific application and determine the relationship between parameter-driven properties and cell loading, we cultured retinal progenitor cells on the PCLTA scaffolds. We found that light intensity and polymerization time directly impact the scaffold stiffness and micropore structure, which in turn influenced the cell loading capacity of the scaffold. Because material stiffness and topography are known to impact cell viability and fate, understanding the effect of scaffold fabrication parameters on mechanical and structural properties is critical to optimizing cell scaffolds for specific applications.
Collapse
Affiliation(s)
- Brittany N Allen
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, The University of Iowa, Iowa City, Iowa 52242-1002, United States
| | - Rion J Wendland
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, The University of Iowa, Iowa City, Iowa 52242-1002, United States
- Department of Ophthalmology and Visual Sciences, Roy J. Carver College of Medicine, Institute for Vision Research, The University of Iowa, Iowa City, Iowa 52242-1002, United States
| | - Jacob D Thompson
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, The University of Iowa, Iowa City, Iowa 52242-1002, United States
| | - Budd A Tucker
- Department of Ophthalmology and Visual Sciences, Roy J. Carver College of Medicine, Institute for Vision Research, The University of Iowa, Iowa City, Iowa 52242-1002, United States
| | - Kristan S Worthington
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, The University of Iowa, Iowa City, Iowa 52242-1002, United States
- Department of Ophthalmology and Visual Sciences, Roy J. Carver College of Medicine, Institute for Vision Research, The University of Iowa, Iowa City, Iowa 52242-1002, United States
| |
Collapse
|
17
|
Hakim Khalili M, Panchal V, Dulebo A, Hawi S, Zhang R, Wilson S, Dossi E, Goel S, Impey SA, Aria AI. Mechanical Behavior of 3D Printed Poly(ethylene glycol) Diacrylate Hydrogels in Hydrated Conditions Investigated Using Atomic Force Microscopy. ACS APPLIED POLYMER MATERIALS 2023; 5:3034-3042. [PMID: 37090424 PMCID: PMC10111335 DOI: 10.1021/acsapm.3c00197] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Three-dimensional (3D) printed hydrogels fabricated using light processing techniques are poised to replace conventional processing methods used in tissue engineering and organ-on-chip devices. An intrinsic potential problem remains related to structural heterogeneity translated in the degree of cross-linking of the printed layers. Poly(ethylene glycol) diacrylate (PEGDA) hydrogels were used to fabricate both 3D printed multilayer and control monolithic samples, which were then analyzed using atomic force microscopy (AFM) to assess their nanomechanical properties. The fabrication of the hydrogel samples involved layer-by-layer (LbL) projection lithography and bulk cross-linking processes. We evaluated the nanomechanical properties of both hydrogel types in a hydrated environment using the elastic modulus (E) as a measure to gain insight into their mechanical properties. We observed that E increases by 4-fold from 2.8 to 11.9 kPa transitioning from bottom to the top of a single printed layer in a multilayer sample. Such variations could not be seen in control monolithic sample. The variation within the printed layers is ascribed to heterogeneities caused by the photo-cross-linking process. This behavior was rationalized by spatial variation of the polymer cross-link density related to variations of light absorption within the layers attributed to spatial decay of light intensity during the photo-cross-linking process. More importantly, we observed a significant 44% increase in E, from 9.1 to 13.1 kPa, as the indentation advanced from the bottom to the top of the multilayer sample. This finding implies that mechanical heterogeneity is present throughout the entire structure, rather than being limited to each layer individually. These findings are critical for design, fabrication, and application engineers intending to use 3D printed multilayer PEGDA hydrogels for in vitro tissue engineering and organ-on-chip devices.
Collapse
Affiliation(s)
- Mohammad Hakim Khalili
- Surface
Engineering and Precision Centre, School of Aerospace, Transport and
Manufacturing, Cranfield University, Cranfield MK43 0AL, United Kingdom
| | - Vishal Panchal
- Bruker
UK Ltd., Banner Lane, Coventry CV4 9GH, United Kingdom
| | | | - Sara Hawi
- Surface
Engineering and Precision Centre, School of Aerospace, Transport and
Manufacturing, Cranfield University, Cranfield MK43 0AL, United Kingdom
| | - Rujing Zhang
- Sophion
Bioscience A/S, Baltorpvej 154, 2750 Ballerup, Denmark
| | - Sandra Wilson
- Sophion
Bioscience A/S, Baltorpvej 154, 2750 Ballerup, Denmark
| | - Eleftheria Dossi
- Centre
for Defence Chemistry, Cranfield University, Shrivenham, Swindon SN6
8LA, United Kingdom
| | - Saurav Goel
- London
South Bank University, 103 Borough Road, London SE1 0AA, United Kingdom
- University
of Petroleum and Energy Studies, Dehradun 248007, India
| | - Susan A. Impey
- Surface
Engineering and Precision Centre, School of Aerospace, Transport and
Manufacturing, Cranfield University, Cranfield MK43 0AL, United Kingdom
| | - Adrianus Indrat Aria
- Surface
Engineering and Precision Centre, School of Aerospace, Transport and
Manufacturing, Cranfield University, Cranfield MK43 0AL, United Kingdom
| |
Collapse
|
18
|
Card M, Alejandro R, Roxbury D. Decoupling Individual Optical Nanosensor Responses Using a Spin-Coated Hydrogel Platform. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1772-1783. [PMID: 36548478 DOI: 10.1021/acsami.2c16596] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Significant advances have been made in fields such as nanotechnology and biomedicine using the unique properties of single-walled carbon nanotubes (SWCNTs). Specifically, SWCNTs are used as near-infrared fluorescence sensors in the solution phase to detect a wide array of biologically relevant analytes. However, solution-based sensing has several limitations, including limited sensitivity and poor spatial resolution. We have therefore devised a new spin-coated poly(ethylene glycol) diacrylate (PEG-DA) hydrogel platform to examine individual DNA-functionalized SWCNTs (DNA-SWCNTs) in their native aqueous state and have subsequently used this platform to investigate the temporal modulations of each SWCNT in response to a model analyte. A strong surfactant, sodium deoxycholate (SDC), was chosen as the model analyte as it rapidly exchanges with DNA oligonucleotides on the SWCNT surface, modulating several optical properties of the SWCNTs and demonstrating multiparameter analyte detection. Upon addition of SDC, we observed time-dependent spectral modulations in the emission center wavelengths and peak intensities of the individual SWCNTs, indicative of a DNA-to-surfactant exchange process. Interestingly, we found that the modulations in the peak intensities, as determined by kinetic data, were significantly delayed when compared to their center wavelength counterparts, suggesting a potential decoupling of the response of these two spectral features. We used a 1-D diffusion model to relate the local SDC concentration to the spectral response of each SWCNT and created dose-response curves. The peak intensity shifts at a higher SDC concentration than the center wavelength, indicating a potential change in the conformation of the surfactant molecules adsorbed to the SWCNT sidewall after the initial exchange process. This platform allows for a unique single-molecule analysis technique that is significantly more sensitive and modifiable than utilizing SWCNTs in the solution phase.
Collapse
Affiliation(s)
- Matthew Card
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island02886, United States
| | - Raisa Alejandro
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island02886, United States
| | - Daniel Roxbury
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island02886, United States
| |
Collapse
|
19
|
Guo Y, Wang M, Liu Q, Liu G, Wang S, Li J. Recent advances in the medical applications of hemostatic materials. Theranostics 2023; 13:161-196. [PMID: 36593953 PMCID: PMC9800728 DOI: 10.7150/thno.79639] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/14/2022] [Indexed: 12/03/2022] Open
Abstract
Bleeding caused by trauma or surgery is a serious health problem, and uncontrollable bleeding can result in death. Therefore, developing safe, effective, and convenient hemostatic materials is important. Active hemostatic agents currently used to investigate the field of hemostasis are divided into four broad categories: natural polymers, synthetic polymers, inorganic materials, and metal-containing materials. Hemostatic materials are prepared in various forms for wound care applications based on the active ingredients used. These materials include nanofibers, gels, sponges, and nanoparticles. Hemostatic materials find their applications in the field of wound care, and they are also used for hemostasis during malignant tumor surgery. Prompt and effective hemostasis can reduce the possibility of the spread of tumor cells with blood. This review discusses the outcomes of current research conducted in the field and the problems persisting in the field of developing hemostatic materials. The review also presents a platform for the further development of hemostatic materials. Bleeding caused by trauma or surgery is a serious health problem, and uncontrollable bleeding can result in death. Therefore, developing safe, effective, and convenient hemostatic materials is important. Active hemostatic agents currently used to investigate the field of hemostasis are divided into four broad categories: natural polymers, synthetic polymers, inorganic materials, and metal-containing materials. Hemostatic materials are prepared in various forms for wound care applications based on the active ingredients used. These materials include nanofibers, gels, sponges, and nanoparticles. Hemostatic materials find their applications in the field of wound care, and they are also used for hemostasis during malignant tumor surgery. Prompt and effective hemostasis can reduce the possibility of the spread of tumor cells with blood. This review discusses the outcomes of current research conducted in the field and the problems persisting in the field of developing hemostatic materials. The review also presents a platform for the further development of hemostatic materials.
