1
|
Gilbert BR, Miglani C, Karmakar A, Pal M, Chandran VC, Gupta S, Pal A, Ganguli M. A combination of systemic mannitol and mannitol modified polyester nanoparticles for caveolae-mediated gene delivery to the brain. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102480. [PMID: 40104113 PMCID: PMC11919422 DOI: 10.1016/j.omtn.2025.102480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 02/04/2025] [Indexed: 03/20/2025]
Abstract
Overcoming the blood-brain barrier (BBB) remains a significant challenge for nucleic acid delivery to the brain. We have explored a combination of mannitol-modified poly (β-amino ester) (PBAE) nanoparticles and systemic mannitol injection for crossing the BBB. We incorporated mannitol in the PBAE polymer for caveolae targeting and selected monomers that may help avoid delivery to the liver. We also induced caveolae at the BBB through systemic mannitol injection in order to create an opportunity for the caveolae-targeting nanoparticles (M30 D90) containing plasmid DNA to cross the BBB. When a clinically relevant dose was administered intravenously in this caveolae induction model, M30 D90 demonstrated significant transgene expression of a reporter plasmid in the brain, with selective uptake by neuronal cells and minimal liver accumulation. We demonstrate that caveolae modulation using systemic mannitol administration and caveolae targeting using designed nanoparticles are necessary for efficient delivery to the brain. This delivery platform offers a simple, scalable, and controlled delivery solution and holds promise for treating brain diseases with functional targets.
Collapse
Affiliation(s)
- Betsy Reshma Gilbert
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Chirag Miglani
- Chemical Biology Unit, Institute of Nanoscience and Technology, Sector 81, Mohali, Punjab 140306, India
| | | | - Muneesh Pal
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vysakh C Chandran
- Chemical Biology Unit, Institute of Nanoscience and Technology, Sector 81, Mohali, Punjab 140306, India
| | - Sarika Gupta
- National Institute of Immunology, New Delhi 110067, India
| | - Asish Pal
- Chemical Biology Unit, Institute of Nanoscience and Technology, Sector 81, Mohali, Punjab 140306, India
| | - Munia Ganguli
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Ciftci F, Özarslan AC, Kantarci İC, Yelkenci A, Tavukcuoglu O, Ghorbanpour M. Advances in Drug Targeting, Drug Delivery, and Nanotechnology Applications: Therapeutic Significance in Cancer Treatment. Pharmaceutics 2025; 17:121. [PMID: 39861768 PMCID: PMC11769154 DOI: 10.3390/pharmaceutics17010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/01/2025] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
In the 21st century, thanks to advances in biotechnology and developing pharmaceutical technology, significant progress is being made in effective drug design. Drug targeting aims to ensure that the drug acts only in the pathological area; it is defined as the ability to accumulate selectively and quantitatively in the target tissue or organ, regardless of the chemical structure of the active drug substance and the method of administration. With drug targeting, conventional, biotechnological and gene-derived drugs target the body's organs, tissues, and cells that can be selectively transported to specific regions. These systems serve as drug carriers and regulate the timing of release. Despite having many advantageous features, these systems have limitations in thoroughly treating complex diseases such as cancer. Therefore, combining these systems with nanoparticle technologies is imperative to treat cancer at both local and systemic levels effectively. The nanocarrier-based drug delivery method involves encapsulating target-specific drug molecules into polymeric or vesicular systems. Various drug delivery systems (DDS) were investigated and discussed in this review article. The first part discussed active and passive delivery systems, hydrogels, thermoplastics, microdevices and transdermal-based drug delivery systems. The second part discussed drug carrier systems in nanobiotechnology (carbon nanotubes, nanoparticles, coated, pegylated, solid lipid nanoparticles and smart polymeric nanogels). In the third part, drug targeting advantages were discussed, and finally, market research of commercial drugs used in cancer nanotechnological approaches was included.
Collapse
Affiliation(s)
- Fatih Ciftci
- Department of Biomedical Engineering, Faculty of Engineering, Fatih Sultan Mehmet Vakıf University, Istanbul 34015, Turkey
- Department of Technology Transfer Office, Fatih Sultan Mehmet Vakıf University, Istanbul 34015, Turkey
| | - Ali Can Özarslan
- Department of Metallurgical and Materials Engineering, Istanbul University-Cerrahpasa, Istanbul 34320, Turkey;
| | - İmran Cagri Kantarci
- Department of Bioengineering, Faculty of Chemistry-Metallurgy, Yildiz Technical University, Istanbul 34210, Turkey;
| | - Aslihan Yelkenci
- Department of Pediatric Dentistry, Faculty of Dentistry, University of Health Sciences, Istanbul 34668, Turkey;
| | - Ozlem Tavukcuoglu
- Department of Biochemistry, Faculty of Hamidiye Pharmacy, University of Health Sciences, Istanbul 34668, Turkey;
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran;
| |
Collapse
|
3
|
Reshma G B, Miglani C, Pal A, Ganguli M. Sugar alcohol-modified polyester nanoparticles for gene delivery via selective caveolae-mediated endocytosis. NANOSCALE 2024; 16:4114-4124. [PMID: 38353098 DOI: 10.1039/d3nr05300h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Nucleic acid-based drugs are changing the scope of emerging medicine in preventing and treating diseases. Nanoparticle systems based on lipids and polymers developed to navigate tissue-level and cellular-level barriers are now emerging as vector systems that can be translated to clinical settings. A class of polymers, poly(β-amino esters) (PBAEs) known for their chemical flexibility and biodegradability, has been explored for gene delivery. These polymers are sensitive to changes in the monomer composition affecting transfection efficiency. Hence to add functionality to these polymers, we partially substituted ligands to an identified effective polymer chemistry. We report here a new series of statistical copolymers based on PBAEs where the backbone is modified with sugar alcohols to selectively facilitate the caveolae-mediated endocytosis pathway of cellular transport. These ligands are grafted at the polymer's backbone, thereby establishing a new strategy of modification in PBAEs. We demonstrate that these polymers form nanoparticles with DNA, show effective complexation and cargo release, enter the cell via selective caveolae-mediated endocytosis, exhibit low cytotoxicity, and increase transfection in neuronal cells.
Collapse
Affiliation(s)
- Betsy Reshma G
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Chirag Miglani
- Chemical Biology Unit, Institute of Nanoscience and Technology, Sector 81, Mohali, Punjab 140306, India
| | - Asish Pal
- Chemical Biology Unit, Institute of Nanoscience and Technology, Sector 81, Mohali, Punjab 140306, India
| | - Munia Ganguli
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
4
|
Han TY, Huan ML, Cai Z, He W, Zhou SY, Zhang BL. Polymer-Initiating Caveolae-Mediated Endocytosis and GSH-Responsive MiR-34a Gene Delivery System for Enhanced Orthotopic Triple Negative Breast Cancer Therapy. Adv Healthc Mater 2023; 12:e2302094. [PMID: 37827986 DOI: 10.1002/adhm.202302094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/04/2023] [Indexed: 10/14/2023]
Abstract
Gene therapy based on miRNAs has broad application prospects in the treatment of tumors. However, due to degradation and ineffective release during intracellular transport, current gene delivery vectors used for miRNAs limited their actual transfection efficiency. This study develops a novel nonviral vector PEI-SPDP-Man (PSM) that can simultaneously target cellular uptake pathways and intracellular responsive release for miR-34a. PSM is synthesized by connected mannitol (Man) to branched polyethylenimine (PEI) using a disulfide bond. The prepared PSM/miR-34a gene delivery system can induce and enter to tumor cells through caveolae-mediated endocytosis to reduce the degradation of miR-34a in lysosomes. The disulfide bond is sensed at high concentration of glutathione (GSH) in the tumor cells and miR-34a is released, thereby reducing the expression of Bcl-2 and CD44 to suppress the proliferation and invasion of tumor cells. In vitro and in vivo experiments show that through the targeted cellular uptake and the efficient release of miR-34a, an effective antitumor and antimetastasis profiles for the treatment of orthotopic triple negative breast cancer (TNBC) are achieved. This strategy of controlling intracellular transport pathways by targeting cellular uptake pathways in the gene therapy is an approach that could be developed for highly effective cancer therapy.
