1
|
Obalola AA, Abrahamse H, Dhilip Kumar SS. Enhanced therapeutic precision using dual drug-loaded nanomaterials for targeted cancer photodynamic therapy. Biomed Pharmacother 2025; 184:117909. [PMID: 39938348 DOI: 10.1016/j.biopha.2025.117909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/21/2025] [Accepted: 02/05/2025] [Indexed: 02/14/2025] Open
Abstract
Combination therapy has expanded significantly, including dual drug-loaded nanomaterials in drug delivery systems. Cancer therapy can be developed by targeting cancer cells and lessening the adverse consequences of anticancer drugs, which are just two of the numerous intriguing possibilities in this research field. Dual-drug delivery nanosystems that utilize nanotechnology to combine dual-drug administration may overcome the limitations of free drugs, the properties of nanomaterials, and the combined action of two drugs work together to overcome several drug-resistant systems within cancerous cells. It is essential to design dual-drug delivery nanosystems that use various multidrug-resistant techniques to overcome drug resistance mechanisms and enhance the effectiveness of clinical antitumor therapy. In this study, we discuss the use of photosensitizers in cancer photodynamic therapy, nanomaterials with dual-drug loading for targeted drug delivery, and the function and impact of nanomaterials in cancer photodynamic therapy. Furthermore, an overview of the drug-loaded nanomaterials in vitro and in vivo activity for cancer photodynamic treatment is discussed. The commercial and clinical applications of photosensitizer-loaded nanoparticles in cancer photodynamic therapy are also briefly discussed in the study. A key finding of the study is the importance of nanomaterials and dual drugs as effective drug delivery systems in cancer treatment.
Collapse
Affiliation(s)
| | - Heidi Abrahamse
- Laser Research Centre, University of Johannesburg, Johannesburg, South Africa
| | | |
Collapse
|
2
|
Li S, Yang B, Ye L, Hu S, Li B, Yang Y, Hu Y, Jia X, Feng L, Xiong Z. Multistage microfluidic assisted Co-Delivery platform for dual-agent facile sequential encapsulation. Eur J Pharm Biopharm 2025; 207:114616. [PMID: 39694079 DOI: 10.1016/j.ejpb.2024.114616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/14/2024] [Accepted: 12/16/2024] [Indexed: 12/20/2024]
Abstract
The integration of multiple therapeutic agents within a single nano-drug carrier holds promise for advancing anti-tumor therapies, despite challenges posed by their diverse physicochemical properties. This study introduces a novel multi-stage microfluidic co-encapsulation platform designed to address these challenges. By carefully orchestrating the nano-precipitation process sequence, this platform achieves sequential encapsulation of two drugs with markedly different physicochemical characteristics. Using the multi-stage microfluidic TrH chip, hybrid nanoparticles (HNPs) loaded with paclitaxel (PTX)-simvastatin (SV), PTX-lenvatinib (LV), and SV-LV were synthesized. Unlike conventional Bulk methods and existing commercial microfluidic Tesla and Baffle chips, the HNPs produced here exhibit a core-shell structure and uniform particle size distribution, crucial for enhancing drug delivery efficacy. Notably, this method achieves nearly 100 % encapsulation efficiency for both drugs across a dual-drug feed ratio range from 1:4 to 4:1. Drug loading efficiencies were quantified for PTX-SV/HNPs (14.97 ± 1.19 %), PTX-LV/HNPs (16.58 ± 0.69 %), and SV-LV/HNPs (19.21 ± 2.38 %). PTX-SV/HNPs demonstrated sequential release characteristics of SV and PTX, as confirmed by in vitro drug release experiments. Significantly, PTX-SV/HNPs exhibited superior cytotoxicity against HepG2 cells compared to individual PTX and SV treatments, underscoring their potential in cancer therapy. In conclusion, the developed multi-stage microfluidic platform represents a robust strategy for co-encapsulating drugs with substantial physicochemical disparities, thereby offering a promising avenue for advancing multi-drug delivery in nanomedicine applications.
Collapse
Affiliation(s)
- Shixin Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 211198 Nanjing, Jiangsu, PR China
| | - Bing Yang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 211198 Nanjing, Jiangsu, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, 211198 Nanjing, Jiangsu, PR China
| | - Liang Ye
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 211198 Nanjing, Jiangsu, PR China
| | - Shuqi Hu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 211198 Nanjing, Jiangsu, PR China
| | - Benhong Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 211198 Nanjing, Jiangsu, PR China
| | - Yanjun Yang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 211198 Nanjing, Jiangsu, PR China
| | - Yichuan Hu
- School of Pharmacy, Nanchang Medical College, 330052 Nanchang, Jiangxi, PR China
| | - Xiaobin Jia
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 211198 Nanjing, Jiangsu, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, 211198 Nanjing, Jiangsu, PR China.
| | - Liang Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 211198 Nanjing, Jiangsu, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, 211198 Nanjing, Jiangsu, PR China; Affiliated Jiangning Hospital of Chinese Medicine, China Pharmaceutical University, 211100 Nanjing, Jiangsu, PR China.
| | - Zhiwei Xiong
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 211198 Nanjing, Jiangsu, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, 211198 Nanjing, Jiangsu, PR China.
| |
Collapse
|
3
|
Ciftci F, Özarslan AC, Kantarci İC, Yelkenci A, Tavukcuoglu O, Ghorbanpour M. Advances in Drug Targeting, Drug Delivery, and Nanotechnology Applications: Therapeutic Significance in Cancer Treatment. Pharmaceutics 2025; 17:121. [PMID: 39861768 PMCID: PMC11769154 DOI: 10.3390/pharmaceutics17010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/01/2025] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
In the 21st century, thanks to advances in biotechnology and developing pharmaceutical technology, significant progress is being made in effective drug design. Drug targeting aims to ensure that the drug acts only in the pathological area; it is defined as the ability to accumulate selectively and quantitatively in the target tissue or organ, regardless of the chemical structure of the active drug substance and the method of administration. With drug targeting, conventional, biotechnological and gene-derived drugs target the body's organs, tissues, and cells that can be selectively transported to specific regions. These systems serve as drug carriers and regulate the timing of release. Despite having many advantageous features, these systems have limitations in thoroughly treating complex diseases such as cancer. Therefore, combining these systems with nanoparticle technologies is imperative to treat cancer at both local and systemic levels effectively. The nanocarrier-based drug delivery method involves encapsulating target-specific drug molecules into polymeric or vesicular systems. Various drug delivery systems (DDS) were investigated and discussed in this review article. The first part discussed active and passive delivery systems, hydrogels, thermoplastics, microdevices and transdermal-based drug delivery systems. The second part discussed drug carrier systems in nanobiotechnology (carbon nanotubes, nanoparticles, coated, pegylated, solid lipid nanoparticles and smart polymeric nanogels). In the third part, drug targeting advantages were discussed, and finally, market research of commercial drugs used in cancer nanotechnological approaches was included.
Collapse
Affiliation(s)
- Fatih Ciftci
- Department of Biomedical Engineering, Faculty of Engineering, Fatih Sultan Mehmet Vakıf University, Istanbul 34015, Turkey
- Department of Technology Transfer Office, Fatih Sultan Mehmet Vakıf University, Istanbul 34015, Turkey
| | - Ali Can Özarslan
- Department of Metallurgical and Materials Engineering, Istanbul University-Cerrahpasa, Istanbul 34320, Turkey;
| | - İmran Cagri Kantarci
- Department of Bioengineering, Faculty of Chemistry-Metallurgy, Yildiz Technical University, Istanbul 34210, Turkey;
| | - Aslihan Yelkenci
- Department of Pediatric Dentistry, Faculty of Dentistry, University of Health Sciences, Istanbul 34668, Turkey;
| | - Ozlem Tavukcuoglu
- Department of Biochemistry, Faculty of Hamidiye Pharmacy, University of Health Sciences, Istanbul 34668, Turkey;
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran;
| |
Collapse
|
4
|
Sawhney G, Bhardwaj AR, Sanu K, Bhattacharya D, Singh M, Dhanjal DS, Ayub A, Wani AK, Suman S, Singh R, Chopra C. Nanotechnology at the forefront of liver cancer diagnosis. NANOPHOTOTHERAPY 2025:575-593. [DOI: 10.1016/b978-0-443-13937-6.00004-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
5
|
Rucci B, Boyle B, Byrne M. Hollow Polyethyleneimine Nanoparticles with Drug Loaded DNA for Chemotherapeutic Applications. Chempluschem 2024; 89:e202400129. [PMID: 38600036 DOI: 10.1002/cplu.202400129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/12/2024]
Abstract
The next generation of anticancer agents are emerging from rationally designed nanostructured materials. This work involved the synthesis and characterization of novel hollow DNA-conjugated gold nanoparticles (DNA-AuNPs) for controlled drug delivery. Polyethyleneimine (PEI) was bound to AuNPs, forming polymer-shell nanoparticles. Dissolution of the gold core via iodine formed hollow core polymeric nanoparticles (HCPNPs) and a high density (85 molecules/particle) of DNA intercalated with daunorubicin was conjugated. Particles were spherical with an average diameter of 105.7±17.3 nm and zeta potential of 20.4±3.54 mV. We hypothesize the DNA backbone electrostatically condensed to the primary amines on the surface of the particle toroidally, weaving itself within the polymer shell. During the DNA intercalation process, increasing the ionic concentration and decreasing the amine/phosphate ratio 10-fold increased drug intercalation 64 % and 61 %, respectively, allowing us to determine the optimal method of particle synthesis. As intercalation sites increased with increasing DNA strand length, drug loading increased. An average of 874±40.1 daunorubicin molecules were loaded per HCPNP. HCPNPs with drug intercalated DNA have strong potential to be clinically efficacious drug delivery vehicles due to the versatility of DNA and high drug loading capacities.