Collapse
Affiliation(s)
- Yu Guo
- Department of the General Surgery, Jilin University Second Hospital, Changchun, China
| | - Min Wang
- Department of the General Surgery, Jilin University Second Hospital, Changchun, China
| | - Qi Liu
- Department of the General Surgery, Jilin University Second Hospital, Changchun, China
| | - Guoliang Liu
- Department of Operating Theater and Anesthesiology, Jilin University Second Hospital, Changchun, China
| | - Shuang Wang
- Department of the Dermatology, Jilin University Second Hospital, Changchun, China.,✉ Corresponding authors: Shuang Wang, E-mail: , Department of the Dermatology, Jilin University Second Hospital, Changchun, China. Jiannan Li, E-mail: , Department of the General Surgery, Jilin University Second Hospital, Changchun, China
| | - Jiannan Li
- Department of the General Surgery, Jilin University Second Hospital, Changchun, China.,✉ Corresponding authors: Shuang Wang, E-mail: , Department of the Dermatology, Jilin University Second Hospital, Changchun, China. Jiannan Li, E-mail: , Department of the General Surgery, Jilin University Second Hospital, Changchun, China
| |
Collapse
|
20
|
Hao Y, Wu C, Su Y, Curran J, Henstock JR, Tseng F. A 4D printed self-assembling PEGDA microscaffold fabricated by digital light processing for arthroscopic articular cartilage tissue engineering. PROGRESS IN ADDITIVE MANUFACTURING 2022; 9:3-14. [PMID: 38333227 PMCID: PMC10851926 DOI: 10.1007/s40964-022-00360-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 10/26/2022] [Indexed: 02/10/2024]
Abstract
Articular cartilage in synovial joints such as the knee has limited capability to regenerate independently, and most clinical options for focal cartilage repair merely delay total joint replacement. Tissue engineering presents a repair strategy in which an injectable cell-laden scaffold material is used to reconstruct the joint in situ through mechanical stabilisation and cell-mediated regeneration. In this study, we designed and 3D-printed millimetre-scale micro-patterned PEGDA biomaterial microscaffolds which self-assemble through tessellation at a scale relevant for applications in osteochondral cartilage reconstruction. Using simulated chondral lesions in an in vitro model, a series of scaffold designs and viscous delivery solutions were assessed. Hexagonal microscaffolds (750 μm x 300 μm) demonstrated the best coverage of a model cartilage lesion (at 73.3%) when injected with a 1% methyl cellulose solution. When chondrocytes were introduced to the biomaterial via a collagen hydrogel, they successfully engrafted with the printed microscaffolds and survived for at least 14 days in vitro, showing the feasibility of reconstructing stratified cartilaginous tissue using this strategy. Our study demonstrates a promising application of this 4D-printed injectable technique for future clinical applications in osteochondral tissue engineering. Supplementary Information The online version contains supplementary material available at 10.1007/s40964-022-00360-0.
Collapse
Affiliation(s)
- Yunjie Hao
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013 Taiwan
- Department of Mechanical, Materials and Aerospace, School of Engineering, Harrison Hughes Building, University of Liverpool, Liverpool, L69 3GH U.K
| | - Chuanyung Wu
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013 Taiwan
| | - Yuchuan Su
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013 Taiwan
| | - Jude Curran
- Department of Mechanical, Materials and Aerospace, School of Engineering, Harrison Hughes Building, University of Liverpool, Liverpool, L69 3GH U.K
| | - James R. Henstock
- Institute of Life Course & Medical Sciences, William Henry Duncan Building, University of Liverpool, Liverpool, L7 8TX U.K
| | - Fangang Tseng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013 Taiwan
- Department of Engineering and System Science, Frontier Research Centre On Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013 Taiwan
- Research Centre for Applied Sciences, Academia Sinica, No. 128, Sec. 2, Academia Rd., Nankang, 11529 Taipei Taiwan
| |
Collapse
|
21
|
Liang M, Zhong J, Ai Y. A Systematic Study of Size Correlation and Young's Modulus Sensitivity for Cellular Mechanical Phenotyping by Microfluidic Approaches. Adv Healthc Mater 2022; 11:e2200628. [PMID: 35852381 DOI: 10.1002/adhm.202200628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/29/2022] [Indexed: 01/27/2023]
Abstract
Cellular mechanical properties are a class of intrinsic biophysical markers for cell state and health. Microfluidic mechanical phenotyping methods have emerged as promising tools to overcome the challenges of low throughput and high demand for manual skills in conventional approaches. In this work, two types of microfluidic cellular mechanical phenotyping methods, contactless hydro-stretching deformability cytometry (lh-DC) and contact constriction deformability cytometry (cc-DC) are comprehensively studied and compared. Polymerized hydrogel beads with defined sizes are used to characterize a strong negative correlation between size and deformability in cc-DC (r = -0.95), while lh-DC presents a weak positive correlation (r = 0.13). Young's modulus sensitivity in cc-DC is size-dependent while it is a constant in lh-DC. Moreover, the deformability assessment for human breast cell line mixture suggests the lh-DC exhibits better differentiation capability of cells with different size distributions, while cc-DC provides higher sensitivity to identify cellular mechanical changes within a single cell line. This work is the first to present a quantitative study and comparison of size correlation and Young's modulus sensitivity of contactless and contact microfluidic mechanical phenotyping methods, which provides guidance to choose the most suitable cellular mechanical phenotyping platform for specific cell analysis applications.
Collapse
Affiliation(s)
- Minhui Liang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Jianwei Zhong
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Ye Ai
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| |
Collapse
|
22
|
Wang W, Ye R, Xie W, Zhang Y, An S, Li Y, Zhou Y. Roles of the calcified cartilage layer and its tissue engineering reconstruction in osteoarthritis treatment. Front Bioeng Biotechnol 2022; 10:911281. [PMID: 36131726 PMCID: PMC9483725 DOI: 10.3389/fbioe.2022.911281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Sandwiched between articular cartilage and subchondral bone, the calcified cartilage layer (CCL) takes on both biomechanical and biochemical functions in joint development and ordinary activities. The formation of CCL is not only unique in articular cartilage but can also be found in the chondro-osseous junction adjacent to the growth plate during adolescence. The formation of CCL is an active process under both cellular regulation and intercellular communication. Abnormal alterations of CCL can be indications of degenerative diseases including osteoarthritis. Owing to the limited self-repair capability of articular cartilage and core status of CCL in microenvironment maintenance, tissue engineering reconstruction of CCL in damaged cartilage can be of great significance. This review focuses on possible tissue engineering reconstruction methods targeting CCL for further OA treatment.
Collapse
Affiliation(s)
- Weiyang Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Ruixi Ye
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yueyao Zhang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Senbo An
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Senbo An, ; Yusheng Li, ; Yang Zhou,
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Senbo An, ; Yusheng Li, ; Yang Zhou,
| | - Yang Zhou
- Department of Clinical Nursing, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Senbo An, ; Yusheng Li, ; Yang Zhou,
| |
Collapse
|
23
|
Wang Y, Nitta T, Hiratsuka Y, Morishima K. In situ integrated microrobots driven by artificial muscles built from biomolecular motors. Sci Robot 2022; 7:eaba8212. [PMID: 36001686 DOI: 10.1126/scirobotics.aba8212] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Microrobots have been developed for applications in the submillimeter domain such as the manipulation of micro-objects and microsurgery. Rapid progress has been achieved in developing miniaturized components for microrobotic systems, resulting in a variety of functional microactuators and soft components for creating untethered microrobots. Nevertheless, the integration of microcomponents, especially the assembly of actuators and mechanical components, is still time-consuming and has inherent restrictions, thus limiting efficient fabrications of microrobots and their potential applications. Here, we propose a method for fabricating microrobots in situ inspired by the construction of microsystems in living organisms. In a microfluidic chip, hydrogel mechanical components and artificial muscle actuators are successively photopatterned from hydrogel prepolymer and biomolecular motors, respectively, and integrated in situ into functional microrobots. The proposed method allows the fast fabrication of microrobots through simple operations and affordable materials while providing versatile functions through the precise spatiotemporal control of in situ integration and reconfiguration of artificial muscles. To validate the method, we fabricated microrobots to elicit different motions and on-chip robots with unique characteristics for microfluidic applications. This study may establish a new paradigm for microrobot integration and lead to the production of unique biohybrid microrobots with various advantages.