Collapse
Affiliation(s)
- Tian-Yan Han
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Meng-Lei Huan
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Zedong Cai
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Wei He
- Department of Chemistry, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Si-Yuan Zhou
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
- Key Laboratory of Pharmacology of the State Administration of Traditional Chinese Medicine, Xi'an, 710032, China
| | - Bang-Le Zhang
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
- Key Laboratory of Pharmacology of the State Administration of Traditional Chinese Medicine, Xi'an, 710032, China
| |
Collapse
|
5
|
Yu D, Wang Y, Qu S, Zhang N, Nie K, Wang J, Huang Y, Sui D, Yu B, Qin M, Xu FJ. Controllable Star Cationic Poly(Disulfide)s Achieve Genetically Cascade Catalytic Therapy by Delivering Bifunctional Fusion Plasmids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2307190. [PMID: 37691439 DOI: 10.1002/adma.202307190] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/06/2023] [Indexed: 09/12/2023]
Abstract
The absence of effective delivery vectors and suitable multifunctional plasmids limits cancer gene therapy development. The star cationic poly(disulfide)s with β-cyclodextrin cores (termed β-CD-g-PSSn ) for caveolae-mediated endocytosis are designed and prepared via mild and controllable disulfide exchange polymerization for high-efficacy cancer therapy. Then, β-CD-g-PSSn /pDNA complexes are transported to the Golgi apparatus and endoplasmic reticulum. Disulfides in β-CD-g-PSSn vectors are degraded by glutathione in tumor cells, which not only promotes intracellular pDNA release but also reduces in vitro and in vivo toxicity. One bifunctional fusion plasmid pCATKR, which expresses catalase (CAT) fused to KillerRed (KR) (CATKR) in the same target cell, is also proposed for genetically cascade catalytic therapy. When compared with pCAT-KR (plasmid expressing CAT and KR separately in the same cell), delivered pCATKR decomposes hydrogen peroxide, alleviates tumor hypoxia more effectively, generates stronger reactive oxygen species (ROS) capabilities under moderate irradiation, and leads to robust antitumor cascade photodynamic effects. These impressive results are attributed to fusion protein design, which shortens the distance between CAT and KR catalytic centers and leads to improved ROS production efficiency. This work provides a promising strategy by delivering a catalytic cascade functional plasmid via a high-performance vector with biodegradable and caveolae-mediated endocytosis characteristics.
Collapse
Affiliation(s)
- Dan Yu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yuanchen Wang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shuang Qu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Na Zhang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Kaili Nie
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Junkai Wang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yichun Huang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dandan Sui
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Bingran Yu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Meng Qin
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
- Cancer Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
6
|
Wei Y, Xia X, Li H, Gao H. Influence factors on and potential strategies to amplify receptor-mediated nanodrug delivery across the blood-brain barrier. Expert Opin Drug Deliv 2023; 20:1713-1730. [PMID: 37542516 DOI: 10.1080/17425247.2023.2245332] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/22/2023] [Accepted: 08/03/2023] [Indexed: 08/07/2023]
Abstract
INTRODUCTION A major challenge in treating central nervous system (CNS) disorders is to achieve adequate drug delivery across the blood-brain barrier (BBB). Receptor-mediated nanodrug delivery as a Trojan horse strategy has become an exciting approach. However, these nanodrugs do not accumulate significantly in the brain parenchyma, which greatly limits the therapeutic effect of drugs. Amplifying the efficiency of receptor-mediated nanodrug delivery across the BBB becomes the holy grail in the treatment of CNS disorders. AREAS COVERED In this review, we tend to establish links between dynamic BBB and receptor-mediated nanodrug delivery, starting with the delivery processes across the BBB, describing factors affecting nanodrug delivery efficiency, and summarizing potential strategies that may amplify delivery efficiency. EXPERT OPINION Receptor-mediated nanodrug delivery is a common approach to significantly enhance the efficiency of brain-targeting delivery. As BBB is constantly undergoing changes, it is essential to investigate the impact of diseases on the effectiveness of brain-targeting nanodrug delivery. More critically, there are several barriers to achieving brain-targeting nanodrug delivery in the five stages of receptor-mediated transcytosis (RMT), and the impacts can be conflicting, requiring intricate balance. Further studies are also needed to investigate the material toxicity of nanodrugs to address the issue of clinical translation.
Collapse
Affiliation(s)
- Ya Wei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, P. R. China
| | - Xue Xia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, P. R. China
| | - Hanmei Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, P. R. China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, P. R. China
| |
Collapse
|
7
|
Qiu C, Xia F, Zhang J, Shi Q, Meng Y, Wang C, Pang H, Gu L, Xu C, Guo Q, Wang J. Advanced Strategies for Overcoming Endosomal/Lysosomal Barrier in Nanodrug Delivery. RESEARCH (WASHINGTON, D.C.) 2023; 6:0148. [PMID: 37250954 PMCID: PMC10208951 DOI: 10.34133/research.0148] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023]
Abstract
Nanocarriers have therapeutic potential to facilitate drug delivery, including biological agents, small-molecule drugs, and nucleic acids. However, their efficiency is limited by several factors; among which, endosomal/lysosomal degradation after endocytosis is the most important. This review summarizes advanced strategies for overcoming endosomal/lysosomal barriers to efficient nanodrug delivery based on the perspective of cellular uptake and intracellular transport mechanisms. These strategies include promoting endosomal/lysosomal escape, using non-endocytic methods of delivery to directly cross the cell membrane to evade endosomes/lysosomes and making a detour pathway to evade endosomes/lysosomes. On the basis of the findings of this review, we proposed several promising strategies for overcoming endosomal/lysosomal barriers through the smarter and more efficient design of nanodrug delivery systems for future clinical applications.
Collapse
Affiliation(s)
- Chong Qiu
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Fei Xia
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Junzhe Zhang
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qiaoli Shi
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuqing Meng
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chen Wang
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Huanhuan Pang
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liwei Gu
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chengchao Xu
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qiuyan Guo
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jigang Wang
- Artemisinin Research Center, and Institute of Chinese Materia Medica,
China Academy of Chinese Medical Sciences, Beijing 100700, China
- Department of Nephrology, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital,
Southern University of Science and Technology, Shenzhen, Guangdong 518020, China
| |
Collapse
|
8
|
Cho KS, Kim S, Chun HB, Cheon JH, Cho MH, Lee AY, Arote RB. Efficient gene transfection to lung cancer cells via Folate-PEI-Sorbitol gene transporter. PLoS One 2022; 17:e0266181. [PMID: 35507584 PMCID: PMC9067668 DOI: 10.1371/journal.pone.0266181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 03/15/2022] [Indexed: 11/27/2022] Open
Abstract
Lung cancer is known to be one of the fatal diseases in the world and is experiencing treatment difficulties. Many treatments have been discovered and implemented, but death rate of patients with lung cancer continues to remain high. Current treatments for cancer such as chemotherapy, immunotherapy, and radiotherapy have shown considerable results, yet they are accompanied by side effects. One effective method for reducing the cytotoxicity of these treatments is via the use of a nanoparticle-mediated siRNA delivery strategy with selective silencing effects and non-viral vectors. In this study, a folate (FA) moiety ligand-conjugated poly(sorbitol-co-PEI)-based gene transporter was designed by combining low-molecular weight polyethyleneimine (LMW PEI) and D-sorbitol with FA to form FPS. Since folate receptors are commonly overexpressed in various cancer cells, folate-conjugated nanoparticles may be more effectively delivered to selective cancer cells. Additionally, siOPA1 was used to induce apoptosis through mitochondrial fusion. The OPA1 protein stability level is important for maintaining normal mitochondrial cristae structure and function, conserving the inner membrane structure, and protecting cells from apoptosis. Consequently, when FPS/siOPA1 was used for lung cancer in-vitro and in-vivo, it improved cell viability and cellular uptake.