Collapse
Affiliation(s)
- Brendan Rucci
- Department of Biomedical Engineering Rowan-Virtua School of Translational Biomedical Engineering & Sciences, Rowan University, Glassboro, NJ, 08028, USA
| | - Brian Boyle
- Department of Biomedical Engineering Rowan-Virtua School of Translational Biomedical Engineering & Sciences, Rowan University, Glassboro, NJ, 08028, USA
| | - Mark Byrne
- Department of Biomedical Engineering Rowan-Virtua School of Translational Biomedical Engineering & Sciences, Rowan University, Glassboro, NJ, 08028, USA
- Department of Chemical Engineering, Rowan University, Glassboro, NJ, 08028, USA
| |
Collapse
|
6
|
Seo HS, Han JH, Lim J, Bae GH, Byun MJ, Wang CPJ, Han J, Park J, Park HH, Shin M, Park TE, Kim TH, Kim SN, Park W, Park CG. Enhanced Postsurgical Cancer Treatment Using Methacrylated Glycol Chitosan Hydrogel for Sustained DNA/Doxorubicin Delivery and Immunotherapy. Biomater Res 2024; 28:0008. [PMID: 38532906 PMCID: PMC10964224 DOI: 10.34133/bmr.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/09/2024] [Indexed: 03/28/2024] Open
Abstract
Background: Cancer recurrence and metastasis are major contributors to treatment failure following tumor resection surgery. We developed a novel implantable drug delivery system utilizing glycol chitosan to address these issues. Glycol chitosan is a natural adjuvant, inducing dendritic cell activation to promote T helper 1 cell immune responses, macrophage activation, and cytokine production. Effective antigen production by dendritic cells initiates T-cell-mediated immune responses, aiding tumor growth control. Methods: In this study, we fabricated multifunctional methacrylated glycol chitosan (MGC) hydrogels with extended release of DNA/doxorubicin (DOX) complex for cancer immunotherapy. We constructed the resection model of breast cancer to verify the anticancer effects of MGC hydrogel with DNA/DOX complex. Results: This study demonstrated the potential of MGC hydrogel with extended release of DNA/DOX complex for local and efficient cancer therapy. The MGC hydrogel was implanted directly into the surgical site after tumor resection, activating tumor-related immune cells both locally and over a prolonged period of time through immune-reactive molecules. Conclusions: The MGC hydrogel effectively suppressed tumor recurrence and metastasis while enhancing immunotherapeutic efficacy and minimizing side effects. This biomaterial-based drug delivery system, combined with cancer immunotherapy, can substantial improve treatment outcomes and patient prognosis.
Collapse
Affiliation(s)
- Hee Seung Seo
- Department of Biomedical Engineering,
SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence,
Institute for Convergence, SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
| | - Jun-Hyeok Han
- Department of Intelligent Precision Healthcare Convergence,
Institute for Convergence, SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering,
SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
| | - Jaesung Lim
- Department of Biomedical Engineering,
SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence,
Institute for Convergence, SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
| | - Ga-Hyun Bae
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering,
SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- Department of MetaBioHealth,
SKKU Institute for Convergence, SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
| | - Min Ji Byun
- Department of Biomedical Engineering,
SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence,
Institute for Convergence, SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
| | - Chi-Pin James Wang
- Department of Biomedical Engineering,
SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence,
Institute for Convergence, SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
| | - Jieun Han
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering,
SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- Institute of Biotechnology and Bioengineering, College of Biotechnology and Bioengineering, SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
| | - Juwon Park
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School Medicine,
University of Hawai'i at Manoa, Honolulu, HI 96813, USA
| | - Hee Ho Park
- Department of Bioengineering,
Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Mikyung Shin
- Department of Biomedical Engineering,
SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence,
Institute for Convergence, SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
| | - Tae-Eun Park
- Department of Biomedical Engineering,
Ulsan National Institute of Science and Technology, 50, UNIST-gil, Ulsan 44919, Republic of Korea
| | - Tae-Hyung Kim
- School of Integrative Engineering,
Chung-Ang University, 84, Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Se-Na Kim
- Research and Development Center,
MediArk Inc., 1, Chungdae-ro, Seowon-gu, Cheongju, Chungcheongbuk 28644, Republic of Korea
| | - Wooram Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering,
SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- Department of MetaBioHealth,
SKKU Institute for Convergence, SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- Institute of Biotechnology and Bioengineering, College of Biotechnology and Bioengineering, SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- Biomaterials Research Center,
Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering,
SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence,
Institute for Convergence, SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- Biomedical Institute for Convergence, SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
| |
Collapse
|
7
|
Yadav R, Bhawale R, Srivastava V, Pardhi E, Bhalerao HA, Sonti R, Mehra NK. Innovative Nanoparticulate Strategies in Colon Cancer Treatment: A Paradigm Shift. AAPS PharmSciTech 2024; 25:52. [PMID: 38429601 DOI: 10.1208/s12249-024-02759-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/06/2024] [Indexed: 03/03/2024] Open
Abstract
As a major public health issue, colorectal cancer causes 9.4% of total cancer-related deaths and comprises 10% of new cancer diagnoses worldwide. In the year 2023, an estimated 153,020 people are expected to receive an identification of colorectal cancer (CRC), resulting in roughly 52,550 fatalities anticipated as a result of this illness. Among those impacted, approximately 19,550 cases and 3750 deaths are projected to occur in individuals under the age of 50. Irinotecan (IRN) is a compound derived from the chemical structure of camptothecin, a compound known for its action in inhibiting DNA topoisomerase I. It is employed in the treatment strategy for CRC therapies. Comprehensive in vivo and in vitro studies have robustly substantiated the anticancer efficacy of these compounds against colon cancer cell lines. Blending irinotecan in conjunction with other therapeutic cancer agents such as oxaliplatin, imiquimod, and 5 fluorouracil enhanced cytotoxicity and improved chemotherapeutic efficacy. Nevertheless, it is linked to certain serious complications and side effects. Utilizing nano-formulated prodrugs within "all-in-one" carrier-free self-assemblies presents an effective method to modify the pharmacokinetics and safety portfolio of cytotoxic chemotherapeutics. This review focuses on elucidating the mechanism of action, exploring synergistic effects, and innovating novel delivery approaches to enhance the therapeutic efficacy of irinotecan.
Collapse
Affiliation(s)
- Rati Yadav
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, 500 037, India
| | - Rohit Bhawale
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, 500 037, India
| | - Vaibhavi Srivastava
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, 500 037, India
| | - Ekta Pardhi
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, 500 037, India
| | - Harshada Anil Bhalerao
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Rajesh Sonti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, 500 037, India.
| |
Collapse
|
8
|
Tao Z, Zhang H, Wu S, Zhang J, Cheng Y, Lei L, Qin Y, Wei H, Yu CY. Spherical nucleic acids: emerging amplifiers for therapeutic nanoplatforms. NANOSCALE 2024; 16:4392-4406. [PMID: 38289178 DOI: 10.1039/d3nr05971e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Gene therapy is a revolutionary treatment approach in the 21st century, offering significant potential for disease prevention and treatment. However, the efficacy of gene delivery is often compromised by the inherent challenges of gene properties and vector-related defects. It is crucial to explore ways to enhance the curative effect of gene drugs and achieve safer, more widespread, and more efficient utilization, which represents a significant challenge in amplification gene therapy advancements. Spherical nucleic acids (SNAs), with their unique physicochemical properties, are considered an innovative solution for scalable gene therapy. This review aims to comprehensively explore the amplifying contributions of SNAs in gene therapy and emphasize the contribution of SNAs to the amplification effect of gene therapy from the aspects of structure, application, and recent clinical translation - an aspect that has been rarely reported or explored thus far. We begin by elucidating the fundamental characteristics and scaling-up properties of SNAs that distinguish them from traditional linear nucleic acids, followed by an analysis of combined therapy treatment strategies, theranostics, and clinical translation amplified by SNAs. We conclude by discussing the challenges of SNAs and provide a prospect on the amplification characteristics. This review seeks to update the current understanding of the use of SNAs in gene therapy amplification and promote further research into their clinical translation and amplification of gene therapy.
Collapse
Affiliation(s)
- Zhenghao Tao
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001, Hengyang, P. R. China.
| | - Haitao Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001, Hengyang, P. R. China.
| | - Shang Wu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001, Hengyang, P. R. China.
| | - Jiaheng Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001, Hengyang, P. R. China.
| | - Yao Cheng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001, Hengyang, P. R. China.
| | - Longtianyang Lei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001, Hengyang, P. R. China.
| | - Yang Qin
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001, Hengyang, P. R. China.
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001, Hengyang, P. R. China.
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001, Hengyang, P. R. China.
| |
Collapse
|
9
|
Manhas P, Cokca C, Sharma R, Peneva K, Wangoo N, Sharma D, Sharma RK. Chitosan functionalized doxorubicin loaded poly(methacrylamide) based copolymeric nanoparticles for enhanced cellular internalization and in vitro anticancer evaluation. Int J Biol Macromol 2024; 259:129242. [PMID: 38199540 DOI: 10.1016/j.ijbiomac.2024.129242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 12/03/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Doxorubicin (Dox), a chemotherapeutic agent, encounters challenges such as a short half-life, dose-dependent toxicity, and low solubility. In this context, the present study involved the fabrication of N-(2-hydroxypropyl)methacrylamide (HPMA) and N-(3-aminopropyl)methacrylamide (APMA) bearing P(HPMA-s-APMA) copolymeric nanoparticles (P(HPMA-s-APMA) NPs) and their investigation for efficient delivery of Dox. Furthermore, the synthesized nanoparticles (NPs) were coated with chitosan (Cht) to generate positively charged nanoformulations. The prepared formulations were evaluated for particle size, morphology, surface charge analysis, percentage encapsulation efficiency (EE%), and drug release studies. The anticancer activity of Cht-P(HPMA-s-APMA)-Dox NPs was assessed in the HeLa cancer cell line. The prepared P(HPMA-s-APMA)-Dox NPs exhibited an average particle size of 240-250 nm. Chitosan decorated P(HPMA-s-APMA)-Dox NPs displayed a significant increase in particle size, and the zeta potential shifted from negative to positive. The EE% for Cht-P(HPMA-s-APMA)-Dox NPs was calculated to be 68.06 %. The drug release studies revealed a rapid release of drug from Cht-P(HPMA-s-APMA)-Dox NPs at pH 4.8 than pH 7.4, demonstrating the pH-responsiveness of nanoformulation. Furthermore, the cell viability assay and internalization studies revealed that Cht-P(HPMA-s-APMA)-Dox NPs had a high cytotoxic response and significant cellular uptake. Hence, the Cht-P(HPMA-s-APMA)-Dox NPs appeared to be a suitable nanocarrier for effective, and safe chemotherapy.