Collapse
Affiliation(s)
- Yingzhe Wang
- Department of Mechanical Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Takahiro Nitta
- Applied Physics Course, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu City 501-1193, Japan
| | - Yuichi Hiratsuka
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Keisuke Morishima
- Department of Mechanical Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan.,Center for Medical Engineering and Informatics, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
24
|
Montazerian H, Davoodi E, Baidya A, Baghdasarian S, Sarikhani E, Meyer CE, Haghniaz R, Badv M, Annabi N, Khademhosseini A, Weiss PS. Engineered Hemostatic Biomaterials for Sealing Wounds. Chem Rev 2022; 122:12864-12903. [PMID: 35731958 DOI: 10.1021/acs.chemrev.1c01015] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hemostatic biomaterials show great promise in wound control for the treatment of uncontrolled bleeding associated with damaged tissues, traumatic wounds, and surgical incisions. A surge of interest has been directed at boosting hemostatic properties of bioactive materials via mechanisms triggering the coagulation cascade. A wide variety of biocompatible and biodegradable materials has been applied to the design of hemostatic platforms for rapid blood coagulation. Recent trends in the design of hemostatic agents emphasize chemical conjugation of charged moieties to biomacromolecules, physical incorporation of blood-coagulating agents in biomaterials systems, and superabsorbing materials in either dry (foams) or wet (hydrogel) states. In addition, tough bioadhesives are emerging for efficient and physical sealing of incisions. In this Review, we highlight the biomacromolecular design approaches adopted to develop hemostatic bioactive materials. We discuss the mechanistic pathways of hemostasis along with the current standard experimental procedures for characterization of the hemostasis efficacy. Finally, we discuss the potential for clinical translation of hemostatic technologies, future trends, and research opportunities for the development of next-generation surgical materials with hemostatic properties for wound management.
Collapse
Affiliation(s)
- Hossein Montazerian
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States.,California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States.,Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Elham Davoodi
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States.,California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States.,Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States.,Multi-Scale Additive Manufacturing Lab, Mechanical and Mechatronics Engineering Department, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Avijit Baidya
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Sevana Baghdasarian
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Einollah Sarikhani
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
| | - Claire Elsa Meyer
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Maryam Badv
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States.,Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States.,Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Nasim Annabi
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States.,Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Paul S Weiss
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States.,California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States.,Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States.,Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
25
|
|
26
|
Li J, Kim C, Pan CC, Babian A, Lui E, Young JL, Moeinzadeh S, Kim S, Yang YP. Hybprinting for musculoskeletal tissue engineering. iScience 2022; 25:104229. [PMID: 35494239 PMCID: PMC9051619 DOI: 10.1016/j.isci.2022.104229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This review presents bioprinting methods, biomaterials, and printing strategies that may be used for composite tissue constructs for musculoskeletal applications. The printing methods discussed include those that are suitable for acellular and cellular components, and the biomaterials include soft and rigid components that are suitable for soft and/or hard tissues. We also present strategies that focus on the integration of cell-laden soft and acellular rigid components under a single printing platform. Given the structural and functional complexity of native musculoskeletal tissue, we envision that hybrid bioprinting, referred to as hybprinting, could provide unprecedented potential by combining different materials and bioprinting techniques to engineer and assemble modular tissues.
Collapse
Affiliation(s)
- Jiannan Li
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, 300 Pasteur Drive BMI 258, Stanford, CA 94305, USA
| | - Carolyn Kim
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, 300 Pasteur Drive BMI 258, Stanford, CA 94305, USA.,Department of Mechanical Engineering, 416 Escondido Mall, Stanford University, Stanford, CA 94305, USA
| | - Chi-Chun Pan
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, 300 Pasteur Drive BMI 258, Stanford, CA 94305, USA.,Department of Mechanical Engineering, 416 Escondido Mall, Stanford University, Stanford, CA 94305, USA
| | - Aaron Babian
- Department of Biological Sciences, University of California, Davis CA 95616, USA
| | - Elaine Lui
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, 300 Pasteur Drive BMI 258, Stanford, CA 94305, USA.,Department of Mechanical Engineering, 416 Escondido Mall, Stanford University, Stanford, CA 94305, USA
| | - Jeffrey L Young
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, 300 Pasteur Drive BMI 258, Stanford, CA 94305, USA
| | - Seyedsina Moeinzadeh
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, 300 Pasteur Drive BMI 258, Stanford, CA 94305, USA
| | - Sungwoo Kim
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, 300 Pasteur Drive BMI 258, Stanford, CA 94305, USA
| | - Yunzhi Peter Yang
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, 300 Pasteur Drive BMI 258, Stanford, CA 94305, USA.,Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, CA 94305, USA.,Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, CA 94305, USA
| |
Collapse
|
27
|
Romischke J, Scherkus A, Saemann M, Krueger S, Bader R, Kragl U, Meyer J. Swelling and Mechanical Characterization of Polyelectrolyte Hydrogels as Potential Synthetic Cartilage Substitute Materials. Gels 2022; 8:gels8050296. [PMID: 35621594 PMCID: PMC9141488 DOI: 10.3390/gels8050296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023] Open
Abstract
Hydrogels have become an increasingly interesting topic in numerous fields of application. In addition to their use as immobilization matrixes in (bio)catalysis, they are widely used in the medical sector, e.g., in drug delivery systems, contact lenses, biosensors, electrodes, and tissue engineering. Cartilage tissue engineering hydrogels from natural origins, such as collagen, hyaluronic acid, and gelatin, are widely known for their good biocompatibility. However, they often lack stability, reproducibility, and mechanical strength. Synthetic hydrogels, on the other hand, can have the advantage of tunable swelling and mechanical properties, as well as good reproducibility and lower costs. In this study, we investigated the swelling and mechanical properties of synthetic polyelectrolyte hydrogels. The resulting characteristics such as swelling degree, stiffness, stress, as well as stress-relaxation and cyclic loading behavior, were compared to a commercially available biomaterial, the ChondroFiller® liquid, which is already used to treat articular cartilage lesions. Worth mentioning are the observed good reproducibility and high mechanical strength of the synthetic hydrogels. We managed to synthesize hydrogels with a wide range of compressive moduli from 2.5 ± 0.1 to 1708.7 ± 67.7 kPa, which addresses the span of human articular cartilage.
Collapse
Affiliation(s)
- Johanna Romischke
- Industrial Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany; (J.R.); (A.S.); (U.K.)
| | - Anton Scherkus
- Industrial Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany; (J.R.); (A.S.); (U.K.)
| | - Michael Saemann
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, Rostock University Medical Center, 18057 Rostock, Germany; (M.S.); (S.K.); (R.B.)
| | - Simone Krueger
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, Rostock University Medical Center, 18057 Rostock, Germany; (M.S.); (S.K.); (R.B.)
- Department Life, Light & Matter, Faculty for Interdisciplinary Research, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany
| | - Rainer Bader
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, Rostock University Medical Center, 18057 Rostock, Germany; (M.S.); (S.K.); (R.B.)
- Department Life, Light & Matter, Faculty for Interdisciplinary Research, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany
| | - Udo Kragl
- Industrial Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany; (J.R.); (A.S.); (U.K.)
- Department Life, Light & Matter, Faculty for Interdisciplinary Research, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany
| | - Johanna Meyer
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 3-9, 30167 Hannover, Germany
- Correspondence:
| |
Collapse
|
28
|
Recent strategies of collagen-based biomaterials for cartilage repair: from structure cognition to function endowment. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2022. [DOI: 10.1186/s42825-022-00085-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AbstractCollagen, characteristic in biomimetic composition and hierarchical structure, boasts a huge potential in repairing cartilage defect due to its extraordinary bioactivities and regulated physicochemical properties, such as low immunogenicity, biocompatibility and controllable degradation, which promotes the cell adhesion, migration and proliferation. Therefore, collagen-based biomaterial has been explored as porous scaffolds or functional coatings in cell-free scaffold and tissue engineering strategy for cartilage repairing. Among those forming technologies, freeze-dry is frequently used with special modifications while 3D-printing and electrospinning serve as the structure-controller in a more precise way. Besides, appropriate cross-linking treatment and incorporation with bioactive substance generally help the collagen-based biomaterials to meet the physicochemical requirement in the defect site and strengthen the repairing performance. Furthermore, comprehensive evaluations on the repair effects of biomaterials are sorted out in terms of in vitro, in vivo and clinical assessments, focusing on the morphology observation, characteristic production and critical gene expression. Finally, the challenge of biomaterial-based therapy for cartilage defect repairing was summarized, which is, the adaption to the highly complex structure and functional difference of cartilage.