Collapse
Affiliation(s)
- Kye Soo Cho
- Department of Tumor Immunology, National Cancer Center, Goyang, Republic of Korea
- Department of Internal Medicine, Yonsei University College of Medical Science, Seoul, Republic of Korea
| | - Sanghwa Kim
- Laboratory of Toxicology, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hyung Bin Chun
- Department of Life Science, Waterloo University, Waterloo, Ontario, Canada
| | - Jae Hee Cheon
- Department of Internal Medicine, Yonsei University College of Medical Science, Seoul, Republic of Korea
| | | | - Ah Young Lee
- Department of Life Science, Waterloo University, Waterloo, Ontario, Canada
| | - Rohidas B. Arote
- Department of Molecular Genetics & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Kumari A, Pal S, G BR, Mohny FP, Gupta N, Miglani C, Pattnaik B, Pal A, Ganguli M. Surface-Engineered Mucus Penetrating Nucleic Acid Delivery Systems with Cell Penetrating Peptides for the Lungs. Mol Pharm 2022; 19:1309-1324. [PMID: 35333535 DOI: 10.1021/acs.molpharmaceut.1c00770] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nucleic acids, both DNA and small RNAs, have emerged as potential therapeutics for the treatment of various lung disorders. However, delivery of nucleic acids to the lungs is challenging due to the barrier property imposed by mucus, which is further reinforced in disease conditions such as chronic obstructive pulmonary disease and asthma. The presence of negatively charged mucins imparts the electrostatic barrier property, and the mesh network structure of mucus provides steric hindrance to the delivery system. To overcome this, the delivery system either needs to be muco-inert with a low positive charge such that the interactions with mucus are minimized or should have the ability to transiently dismantle the mucus structure for effective penetration. We have developed a mucus penetrating system for the delivery of both small RNA and plasmid DNA independently. The nucleic acid core consists of a nucleic acid (pDNA/siRNA) and a cationic/amphipathic cell penetrating peptide. The mucus penetrating coating consists of the hydrophilic biopolymer chondroitin sulfate A (CS-A) conjugated with a mucolytic agent, mannitol. We hypothesize that the hydrophilic coating of CS-A would reduce the surface charge and decrease the interaction with negatively charged mucins, while the conjugated mannitol residues would disrupt the mucin-mucin interaction or decrease the viscosity of mucus by increasing the influx of water into the mucus. Our results indicate that CS-A-mannitol-coated nanocomplexes possess reduced surface charge, reduced viscosity of artificial mucus, and increased diffusion in mucin suspension as well as increased penetration through the artificial mucus layer as compared to the non-coated ones. Further, the coated nanocomplexes showed low cytotoxicity as well as higher transfection in A-549 and BEAS-2B cells as compared to the non-coated ones.
Collapse
Affiliation(s)
- Anupama Kumari
- CSIR─Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Simanti Pal
- CSIR─Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Betsy Reshma G
- CSIR─Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Franklin Pulikkottil Mohny
- CSIR─Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nidhi Gupta
- Chemical Biology Unit, Institute of Nanoscience and Technology, Sector 81, Mohali, Punjab 140306, India
| | - Chirag Miglani
- Chemical Biology Unit, Institute of Nanoscience and Technology, Sector 81, Mohali, Punjab 140306, India
| | - Bijay Pattnaik
- CSIR─Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India.,Department of Pulmonary, Critical Care & Sleep Medicine, All Indian Institute of Medical Science (AIIMS), New Delhi 110029, India
| | - Asish Pal
- Chemical Biology Unit, Institute of Nanoscience and Technology, Sector 81, Mohali, Punjab 140306, India
| | - Munia Ganguli
- CSIR─Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
10
|
Ravula V, Muripiti V, Manthurthi S, Patri SV. α‐Tocopherol‐Conjugated, Open Chain Sugar‐Mimicking Cationic Lipids: Design, Synthesis and In–Vitro Gene Transfection Properties. ChemistrySelect 2021. [DOI: 10.1002/slct.202102648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Venkatesh Ravula
- National Institute of Technology Warangal Telangana 506004 India
| | | | | | | |
Collapse
|
11
|
Xu H, Liao C, Liang S, Ye BC. A Novel Peptide-Equipped Exosomes Platform for Delivery of Antisense Oligonucleotides. ACS APPLIED MATERIALS & INTERFACES 2021; 13:10760-10767. [PMID: 33621039 DOI: 10.1021/acsami.1c00016] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Exosomes are natural delivery vehicles because of their original feature such as low immunogenicity, excellent biocompatibility, and migration capability. Engineering exosomes with appropriate ligands are effective approaches to improve the low cellular uptake efficiency of exosomes. However, current strategies face considerable challenges due to the tedious and labor-intensive operational process. Here, we designed a novel peptides-equipped exosomes platform which can be assembled under convenient and mild reaction condition. Cell-penetrating peptides (CPPs) was conjugated on HepG2 cells-derived exosomes surface which can not only enhance the penetrating capacity of exosomes but also assist exosomes in loading antisense oligonucleotides (ASOs). The cellular uptake mechanism was investigated and we compared the difference between natural exosomes and modified exosomes. The resulting nanosystem demonstrated a preferential tropism for cells that are parented to their source tumor cells and could remarkably increase the cellular delivery of G3139 with efficient downregulation of antiapoptotic Bcl-2. This work developed a rapid strategy for intracellular delivery of nucleic acids, thus providing more possibilities toward personalized cancer medicine.
Collapse
Affiliation(s)
- Huiying Xu
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chong Liao
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shifu Liang
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Bang-Ce Ye
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
- School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang, 832000, China
| |
Collapse
|
12
|
Highly Osmotic Oxidized Sucrose-Crosslinked Polyethylenimine for Gene Delivery Systems. Pharmaceutics 2021; 13:pharmaceutics13010087. [PMID: 33440768 PMCID: PMC7826834 DOI: 10.3390/pharmaceutics13010087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 01/10/2023] Open
Abstract
In this work, highly osmotic oxidized sucrose-crosslinked polyethylenimine (SP2K) polymers were developed for gene delivery systems, and the transfection mechanism is examined. First, periodate-oxidized sucrose and polyethylenimine 2K (PEI2K) were crosslinked with various feed ratios via reductive amination. The synthesis was confirmed by 1H NMR and FTIR. The synthesized SP2K polymers could form positively charged (~40 mV zeta-potential) and nano-sized (150–200 nm) spherical polyplexes with plasmid DNA (pDNA). They showed lower cytotoxicity than PEI25K but concentration-dependent cytotoxicity. Among them, SP2K7 and SP2K10 showed higher transfection efficiency than PEI25K in both serum and serum-free conditions, revealing the good serum stability. It was found that SP2K polymers possessed high osmolality and endosome buffering capacity. The transfection experiments with cellular uptake inhibitors suggest that the transfection of SP2K polymers would progress by multiple pathways, including caveolae-mediated endocytosis. It was also thought that caveolae-mediated endocytosis of SP2K polyplexes would be facilitated through cyclooxygenase-2 (COX-2) expression induced by high osmotic pressure of SP2K polymers. Confocal microscopy results also supported that SP2K polyplexes would be internalized into cells via multiple pathways and escape endosomes efficiently via high osmolality and endosome buffering capacity. These results demonstrate the potential of SP2K polymers for gene delivery systems.