Collapse
Affiliation(s)
- Priya Manhas
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160014, India
| | - Ceren Cokca
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Lessingstraße 8, 07743 Jena, Germany; Jena Center of Soft Matter, Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Rohit Sharma
- Centre for Stem Cell and Tissue Engineering, Panjab University, Chandigarh 160014, India
| | - Kalina Peneva
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Lessingstraße 8, 07743 Jena, Germany; Jena Center of Soft Matter, Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Nishima Wangoo
- Department of Applied Sciences, University Institute of Engineering & Technology (U.I.E.T.), Panjab University, Sector-25, Chandigarh 160014, India
| | - Deepika Sharma
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160014, India
| | - Rohit K Sharma
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160014, India.
| |
Collapse
|
10
|
Sulej J, Piątek-Gołda W, Grąz M, Szałapata K, Waśko P, Janik-Zabrotowicz E, Osińska-Jaroszuk M. Immobilisation of Cellobiose Dehydrogenase and Laccase on Chitosan Particles as a Multi-Enzymatic System for the Synthesis of Lactobionic Acid. J Funct Biomater 2023; 14:383. [PMID: 37504878 PMCID: PMC10381469 DOI: 10.3390/jfb14070383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/04/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023] Open
Abstract
Lactobionic acid (LBA) is a bioactive compound that has become increasingly popular in medicine in recent years due to its unique properties. This chemical can be formed via the enzymatic oxidation of lactose using fungal oxidoreductive enzymes. This study aimed to intensify the synthesis of LBA using immobilised enzymes (cellobiose dehydrogenase from Phanerochaete chrysosporium (PchCDH) and laccase from Cerrena unicolor (CuLAC)) on chitosan microspheres. We used three different crosslinking agents: genipin, glutaraldehyde, and polyethyleneimine to activate the chitosan. The FTIR and CellDrop techniques were used to characterise the activated microspheres. Quantitative (HPLC) and qualitative (TLC) methods were used to determine the obtained LBA. The results show that the type of activator used influences the efficiency of the binding of the enzyme to the matrix. Furthermore, the amount of LBA formed depends on the type of system used. The use of a system in which one of the enzymes is immobilised on a PEI-activated carrier (PchCDH) and the other is free (CuLAC) proved to be the most optimal, as it yielded almost 100% conversion of lactose to lactobionic acid. Summarising the data obtained the following: lactobionic acid immobilised on chitosan microspheres has great potential for medical applications.
Collapse
Affiliation(s)
- Justyna Sulej
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, 19 Akademicka St., 20-033 Lublin, Poland
| | - Wiktoria Piątek-Gołda
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, 19 Akademicka St., 20-033 Lublin, Poland
| | - Marcin Grąz
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, 19 Akademicka St., 20-033 Lublin, Poland
| | - Katarzyna Szałapata
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, 19 Akademicka St., 20-033 Lublin, Poland
| | - Piotr Waśko
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Maria Curie-Sklodowska University, 19 Akademicka St., 20-033 Lublin, Poland
- Core Facility of Biospectroscopy, Institute of Biological Sciences, Maria Curie-Sklodowska University, 19 Akademicka St., 20-033 Lublin, Poland
| | - Ewa Janik-Zabrotowicz
- Core Facility of Biospectroscopy, Institute of Biological Sciences, Maria Curie-Sklodowska University, 19 Akademicka St., 20-033 Lublin, Poland
- Department of Cell Biology, Institute of Biological Sciences, Maria Curie-Sklodowska University, 19 Akademicka St., 20-033 Lublin, Poland
| | - Monika Osińska-Jaroszuk
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, 19 Akademicka St., 20-033 Lublin, Poland
| |
Collapse
|
11
|
Leng Q, Imtiyaz Z, Woodle MC, Mixson AJ. Delivery of Chemotherapy Agents and Nucleic Acids with pH-Dependent Nanoparticles. Pharmaceutics 2023; 15:1482. [PMID: 37242725 PMCID: PMC10222096 DOI: 10.3390/pharmaceutics15051482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
With less than one percent of systemically injected nanoparticles accumulating in tumors, several novel approaches have been spurred to direct and release the therapy in or near tumors. One such approach depends on the acidic pH of the extracellular matrix and endosomes of the tumor. With an average pH of 6.8, the extracellular tumor matrix provides a gradient for pH-responsive particles to accumulate, enabling greater specificity. Upon uptake by tumor cells, nanoparticles are further exposed to lower pHs, reaching a pH of 5 in late endosomes. Based on these two acidic environments in the tumor, various pH-dependent targeting strategies have been employed to release chemotherapy or the combination of chemotherapy and nucleic acids from macromolecules such as the keratin protein or polymeric nanoparticles. We will review these release strategies, including pH-sensitive linkages between the carrier and hydrophobic chemotherapy agent, the protonation and disruption of polymeric nanoparticles, an amalgam of these first two approaches, and the release of polymers shielding drug-loaded nanoparticles. While several pH-sensitive strategies have demonstrated marked antitumor efficacy in preclinical trials, many studies are early in their development with several obstacles that may limit their clinical use.
Collapse
Affiliation(s)
- Qixin Leng
- Department of Pathology, University Maryland School of Medicine, University of Maryland, 10 S. Pine St., Baltimore, MD 21201, USA (Z.I.)
| | - Zuha Imtiyaz
- Department of Pathology, University Maryland School of Medicine, University of Maryland, 10 S. Pine St., Baltimore, MD 21201, USA (Z.I.)
| | | | - A. James Mixson
- Department of Pathology, University Maryland School of Medicine, University of Maryland, 10 S. Pine St., Baltimore, MD 21201, USA (Z.I.)
| |
Collapse
|
12
|
Qin S, Li J, Pan Z, Wang C, Zhang BF. Targeted paclitaxel prodrug nanoassemblies to improve therapeutic effects for liver cancer. Colloids Surf B Biointerfaces 2023; 226:113285. [PMID: 37028229 DOI: 10.1016/j.colsurfb.2023.113285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/26/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Prodrug nanoassemblies fabricated by anticancer drug conjugates exhibited more advantages in controlled drug release and bioavailability and favorable antitumor efficacy. In this paper, lactobionic acid (LA) was connected with polyethylene glycol through amido linkages, and paclitaxel was joined with polyethylene glycol by means of ester bonds to form the prodrug copolymer LA-PEG-PTX. Then, LA-PEG-PTX was automatically assembled into LA-PEG-PTX nanoparticles (LPP NPs) by dialysis. The LPP NPs had a relatively uniform size of approximately 200 nm, a negative potential (-13.68 mV), and a spherical shape under TEM. The drug loading of LPP NPs was 3.91%, which was measured by HPLC. The in vitro release profile of LPP NPs exhibited a sustained release feature. The results of the pharmacokinetic test in rats showed that LPP NPs had higher T1/2 and AUC values than the control group (free PTX) and a prolonged in vivo circulation time, thus increasing the bioavailability of PTX. Remarkably, the LPP NPs were absorbed into HepG2 cells after galactose-directed internalization and enhanced cytotoxicity. Consequently, LPP NPs displayed notable antitumor activity in Kunming mice with H22 hepatocellular carcinoma. Collectively, these findings suggested that paclitaxel prodrug-based self-assembled nanoparticles were a promising alternative for improving the bioavailability and antitumor effect of PTX.
Collapse
|
13
|
Polyethyleneimine-Based Drug Delivery Systems for Cancer Theranostics. J Funct Biomater 2022; 14:jfb14010012. [PMID: 36662059 PMCID: PMC9862060 DOI: 10.3390/jfb14010012] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
With the development of nanotechnology, various types of polymer-based drug delivery systems have been designed for biomedical applications. Polymer-based drug delivery systems with desirable biocompatibility can be efficiently delivered to tumor sites with passive or targeted effects and combined with other therapeutic and imaging agents for cancer theranostics. As an effective vehicle for drug and gene delivery, polyethyleneimine (PEI) has been extensively studied due to its rich surface amines and excellent water solubility. In this work, we summarize the surface modifications of PEI to enhance biocompatibility and functionalization. Additionally, the synthesis of PEI-based nanoparticles is discussed. We further review the applications of PEI-based drug delivery systems in cancer treatment, cancer imaging, and cancer theranostics. Finally, we thoroughly consider the outlook and challenges relating to PEI-based drug delivery systems.
Collapse
|
14
|
Yadav P, Dua C, Bajaj A. Advances in Engineered Biomaterials Targeting Angiogenesis and Cell Proliferation for Cancer Therapy. CHEM REC 2022; 22:e202200152. [PMID: 36103616 DOI: 10.1002/tcr.202200152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/23/2022] [Indexed: 12/15/2022]
Abstract
Antiangiogenic therapy in combination with chemotherapeutic agents is an effective strategy for cancer treatment. However, this combination therapy is associated with several challenges including non-specific biodistribution leading to systemic toxicity. Biomaterial-mediated codelivery of chemotherapeutic and anti-angiogenic agents can exploit their passive and active targeting abilities, leading to improved drug accumulation at the tumor site and therapeutic outcomes. In this review, we present the progress made in the field of engineered biomaterials for codelivery of chemotherapeutic and antiangiogenic agents. We present advances in engineering of liposome/hydrogel/micelle-based biomaterials for delivery of combination of anticancer and anti-angiogenesis drugs, or combination of anticancer and siRNA targeting angiogenesis, and targeted nanoparticles. We then present our perspective on developing strategies for targeting angiogenesis and cell proliferation for cancer therapy.
Collapse
Affiliation(s)
- Poonam Yadav
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad - Gurgaon Expressway, Faridabad, 121001, India
| | - Chhavi Dua
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad - Gurgaon Expressway, Faridabad, 121001, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad - Gurgaon Expressway, Faridabad, 121001, India
| |
Collapse
|
15
|
Ke J, Zhang J, Li J, Liu J, Guan S. Design of Cyclic Peptide-Based Nanospheres and the Delivery of siRNA. Int J Mol Sci 2022; 23:ijms232012071. [PMID: 36292932 PMCID: PMC9602810 DOI: 10.3390/ijms232012071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/29/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
In recent years, cyclic peptides have attracted much attention due to their chemical and enzymatic stability, low toxicity, and easy modification. In general, the self-assembled nanostructures of cyclic peptides tend to form nanotubes in a cyclic stacking manner through hydrogen bonding. However, studies exploring other assembly strategies are scarce. In this context, we proposed a new assembly strategy based on cyclic peptides with covalent self-assembly. Here, cyclic peptide-(DPDPDP) was rationally designed and used as a building block to construct new assemblies. With cyclo-(DP)3 as the structural unit and 2,2′-diamino-N-methyldiethylamine as the linker, positively charged nanospheres ((CP)6NS) based on cyclo-(DP)3 were successfully constructed by covalent self-assembly. We assessed their size and morphology by scanning electron microscopy (SEM), TEM, and DLS. (CP)6NS were found to have a strong positive charge, so they could bind to siRNA through electrostatic interactions. Confocal microscopy analysis and cell viability assays showed that (CP)6NS had high cellular internalization efficiency and low cytotoxicity. More importantly, real-time polymerase chain reaction (PCR) and flow cytometry analyses indicated that (CP)6NS-siRNA complexes potently inhibited gene expression and promoted tumor cell apoptosis. These results suggest that (CP)6NS may be a potential siRNA carrier for gene therapy.