Graphical abstract
Collapse
|
29
|
Rekowska N, Huling J, Brietzke A, Arbeiter D, Eickner T, Konasch J, Riess A, Mau R, Seitz H, Grabow N, Teske M. Thermal, Mechanical and Biocompatibility Analyses of Photochemically Polymerized PEGDA 250 for Photopolymerization-Based Manufacturing Processes. Pharmaceutics 2022; 14:628. [PMID: 35336002 PMCID: PMC8951438 DOI: 10.3390/pharmaceutics14030628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 01/06/2023] Open
Abstract
Novel fabrication techniques based on photopolymerization enable the preparation of complex multi-material constructs for biomedical applications. This requires an understanding of the influence of the used reaction components on the properties of the generated copolymers. The identification of fundamental characteristics of these copolymers is necessary to evaluate their potential for biomaterial applications. Additionally, knowledge of the properties of the starting materials enables subsequent tailoring of the biomaterials to meet individual implantation needs. In our study, we have analyzed the biological, chemical, mechanical and thermal properties of photopolymerized poly(ethyleneglycol) diacrylate (PEGDA) and specific copolymers with different photoinitiator (PI) concentrations before and after applying a post treatment washing process. As comonomers, 1,3-butanediol diacrylate, pentaerythritol triacrylate and pentaerythritol tetraacrylate were used. The in vitro studies confirm the biocompatibility of all investigated copolymers. Uniaxial tensile tests show significantly lower tensile strength (82% decrease) and elongation at break (76% decrease) values for washed samples. Altered tensile strength is also observed for different PI concentrations: on average, 6.2 MPa for 1.25% PI and 3.1 MPa for 0.5% PI. The addition of comonomers lowers elongation at break on average by 45%. Moreover, our observations show glass transition temperatures (Tg) ranging from 27 °C to 56 °C, which significantly increase with higher comonomer content. These results confirm the ability to generate biocompatible PEGDA copolymers with specific thermal and mechanical properties. These can be considered as resins for various additive manufacturing-based applications to obtain personalized medical devices, such as drug delivery systems (DDS). Therefore, our study has advanced the understanding of PEGDA multi-materials and will contribute to the future development of tools ensuring safe and effective individual therapy for patients.
Collapse
Affiliation(s)
- Natalia Rekowska
- Institute for Biomedical Engineering, University Medical Center Rostock, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany; (J.H.); (A.B.); (D.A.); (T.E.); (N.G.); (M.T.)
| | - Jennifer Huling
- Institute for Biomedical Engineering, University Medical Center Rostock, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany; (J.H.); (A.B.); (D.A.); (T.E.); (N.G.); (M.T.)
| | - Andreas Brietzke
- Institute for Biomedical Engineering, University Medical Center Rostock, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany; (J.H.); (A.B.); (D.A.); (T.E.); (N.G.); (M.T.)
| | - Daniela Arbeiter
- Institute for Biomedical Engineering, University Medical Center Rostock, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany; (J.H.); (A.B.); (D.A.); (T.E.); (N.G.); (M.T.)
| | - Thomas Eickner
- Institute for Biomedical Engineering, University Medical Center Rostock, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany; (J.H.); (A.B.); (D.A.); (T.E.); (N.G.); (M.T.)
| | - Jan Konasch
- Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Justus-von-Liebig Weg 6, 18059 Rostock, Germany; (J.K.); (A.R.); (R.M.); (H.S.)
| | - Alexander Riess
- Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Justus-von-Liebig Weg 6, 18059 Rostock, Germany; (J.K.); (A.R.); (R.M.); (H.S.)
| | - Robert Mau
- Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Justus-von-Liebig Weg 6, 18059 Rostock, Germany; (J.K.); (A.R.); (R.M.); (H.S.)
| | - Hermann Seitz
- Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Justus-von-Liebig Weg 6, 18059 Rostock, Germany; (J.K.); (A.R.); (R.M.); (H.S.)
- Department LL&M, Interdisciplinary Faculty, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany
| | - Niels Grabow
- Institute for Biomedical Engineering, University Medical Center Rostock, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany; (J.H.); (A.B.); (D.A.); (T.E.); (N.G.); (M.T.)
- Department LL&M, Interdisciplinary Faculty, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany
| | - Michael Teske
- Institute for Biomedical Engineering, University Medical Center Rostock, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany; (J.H.); (A.B.); (D.A.); (T.E.); (N.G.); (M.T.)
| |
Collapse
|
30
|
Koh RH, Kim J, Kim SHL, Hwang NS. RGD-incorporated biomimetic cryogels for hyaline cartilage regeneration. Biomed Mater 2022; 17:024106. [PMID: 35114659 DOI: 10.1088/1748-605x/ac51b7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/03/2022] [Indexed: 11/11/2022]
Abstract
Maintaining the integrity of articular cartilage is paramount to joint health and function. Under constant mechanical stress, articular cartilage is prone to injury that often extends to the underlying subchondral bone. In this study, we incorporated arginine-aspartate-glycine (RGD) peptide into chondroitin sulfate-based cryogel for hyaline cartilage regeneration. Known to promote cell adhesion and proliferation, RGD peptide is a double-edged sword for cartilage regeneration. Depending on the peptide availability in the microenvironment, RGD may aid in redifferentiation of dedifferentiated chondrocytes by mimicking physiological cell-matrix interaction or inhibit chondrogenic phenotype via excessive cell spreading. Here, we observed an increase in chondrogenic phenotype with RGD concentration. The group containing the highest RGD concentration (3 mM; RGD group) experienced a 24-fold increase inCOL2expression in the 1st week ofin vitroculture and formed native cartilage-resembling ectopic tissuein vivo. No sign of dedifferentiation (COL1) was observed in all groups. Within the concentration range tested (0-3 mM RGD), RGD promotes chondrocyte redifferentiation after monolayer expansion and thus, formation of hyaline cartilage tissue.
Collapse
Affiliation(s)
- Rachel H Koh
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- BioMAX/N-BIO Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Jisoo Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung Hyun L Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- BioMAX/N-BIO Institute, Seoul National University, Seoul 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
31
|
Volpi M, Paradiso A, Costantini M, Świȩszkowski W. Hydrogel-Based Fiber Biofabrication Techniques for Skeletal Muscle Tissue Engineering. ACS Biomater Sci Eng 2022; 8:379-405. [PMID: 35084836 PMCID: PMC8848287 DOI: 10.1021/acsbiomaterials.1c01145] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/14/2022] [Indexed: 12/11/2022]
Abstract
The functional capabilities of skeletal muscle are strongly correlated with its well-arranged microstructure, consisting of parallelly aligned myotubes. In case of extensive muscle loss, the endogenous regenerative capacity is hindered by scar tissue formation, which compromises the native muscle structure, ultimately leading to severe functional impairment. To address such an issue, skeletal muscle tissue engineering (SMTE) attempts to fabricate in vitro bioartificial muscle tissue constructs to assist and accelerate the regeneration process. Due to its dynamic nature, SMTE strategies must employ suitable biomaterials (combined with muscle progenitors) and proper 3D architectures. In light of this, 3D fiber-based strategies are gaining increasing interest for the generation of hydrogel microfibers as advanced skeletal muscle constructs. Indeed, hydrogels possess exceptional biomimetic properties, while the fiber-shaped morphology allows for the creation of geometrical cues to guarantee proper myoblast alignment. In this review, we summarize commonly used hydrogels in SMTE and their main properties, and we discuss the first efforts to engineer hydrogels to guide myoblast anisotropic orientation. Then, we focus on presenting the main hydrogel fiber-based techniques for SMTE, including molding, electrospinning, 3D bioprinting, extrusion, and microfluidic spinning. Furthermore, we describe the effect of external stimulation (i.e., mechanical and electrical) on such constructs and the application of hydrogel fiber-based methods on recapitulating complex skeletal muscle tissue interfaces. Finally, we discuss the future developments in the application of hydrogel microfibers for SMTE.
Collapse
Affiliation(s)
- Marina Volpi
- Faculty
of Materials Science and Engineering, Warsaw
University of Technology, Warsaw 02-507, Poland
| | - Alessia Paradiso
- Faculty
of Materials Science and Engineering, Warsaw
University of Technology, Warsaw 02-507, Poland
| | - Marco Costantini
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Warsaw 01-224, Poland
| | - Wojciech Świȩszkowski
- Faculty
of Materials Science and Engineering, Warsaw
University of Technology, Warsaw 02-507, Poland
| |
Collapse
|
32
|
Yamada K, Iwasaki N, Sudo H. Biomaterials and Cell-Based Regenerative Therapies for Intervertebral Disc Degeneration with a Focus on Biological and Biomechanical Functional Repair: Targeting Treatments for Disc Herniation. Cells 2022; 11:602. [PMID: 35203253 PMCID: PMC8870062 DOI: 10.3390/cells11040602] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/22/2022] [Accepted: 02/07/2022] [Indexed: 12/11/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is a common cause of low back pain and most spinal disorders. As IVD degeneration is a major obstacle to the healthy life of so many individuals, it is a major issue that needs to be overcome. Currently, there is no clinical treatment for the regeneration of degenerated IVDs. However, recent advances in regenerative medicine and tissue engineering suggest the potential of cell-based and/or biomaterial-based IVD regeneration therapies. These treatments may be indicated for patients with IVDs in the intermediate degenerative stage, a point where the number of viable cells decreases, and the structural integrity of the disc begins to collapse. However, there are many biological, biomechanical, and clinical challenges that must be overcome before the clinical application of these IVD regeneration therapies can be realized. This review summarizes the basic research and clinical trials literature on cell-based and biomaterial-based IVD regenerative therapies and outlines the important role of these strategies in regenerative treatment for IVD degenerative diseases, especially disc herniation.