Collapse
|
13
|
Hu LZ, Wang W, Xu JL, Jia YY, Huan ML, Li C, Zhou SY, Zhang BL. Polyethylenimine-based nanovector grafted with mannitol moieties to achieve effective gene delivery and transfection. NANOTECHNOLOGY 2020; 31:325101. [PMID: 32325436 DOI: 10.1088/1361-6528/ab8c76] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polyethylenimine (PEI), a kind of cationic non-viral gene delivery vector, is capable of stable and efficient transgene expression for gene delivery. However, low transfection efficiency in vivo along with high toxicity limited the further application of gene therapy in the clinic. To enhance gene transfection performance and reduce cytotoxicity of polyethylenimine, branched polyethylenimine-derived cationic polymers BPEI25 k-man-S/L/M/H with different grafting degree with mannitol moieties were prepared and the transfection efficiency was evaluated. Among them, BPEI25 k-man-L showed the best transfection efficiency, lower toxicity, and significantly enhanced long-term systemic transgene expression for 96 h in vivo even at a single-dose administration. The results of cellular uptake mechanism and western-blot experiments revealed that the mannitol modification of BPEI25 k induced and up-regulated the phosphorylation of caveolin-1 and thus enhanced the caveolae-mediated cellular uptake. This class of gene delivery system highlights a paradigmatic approach for the development of novel and safe non-viral vectors for gene therapy.
Collapse
Affiliation(s)
- Li-Zhong Hu
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, People's Republic of China. Department of Pharmacy, Luoyang Polytechnic, Luoyang 471000, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Ma XX, Xu JL, Jia YY, Zhang YX, Wang W, Li C, He W, Zhou SY, Zhang BL. Enhance transgene responses through improving cellular uptake and intracellular trafficking by bio-inspired non-viral vectors. J Nanobiotechnology 2020; 18:26. [PMID: 32005170 PMCID: PMC6995230 DOI: 10.1186/s12951-020-0582-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 01/18/2020] [Indexed: 11/10/2022] Open
Abstract
Background Gene therapy remains a significant challenge due to lots of barriers limiting the genetic manipulation technologies. As for non-viral delivery vectors, they often suffer insufficient performance due to inadequate cellular uptake and gene degradation in endosome or lysosome. The importance of overcoming these conserved intracellular barriers is increasing as the delivery of genetic cargo. Results A surface-functionalized non-viral vector involving the biomimetic mannitol moiety is initiated, which can control the cellular uptake and promote the caveolae-mediated pathway and intracellular trafficking, thus avoiding acidic and enzymatic lysosomal degradation of loaded gene internalized by clathrin-mediated pathway. Different degrees of mannitol moiety are anchored onto the surface of the nanoparticles to form bio-inspired non-viral vectors and CaP-MA-40 exhibits remarkably high stability, negligible toxicity, and significantly enhanced transgene expression both in vitro and in vivo. Conclusions This strategy highlights a paradigmatic approach to construct vectors that need precise intracellular delivery for innovative applications.
Collapse
Affiliation(s)
- Xi-Xi Ma
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.,Key Laboratory of Pharmacology of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Jing-Liang Xu
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.,Key Laboratory of Pharmacology of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Yi-Yang Jia
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.,Key Laboratory of Pharmacology of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Ya-Xuan Zhang
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.,Key Laboratory of Pharmacology of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Wei Wang
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.,Key Laboratory of Pharmacology of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Chen Li
- Key Laboratory of Pharmacology of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Wei He
- Department of Chemistry, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.
| | - Si-Yuan Zhou
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.,Key Laboratory of Pharmacology of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Bang-Le Zhang
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China. .,Key Laboratory of Pharmacology of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
15
|
Hong SJ, Ahn MH, Sangshetti J, Arote RB. Sugar alcohol-based polymeric gene carriers: Synthesis, properties and gene therapy applications. Acta Biomater 2019; 97:105-115. [PMID: 31326667 DOI: 10.1016/j.actbio.2019.07.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 07/04/2019] [Accepted: 07/16/2019] [Indexed: 02/07/2023]
Abstract
Advances in the field of nanomedicine have led to the development of various gene carriers with desirable cellular responses. However, unfavorable stability and physicochemical properties have hindered their applications in vivo. Therefore, multifunctional, smart nanocarriers with unique properties to overcome such drawbacks are needed. Among them, sugar alcohol-based nanoparticle with abundant surface chemistry, numerous hydroxyl groups, acceptable biocompatibility and biodegradable property are considered as the recent additions to the growing list of non-viral vectors. In this review, we present some of the major advances in our laboratory in developing sugar-based polymers as non-viral gene delivery vectors to treat various diseases. We also discuss some of the open questions in this field. STATEMENT OF SIGNIFICANCE: Recently, the development of sugar alcohol-based polymers conjugated with polyethylenimine (PEI) has attracted tremendous interest as gene delivery vectors. First, the natural backbone of polymers with their numerous hydroxyl groups display a wide range of hyperosmotic properties and can thereby enhance the cellular uptake of genetic materials via receptor-mediated endocytosis. Second, conjugation of a PEI backbone with sugar alcohols via Michael addition contributes to buffering capacity and thereby the proton sponge effect. Last, sugar alcohol based gene delivery systems improves therapeutic efficacy both in vitro and in vivo.
Collapse
|
16
|
Zou J, Shi M, Liu X, Jin C, Xing X, Qiu L, Tan W. Aptamer-Functionalized Exosomes: Elucidating the Cellular Uptake Mechanism and the Potential for Cancer-Targeted Chemotherapy. Anal Chem 2019; 91:2425-2430. [PMID: 30620179 DOI: 10.1021/acs.analchem.8b05204] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Exosomes (Exos) are nanoscale natural vehicles for transporting biomolecules to facilitate cell-to-cell communication, indicating a high potential of them for delivering therapeutics/diagnostics. To improve their delivery capacity, a simple, noninvasive, and efficient strategy for functionalizing Exos with effective targeting ligands as well as elucidation of the cellular uptake mechanism of these functionalized Exos was found be to necessary, but remained a challenge. In this work, we used diacyllipid-aptamer conjugates as the targeting ligand to develop an aptamer-functionalized Exos (Apt-Exos) nanoplatform for cell type-specific delivery of molecular therapeutics. The cellular uptake mechanism of Apt-Exos was investigated in details, and distinct behavior was observed in comparison to free Exos. By combining the excellent molecular recognition capability of aptamers and the superiority of Exos as natural vehicles, Apt-Exos can efficiently deliver molecular drugs/fluorophores to target cancer cells, providing a promising delivery platform for cancer theranostics.