Collapse
Affiliation(s)
- Junfeng Ke
- School of Life Sciences, Jilin University, Changchun 130012, China
- Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, China
| | - Jingli Zhang
- School of Life Sciences, Jilin University, Changchun 130012, China
- Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, China
| | - Junyang Li
- School of Life Sciences, Jilin University, Changchun 130012, China
- Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, China
| | - Junqiu Liu
- State Key laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
- Correspondence: (J.L.); (S.G.); Tel.: +86-135-0432-8390 (S.G.)
| | - Shuwen Guan
- School of Life Sciences, Jilin University, Changchun 130012, China
- Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, China
- Correspondence: (J.L.); (S.G.); Tel.: +86-135-0432-8390 (S.G.)
| |
Collapse
|
16
|
Dong Z, Wang Y, Guo J, Tian C, Pan W, Wang H, Yan J. Prostate Cancer Therapy Using Docetaxel and Formononetin Combination: Hyaluronic Acid and Epidermal Growth Factor Receptor Targeted Peptide Dual Ligands Modified Binary Nanoparticles to Facilitate the in vivo Anti-Tumor Activity. Drug Des Devel Ther 2022; 16:2683-2693. [PMID: 35983428 PMCID: PMC9380734 DOI: 10.2147/dddt.s366622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/27/2022] [Indexed: 12/24/2022] Open
Abstract
Objective To evaluate the prostate cancer therapy efficiency of the synergistic combination docetaxel (DTX) and formononetin (FMN) in one nano-sized drug delivery system. Hyaluronic acid (HA) and epidermal growth factor receptor-targeted peptide (GE11) dual ligands were applied to modify the nano-systems. Methods In this study, GE11-modified nanoparticles (GE-NPs) were applied for the loading of DTX, and HA-decorated NPs (HA-NPs) were used to encapsulate FMN. HA and GE11 dual ligand-modified binary nanoparticles (HAGE-DTX/FMN-NPs) were constructed by the self-assembling of GE-NPs and HA-NPs. The anti-PCa ability of the system was evaluated in vitro on PC-3 human prostate carcinoma cells (PC3 cells) and in vivo on PC3 tumor-bearing mice in comparison with single NPs and free drugs formulations. Results HA/GE-DTX/FMN-NPs were nano-sized particles with smaller particles coating on the inner core and achieved a size of 189.5 nm. HA/GE-DTX/FMN-NPs showed a cellular uptake efficiency of 59.6%, and a more efficient inhibition effect on PC3 cells compared with single ligand-modified NPs and free drugs. HA/GE-DTX/FMN-NPs showed significantly higher tumor inhibition efficiency than their single drug-loaded counterparts and free drugs. Conclusion HA/GE-DTX/FMN-NPs have a synergistic anti-tumor effect and also could the reduce unexpected side effects during the cancer therapy. It could be used as a promising anti-PCa system.
Collapse
Affiliation(s)
- Zhaoqiang Dong
- Department of Cardiology, The Second Hospital of Shandong University, Ji’nan, 250033, People’s Republic of China
| | - Yuzhen Wang
- Clinical Department, Jinan Vocation College of Nursing, Ji’nan, 250033, People’s Republic of China
| | - Jing Guo
- Department of Gynaecology, The Second Hospital of Shandong University, Ji’nan, 250033, People’s Republic of China
| | - Chuan Tian
- Department of Renal Transplantation, The Second Hospital of Shandong University, Ji’nan, 250033, People’s Republic of China
| | - Wengu Pan
- Department of Renal Transplantation, The Second Hospital of Shandong University, Ji’nan, 250033, People’s Republic of China
| | - Hongwei Wang
- Department of Renal Transplantation, The Second Hospital of Shandong University, Ji’nan, 250033, People’s Republic of China
| | - Jieke Yan
- Department of Renal Transplantation, The Second Hospital of Shandong University, Ji’nan, 250033, People’s Republic of China
| |
Collapse
|
17
|
Guan L, Zhang Z, Gao T, Fu S, Mu W, Liang S, Liu Y, Chu Q, Fang Y, Liu Y, Zhang N. Depleting Tumor Infiltrating B Cells to Boost Antitumor Immunity with Tumor Immune-Microenvironment Reshaped Hybrid Nanocage. ACS NANO 2022; 16:4263-4277. [PMID: 35179349 DOI: 10.1021/acsnano.1c10283] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tumor infiltrating B cells (TIBs)-dependent immunotherapy has emerged as a promising method for tumor treatment. Depleting TIBs to boost antitumor immunity is a highly desirable yet challenging approach to TIBs-dependent immunotherapy. Herein, a tumor immune-microenvironment reshaped hybrid nanocage CPN-NLI/MLD coloaded with the Bruton's tyrosine kinase inhibitor ibrutinib, and cytotoxic drug docetaxel was developed for stepwise targeting TIBs and tumor cells, respectively. The tumor microenvironment responsive CPN-NLI/MLD promoted charge reversal and size reduction under acidic conditions (pH < 6.5). The accumulation of CPN-NLI/MLD in tumor tissues was achieved through CD13 targeting, and cellular uptake was increased due to the differ-targeting delivery. Targeting of docetaxel to tumor cells was achieved by the interaction of α-MSH modified on inner docetaxel-particle MLD and melanocortin-1 receptor on the surface of tumor cells. Targeting of ibrutinib to TIBs was achieved by the interaction of Neu5Ac modified on inner ibrutinib-particle NLI and CD22 on the surface of TIBs. The boosted antitumor immunity was achieved mainly by the inhibition of Bruton's tyrosine kinase activation mediated by ibrutinib, which reduced the proportion of TIBs, enhanced infiltration of CD8+ and CD4+ T cells, increased the secretion of immunogenic cytokines including IL-2 and IFN-γ, and inhibited the proliferation of regulatory T cells and secretion of immunosuppressive cytokines including IL-10, IL-4, and TGF-β. Furthermore, CPN-NLI/MLD improved the antitumor efficiency of chemoimmunotherapy by reshaping tumor immune-microenvironment by TIBs depletion. Taken together, CPN-NLI/MLD represents a promising method for effective tumor treatment and combination therapy by TIBs-dependent immunotherapy.
Collapse
Affiliation(s)
- Li Guan
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences Shandong University, 44 Wenhuaxi Road, Jinan, Shandong 250012, China
| | - Zipeng Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences Shandong University, 44 Wenhuaxi Road, Jinan, Shandong 250012, China
| | - Tong Gao
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences Shandong University, 44 Wenhuaxi Road, Jinan, Shandong 250012, China
| | - Shunli Fu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences Shandong University, 44 Wenhuaxi Road, Jinan, Shandong 250012, China
| | - Weiwei Mu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences Shandong University, 44 Wenhuaxi Road, Jinan, Shandong 250012, China
| | - Shuang Liang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences Shandong University, 44 Wenhuaxi Road, Jinan, Shandong 250012, China
| | - Yang Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences Shandong University, 44 Wenhuaxi Road, Jinan, Shandong 250012, China
| | - Qihui Chu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences Shandong University, 44 Wenhuaxi Road, Jinan, Shandong 250012, China
| | - Yuxiao Fang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences Shandong University, 44 Wenhuaxi Road, Jinan, Shandong 250012, China
| | - Yongjun Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences Shandong University, 44 Wenhuaxi Road, Jinan, Shandong 250012, China
| | - Na Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences Shandong University, 44 Wenhuaxi Road, Jinan, Shandong 250012, China
| |
Collapse
|
18
|
Shams A, Shabani R, Asgari H, Karimi M, Najafi M, Asghari-Jafarabadi M, Razavi SM, Miri SR, Abbasi M, Mohammadi A, Koruji M. In vitro elimination of EL4 cancer cells from spermatogonia stem cells by miRNA-143- and 206-loaded folic acid conjugated PLGA nanoparticles. Nanomedicine (Lond) 2022; 17:531-545. [PMID: 35264013 DOI: 10.2217/nnm-2021-0210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: MiRNA's-143 and -206 are powerful apoptotic regulators in cancer cells. This study aimed to use miRNA-143- and 206-loaded poly(lactic-co-glycolic) acid (PLGA) nanoparticles conjugated with folic acid to induce apoptosis in the EL4 cancer cells. Materials & methods: The therapy was conducted in six groups: Treatment with both miRNAs simultaneously (mixed miRNAs), miRNA-206 treatment, miRNA-143 treatment, blank PLGA, blank polyethylenimine (PEI) and complex PEI-miRNAs. Results: In terms of viability, in mixed miRNAs, no synergistic effect was observed on EL4 cell elimination. However, in the single miRNA-206 group, a stronger apoptotic effect was observed than the mixed miRNAs group and single miRNA-143 group alone. Conclusion: MiRNAs' apoptotic induction effects in cancer cells were found to be remarkable.
Collapse
Affiliation(s)
- Azar Shams
- Stem cell & Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ronak Shabani
- Stem cell & Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Asgari
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdi Karimi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Najafi
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Asghari-Jafarabadi
- Department of Statistics & Epidemiology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.,Road Traffic Injury Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Mohsen Razavi
- Clinic of Hematology & Oncology, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Rouhollah Miri
- Department of Surgical Oncology, Cancer Institute,Tehran University of Medical Science, Tehran, Iran
| | - Mehdi Abbasi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Mohammadi
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Morteza Koruji
- Stem cell & Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Lin G, Huang J, Zhang M, Chen S, Zhang M. Chitosan-Crosslinked Low Molecular Weight PEI-Conjugated Iron Oxide Nanoparticle for Safe and Effective DNA Delivery to Breast Cancer Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:584. [PMID: 35214917 PMCID: PMC8876741 DOI: 10.3390/nano12040584] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 02/06/2023]
Abstract
Breast cancer has attracted tremendous research interest in treatment development as one of the major threats to public health. The use of non-viral carriers for therapeutic DNA delivery has shown promise in treating various cancer types, including breast cancer, due to their high DNA loading capacity, high cell transfection efficiency, and design versatility. However, cytotoxicity and large sizes of non-viral DNA carriers often raise safety concerns and hinder their applications in the clinic. Here we report the development of a novel nanoparticle formulation (termed NP-Chi-xPEI) that can safely and effectively deliver DNA into breast cancer cells for successful transfection. The nanoparticle is composed of an iron oxide core coated with low molecular weight (800 Da) polyethyleneimine crosslinked with chitosan via biodegradable disulfide bonds. The NP-Chi-xPEI can condense DNA into a small nanoparticle with the overall size of less than 100 nm and offer full DNA protection. Its biodegradable coating of small-molecular weight xPEI and mildly positive surface charge confer extra biocompatibility. NP-Chi-xPEI-mediated DNA delivery was shown to achieve high transfection efficiency across multiple breast cancer cell lines with significantly lower cytotoxicity as compared to the commercial transfection agent Lipofectamine 3000. With demonstrated favorable physicochemical properties and functionality, NP-Chi-xPEI may serve as a reliable vehicle to deliver DNA to breast cancer cells.