Collapse
Affiliation(s)
- Katsuhisa Yamada
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (K.Y.); (N.I.)
- Department of Advanced Medicine for Spine and Spinal Cord Disorders, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (K.Y.); (N.I.)
| | - Hideki Sudo
- Department of Advanced Medicine for Spine and Spinal Cord Disorders, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| |
Collapse
|
33
|
Parhi B, Bharatiya D, Swain SK. Effect of polycaprolactone on physicochemical, biological, and mechanical properties of polyethylene oxide and polyamino acids nano block copolymers. J Appl Polym Sci 2022. [DOI: 10.1002/app.52116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Biswajit Parhi
- Department of Chemistry Veer Surendra Sai University of Technology Sambalpur India
| | - Debasrita Bharatiya
- Department of Chemistry Veer Surendra Sai University of Technology Sambalpur India
| | - Sarat K. Swain
- Department of Chemistry Veer Surendra Sai University of Technology Sambalpur India
| |
Collapse
|
34
|
Li M, Sun D, Zhang J, Wang Y, Wei Q, Wang Y. Application and development of 3D bioprinting in cartilage tissue engineering. Biomater Sci 2022; 10:5430-5458. [DOI: 10.1039/d2bm00709f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bioprinting technology can build complex tissue structures and has the potential to fabricate engineered cartilage with bionic structures for achieving cartilage defect repair/regeneration.
Collapse
Affiliation(s)
- Mingyang Li
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Daocen Sun
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Juan Zhang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yanmei Wang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Qinghua Wei
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yanen Wang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
35
|
Del Prado-Audelo ML, Caballero-Florán IH, Mendoza-Muñoz N, Giraldo-Gomez D, Sharifi-Rad J, Patra JK, González-Torres M, Florán B, Cortes H, Leyva-Gómez G. Current progress of self-healing polymers for medical applications in tissue engineering. IRANIAN POLYMER JOURNAL 2022. [DOI: 10.1007/s13726-021-00943-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
36
|
Brossier T, Benkhaled BT, Colpaert M, Volpi G, Guillaume O, Blanquer S, Lapinte V. Polyoxazoline Hydrogels fabricated by Stereolithography. Biomater Sci 2022; 10:2681-2691. [DOI: 10.1039/d2bm00138a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of hydrogel materials in additive manufacturing displaying stiff and strong mechanical properties while maintaining high water uptake, remains a great challenge. Taking advantage of the versatility of poly(oxazoline)...
Collapse
|
37
|
Bandyopadhyay A, Mandal BB, Bhardwaj N. 3D bioprinting of photo-crosslinkable silk methacrylate (SilMA)-polyethylene glycol diacrylate (PEGDA) bioink for cartilage tissue engineering. J Biomed Mater Res A 2021; 110:884-898. [PMID: 34913587 DOI: 10.1002/jbm.a.37336] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 01/09/2023]
Abstract
Articular cartilage damage poses huge burden on healthcare sector globally due to its extremely weak inherent regenerative ability. Three-dimensional (3D) bioprinting for development of cartilage mimic constructs using composite bioinks serves as an emerging perspective. However, difficulty in development of suitable bioink and chemical crosslinking associated inherent toxicity hamper widespread adoption of this technique. To circumvent this, a photo-polymerizable hydrogel-based bioink which helps in recapitulation of the complex cartilage microenvironment is pertinent. Herein, a photo-crosslinkable bioink containing different concentrations of silk methacrylate (SilMA) and polyethylene glycol diacrylate (PEGDA) was mixed with chondrocytes for biofabrication of 3D bioprinted cartilage constructs. The rheological properties, printability of bioink and physico-chemical characterization of printed hydrogel constructs were examined along with cartilaginous tissue formation. The printed SilMA-PEGDA hydrogel constructs possessed proper internal porous structure and demonstrated most reliable rheological properties, printability along with good mechanical, and degradation properties suitable for cartilage regeneration. Live/dead staining showed cytocompatibility of the 3D-bioprinted SilMA-PEGDA constructs. Moreover, a marked increase in cell number and DNA content was observed within the cartilaginous tissue as indicated by cell viability and DNA content quantitation. Biochemical evaluation confirmed the neocartilage formation within SilMA-PEGDA bioprinted constructs as revealed by enhanced deposition of cartilage specific extracellular matrix-sulphated GAG (sGAG) and collagen type II (>2-fold increase, p < 0.001) with time. Finally, immunohistochemical analysis indicated expression of collagen type II and aggrecan which corroborated with cartilaginous tissue formation. Taken together, we conclude that SilMA-PEGDA bioink could be suitable candidate for bioprinting chondrocytes to support cartilage tissue repair and regeneration.
Collapse
Affiliation(s)
- Ashutosh Bandyopadhyay
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Biman B Mandal
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India.,Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, India
| | - Nandana Bhardwaj
- Department of Science and Mathematics, Indian Institute of Information Technology Guwahati, Guwahati, India
| |
Collapse
|
38
|
Zhang C, Zhu H, Ren X, Gao B, Cheng B, Liu S, Sha B, Li Z, Zhang Z, Lv Y, Wang H, Guo H, Lu TJ, Xu F, Genin GM, Lin M. Mechanics-driven nuclear localization of YAP can be reversed by N-cadherin ligation in mesenchymal stem cells. Nat Commun 2021; 12:6229. [PMID: 34711824 PMCID: PMC8553821 DOI: 10.1038/s41467-021-26454-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 10/01/2021] [Indexed: 12/30/2022] Open
Abstract
Mesenchymal stem cells adopt differentiation pathways based upon cumulative effects of mechanosensing. A cell's mechanical microenvironment changes substantially over the course of development, beginning from the early stages in which cells are typically surrounded by other cells and continuing through later stages in which cells are typically surrounded by extracellular matrix. How cells erase the memory of some of these mechanical microenvironments while locking in memory of others is unknown. Here, we develop a material and culture system for modifying and measuring the degree to which cells retain cumulative effects of mechanosensing. Using this system, we discover that effects of the RGD adhesive motif of fibronectin (representative of extracellular matrix), known to impart what is often termed "mechanical memory" in mesenchymal stem cells via nuclear YAP localization, are erased by the HAVDI adhesive motif of the N-cadherin (representative of cell-cell contacts). These effects can be explained by a motor clutch model that relates cellular traction force, nuclear deformation, and resulting nuclear YAP re-localization. Results demonstrate that controlled storage and removal of proteins associated with mechanical memory in mesenchymal stem cells is possible through defined and programmable material systems.
Collapse
Affiliation(s)
- Cheng Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Hongyuan Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Xinru Ren
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Bin Gao
- Department of Endocrinology, Second Affiliated Hospital of Air Force Military Medical University, Xi'an, 710038, People's Republic of China
| | - Bo Cheng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Shaobao Liu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People's Republic of China
| | - Baoyong Sha
- School of Basic Medical Science, Xi'an Medical University, Xi'an, 710021, People's Republic of China
| | - Zhaoqing Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Zheng Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xian, People's Republic of China
| | - Haohua Wang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xian, People's Republic of China
| | - Hui Guo
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Tian Jian Lu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People's Republic of China
- MOE Key Laboratory of Multifunctional Materials and Structures, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Guy M Genin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, 63130, MO, USA
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, 63130, MO, USA
| | - Min Lin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| |
Collapse
|
39
|
Emig R, Zgierski-Johnston CM, Timmermann V, Taberner AJ, Nash MP, Kohl P, Peyronnet R. Passive myocardial mechanical properties: meaning, measurement, models. Biophys Rev 2021; 13:587-610. [PMID: 34765043 PMCID: PMC8555034 DOI: 10.1007/s12551-021-00838-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
Passive mechanical tissue properties are major determinants of myocardial contraction and relaxation and, thus, shape cardiac function. Tightly regulated, dynamically adapting throughout life, and affecting a host of cellular functions, passive tissue mechanics also contribute to cardiac dysfunction. Development of treatments and early identification of diseases requires better spatio-temporal characterisation of tissue mechanical properties and their underlying mechanisms. With this understanding, key regulators may be identified, providing pathways with potential to control and limit pathological development. Methodologies and models used to assess and mimic tissue mechanical properties are diverse, and available data are in part mutually contradictory. In this review, we define important concepts useful for characterising passive mechanical tissue properties, and compare a variety of in vitro and in vivo techniques that allow one to assess tissue mechanics. We give definitions of key terms, and summarise insight into determinants of myocardial stiffness in situ. We then provide an overview of common experimental models utilised to assess the role of environmental stiffness and composition, and its effects on cardiac cell and tissue function. Finally, promising future directions are outlined.