Collapse
Affiliation(s)
- Jianmei Zou
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences , Aptamer Engineering Center of Hunan Province, Hunan University , Changsha , Hunan 410082 , China
| | - Muling Shi
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences , Aptamer Engineering Center of Hunan Province, Hunan University , Changsha , Hunan 410082 , China.,Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Science and Technology , Central South University of Forestry & Technology , Changsha 410004 , China
| | - Xiaojing Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences , Aptamer Engineering Center of Hunan Province, Hunan University , Changsha , Hunan 410082 , China
| | - Cheng Jin
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences , Aptamer Engineering Center of Hunan Province, Hunan University , Changsha , Hunan 410082 , China
| | - Xiaojing Xing
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences , Aptamer Engineering Center of Hunan Province, Hunan University , Changsha , Hunan 410082 , China
| | - Liping Qiu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences , Aptamer Engineering Center of Hunan Province, Hunan University , Changsha , Hunan 410082 , China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences , Aptamer Engineering Center of Hunan Province, Hunan University , Changsha , Hunan 410082 , China.,Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics , University Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida , Gainesville , Florida 32611-7200 , United States
| |
Collapse
|
17
|
Ahn J, Cho CS, Cho SW, Kang JH, Kim SY, Min DH, Song JM, Park TE, Jeon NL. Investigation on vascular cytotoxicity and extravascular transport of cationic polymer nanoparticles using perfusable 3D microvessel model. Acta Biomater 2018; 76:154-163. [PMID: 29807185 DOI: 10.1016/j.actbio.2018.05.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/16/2018] [Accepted: 05/24/2018] [Indexed: 12/12/2022]
Abstract
Vascular networks are the first sites exposed to cationic polymer nanoparticles (NPs) administered intravenously, and thus function as a barrier for NPs reaching the target organ. While cationic polymer NPs have been intensively studied as non-viral delivery systems, their biological effects in human microvessels have been poorly investigated due to a lack of appropriate in vitro systems. Here, we employed a three-dimensional microvessel on a chip, which accurately models in vivo conditions. An open and perfused microvessel surrounded by pericytes was shown to reproduce the important features of living vasculature, including barrier function and biomarkers. Using this microvessel chip, we observed contraction of the microvascular lumen induced by perfused polyethylenimine (PEI)/DNA NPs. We demonstrated that the oxidative stress present when microvessels were exposed to PEI NPs led to rearrangement of microtubules resulting in microvessel contraction. Furthermore, the transcytotic behavior of PEI NPs was analyzed in the microvessel by monitoring the escape of PEI NPs from the microvascular lumen into the perivascular region, which was not possible in two-dimensional culture systems. With our new understanding of the different behaviors of cationic polymer NPs depending on their transcytotic route, we suggest that caveolae-mediated transcytosis is a powerful route for efficient extravascular transport. STATEMENT OF SIGNIFICANCE Microvascular networks are not only biological system constituting largest surface area in the body and but also first site exposed to nanoparticle in vivo. While cationic polymer NPs have been intensively studied as non-viral delivery systems, its biological effects in human microvessel have been poorly investigated due to lack of appropriate in vitro systems. Here, we microengineered an open and perfused 3D pericyte incorporated microvessel model which possesses same morphological characteristic of in vivo. Using the microengineered model, this study represents the first report of transcytotic behavior of NPs in 3D microvessel, and its effect on extravasation efficiency. Our study lays the groundwork for the integration of innovative technologies to examine blood vessel-nanoparticle interaction, which a critical but ill-defined phenomenon.
Collapse
Affiliation(s)
- Jungho Ahn
- School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 08826, South Korea; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, North Ave NW, Atlanta, GA 30332, USA
| | - Chong-Su Cho
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - Seong Woo Cho
- Ulsan National Institute of Science and Technology, Ulsan 44914, South Korea
| | - Joo H Kang
- Ulsan National Institute of Science and Technology, Ulsan 44914, South Korea
| | - Sung-Yon Kim
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul, South Korea
| | - Dal-Hee Min
- Department of Chemistry, Seoul National University, Seoul, South Korea
| | - Joon Myong Song
- College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Tae-Eun Park
- Ulsan National Institute of Science and Technology, Ulsan 44914, South Korea.
| | - Noo Li Jeon
- School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
18
|
Cavallaro G, Sardo C, Craparo EF, Porsio B, Giammona G. Polymeric nanoparticles for siRNA delivery: Production and applications. Int J Pharm 2017; 525:313-333. [DOI: 10.1016/j.ijpharm.2017.04.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 02/06/2023]
|
19
|
Mathew AP, Cho KH, Uthaman S, Cho CS, Park IK. Stimuli-Regulated Smart Polymeric Systems for Gene Therapy. Polymers (Basel) 2017; 9:E152. [PMID: 30970831 PMCID: PMC6432211 DOI: 10.3390/polym9040152] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 01/02/2023] Open
Abstract
The physiological condition of the human body is a composite of different environments, each with its own parameters that may differ under normal, as well as diseased conditions. These environmental conditions include factors, such as pH, temperature and enzymes that are specific to a type of cell, tissue or organ or a pathological state, such as inflammation, cancer or infection. These conditions can act as specific triggers or stimuli for the efficient release of therapeutics at their destination by overcoming many physiological and biological barriers. The efficacy of conventional treatment modalities can be enhanced, side effects decreased and patient compliance improved by using stimuli-responsive material that respond to these triggers at the target site. These stimuli or triggers can be physical, chemical or biological and can be internal or external in nature. Many smart/intelligent stimuli-responsive therapeutic gene carriers have been developed that can respond to either internal stimuli, which may be normally present, overexpressed or present in decreased levels, owing to a disease, or to stimuli that are applied externally, such as magnetic fields. This review focuses on the effects of various internal stimuli, such as temperature, pH, redox potential, enzymes, osmotic activity and other biomolecules that are present in the body, on modulating gene expression by using stimuli-regulated smart polymeric carriers.
Collapse
Affiliation(s)
- Ansuja Pulickal Mathew
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 61469, Korea.
| | - Ki-Hyun Cho
- Department of Plastic Surgery, Institute of Dermatology and Plastic Surgery, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195, USA.
| | - Saji Uthaman
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 61469, Korea.
| | - Chong-Su Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| | - In-Kyu Park
- Department of Biomedical Sciences, BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Korea.
| |
Collapse
|
20
|
Hu LZ, Wan N, Ma XX, Jing ZW, Zhang YX, Li C, Zhou SY, Zhang BL. Enhanced gene transfection performance and biocompatibility of polyethylenimine through pseudopolyrotaxane formation with α-cyclodextrin. NANOTECHNOLOGY 2017; 28:125102. [PMID: 28163261 DOI: 10.1088/1361-6528/aa5e56] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Polyethylenimine (PEI), a commercially available gene transfection reagent, is a promising nonviral vector due to its inherent ability to efficiently condense genetic materials and its successful transfection performance in vitro. However, its low transfection efficiency in vivo, along with its high cytotoxicity, limit any further applications in gene therapy. To enhance the gene transfection performance and reduce the cytotoxicity of linear polyethylenimine, pseudopolyrotaxane PEI25k/CD and the polyrotaxanes PEI25k/CD-PA and PEI25k/CD-PB were prepared and their transfection efficiencies were then evaluated. The pseudopolyrotaxane PEI25k/CD exhibited better transfection efficiency and lower cytotoxicity than the transfection reagent linear PEI25k, even in the presence of serum. It also showed a remarkably higher cell viability, similar DNA protecting capability, and better DNA decondensation and release ability, and could be useful for the development of novel and safe nonviral gene delivery vectors for gene therapy.