Collapse
Affiliation(s)
| | | | | | | | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA; (G.L.); (J.H.); (M.Z.); (S.C.)
| |
Collapse
|
20
|
Diaz IL, Jérôme V, Freitag R, Perez LD. Development of poly(ethyleneimine) grafted amphiphilic copolymers: Evaluation of their cytotoxicity and ability to complex DNA. J BIOACT COMPAT POL 2021. [DOI: 10.1177/08839115211053925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Poly(ethyleneimine) (PEI) is one of the most widely used cationic polymers for gene delivery. The high molecular weight polymer, which is commercially available, is highly efficient but also very cytotoxic. The reduction in charge density by using nonlinear architectures based on low molecular weight (LMW) PEI is a promising approach to produce safer DNA-vectors. Herein, a group of cationic graft copolymers with different composition containing a hydrophobic biocompatible backbone and LMW linear PEI (lPEI) grafts obtained by ring opening polymerization and click chemistry was studied. The self-assembly and DNA complexation behavior of these materials was analyzed by the gel retardation assay, zeta potential measurements, and dynamic light scattering. The copolymers formed positively charged particles in water with average sizes between 270 and 377 nm. After they were added to DNA in serum-free medium, these particles acquired negative/near-neutral charges and increased in size depending on the N/P ratio. All copolymers showed reduced cytotoxicity compared to the 25 kDa lPEI used as reference, but the transfection efficiency was reduced. This result suggested that the cationic segments were too small to fully condense the DNA and promote cellular uptake, even with the use of several grafts and the introduction of hydrophobic domains. The trends found in this research showed that a higher degree of hydrophobicity and a higher grafting density can enhance the interaction between the copolymers and DNA. These trends could direct further structural modifications in the search for effective and safe vectors based on this polycation.
Collapse
Affiliation(s)
- Ivonne L Diaz
- Departamento de Química, Universidad Nacional de Colombia, Bogotá DC, Colombia
| | - Valérie Jérôme
- Process Biotechnology, University of Bayreuth, Bayreuth, Germany
| | - Ruth Freitag
- Process Biotechnology, University of Bayreuth, Bayreuth, Germany
| | - León D Perez
- Departamento de Química, Universidad Nacional de Colombia, Bogotá DC, Colombia
| |
Collapse
|
21
|
Milewska S, Niemirowicz-Laskowska K, Siemiaszko G, Nowicki P, Wilczewska AZ, Car H. Current Trends and Challenges in Pharmacoeconomic Aspects of Nanocarriers as Drug Delivery Systems for Cancer Treatment. Int J Nanomedicine 2021; 16:6593-6644. [PMID: 34611400 PMCID: PMC8487283 DOI: 10.2147/ijn.s323831] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022] Open
Abstract
Nanotherapy is a part of nanomedicine that involves nanoparticles as carriers to deliver drugs to target locations. This novel targeting approach has been found to resolve various problems, especially those associated with cancer treatment. In nanotherapy, the carrier plays a crucial role in handling many of the existing challenges, including drug protection before early-stage degradations of active substances, allowing them to reach targeted cells and overcome cell resistance mechanisms. The present review comprises the following sections: the first part presents the introduction of pharmacoeconomics as a branch of healthcare economics, the second part covers various beneficial aspects of the use of nanocarriers for in vitro, in vivo, and pre- and clinical studies, as well as discussion on drug resistance problem and present solutions to overcome it. In the third part, progress in drug manufacturing and optimization of the process of nanoparticle synthesis were discussed. Finally, pharmacokinetic and toxicological properties of nanoformulations due to up-to-date studies were summarized. In this review, the most recent developments in the field of nanotechnology's economic impact, particularly beneficial applications in medicine were presented. Primarily focus on cancer treatment, but also discussion on other fields of application, which are strongly associated with cancer epidemiology and treatment, was made. In addition, the current limitations of nanomedicine and its huge potential to improve and develop the health care system were presented.
Collapse
Affiliation(s)
- Sylwia Milewska
- Department of Experimental Pharmacology, Medical University of Bialystok, Bialystok, 15-361, Poland
| | | | | | - Piotr Nowicki
- Department of Experimental Pharmacology, Medical University of Bialystok, Bialystok, 15-361, Poland
| | | | - Halina Car
- Department of Experimental Pharmacology, Medical University of Bialystok, Bialystok, 15-361, Poland
| |
Collapse
|
22
|
Kumar R, Santa Chalarca CF, Bockman MR, Bruggen CV, Grimme CJ, Dalal RJ, Hanson MG, Hexum JK, Reineke TM. Polymeric Delivery of Therapeutic Nucleic Acids. Chem Rev 2021; 121:11527-11652. [PMID: 33939409 DOI: 10.1021/acs.chemrev.0c00997] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advent of genome editing has transformed the therapeutic landscape for several debilitating diseases, and the clinical outlook for gene therapeutics has never been more promising. The therapeutic potential of nucleic acids has been limited by a reliance on engineered viral vectors for delivery. Chemically defined polymers can remediate technological, regulatory, and clinical challenges associated with viral modes of gene delivery. Because of their scalability, versatility, and exquisite tunability, polymers are ideal biomaterial platforms for delivering nucleic acid payloads efficiently while minimizing immune response and cellular toxicity. While polymeric gene delivery has progressed significantly in the past four decades, clinical translation of polymeric vehicles faces several formidable challenges. The aim of our Account is to illustrate diverse concepts in designing polymeric vectors towards meeting therapeutic goals of in vivo and ex vivo gene therapy. Here, we highlight several classes of polymers employed in gene delivery and summarize the recent work on understanding the contributions of chemical and architectural design parameters. We touch upon characterization methods used to visualize and understand events transpiring at the interfaces between polymer, nucleic acids, and the physiological environment. We conclude that interdisciplinary approaches and methodologies motivated by fundamental questions are key to designing high-performing polymeric vehicles for gene therapy.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Matthew R Bockman
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Craig Van Bruggen
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christian J Grimme
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rishad J Dalal
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mckenna G Hanson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph K Hexum
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
23
|
Kitamura S, Iijima M, Tatami J, Fuke T, Hinotsu T, Sato K. Polymer Ligand Design and Surface Modification of Ag Nanowires toward Color-Tone-Tunable Transparent Conductive Films. ACS APPLIED MATERIALS & INTERFACES 2021; 13:13705-13713. [PMID: 33715362 DOI: 10.1021/acsami.1c00629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ag nanowire suspensions are one of the indispensable materials in the design and fabrication of flexible transparent conductive films. Although the required properties of Ag nanowire films, such as their high transparency, low haze, low contact resistance, and suppression of yellowing, are strongly related to the nanowire surface phenomena, approaches for the surface modification of polyol-synthesized Ag nanowires have rarely been reported. Here, we report the design of a polymer ligand and surface modification of Ag nanowires with the designed polymer to obtain color-tunable transparent conductive films through a simple casting and drying process. In this approach, we synthesized a series of functional polymer ligands by partially grafting polyethyleneimine (PEI) with polyethylene glycol (PEG) chains (PEI-mPEG). The amine sites in PEI-mPEG were designed to act as adsorption sites as well as anchoring sites for an anionic blue dye for suppressing the yellow color tone of Ag nanowires. On the other hand, the PEG chains were designed to maintain the stability of the Ag nanowires in aqueous suspensions and to suppress corrosion of Ag nanowires, which is enhanced by the amine groups of PEI. The effect of the grafting ratio of PEG chains on PEI on the ligand-exchange behavior of the Ag nanowires, their dispersion stability in aqueous inks, and final film properties were investigated systematically. Furthermore, successful color tuning of the Ag nanowire film, without suppressing the conductive and optical properties, is demonstrated by loading anionic blue dye onto PEI-mPEG-modified Ag nanowires.
Collapse
Affiliation(s)
- Shoma Kitamura
- Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogayaku, Yokohama, Kanagawa 240-8501, Japan
| | - Motoyuki Iijima
- Faculty of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogayaku, Yokohama, Kanagawa 240-8501, Japan
| | - Junichi Tatami
- Faculty of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogayaku, Yokohama, Kanagawa 240-8501, Japan
| | - Tsubasa Fuke
- Dowa Electronics Materials Co. Ltd., 1-3-1 Kaigandori, Minamiku, Okayama 702-8506, Japan
| | - Takashi Hinotsu
- Dowa Electronics Materials Co. Ltd., 1-3-1 Kaigandori, Minamiku, Okayama 702-8506, Japan
| | - Kimitaka Sato
- Dowa Electronics Materials Co. Ltd., 1-3-1 Kaigandori, Minamiku, Okayama 702-8506, Japan
| |
Collapse
|
24
|
Ye H, Chu X, Cao Z, Hu X, Wang Z, Li M, Wan L, Li Y, Cao Y, Diao Z, Peng F, Liu J, Xu L. A Novel Targeted Therapy System for Cervical Cancer: Co-Delivery System of Antisense LncRNA of MDC1 and Oxaliplatin Magnetic Thermosensitive Cationic Liposome Drug Carrier. Int J Nanomedicine 2021; 16:1051-1066. [PMID: 33603368 PMCID: PMC7886386 DOI: 10.2147/ijn.s258316] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 01/05/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND This study was aimed to prepare a novel magnetic thermosensitive cationic liposome drug carrier for the codelivery of Oxaliplatin (OXA) and antisense lncRNA of MDC1 (MDC1-AS) to Cervical cancer cells and evaluate the efficiency of this drug carrier and its antitumor effects on Cervical cancer. METHODS Thermosensitive magnetic cationic liposomes were prepared using thin-film hydration method. The OXA and MDC1-AS vectors were loaded into the codelivery system, and the in vitro OXA thermosensitive release activity, efficiency of MDC1-AS regulating MDC1, in vitro cytotoxicity, and in vivo antitumor activity were determined. RESULTS The codelivery system had desirable targeted delivery efficacy, OXA thermosensitive release, and MDC1-AS regulating MDC1. Codelivery of OXA and MDC1-AS enhanced the inhibition of cervical cancer cell growth in vitro and in vivo, compared with single drug delivery. CONCLUSION The novel codelivery of OXA and MDC1-AS magnetic thermosensitive cationic liposome drug carrier can be applied in the combined chemotherapy and gene therapy for cervical cancer.