Collapse
Affiliation(s)
- Ramona Emig
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg, Bad Krozingen, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Callum M. Zgierski-Johnston
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg, Bad Krozingen, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Viviane Timmermann
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg, Bad Krozingen, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andrew J. Taberner
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- Department of Engineering Science, The University of Auckland, Auckland, New Zealand
| | - Martyn P. Nash
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- Department of Engineering Science, The University of Auckland, Auckland, New Zealand
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg, Bad Krozingen, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Faculty of Engineering, University of Freiburg, Freiburg, Germany
| | - Rémi Peyronnet
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg, Bad Krozingen, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
40
|
Lee CF, Hsu YH, Lin YC, Nguyen TT, Chen HW, Nabilla SC, Hou SY, Chang FC, Chung RJ. 3D Printing of Collagen/Oligomeric Proanthocyanidin/Oxidized Hyaluronic Acid Composite Scaffolds for Articular Cartilage Repair. Polymers (Basel) 2021; 13:polym13183123. [PMID: 34578024 PMCID: PMC8467469 DOI: 10.3390/polym13183123] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
Articular cartilage defects affect millions of people worldwide, including children, adolescents, and adults. Progressive wear and tear of articular cartilage can lead to progressive tissue loss, further exposing the bony ends and leaving them unprotected, which may ultimately cause osteoarthritis (degenerative joint disease). Unlike other self-repairing tissues, cartilage has a low regenerative capacity; once injured, the cartilage is much more difficult to heal. Consequently, developing methods to repair this defect remains a challenge in clinical practice. In recent years, tissue engineering applications have employed the use of three-dimensional (3D) porous scaffolds for growing cells to regenerate damaged cartilage. However, these scaffolds are mainly chemically synthesized polymers or are crosslinked using organic solvents. Utilizing 3D printing technologies to prepare biodegradable natural composite scaffolds could replace chemically synthesized polymers with more natural polymers or low-toxicity crosslinkers. In this study, collagen/oligomeric proanthocyanidin/oxidized hyaluronic acid composite scaffolds showing high biocompatibility and excellent mechanical properties were prepared. The compressive strengths of the scaffolds were between 0.25–0.55 MPa. Cell viability of the 3D scaffolds reached up to 90%, which indicates that they are favorable surfaces for the deposition of apatite. An in vivo test was performed using the Sprague Dawley (SD) rat skull model. Histological images revealed signs of angiogenesis and new bone formation. Therefore, 3D collagen-based scaffolds can be used as potential candidates for articular cartilage repair.
Collapse
Affiliation(s)
- Chung-Fei Lee
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech.), Taipei 10608, Taiwan; (C.-F.L.); (T.-T.N.); (H.-W.C.); (S.-Y.H.)
| | - Yung-Heng Hsu
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Linko 33305, Taiwan;
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Linko 33305, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yu-Chien Lin
- Department of Materials, Imperial College London, London SW7 2BP, UK;
| | - Thu-Trang Nguyen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech.), Taipei 10608, Taiwan; (C.-F.L.); (T.-T.N.); (H.-W.C.); (S.-Y.H.)
| | - Hsiang-Wen Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech.), Taipei 10608, Taiwan; (C.-F.L.); (T.-T.N.); (H.-W.C.); (S.-Y.H.)
| | | | - Shao-Yi Hou
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech.), Taipei 10608, Taiwan; (C.-F.L.); (T.-T.N.); (H.-W.C.); (S.-Y.H.)
| | - Feng-Cheng Chang
- School of Forestry and Resource Conservation, National Taiwan University, Taipei 10617, Taiwan;
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech.), Taipei 10608, Taiwan; (C.-F.L.); (T.-T.N.); (H.-W.C.); (S.-Y.H.)
- Correspondence: ; Tel.: +886-2-8772-8701
| |
Collapse
|
41
|
Xi Y, Sharma PK, Kaper HJ, Choi CH. Tribological Properties of Micropored Poly(2-hydroxyethyl methacrylate) Hydrogels in a Biomimetic Aqueous Environment. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41473-41484. [PMID: 34449208 DOI: 10.1021/acsami.1c13718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The applications of hydrogels in tissue engineering as implants have rapidly grown in the last decade. However, the tribological properties of hydrogels under physiologically relevant conditions, especially those of textured hydrogels, have remained largely unknown due to the complexity of their mechanical and chemical properties. In this study, we experimentally investigated the tribological properties of micopored poly(2-hydroxyethyl methacrylate) (pHEMA) with the lateral pore dimensions varied compared to untextured pHEMA, the most commonly used hydrogel in ophthalmology, under physiologically relevant conditions. The pHEMA specimens were slid against a smooth glass curve under varying loads (6-60 mN, leading to an average contact pressure of 10-21 kPa) and sliding speeds (1-10 mm/s) in phosphate-buffered saline (pH 7.4) at 33 °C to mimic the physiological conditions in human eyes. At relatively low loads and sliding speeds (e.g., 6 mN and 1 mm/s), the micopored pHEMA did not reduce the dissipated frictional energy significantly. However, at relatively high loads and sliding speeds (e.g., 60 mN and 100 mm/s), the micopored pHEMA resulted in significantly lower frictional energy (reduced by up to 68%) dissipation than the untextured pHEMA. The effect was more pronounced with the micropores with smaller dimensions. These are attributed to the greater amount and retentivity of the interfacial fluid supported by the free water squeezed out of the micropores with the smaller dimensions under the higher load and sliding speed. These results suggest that the use of micropore texturing on hydrogels in practice, such as for ocular applications, can be leveraged to reduce friction and wear under physiological conditions and hence lower the chance of inflammation near eye implants or keratoprosthesis.
Collapse
Affiliation(s)
- Yiwen Xi
- Department of Mechanical Engineering, Stevens Institute of Technology, Castle Point on Hudson, Hoboken, New Jersey 07030, United States
- Department of Biomedical Engineering (FB40), University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Prashant Kumar Sharma
- Department of Biomedical Engineering (FB40), University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Hans Jan Kaper
- Department of Biomedical Engineering (FB40), University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Chang-Hwan Choi
- Department of Mechanical Engineering, Stevens Institute of Technology, Castle Point on Hudson, Hoboken, New Jersey 07030, United States
| |
Collapse
|
42
|
Liu Z, Hui CY, Jagota A, Gong JP, Kiyama R. A surface flattening method for characterizing the surface stress, drained Poisson's ratio and diffusivity of poroelastic gels. SOFT MATTER 2021; 17:7332-7340. [PMID: 34286785 DOI: 10.1039/d1sm00513h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
When a poroelastic gel is released from a patterned mold, surface stress drives deformation and solvent migration in the gel and flattens its surface profile in a time-dependent manner. Specifically, the gel behaves like an incompressible solid immediately after removal from the mold, and becomes compressible as the solvent is able to squeeze out of the polymer network. In this work, we use the finite element method (FEM) to simulate this transient surface flattening process. We assume that the surface stress is isotropic and constant, the polymer network is linearly elastic and isotropic, and that solvent flow obeys Darcy's law. The short-time and long-time surface profiles can be used to determine the surface stress and drained Poisson's ratio of the gel. Our analysis shows that the drained Poisson's ratio and the diffusivity of the gel can be obtained using interferometry and high-speed video microscopy, without mechanical measurement.
Collapse
Affiliation(s)
- Zezhou Liu
- Field of Theoretical and Applied Mechanics, Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | |
Collapse
|
43
|
Tamesue S, Saito Y, Toita R. Salinity durable self-healing hydrogels as functional biomimetic systems based on the intercalation of polymer ions into mica. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Riveiro A, Amorim S, Solanki A, Costa DS, Pires RA, Quintero F, Del Val J, Comesaña R, Badaoui A, Lusquiños F, Maçon ALB, Tallia F, Jones JR, Reis RL, Pou J. Hyaluronic acid hydrogels reinforced with laser spun bioactive glass micro- and nanofibres doped with lithium. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112124. [PMID: 34082941 DOI: 10.1016/j.msec.2021.112124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/07/2021] [Accepted: 04/18/2021] [Indexed: 11/17/2022]
Abstract
The repair of articular cartilage lesions in weight-bearing joints remains as a significant challenge due to the low regenerative capacity of this tissue. Hydrogels are candidates to repair lesions as they have similar properties to cartilage extracellular matrix but they are unable to meet the mechanical and biological requirements for a successful outcome. Here, we reinforce hyaluronic acid (HA) hydrogels with 13-93-lithium bioactive glass micro- and nanofibres produced by laser spinning. The glass fibres are a reinforcement filler and a platform for the delivery of therapeutic lithium-ions. The elastic modulus of the composites is more than three times higher than in HA hydrogels. Modelling of the reinforcement corroborates the experimental results. ATDC5 chondrogenic cells seeded on the composites are viable and more proliferation occurs on the hydrogels containing fibres than in HA hydrogels alone. Furthermore, the chondrogenic behavior on HA constructs with fibres containing lithium is more marked than in hydrogels with no-lithium fibres.