Collapse
Affiliation(s)
- Li-Zhong Hu
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Degradable Polyethylenimine-Based Gene Carriers for Cancer Therapy. Top Curr Chem (Cham) 2017; 375:34. [DOI: 10.1007/s41061-017-0124-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 02/20/2017] [Indexed: 12/22/2022]
|
22
|
Propoxylation of cationic polymers provides a novel approach to controllable modulation of their cellular toxicity and interaction with nucleic acids. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:60-7. [DOI: 10.1016/j.msec.2016.05.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/19/2016] [Accepted: 05/05/2016] [Indexed: 02/04/2023]
|
23
|
Voronina N, Lemcke H, Wiekhorst F, Kühn JP, Rimmbach C, Steinhoff G, David R. Non-viral magnetic engineering of endothelial cells with microRNA and plasmid-DNA-An optimized targeting approach. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:2353-2364. [PMID: 27389150 DOI: 10.1016/j.nano.2016.06.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 05/27/2016] [Accepted: 06/23/2016] [Indexed: 12/18/2022]
Abstract
Genetic modulation of angiogenesis is a powerful tool for the treatment of multiple disorders. Here, we describe a strategy to produce modified endothelial cells, which can be efficiently magnetically guided. First, we defined optimal transfection conditions with both plasmid and microRNA, using a polyethyleneimine/magnetic nanoparticle-based vector (PEI/MNP), previously designed in our group. Further, two approaches were assessed in vitro: direct vector guidance and magnetic targeting of transfected cells. Due to its higher efficiency, including simulated dynamic conditions, production of miR/PEI/MNP-modified magnetically responsive cells was selected for further detailed investigation. In particular, we have studied internalization of transfection complexes, functional capacities and intercellular communication of engineered cells and delivery of therapeutic miR. Moreover, we demonstrated that 104 miRNA/PEI/MNP-modified magnetically responsive cells loaded with 0.37pg iron/cell are detectable with MRI. Taken together, our in vitro findings show that PEI/MNP is highly promising as a multifunctional tool for magnetically guided angiogenesis regulation.
Collapse
Affiliation(s)
- Natalia Voronina
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, University of Rostock, Rostock, Germany.
| | - Heiko Lemcke
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, University of Rostock, Rostock, Germany.
| | | | - Jens-Peter Kühn
- Department of Radiology and Neuroradiology, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany;.
| | - Christian Rimmbach
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, University of Rostock, Rostock, Germany
| | - Gustav Steinhoff
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, University of Rostock, Rostock, Germany.
| | - Robert David
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, University of Rostock, Rostock, Germany.
| |
Collapse
|
24
|
Kim YD, Pofali P, Park TE, Singh B, Cho K, Maharjan S, Dandekar P, Jain R, Choi YJ, Arote R, Cho CS. Gene therapy for bone tissue engineering. Tissue Eng Regen Med 2016; 13:111-125. [PMID: 30603391 PMCID: PMC6170855 DOI: 10.1007/s13770-016-9063-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/24/2015] [Accepted: 09/29/2015] [Indexed: 02/06/2023] Open
Abstract
Gene therapy holds a great promise and has been extensively investigated to improve bone formation and regeneration therapies in bone tissue engineering. A variety of osteogenic genes can be delivered by combining different vectors (viral or non-viral), scaffolds and delivery methodologies. Ex vivo & in vivo gene enhanced tissue engineering approaches have led to successful osteogenic differentiation and bone formation. In this article, we review recent advances of gene therapy-based bone tissue engineering discussing strengths and weaknesses of various strategies as well as general overview of gene therapy.
Collapse
Affiliation(s)
- Young-Dong Kim
- Department of Molecular Genetics, School of Dentistry, Seoul National University, Seoul, Korea
| | - Prasad Pofali
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| | - Tae-Eun Park
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Bijay Singh
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Kihyun Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Sushila Maharjan
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Ratnesh Jain
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| | - Yun-Jaie Choi
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Rohidas Arote
- Department of Molecular Genetics, School of Dentistry, Seoul National University, Seoul, Korea
| | - Chong-Su Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
25
|
Neuhaus B, Tosun B, Rotan O, Frede A, Westendorf AM, Epple M. Nanoparticles as transfection agents: a comprehensive study with ten different cell lines. RSC Adv 2016. [DOI: 10.1039/c5ra25333k] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The performance of transfection agents to deliver nucleic acids into cells strongly depends on the cell type.
Collapse
Affiliation(s)
- Bernhard Neuhaus
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE)
- University of Duisburg-Essen
- 45117 Essen
- Germany
| | - Benjamin Tosun
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE)
- University of Duisburg-Essen
- 45117 Essen
- Germany
| | - Olga Rotan
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE)
- University of Duisburg-Essen
- 45117 Essen
- Germany
| | - Annika Frede
- Institute of Medical Microbiology
- University Hospital Essen
- University of Duisburg-Essen
- Essen
- Germany
| | - Astrid M. Westendorf
- Institute of Medical Microbiology
- University Hospital Essen
- University of Duisburg-Essen
- Essen
- Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE)
- University of Duisburg-Essen
- 45117 Essen
- Germany
| |
Collapse
|
26
|
Kim YD, Park TE, Singh B, Cho KS, Sangshetti JN, Choi YJ, Arote RB, Cho CS. Efficient gene transfection to liver cells via the cellular regulation of a multifunctional polylactitol-based gene transporter. J Mater Chem B 2016; 4:2208-2218. [DOI: 10.1039/c5tb01799h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new polylactitol-based multifunctional gene carrier has shown low cytotoxicity, a high transfection efficiency, and liver cell targeting bothin vitroandin vivo.
Collapse
Affiliation(s)
- Young-Dong Kim
- Department of Molecular Genetics & Dental Research Institute
- School of Dentistry
- Seoul National University
- Seoul
- Republic of Korea
| | - Tae-Eun Park
- Department of Agricultural Biotechnology & Research Institute for Agriculture and Life Sciences
- Seoul National University
- Seoul
- Republic of Korea
| | - Bijay Singh
- Department of Agricultural Biotechnology & Research Institute for Agriculture and Life Sciences
- Seoul National University
- Seoul
- Republic of Korea
| | - Kye-Soo Cho
- Department of Molecular Genetics & Dental Research Institute
- School of Dentistry
- Seoul National University
- Seoul
- Republic of Korea
| | | | - Yun-Jaie Choi
- Department of Agricultural Biotechnology & Research Institute for Agriculture and Life Sciences
- Seoul National University
- Seoul
- Republic of Korea
| | - Rohidas B. Arote
- Department of Molecular Genetics & Dental Research Institute
- School of Dentistry
- Seoul National University
- Seoul
- Republic of Korea
| | - Chong-Su Cho
- Department of Agricultural Biotechnology & Research Institute for Agriculture and Life Sciences
- Seoul National University
- Seoul
- Republic of Korea
| |
Collapse
|
27
|
Liu S, Huang W, Jin MJ, Fan B, Xia GM, Gao ZG. Inhibition of murine breast cancer growth and metastasis by survivin-targeted siRNA using disulfide cross-linked linear PEI. Eur J Pharm Sci 2016; 82:171-82. [DOI: 10.1016/j.ejps.2015.11.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/11/2015] [Accepted: 11/06/2015] [Indexed: 12/30/2022]
|
28
|
Wang Z, Luo T, Sheng R, Li H, Sun J, Cao A. Amphiphilic Diblock Terpolymer PMAgala-b-P(MAA-co-MAChol)s with Attached Galactose and Cholesterol Grafts and Their Intracellular pH-Responsive Doxorubicin Delivery. Biomacromolecules 2015; 17:98-110. [DOI: 10.1021/acs.biomac.5b01227] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Zhao Wang
- CAS Key Laboratory of Synthetic
and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Ting Luo
- CAS Key Laboratory of Synthetic
and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Ruilong Sheng
- CAS Key Laboratory of Synthetic
and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Hui Li
- CAS Key Laboratory of Synthetic
and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jingjing Sun
- CAS Key Laboratory of Synthetic
and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Amin Cao
- CAS Key Laboratory of Synthetic
and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
29
|
Rewatkar PV, Parton RG, Parekh HS, Parat MO. Are caveolae a cellular entry route for non-viral therapeutic delivery systems? Adv Drug Deliv Rev 2015; 91:92-108. [PMID: 25579057 DOI: 10.1016/j.addr.2015.01.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/23/2014] [Accepted: 01/02/2015] [Indexed: 12/20/2022]
Abstract
The development of novel therapies increasingly relies on sophisticated delivery systems that allow the drug or gene expression-modifying agent of interest entry into cells. These systems can promote cellular targeting and/or entry, and they vary in size, charge, and functional group chemistry. Their optimization requires an in depth knowledge of the cellular routes of entry in normal and pathological states. Caveolae are plasma membrane invaginations that have the potential to undergo endocytosis. We critically review the literature exploring whether drug or nucleic acid delivery systems exploit and/or promote cellular entry via caveolae. A vast majority of studies employ pharmacological tools, co-localization experiments and very few make use of molecular tools. We provide clarification on how results of such studies should be interpreted and make suggestions for future studies.