Collapse
Affiliation(s)
- Hui Ye
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People’s Republic of China
| | - Xiaoying Chu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People’s Republic of China
| | - Zhensheng Cao
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People’s Republic of China
| | - Xuanxuan Hu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People’s Republic of China
| | - Zihan Wang
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People’s Republic of China
| | - Meiqi Li
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People’s Republic of China
| | - Leyu Wan
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People’s Republic of China
| | - Yongping Li
- Department of Surgery, Chengdu Shuangliu District Maternal and Child Health Hospital, ChengDu, Sichuan, 610200, People’s Republic of China
| | - Yongge Cao
- Department of Stomatology, Haiyuan College, Kunming, Yunnan, 650106, People’s Republic of China
| | - Zhanqiu Diao
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People’s Republic of China
| | - Fengting Peng
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People’s Republic of China
| | - Jinsong Liu
- School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People’s Republic of China
| | - Lihua Xu
- Department of General Medicine, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
| |
Collapse
|
25
|
Lin Y, Liu J, Bai R, Shi J, Zhu X, Liu J, Guo J, Zhang W, Liu H, Liu Z. Mitochondria-Inspired Nanoparticles with Microenvironment-Adapting Capacities for On-Demand Drug Delivery after Ischemic Injury. ACS NANO 2020; 14:11846-11859. [PMID: 32880428 DOI: 10.1021/acsnano.0c04727] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Stimuli-responsive nanoparticles (NPs), so-called "smart" NPs, possess great potentials in drug delivery. Presently, the intelligence of smart NPs is mainly based on their chemical or physical changes to stimuli, which are usually "mechanical" and fundamentally different from biological intelligence. Inspired by mitochondria (MT), a biosmart nanoparticle with microenvironment targeting and self-adaptive capacity (MTSNP) was fabricated for ischemic tissue repair. The nanoparticles were designed as shell@circular DNA@shell@core. The double shells were like the two-layered membranes of MT, the melatonin-loaded cores corresponded to the MT matrix, and the circular DNA corresponded to MTDNA. In function, melatonin-loaded cores simulated the cell-protective mechanism of MT, which naturally synthesized melatonin to resist ischemia, while circular DNA was constructed to mimic the biological oxygen-sensing mechanism, synthesizing VEGF for vascularization according to oxygen level, like the ATP supply by MT according to microenvironment demand. At the acute stage of ischemia, melatonin was rapidly released from MTSNP to scavenge reactive oxygen species and activated melatonin receptor I on MT to prevent cytochrome c release, which would activate apoptosis. During the chronic stage, circular DNA could sense hypoxia and actively secrete VEGF for revascularization as a response. Importantly, circular DNA could also receive feedback of revascularization and shut down VEGF secretion as an adverse response. Then, the therapeutic potentials of the MTSNP were verified in myocardial ischemia by the multimodality of the methods. Such nanoparticles may represent a promising intelligent nanodrug system.
Collapse
Affiliation(s)
- Yanxia Lin
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing 100850, China
- Department of Cardiology, The Third Medical Center of PLA General Hospital, Beijing 100039, China
| | - Jianfeng Liu
- Department of Cardiology, The Second Medical Center of PLA General Hospital, Beijing 100853, China
| | - Rui Bai
- Department of Cardiology, The Third Medical Center of PLA General Hospital, Beijing 100039, China
| | - Jinmiao Shi
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing 100850, China
| | - Xiaoming Zhu
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing 100850, China
| | - Jian Liu
- Department of Nuclear Medicine, The First Medical Center of PLA General Hospital, Beijing 100853, China
| | - Jing Guo
- Department of Cardiology, The Third Medical Center of PLA General Hospital, Beijing 100039, China
| | - Wei Zhang
- Department of Orthopaedics, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing 100853, China
| | - Huiliang Liu
- Department of Cardiology, The Third Medical Center of PLA General Hospital, Beijing 100039, China
| | - Zhiqiang Liu
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing 100850, China
| |
Collapse
|
26
|
Wang T, Mu W, Li F, Zhang J, Hou T, Pang X, Yin X, Zhang N. "Layer peeling" co-delivery system for enhanced RNA interference-based tumor associated macrophages-specific chemoimmunotherapy. NANOSCALE 2020; 12:16851-16863. [PMID: 32761008 DOI: 10.1039/d0nr04025h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
RNA interference (RNAi)-based immunotherapy combined with chemotherapy has emerged as a promising therapeutic strategy for cancer treatment. The transport of siRNA and small molecular agents from the tumor vasculature to a separate therapeutic target has been impeded by multiple physiological barriers, which has restricted the development of RNAi-based chemoimmunotherapy. A nanotechnology-based co-delivery system was superior in improving the co-localization of gene and drug in the same tumor cell, while a co-delivery system for chemoimmunotherapy was expected to realize xenotype cell-targeting, which means delivering immunotherapy agents and chemotherapy drugs to immune cells and tumor cells, respectively. A multilayer structure co-delivery system was outstanding in crossing these barriers and targeting different cells in tumor tissue. Herein, a "layer peeling" co-delivery system (CDMPR) was developed with co-loaded IKKβ-siRNA and doxorubicin (DOX), in which IKKβ-siRNA was used for RNAi-based tumor associated macrophages (TAMs) polarization for immunotherapy and DOX was used for chemotherapy. A transwell assay in vitro and an immunofluorescence assay in Hepa1-6 tumor-bearing mice indicated that CDMPR exhibited a pH-sensitive disassembly ability in tumor tissue, IKKβ-siRNA was precisely delivered to M2-type TAMs and DOX was internalized into tumor cells. An M2-type TAMs polarization ability study of CDMPR demonstrated that M2-type TAMs could be polarized to M1-type TAMs by CDMPR in vitro and in vivo. In Hepa1-6 tumor-bearing mice, CDMPR exhibited improved antitumor efficiency with M2-type re-polarization ability by the precise delivery of IKKβ-siRNA and DOX to M2-type TAMs and tumor cells, respectively. Consequently, the combination of RNAi-based TAMs polarization and chemotherapy by the "layer peeling" co-delivery system would achieve an enhanced chemoimmunotherapy effect, which provides a novel strategy to improve cancer therapeutic effects.
Collapse
Affiliation(s)
- Tianqi Wang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province 250012, China.
| | - Weiwei Mu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province 250012, China.
| | - Feifei Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province 250012, China.
| | - Jing Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province 250012, China.
| | - Teng Hou
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province 250012, China.
| | - Xiuping Pang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province 250012, China.
| | - Xiaolan Yin
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province 250012, China.
| | - Na Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province 250012, China.
| |
Collapse
|
27
|
He J, Xiao H, Li B, Peng Y, Li X, Wang Y, Adamus G, Kowalczuk M, Shuai X. The programmed site-specific delivery of the angiostatin sunitinib and chemotherapeutic paclitaxel for highly efficient tumor treatment. J Mater Chem B 2020; 7:4953-4962. [PMID: 31411627 DOI: 10.1039/c9tb01159e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Malignant solid tumors are composed of tumor cells, stromal cells and the complex networks of the tumor microenvironment (TME), which is the underlying cause of the unsatisfactory outcome of conventional chemotherapy approaches only aimed at cancer cell killing. In this study, a novel TME-responsive polymeric micelle has been developed for the programmed site-specific delivery of the angiostatin sunitinib and chemotherapeutic paclitaxel (PTX). The pH-sensitive micelle core encapsulates PTX, while β-cyclodextrin molecules being conjugated to the micelle shell via matrix metalloproteinase 2 (MMP-2) sensitive peptides include sunitinib. Following the pH and MMP-2 dual sensitive structure design, the micelle may sequentially release sunitinib inside the tumor extracellular matrix and PTX into cancer cells through responding to enriched MMP-2 levels and decreased pH, respectively. Consequently, the anti-angiogenesis effect of sunitinib and tumor cell-killing effect of PTX synergize, resulting in highly efficient tumor treatment.
Collapse
Affiliation(s)
- Jin He
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Hong Xiao
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Bo Li
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Yuan Peng
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Xiaoxia Li
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Yong Wang
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Grazyna Adamus
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland.
| | - Marek Kowalczuk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland. and Wolverhampton School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton, WV1 1LY, UK
| | - Xintao Shuai
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
28
|
Wang Z, Zang A, Wei Y, An L, Hong D, Shi Y, Zhang J, Su S, Fang G. Hyaluronic Acid Capped, Irinotecan and Gene Co-Loaded Lipid-Polymer Hybrid Nanocarrier-Based Combination Therapy Platform for Colorectal Cancer. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:1095-1105. [PMID: 32210538 PMCID: PMC7076892 DOI: 10.2147/dddt.s230306] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 02/05/2020] [Indexed: 12/15/2022]
Abstract
Background The current approach for treating colorectal cancer favors the use of drug and gene combination therapy, and targeted nano-systems are gaining considerable attention for minimizing toxicity and improving the efficacy of anticancer treatment. The aim of this study was to develop ligand-modified, irinotecan and gene co-loaded lipid-polymer hybrid nanocarriers for targeted colorectal cancer combination therapy. Methods Hyaluronic acid modified, irinotecan and gene co-loaded LPNs (HA-I/D-LPNs) were prepared using a solvent-evaporation method. Their average size, zeta potential, drug and gene loading capacity were characterized. The in vitro and in vivo gene transfection and anti-tumor ability of this nano-system were evaluated on colorectal cancer cells and mice bearing colorectal cancer model. Results HA-I/D-LPNs had a size of 182.3 ± 5.1, over 80% drug encapsulation efficiency and over 90% of gene loading capacity. The peak plasma concentration (Cmax) and half-life (T1/2) achieved from HA-I/D-LPNs were 41.31 ± 1.58 μg/mL and 12.56 ± 0.67 h. HA-I/D-LPNs achieved the highest tumor growth inhibition efficacy and the most prominent transfection efficiency in vivo. Conclusion HA-I/D-LPNs exhibited the most remarkable tumor inhibition efficacy and best gene transfection efficiency in the tumor, which could prove the effects of the drug and gene combination therapy.