Collapse
Affiliation(s)
- Antonio Riveiro
- Materials Engineering, Applied Mechanics and Construction Dpt., University of Vigo, EEI, Lagoas-Marcosende, Vigo 36310, Spain.
| | - Sara Amorim
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães 4805-017, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Anu Solanki
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Diana S Costa
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães 4805-017, Portugal
| | - Ricardo A Pires
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães 4805-017, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Félix Quintero
- Applied Physics Department, University of Vigo, EEI, Lagoas-Marcosende, Vigo 36310, Spain
| | - Jesús Del Val
- Applied Physics Department, University of Vigo, EEI, Lagoas-Marcosende, Vigo 36310, Spain
| | - Rafael Comesaña
- Materials Engineering, Applied Mechanics and Construction Dpt., University of Vigo, EEI, Lagoas-Marcosende, Vigo 36310, Spain
| | - Aida Badaoui
- Materials Engineering, Applied Mechanics and Construction Dpt., University of Vigo, EEI, Lagoas-Marcosende, Vigo 36310, Spain
| | - Fernando Lusquiños
- Applied Physics Department, University of Vigo, EEI, Lagoas-Marcosende, Vigo 36310, Spain
| | - Anthony L B Maçon
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Francesca Tallia
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Julian R Jones
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães 4805-017, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Juan Pou
- Applied Physics Department, University of Vigo, EEI, Lagoas-Marcosende, Vigo 36310, Spain
| |
Collapse
|
45
|
Liu J, Wang D, Li Y, Zhou Z, Zhang D, Li J, Chu H. Overall Structure Construction of an Intervertebral Disk Based on Highly Anisotropic Wood Hydrogel Composite Materials with Mechanical Matching and Buckling Buffering. ACS APPLIED MATERIALS & INTERFACES 2021; 13:15709-15719. [PMID: 33755430 DOI: 10.1021/acsami.1c02487] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Natural intervertebral disks (IVDs) exhibit distinctive anisotropic mechanical support and dissipation performances due to their well-developed special microstructures. As the intact IVD structure degrades, the absence of function will lead to severe backache. However, the complete simulation for the characteristic structure and function of native IVD is unattainable using current methods. In this work, by overall construction of the two-phase structure of native IVD (extraction of the naturally aligned cellulose framework and in situ polymerization of the nanocomposite hydrogel), a complete wood framework IVD (WF-IVD) is manufactured containing elastic nanocomposite hydrogel-based nucleus pulposus (NP) and anisotropic wood cellulose hydrogel-based annulus fibrosus (AF). In addition to the imitation and construction of the natural structure, WF-IVD also achieves favorable mechanical matching and good biocompatibility and possesses unique mechanical buckling buffer characteristics owing to the aligned fiber bundles. This study offers a promising strategy for the mimicking and construction of complex native tissues.
Collapse
Affiliation(s)
- Jinming Liu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Dingqian Wang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yanyan Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Ziqi Zhou
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Dongyue Zhang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jianshu Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Hetao Chu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
46
|
Trucco D, Vannozzi L, Teblum E, Telkhozhayeva M, Nessim GD, Affatato S, Al‐Haddad H, Lisignoli G, Ricotti L. Graphene Oxide-Doped Gellan Gum-PEGDA Bilayered Hydrogel Mimicking the Mechanical and Lubrication Properties of Articular Cartilage. Adv Healthc Mater 2021; 10:e2001434. [PMID: 33586352 PMCID: PMC11468639 DOI: 10.1002/adhm.202001434] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/28/2020] [Indexed: 12/15/2022]
Abstract
Articular cartilage (AC) is a specialized connective tissue able to provide a low-friction gliding surface supporting shock-absorption, reducing stresses, and guaranteeing wear-resistance thanks to its structure and mechanical and lubrication properties. Being an avascular tissue, AC has a limited ability to heal defects. Nowadays, conventional strategies show several limitations, which results in ineffective restoration of chondral defects. Several tissue engineering approaches have been proposed to restore the AC's native properties without reproducing its mechanical and lubrication properties yet. This work reports the fabrication of a bilayered structure made of gellan gum (GG) and poly (ethylene glycol) diacrylate (PEGDA), able to mimic the mechanical and lubrication features of both AC superficial and deep zones. Through appropriate combinations of GG and PEGDA, cartilage Young's modulus is effectively mimicked for both zones. Graphene oxide is used as a dopant agent for the superficial hydrogel layer, demonstrating a lower friction than the nondoped counterpart. The bilayered hydrogel's antiwear properties are confirmed by using a knee simulator, following ISO 14243. Finally, in vitro tests with human chondrocytes confirm the absence of cytotoxicity effects. The results shown in this paper open the way to a multilayered synthetic injectable or surgically implantable filler for restoring AC defects.
Collapse
Affiliation(s)
- Diego Trucco
- The BioRobotics InstituteScuola Superiore Sant'AnnaPiazza Martiri della Libertà 33Pisa56127Italy
- Department of Excellence in Robotics & AIScuola Superiore Sant'AnnaPiazza Martiri della Libertà 33Pisa56127Italy
- IRCSS Istituto Ortopedico RizzoliSC Laboratorio di Immunoreumatologia e Rigenerazione TissutaleVia di Barbiano, 1/10Bologna40136Italy
| | - Lorenzo Vannozzi
- The BioRobotics InstituteScuola Superiore Sant'AnnaPiazza Martiri della Libertà 33Pisa56127Italy
- Department of Excellence in Robotics & AIScuola Superiore Sant'AnnaPiazza Martiri della Libertà 33Pisa56127Italy
| | - Eti Teblum
- Department of ChemistryBar‐Ilan UniversityRamat Gan52900Israel
- Bar Ilan Institute for Nanotechnology and Advanced Materials (BINA)Bar‐Ilan UniversityRamat Gan52900Israel
| | - Madina Telkhozhayeva
- Department of ChemistryBar‐Ilan UniversityRamat Gan52900Israel
- Bar Ilan Institute for Nanotechnology and Advanced Materials (BINA)Bar‐Ilan UniversityRamat Gan52900Israel
| | - Gilbert Daniel Nessim
- Department of ChemistryBar‐Ilan UniversityRamat Gan52900Israel
- Bar Ilan Institute for Nanotechnology and Advanced Materials (BINA)Bar‐Ilan UniversityRamat Gan52900Israel
| | - Saverio Affatato
- IRCSS Istituto Ortopedico RizzoliLaboratorio Tecnologie BiomedicheVia di Barbiano, 1/10Bologna40136Italy
| | - Hind Al‐Haddad
- The BioRobotics InstituteScuola Superiore Sant'AnnaPiazza Martiri della Libertà 33Pisa56127Italy
- Department of Excellence in Robotics & AIScuola Superiore Sant'AnnaPiazza Martiri della Libertà 33Pisa56127Italy
| | - Gina Lisignoli
- IRCSS Istituto Ortopedico RizzoliSC Laboratorio di Immunoreumatologia e Rigenerazione TissutaleVia di Barbiano, 1/10Bologna40136Italy
| | - Leonardo Ricotti
- The BioRobotics InstituteScuola Superiore Sant'AnnaPiazza Martiri della Libertà 33Pisa56127Italy
- Department of Excellence in Robotics & AIScuola Superiore Sant'AnnaPiazza Martiri della Libertà 33Pisa56127Italy
| |
Collapse
|
47
|
Ravari MK, Mashayekhan S, Zarei F, Sayyahpour FA, Taghiyar L, Baghban Eslaminejad M. Fabrication and characterization of an injectable reinforced composite scaffold for cartilage tissue engineering: an in vitro study. Biomed Mater 2021; 16:045007. [PMID: 33784250 DOI: 10.1088/1748-605x/abed97] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There are limitations in current medications of articular cartilage injuries. Although injectable bioactive hydrogels are promising options, they have decreased biomechanical performance. Researchers should consider many factors when providing solutions to overcome these challenges. In this study, we created an injectable composite hydrogel from chitosan and human acellular cartilage extracellular matrix (ECM) particles. In order to enhance its mechanical properties, we reinforced this hydrogel with microporous microspheres composed of the same materials as the structural building blocks of the scaffold. Articular cartilage from human donors was decellularized by a combination of physical, chemical, and enzymatic methods. The decellularization efficiency was assessed by histological analysis and assessment of DNA content. We characterized the composite constructs in terms of storage modulus, gelation time, biocompatibility, and differentiation potential. The results showed that mechanical behavior increased with an increase in microsphere content. The sample that contained 10% microsphere had an enhanced storage modulus of up to 90 kPa. Biocompatibility and preliminary differentiation investigations revealed that this composite hydrogel might have potential benefits for cartilage tissue engineering.