Collapse
Affiliation(s)
- Prarthana V Rewatkar
- The University of Queensland, School of Pharmacy, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Robert G Parton
- The University of Queensland, Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, QLD 4072 Australia.
| | - Harendra S Parekh
- The University of Queensland, School of Pharmacy, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia.
| | - Marie-Odile Parat
- The University of Queensland, School of Pharmacy, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
30
|
Singh B, Maharjan S, Park TE, Jiang T, Kang SK, Choi YJ, Cho CS. Tuning the buffering capacity of polyethylenimine with glycerol molecules for efficient gene delivery: staying in or out of the endosomes. Macromol Biosci 2015; 15:622-35. [PMID: 25581293 DOI: 10.1002/mabi.201400463] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/11/2014] [Indexed: 12/15/2022]
Abstract
Endosomal escape is a major bottleneck for efficient non-viral gene delivery. This paper presents the development of two novel non-viral vectors by cross-linking glycerol molecules with low molecular weight polyethylenimine (PEI). The vectors, namely, HG-PEI (45 mol% glycerol content) and LG-PEI (9 mol% glycerol content) have apparently similar DNA binding, DNA unpacking and cellular uptake abilities but differ in buffering capacity. The cellular uptake and subsequent transfection efficiency of LG-PEI is superior to commercially available PEI 25 k. Interestingly, although the cellular uptake of HG-PEI is higher than that of PEI 25 k, the transgene expression by HG-PEI-mediated transfection is very low. Inhibitor and co-localization studies demonstrate the mechanism of endocytosis and formation of endosomes prone to lysosomal lysis of HG-PEI polyplexes as a consequence of its weak buffering capacity. Importantly, when the lysosomal lysis is inhibited, the transgene expression of HG-PEI-mediated transfection increases by 9-fold of its initial capacity which is comparable to the transfection efficiency of PEI 25 k. These results indicated that the buffering capacity of the polymers primarily impacts endosomal escape and subsequent transfection efficiency. Furthermore, this study highlights the significance of cross-linkers in optimizing the buffering capacity when designing polymers for gene delivery.
Collapse
Affiliation(s)
- Bijay Singh
- Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Sushila Maharjan
- Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Tae-Eun Park
- Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Tao Jiang
- Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Sang-Kee Kang
- Institute of Green-Bio Science and Technology, Seoul National University, Kangwon-Do, 232-916, Korea
| | - Yun-Jaie Choi
- Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea.
| | - Chong-Su Cho
- Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea.
| |
Collapse
|
31
|
Park TE, Singh B, Li H, Lee JY, Kang SK, Choi YJ, Cho CS. Enhanced BBB permeability of osmotically active poly(mannitol-co-PEI) modified with rabies virus glycoprotein via selective stimulation of caveolar endocytosis for RNAi therapeutics in Alzheimer's disease. Biomaterials 2014; 38:61-71. [PMID: 25457984 DOI: 10.1016/j.biomaterials.2014.10.068] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 10/19/2014] [Indexed: 01/02/2023]
Abstract
RNA interference (RNAi) holds one of the promising tools for Alzheimer's disease (AD) treatment by directly arresting the causative genes. For successful RNAi therapeutics for AD, limited access of therapeutic genes to the brain needs to be overcome by developing siRNA delivery system that could cross the blood-brain barrier (BBB). Here, we report a non-viral vector, rabies virus glycoprotein (RVG)-modified poly(mannitol-co-PEI) gene transporter (PMT), R-PEG-PMT. The RVG ligand directed the PMT/siRNA complexes toward the brain through binding to nicotinic acetylcholine receptors expressed on BBB. In mechanistic study using in vitro BBB model, we observed that osmotically-active PMT enhanced the receptor-mediated transcytosis by stimulating the caveolar endocytosis. The potential of RNAi therapeutics for AD using R-PEG-PMT/siBACE1 complexes was demonstrated in vitro and in vivo. Our results suggest that R-PEG-PMT is a powerful gene carrier system for brain targeted RNAi therapeutics with synergistic effect of RVG ligand and PMT on well-modulated receptor-mediated transcytosis through BBB.
Collapse
Affiliation(s)
- Tae-Eun Park
- Department of Agricultural Biotechnology & Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, South Korea
| | - Bijay Singh
- Department of Agricultural Biotechnology & Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, South Korea
| | - Huishan Li
- Department of Agricultural Biotechnology & Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, South Korea
| | - Jun-Yeong Lee
- Department of Agricultural Biotechnology & Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, South Korea
| | - Sang-Kee Kang
- Institute of Green-Bio Science & Technology, Seoul National University, Pyeongchanggun, Gangwondo 232-916, South Korea
| | - Yun-Jaie Choi
- Department of Agricultural Biotechnology & Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, South Korea.
| | - Chong-Su Cho
- Department of Agricultural Biotechnology & Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, South Korea.
| |
Collapse
|
32
|
Islam MA, Park T, Singh B, Maharjan S, Firdous J, Cho MH, Kang SK, Yun CH, Choi Y, Cho CS. Major degradable polycations as carriers for DNA and siRNA. J Control Release 2014; 193:74-89. [DOI: 10.1016/j.jconrel.2014.05.055] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/24/2014] [Accepted: 05/27/2014] [Indexed: 12/17/2022]
|
33
|
Maury B, Gonçalves C, Tresset G, Zeghal M, Cheradame H, Guégan P, Pichon C, Midoux P. Influence of pDNA availability on transfection efficiency of polyplexes in non-proliferative cells. Biomaterials 2014; 35:5977-85. [PMID: 24768195 DOI: 10.1016/j.biomaterials.2014.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/01/2014] [Indexed: 02/05/2023]
Abstract
We succeeded in visualizing plasmid DNA (pDNA) in the nucleus and cytosol of non-proliferative cells after transfection with linear polyethylenemine (lPEI) and histidinylated lPEI (His16-lPEI). This was possible with confocal microscope by using pDNA labelled with quantum dots. Indeed pDNA labelled with Cy3 leads to false positive nuclear localization because the saturation of the fluorescence signal overestimated the volume occupied by Cy3-pDNA. Moreover, Cy3 brightness was too weak to detect low amount of pDNA. About 20 to 40 pDNA copies were detected in the nucleus after the transfection of pDNA labelled with quantum dots. Transfection efficiency and cellular imaging data suggested that the cytosolic availability of pDNA, including endosome escape and/or polyplexes dissociation, is crucial for its nuclear delivery. In vitro transcription assay and transfection of cells allowing cytosolic gene expression concluded to better cytosolic availability of pDNA within His16-lPEI polyplexes. Cryo-TEM analyses revealed that His16-lPEI polyplexes exhibited a spherical shape and an amorphous internal structure which differed from the high degree of order of lPEI polyplexes. Altogether, this comparative study indicated that the high transfection efficiency of non-proliferative cells with His16-lPEI polyplexes was related to the amorphous structure and the facilitated dissociation of the assemblies.