Collapse
Affiliation(s)
- Zhiyu Wang
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding 071000, People's Republic of China
| | - Aimin Zang
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding 071000, People's Republic of China
| | - Yaning Wei
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding 071000, People's Republic of China
| | - Lin An
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding 071000, People's Republic of China
| | - Dan Hong
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding 071000, People's Republic of China
| | - Yan Shi
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding 071000, People's Republic of China
| | - Jingnan Zhang
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding 071000, People's Republic of China
| | - Shenyong Su
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding 071000, People's Republic of China
| | - Guotao Fang
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding 071000, People's Republic of China
| |
Collapse
|
29
|
Wang X, Yin S, Li M, Rao J, Wan D, Qiu Y, Yu Q, Chen X, Lu Z, Long Y, Zhang Z, He Q. Autophagy inhibition changes the disposition of non-viral gene carriers during blood-brain barrier penetration and enhances TRAIL-induced apoptosis in brain metastatic tumor. J Control Release 2020; 321:497-508. [PMID: 32112851 DOI: 10.1016/j.jconrel.2020.02.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/09/2020] [Accepted: 02/26/2020] [Indexed: 12/23/2022]
Abstract
Non-viral gene delivery systems have proven to be a promising approach in the treatment of brain metastatic cancers but facing delivery difficulties. Due to the existence of blood-brain barrier, non-viral gene carriers must pass through brain capillary endothelial cells to accumulate at the brain tumor sites. However, during this process, most of them trap into brain capillary endothelial cells and fail to penetrate to the brain tumor sites. Autophagy is involved in dynamic disposition of both intracellular and extracellular components, which theoretically affects intracellular fate of non-viral gene carriers during BBB penetration. In the present study, R6dGR peptide-modified PEGylated polyethyleneimine that carry therapeutic gene encoding human tumor necrosis factor-related apoptosis-inducing ligand (PPR/pTRAIL) are established as model non-viral gene delivery system and applied in breast cancer brain metastasis therapy. Autophagy-mediated lysosome degradation pathway is found to be involved in the degradation of PPR/pTRAIL in brain capillary endothelial cells and prevents them from BBB penetration. Pre-inhibiting BBB autophagy level by wortmannin loaded liposomes (Wtmn-Lip) can increase brain accumulation of non-viral gene carrier PPR without damaging BBB tight junctions. Besides, Wtmn-Lip synergistically induces apoptosis with TRAIL via different signaling pathways. Herein, pre-treatment of Wtmn-Lip might solve delivery difficulties of non-viral gene carriers in the treatment of brain metastatic cancers.
Collapse
Affiliation(s)
- Xuhui Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610064, PR China
| | - Sheng Yin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610064, PR China
| | - Man Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610064, PR China
| | - Jingdong Rao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610064, PR China
| | - Dandan Wan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610064, PR China
| | - Yue Qiu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610064, PR China
| | - Qianwen Yu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610064, PR China
| | - Xiaoxiao Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610064, PR China
| | - Zhengze Lu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610064, PR China
| | - Yang Long
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610064, PR China
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610064, PR China
| | - Qin He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610064, PR China.
| |
Collapse
|
30
|
Shen H, Huang X, Min J, Le S, Wang Q, Wang X, Dogan AA, Liu X, Zhang P, Draz MS, Xiao J. Nanoparticle Delivery Systems for DNA/RNA and their Potential Applications in Nanomedicine. Curr Top Med Chem 2020; 19:2507-2523. [PMID: 31775591 DOI: 10.2174/1568026619666191024170212] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 10/06/2019] [Accepted: 10/07/2019] [Indexed: 02/04/2023]
Abstract
The rapid development of nanotechnology has a great influence on the fields of biology, physiology, and medicine. Over recent years, nanoparticles have been widely presented as nanocarriers to help the delivery of gene, drugs, and other therapeutic agents with cellular targeting ability. Advances in the understanding of gene delivery and RNA interference (RNAi)-based therapy have brought increasing attention to understanding and tackling complex genetically related diseases, such as cancer, cardiovascular and pulmonary diseases, autoimmune diseases and infections. The combination of nanocarriers and DNA/RNA delivery may potentially improve their safety and therapeutic efficacy. However, there still exist many challenges before this approach can be practiced in the clinic. In this review, we provide a comprehensive summary on the types of nanoparticle systems used as nanocarriers, highlight the current use of nanocarriers in recombinant DNA and RNAi molecules delivery, and the current landscape of gene-based nanomedicine-ranging from diagnosis to therapeutics. Finally, we briefly discuss the biosafety concerns and limitations in the preclinical and clinical development of nanoparticle gene systems.
Collapse
Affiliation(s)
- Hua Shen
- Department of Cardiothoracic Surgery, Changzheng Hospital, Second Military Medical University, Fengyang Road 415#, Shanghai 200003, China.,Department of Cardiovascular Surgery, Institute of Cardiac Surgery, PLA General Hospital, Beijing, China
| | - Xiaoyi Huang
- Department of Pathology, Changhai Hospital, Second Military Medical University, Changhai Road 168#, Shanghai 200433, China
| | - Jie Min
- Department of Cardiothoracic Surgery, Bethune International Peace Hospital, Shijiazhuang, China
| | - Shiguan Le
- Department of Cardiothoracic Surgery, Changzheng Hospital, Second Military Medical University, Fengyang Road 415#, Shanghai 200003, China
| | - Qing Wang
- Department of Cardiothoracic Surgery, Changzheng Hospital, Second Military Medical University, Fengyang Road 415#, Shanghai 200003, China
| | - Xi Wang
- Department of Cardiothoracic Surgery, Changzheng Hospital, Second Military Medical University, Fengyang Road 415#, Shanghai 200003, China
| | - Asli Aybike Dogan
- Department of Bioengineering, Graduate School of Natural and Applied Sciences, Ege University, 35100 Bornova-Izmir, Turkey
| | - Xiangsheng Liu
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States
| | - Pengfei Zhang
- Department of Central Laboratory, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Mohamed S Draz
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, United States.,Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Cambridge, MA 02138, United States.,Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Jian Xiao
- Department of Cardiothoracic Surgery, Changzheng Hospital, Second Military Medical University, Fengyang Road 415#, Shanghai 200003, China
| |
Collapse
|
31
|
Sergeeva TY, Mukhitova RK, Bakhtiozina LR, Nizameev IR, Kadirov MK, Sapunova AS, Voloshina AD, Ziganshina AY, Antipin IS. Doxorubicin delivery by polymer nanocarrier based on N-methylglucamine resorcinarene. Supramol Chem 2020. [DOI: 10.1080/10610278.2020.1714620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Tatiana Yu. Sergeeva
- Department of Calixarene Chemistry, Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Rezeda K. Mukhitova
- Department of Calixarene Chemistry, Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Leysan R. Bakhtiozina
- Department of Organic Chemistry, Alexander Butlerov Institute of Chemistry, Kazan Federal University, Kazan, Russia
| | - Irek R. Nizameev
- Department of Calixarene Chemistry, Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan, Russia
- Department of Nanotechnology in Electronics, Kazan National Research Technical University Named after A.N. Tupolev - KAI, Kazan, Russia
| | - Marsil K. Kadirov
- Department of Calixarene Chemistry, Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Anastasia S. Sapunova
- Department of Calixarene Chemistry, Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Alexandra D. Voloshina
- Department of Calixarene Chemistry, Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Albina Y. Ziganshina
- Department of Calixarene Chemistry, Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Igor S. Antipin
- Department of Organic Chemistry, Alexander Butlerov Institute of Chemistry, Kazan Federal University, Kazan, Russia
| |
Collapse
|
32
|
Trivedi M, Johri P, Singh A, Singh R, Tiwari RK. Latest Tools in Fight Against Cancer: Nanomedicines. Nanobiomedicine (Rij) 2020. [DOI: 10.1007/978-981-32-9898-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
33
|
Sun YD, Zhu YX, Zhang X, Jia HR, Xia Y, Wu FG. Role of Cholesterol Conjugation in the Antibacterial Photodynamic Therapy of Branched Polyethylenimine-Containing Nanoagents. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14324-14331. [PMID: 31580079 DOI: 10.1021/acs.langmuir.9b02727] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Photodynamic therapy is a promising approach for fighting bacterial infections because it can induce few side effects, develop no drug resistance, and realize precise treatment. However, most photosensitizers (PSs) have the disadvantages of poor water-solubility, severe self-quenching, and potential toxicity. Here, the cationic polymer polyethyleneimine (PEI) was used to prepare a cholesterol- and chlorin e6 (Ce6, a common PS)-conjugated compound via the carboxyl-amine reaction or the acyl chloride-amine reaction (abbreviated as Chol-PEI-Ce6). The as-prepared Chol-PEI-Ce6 molecules can self-assemble into close-to-spherical nanoparticles (NPs) with an average diameter of ∼15 nm and can bind to the bacterial surfaces via the synergistic hydrophobic insertion of the cholesterol moieties and electrostatic interaction between the cationic amine groups of PEI and the bacterial surfaces. Upon light irradiation, the NPs can effectively inactivate both Gram-positive and Gram-negative bacteria. Besides, the interaction between Chol-PEI-Ce6 NPs and bacteria markedly enhances the production of intracellular reactive oxygen species after light irradiation, which may account for the excellent antibacterial performance of the NPs. More importantly, the NPs possess negligible dark cytotoxicity and good hemocompatibility. Therefore, the present work may have strong implications for developing novel antibacterial agents to fight against bacterial infections.
Collapse
Affiliation(s)
- Yun-Dan Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , 2 Sipailou Road , Nanjing 210096 , P. R. China
| | - Ya-Xuan Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , 2 Sipailou Road , Nanjing 210096 , P. R. China
| | - Xiaodong Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , 2 Sipailou Road , Nanjing 210096 , P. R. China
| | - Hao-Ran Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , 2 Sipailou Road , Nanjing 210096 , P. R. China
| | - Yang Xia
- Jiangsu Key Laboratory of Oral Diseases , Nanjing Medical University , 136 HanZhong Road , Nanjing 210029 , P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , 2 Sipailou Road , Nanjing 210096 , P. R. China
| |
Collapse
|
34
|
Sericin grafted multifunctional curcumin loaded fluorinated graphene oxide nanomedicines with charge switching properties for effective cancer cell targeting. Int J Pharm 2019; 572:118791. [PMID: 31678390 DOI: 10.1016/j.ijpharm.2019.118791] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 12/20/2022]
Abstract
Fluorinated graphene has recently gained much attention for cancer drug delivery, owing to its peculiar properties including high electronegativity difference, magnetic resonance imaging contrast agent, and the photothermal effect. However, the hydrophobic nature of fluorinated graphene greatly hinders its application as a biological material. Herein, a novel green method is reported for synthesis of a pH-sensitive charge-reversal and water-soluble fluorinated graphene oxide, modified with polyethyleneimine anchored to sericin-polypeptide (FPS). This nanocarrier was further loaded with curcumin (Cur), and characterized as a nanocarrier for anti-cancer drug delivery. The synthesized nanocarriers contain two different pH-sensitive amide linkages, which are negatively charged in blood pH (≈7.4) and can prolong circulation times. The amide linkages undergo hydrolysis once they reach the mildly acidic condition (pH≈6.5, corresponding to tumor extracellular matrix), and subsequently once reached the lower acidic condition (pH≈5.5, corresponded to endo/lysosomes microenvironment), the FPS charge can be switched to positive (≈+28 mV), which aids the nuclear release. This nanocarrier was designed to selectively enhance cell internalization and nuclear-targeted delivery of curcumin in HeLa, SkBr3 and PC-3 cancer cells. Moreover, FPS-Cur demonstrated high curcumin loading capacity, prolonged curcumin release and promotion of apoptosis in HeLa, SkBr3 and PC-3 cells. Therefore, with its pH-responsive charge-reversal properties, FPS-Cur would be a promising candidate for chemotherapy of cervical, breast and prostate cancers.