Collapse
Affiliation(s)
- Mojtaba Khozaei Ravari
- Department of chemical and petroleum engineering, Sharif University of Technology, Tehran 11365-8639, Iran. Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 19395-4644, Iran
| | | | | | | | | | | |
Collapse
|
48
|
Qin X, He R, Chen H, Fu D, Peng Y, Meng S, Chen C, Yang L. Methacrylated pullulan/polyethylene (glycol) diacrylate composite hydrogel for cartilage tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:1057-1071. [PMID: 33685369 DOI: 10.1080/09205063.2021.1899888] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pullulan hydrogels are widely used in tissue engineering and drug delivery. However, these hydrogels do not meet the requirements of articular cartilage repair because of their fast degradation rate and poor mechanical strength. Herein, we fabricated a hybrid hydrogel system by combining pullulan with synthetic polymers polyethylene (glycol) diacrylate (PEGDA). In this study, pullulan was modified with methacrylic anhydride (MA) to obtain photo-crosslinkable methacrylated pullulan (PulMA). Moreover, the lithium phenyl(2,4,6-trimethylbenzoyl)phosphinate (LAP) was used as a water-soluble UV photoinitiator to form the PulMA/PEGDA hydrogel by photopolymerization strategy. Compared with the pure PulMA hydrogel, the increase of PEGDA concentration led to a slower degradation rate and an increase of residual mass from 63.9% to 86.8%. There was about 8-fold increase in storage modulus (G') (reach to 16.0 × 103 Pa) and 13-fold increase in compressive modulus (reach to 1.17 ± 0.17 MPa) with increasing the concentration of PEGDA to 15% (w/v) in the hydrogel. In cell culture in vitro, the rabbit's mesenchymal stem cells (MSCs) encapsulated in the PulMA/PEGDA hydrogel could adhere and proliferate, indicating that the PulMA/PEGDA hydrogel had a good biocompatibility. Furthermore, the hydrogels supported glycosaminoglycan (GAG) synthesis, and chondrogenic phenotype of MSCs with TGF-β3-containing chondrogenic medium. This study demonstrated that the photo-crosslinking PulMA/PEGDA hydrogels, with good mechanical properties and slow degradation rate are promising scaffolds for cartilage repair and regeneration.
Collapse
Affiliation(s)
- Xiaoping Qin
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Rui He
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Hao Chen
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Dejie Fu
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yang Peng
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Shuo Meng
- College of Medical Informatics, Chongqing Medical University, Chongqing, China
| | - Cheng Chen
- College of Medical Informatics, Chongqing Medical University, Chongqing, China
| | - Liu Yang
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
49
|
Campos Y, Sola FJ, Fuentes G, Quintanilla L, Almirall A, Cruz LJ, Rodríguez-Cabello JC, Tabata Y. The Effects of Crosslinking on the Rheology and Cellular Behavior of Polymer-Based 3D-Multilayered Scaffolds for Restoring Articular Cartilage. Polymers (Basel) 2021; 13:907. [PMID: 33809430 PMCID: PMC7999668 DOI: 10.3390/polym13060907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 01/10/2023] Open
Abstract
Polymer-based tri-layered (bone, intermediate and top layers) scaffolds used for the restoration of articular cartilage were prepared and characterized in this study to emulate the concentration gradient of cartilage. The scaffolds were physically or chemically crosslinked. In order to obtain adequate scaffolds for the intended application, the impact of the type of calcium phosphate used in the bone layer, the polymer used in the intermediate layer and the interlayer crosslinking process were analyzed. The correlation among SEM micrographs, physical-chemical characterization, swelling behavior, rheological measurements and cell studies were examined. Storage moduli at 1 Hz were 0.3-1.7 kPa for physically crosslinked scaffolds, and 4-5 kPa (EDC/NHS system) and 15-20 kPa (glutaraldehyde) for chemically crosslinked scaffolds. Intrinsic viscoelasticity and poroelasticity were considered in discussing the physical mechanism dominating in different time/frequency scales. Cell evaluation showed that all samples are available as alternatives to repair and/or substitute cartilage in articular osteoarthritis.
Collapse
Affiliation(s)
- Yaima Campos
- Centro de Biomateriales, Universidad de La Habana, ave Universidad e/G y Ronda, Vedado, Plaza, La Habana CP 10400, Cuba; (Y.C.); (F.J.S.); (A.A.)
- TNI Group, Department of Radiology, LUMC, Albinusdreef 2, 2333 ZA Leiden, The Netherlands;
| | - Francisco J. Sola
- Centro de Biomateriales, Universidad de La Habana, ave Universidad e/G y Ronda, Vedado, Plaza, La Habana CP 10400, Cuba; (Y.C.); (F.J.S.); (A.A.)
| | - Gastón Fuentes
- Centro de Biomateriales, Universidad de La Habana, ave Universidad e/G y Ronda, Vedado, Plaza, La Habana CP 10400, Cuba; (Y.C.); (F.J.S.); (A.A.)
- TNI Group, Department of Radiology, LUMC, Albinusdreef 2, 2333 ZA Leiden, The Netherlands;
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan;
- Bioforge Group, Campus Miguel Delibes, CIBER-BBN, Universidad de Valladolid, Edificio LUCIA, Paseo Belén 19, 47011 Valladolid, Spain; (L.Q.); (J.C.R.-C.)
| | - Luis Quintanilla
- Bioforge Group, Campus Miguel Delibes, CIBER-BBN, Universidad de Valladolid, Edificio LUCIA, Paseo Belén 19, 47011 Valladolid, Spain; (L.Q.); (J.C.R.-C.)
| | - Amisel Almirall
- Centro de Biomateriales, Universidad de La Habana, ave Universidad e/G y Ronda, Vedado, Plaza, La Habana CP 10400, Cuba; (Y.C.); (F.J.S.); (A.A.)
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan;
| | - Luis J. Cruz
- TNI Group, Department of Radiology, LUMC, Albinusdreef 2, 2333 ZA Leiden, The Netherlands;
| | - José C. Rodríguez-Cabello
- Bioforge Group, Campus Miguel Delibes, CIBER-BBN, Universidad de Valladolid, Edificio LUCIA, Paseo Belén 19, 47011 Valladolid, Spain; (L.Q.); (J.C.R.-C.)
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan;
| |
Collapse
|
50
|
Li P, Ai Y. Label-Free Multivariate Biophysical Phenotyping-Activated Acoustic Sorting at the Single-Cell Level. Anal Chem 2021; 93:4108-4117. [PMID: 33599494 DOI: 10.1021/acs.analchem.0c05352] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biophysical markers of cells such as cellular electrical and mechanical properties have been proven as promising label-free biomarkers for studying, characterizing, and classifying different cell types and even their subpopulations. Further analysis or manipulation of specific cell types or subtypes requires accurate isolation of them from the original heterogeneous samples. However, there is currently a lack of cell sorting ability that could actively separate a large number of individual cells at the single-cell level based on their multivariate biophysical makers or phenotypes. In this work, we, for the first time, demonstrate label-free and high-throughput acoustic single-cell sorting activated by the characterization of multivariate biophysical phenotypes. Electrical phenotyping is implemented by single-cell electrical impedance characterization with two pairs of differential sensing electrodes, while mechanical phenotyping is performed by extracting the transit time for the single cell to pass through microconstriction from the recorded impedance signals. A real-time impedance signal processing and triggering algorithm has been developed to identify the target sample population and activate a pulsed highly focused surface acoustic wave for single-cell level sorting. We have demonstrated acoustic single-particle sorting solely based on electrical or mechanical phenotyping. Furthermore, we have applied the developed microfluidic system to sort live MCF-7 cells from a mixture of fixed and live MCF-7 population activated by a combined electrical and mechanical phenotyping at a high throughput >100 cells/s and purity ∼91.8%. This demonstrated ability to analyze and sort cells based on multivariate biophysical phenotyping provides a solution to the current challenges of cell purification that lack specific molecular biomarkers.
Collapse
Affiliation(s)
- Peixian Li
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Ye Ai
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| |
Collapse
|