Collapse
Affiliation(s)
- Benoit Maury
- Centre de Biophysique Moléculaire, CNRS UPR4301, Inserm et Université d'Orléans, 45071 Orléans cedex 02, France.
| | - Cristine Gonçalves
- Centre de Biophysique Moléculaire, CNRS UPR4301, Inserm et Université d'Orléans, 45071 Orléans cedex 02, France
| | - Guillaume Tresset
- Laboratoire de Physique des Solides, Université Paris-Sud, CNRS, 91405 Orsay cedex, France
| | - Mehdi Zeghal
- Laboratoire de Physique des Solides, Université Paris-Sud, CNRS, 91405 Orsay cedex, France
| | - Hervé Cheradame
- Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, CNRS UMR8587 Université d'Evry Val d'Essonne, Evry, France
| | - Philippe Guégan
- Laboratoire de Chimie des Polymères, Sorbonne Universités, UPMC Univ Paris 06, UMR 8232, IPCM, Chimie des Polymères, F-75005 Paris, France; CNRS, UMR 8232, IPCM, Chimie des Polymères, F-75005 Paris, France
| | - Chantal Pichon
- Centre de Biophysique Moléculaire, CNRS UPR4301, Inserm et Université d'Orléans, 45071 Orléans cedex 02, France
| | - Patrick Midoux
- Centre de Biophysique Moléculaire, CNRS UPR4301, Inserm et Université d'Orléans, 45071 Orléans cedex 02, France.
| |
Collapse
|
34
|
Garg P, Pandey S, Kang B, Lim KT, Kim J, Cho MH, Park TE, Choi YJ, Chung PH, Cho CS, Chung JH. Highly efficient gene transfection by a hyperosmotic polymannitol based gene tranporter through regulation of caveolae and COX-2 induced endocytosis. J Mater Chem B 2014; 2:2666-2679. [DOI: 10.1039/c3tb21831g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Ding HM, Ma YQ. Design maps for cellular uptake of gene nanovectors by computer simulation. Biomaterials 2013; 34:8401-7. [PMID: 23891080 DOI: 10.1016/j.biomaterials.2013.06.067] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 06/28/2013] [Indexed: 12/21/2022]
Abstract
Understanding how nanovectors transport DNA molecules through cell membranes is of great importance in gene therapy. In this paper, we systematically investigate the mechanism of cellular uptake of cationic polymeric nanovectors containing DNA molecules through dissipative particle dynamics simulations. Our results show that the property of polyelectrolyte chains grafted to nanovector and DNA molecules can have important impacts on the endocytosis. Interestingly, it is found that the nanovector can be fully taken up with proper number of DNA molecules on its surface. On the contrary, in the absence of DNA it may become harder to be totally engulfed. Since the adsorption number of DNA is related to external pH, the cellular uptake could exhibit pH-responsive behavior. Further, we also provide insights into the comparison of uptake behaviors between cancer and normal cells, and importantly, we find that the enhanced uptake of gene nanovectors may be an inherent property of cancer cells. The present study may give some significant suggestions on future nanovector design for gene delivery.
Collapse
Affiliation(s)
- Hong-ming Ding
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
| | | |
Collapse
|
36
|
Li H, Luo T, Sheng R, Sun J, Wang Z, Cao A. Endoplasmic reticulum localization of poly(ω-aminohexyl methacrylamide)s conjugated with (L-)-arginines in plasmid DNA delivery. Biomaterials 2013; 34:7923-38. [PMID: 23880337 DOI: 10.1016/j.biomaterials.2013.06.064] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 06/27/2013] [Indexed: 01/08/2023]
Abstract
In this work, we first synthesized a ω-amino group Boc-protected poly(ω-aminohexyl methacrylamide) PAHMAA-Boc precursor via controlled reversible addition-fragmentation chain transfer (RAFT) polymerization of the Boc-AHMAA monomer in THF solution, and poly(ω-aminohexyl methacrylamide) (PAHMAA) was then prepared via Boc deprotection, and was further conjugated with (L-)-arginines at the ω-amino group sites to give a series of new (L-)-arginine conjugated PAHMAA-R7, PAHMAA-R16 and PAHMAA-R22. Employing these PAHMAA and PAHMAA-Rs as functional gene vectors, their plasmid DNA binding affinities were examined by agarose gel retardant assay. By means of dynamic light scattering (DLS), mean particle sizes and zeta potentials of the polyplexes were analyzed. Moreover, cytotoxicities of the PAHMAA and PAHMAA-Rs were evaluated by MTT and lactate dehydrogenase (LDH) release assays with COS-7 cells, and luciferase and EGFP gene transfection efficacies by these vectors were assayed in COS-7 and HeLa cells. Furthermore, intracellular uptake of the vector/Cy3-labeled pDNA polyplexes was studied with a flow cytometer (FACS), and the most efficient PAHMAA-R16 vector was employed to investigate the endocytic gateways with various inhibitors. In addition, colocalization of the Cy3-labeled pDNA and Oregon Green labeled PAHMAA-R16 vector in the intracellular organelles of COS-7 cells was visualized on a fluorescence microscopy. As a result, it was revealed that the PAHMAA-R vectors showed lower cytotoxicities and transfection efficacies significantly higher than those of the PAHMAA, strongly depending on their percentage of arginine conjugation, and that the results of endocytic inhabitation and fluorescence colocalization in endoplasmic reticulum may suggest a caveolae-mediated efficient intracellular trafficking route for the synthesized PAHMAA-R vectors.
Collapse
Affiliation(s)
- Hui Li
- Laboratory for Polymer Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | | | | | | | | | | |
Collapse
|
37
|
Cho CS. Design and Development of Degradable Polyethylenimines for Delivery of DNA and Small Interfering RNA: An Updated Review. ACTA ACUST UNITED AC 2012. [DOI: 10.5402/2012/798247] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Polyethylenimine (PEI), considered as the most potent and promising alternative carrier to viral vectors, has been studied as the “state of the art” among various polymers for nonviral gene delivery applications for many years. Although PEI-based carrier minimizes the bottlenecks associated with viral vectors such as unwanted immunogenicity and production problems, the toxic side effects of PEI prevent its rapid advancements due to nondegradable nature. In this regard, various degradable cross-linking and/or grafting agents have been linked to synthesize degradable PEIs in order to minimize the toxicity and improve the efficacy of PEI-mediated gene carriers. This paper describes an update on various cross-linkers and grafting agents in the design and development of degradable PEI derivatives and their potential applications for effective delivery of DNA in vitro and in vivo. The molecular weight (MW) of PEI and the structural relationship to its cellular toxicity and transfection ability were also discussed. Finally, the potential applications of various degradable PEIs for small interfering RNA (siRNA)-mediated gene silencing were also covered.
Collapse
Affiliation(s)
- Chong-Su Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| |
Collapse
|