Collapse
|
35
|
Pishavar E, Ramezani M, Hashemi M. Co-delivery of doxorubicin and TRAIL plasmid by modified PAMAM dendrimer in colon cancer cells, in vitro and in vivo evaluation. Drug Dev Ind Pharm 2019; 45:1931-1939. [PMID: 31609130 DOI: 10.1080/03639045.2019.1680995] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
One strategy for cancer treatment is combination therapy using nanoparticles (NPs), which has resulted in enhanced anti-cancer effects and reduced cytotoxicity of therapeutic agents. Polyamidoamine dendrimer (PAMAM) has attracted considerable attention because of its potential applications ranging from drug delivery to molecular encapsulation and gene therapy. In this study, PAMAM G5 modified with cholesteryl chloroformate and alkyl-PEG was applied for co-delivery of doxorubicin (DOX) and plasmid encoding TRAIL into colon cancer cells, in vitro and in vivo. The results showed DOX was efficiently encapsulated in modified carrier (M-PAMAM) with loading level about 90%, and the resulting DOX-loaded M-PAMAM complexed with TRAIL plasmid showed much stronger antitumor effect than M-PAMAM containing DOX or TRAIL plasmid. On the other hand, the obtained results demonstrated that the treatment of mice bearing C26 colon carcinoma with this developed co-delivery system significantly decreased tumor growth rate. Thus, this modified PAMAM G5 can be considered as a potential carrier for co-delivery of drug and gene in cancer therapy.
Collapse
Affiliation(s)
- Elham Pishavar
- Pharmacutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmacutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Hashemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
36
|
Xiang Y, Chen L, Zhou R, Huang Y. Enhanced intracellular and intranuclear drug delivery mediated by biomimetic peptide SVS-1 for anticancer therapy. Int J Pharm 2019; 570:118668. [PMID: 31494237 DOI: 10.1016/j.ijpharm.2019.118668] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/20/2019] [Accepted: 09/04/2019] [Indexed: 12/17/2022]
Abstract
Tumor cell nucleus is the ultimate target of many first-line chemotherapeutics and therapeutic genes. However, nuclear drug delivery is always hampered by multiple intracellular obstacles especially low efficiency of cellular uptake and insufficient nuclear trafficking. It is urgent to establish novel nuclear drug delivery systems to simultaneously overcome barriers including cell membranes and nuclear envelope. Herein, an N-(2-hydroxypropyl) methacrylamide (HPMA) polymer-based drug delivery system was designed to achieve enhanced intracellular and intranuclear drug delivery. A biomimetic peptide (SVS-1), derived from antimicrobial peptides, which was reported to efficiently penetrate cell membranes and translocate rapidly into nucleus without decreasing cell viability, was conjugated to the HPMA copolymer backbone. The in vitro studies showed that SVS-1 could enhance the uptake and nuclei accumulation of HPMA copolymer by 4.1 and 7.0-fold on human cervical cancer cells (HeLa) separately compared with corresponding non-SVS-1 modified HPMA copolymers (P-DOX). This also transferred to greater DNA damage, more apoptosis and superior cytotoxicity (2.4-fold) of doxorubicin which was chosen as the model drug and attached to SVS-1 modified HPMA copolymer (SVS-1-P-DOX). Furthermore, the in vivo investigation revealed that compared with free doxorubicin, SVS-1-P-DOX not only showed prolonged blood circulation and preferential tumor accumulation, but also suppressed tumor growth more efficiently with tumor growth inhibition of 78.7% in HeLa tumor-bearing BALB/c nude mice without causing noticeable physiological change in major organs. These results demonstrated that the SVS-1 modification was a promising strategy for contemporaneously overcome cell membranes and nuclear envelope, which might provide new opportunities for constructing nucleus-targeted anticancer therapy.
Collapse
Affiliation(s)
- Yucheng Xiang
- Key Laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu 610041, PR China
| | - Liqiang Chen
- Key Laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu 610041, PR China
| | - Rui Zhou
- Key Laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu 610041, PR China
| | - Yuan Huang
- Key Laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu 610041, PR China.
| |
Collapse
|
37
|
Wu VM, Huynh E, Tang S, Uskoković V. Brain and bone cancer targeting by a ferrofluid composed of superparamagnetic iron-oxide/silica/carbon nanoparticles (earthicles). Acta Biomater 2019; 88:422-447. [PMID: 30711662 DOI: 10.1016/j.actbio.2019.01.064] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/11/2019] [Accepted: 01/30/2019] [Indexed: 01/02/2023]
Abstract
Despite the advances in molecularly targeted therapies, delivery across the blood-brain barrier (BBB) and the targeting of brain tumors remains a challenge. Like brain, bone is a common site of metastasis and requires therapies capable of discerning the tumor from its healthy cellular milieu. To tackle these challenges, we made a variation on the previously proposed concept of the earthicle and fabricated an aqueous, surfactant-free ferrofluid containing superparamagnetic iron oxide nanoparticles (SPIONs) coated with silicate mesolayers and carbon shells, having 13 nm in size on average. Nanoparticles were synthesized hydrothermally and characterized using a range of spectroscopic, diffractometric, hydrodynamic and electron microscopy techniques. The double coating on SPIONs affected a number of physicochemical and biological properties, including colloidal stability and cancer targeting efficacy. Nanoparticles decreased the viability of glioblastoma and osteosarcoma cells and tumors more than that of their primary and non-transformed analogues. They showed a greater preference for cancer cells because of a higher rate of uptake by these cells and a pronounced adherence to cancer cell membrane. Even in an ultralow alternate magnetic field, nanoparticles generated sufficient heat to cause tumor death. Nanoparticles in MDCK-MDR1 BBB model caused mislocalization of claudin-1 at the tight junctions, underexpression of ZO-1 and no effect on occludin-1 and transepithelial resistance. Nanoparticles were detected in the basolateral compartments and examination of LAMP1 demonstrated that nanoparticles escaped the lysosome, traversed the BBB transcellularly and localized to the optic lobes of the third instar larval brains of Drosophila melanogaster. The passage was noninvasive and caused no adverse systemic effects to the animals. In conclusion, these nanoparticulate ferrofluids preferentially bind to cancer cells and, hence, exhibit a greater toxicity in these cells compared to the primary cells. They are also effective against solid tumors in vitro, can cross the BBB in Drosophila, and are nontoxic based on the developmental studies of flies raised in ferrofluid-infused media. STATEMENT OF SIGNIFICANCE: We demonstrate that a novel, hydrothermally synthesized composite nanoparticle-based ferrofluid is effective in reducing the viability of osteosarcoma and glioblastoma cells in vitro, while having minimal effects on primary cell lines. In 3D tumor spheroids, nanoparticles greatly reduced the metastatic migration of cancer cells, while the tumor viability was reduced compared to the control group by applying magnetic hyperthermia to nanoparticle-treated spheroids. Both in vitro and in vivo models of the blood-brain barrier evidence the ability of nanoparticles to cross the barrier and localize to the brain tissue. These composite nanoparticles show great promise as an anticancer biomaterial for the treatment of different types of cancer and may serve as an alternative or addendum to traditional chemotherapies.
Collapse
Affiliation(s)
- Victoria M Wu
- Advanced Materials and Nanobiotechnology Laboratory, Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA 92618-1908, USA
| | - Eric Huynh
- Advanced Materials and Nanobiotechnology Laboratory, Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA 92618-1908, USA
| | - Sean Tang
- Advanced Materials and Nanobiotechnology Laboratory, Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA 92618-1908, USA
| | - Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA 92618-1908, USA; Advanced Materials and Nanobiotechnology Laboratory, Department of Bioengineering, University of Illinois, Chicago, IL 60607-7052, USA.
| |
Collapse
|
38
|
Chen W, Zhang M, Shen W, Du B, Yang J, Zhang Q. A Polycationic Brush Mediated Co-Delivery of Doxorubicin and Gene for Combination Therapy. Polymers (Basel) 2019; 11:E60. [PMID: 30960044 PMCID: PMC6401996 DOI: 10.3390/polym11010060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/24/2018] [Accepted: 12/27/2018] [Indexed: 01/08/2023] Open
Abstract
The combination of drug and gene strategies for cancer therapy, has exhibited greater effectiveness than drug or gene therapy alone. In this paper, a coil-comb shaped polycationic brush was used as a multifunctional carrier for co-delivery of drug and gene. The side chains of the comb block of the brush were composed of cyclodextrin (CD)-containing cationic star polymers, with a super-high density of positive charge. Doxorubicin (DOX) could be loaded into the cavity of CD polymers to form DOX-loaded nanoparticles (DOX-NPs) and the p53 gene could be subsequently condensed by DOX-NPs. The obtained DOX-NPs/pDNA complexes were less than 150 nm in size, and so could transport DOX and the gene into the same cell. The complexes performed well with regards to their transfection efficiency on MCF-7 cancer cells. As a result, enhanced cell growth inhibition, with decreased DOX dosage was achieved due to the synergistic effect of co-delivery of DOX and the p53 gene. This finding provides an efficient approach for the development of a co-delivery system in combination therapy.
Collapse
Affiliation(s)
- Wenjuan Chen
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Mingming Zhang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Wei Shen
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Bo Du
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Jing Yang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Qiqing Zhang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, China.
| |
Collapse
|
39
|
Jiang C, Qi Z, Jia H, Huang Y, Wang Y, Zhang W, Wu Z, Yang H, Liu J. ATP-Responsive Low-Molecular-Weight Polyethylenimine-Based Supramolecular Assembly via Host-Guest Interaction for Gene Delivery. Biomacromolecules 2018; 20:478-489. [PMID: 30516950 DOI: 10.1021/acs.biomac.8b01395] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this work, we report on an ATP-responsive low-molecular-weight polyethylenimine (LMW-PEI)-based supramolecular assembly. It formed via host-guest interaction between PEI (MW = 1.8 kDa)-α-cyclodextrin (α-CD) conjugates and PEI1.8k-phenylboronic acid (PBA) conjugates. The host-guest interaction between PEI1.8k-α-CD and PEI1.8k-PBA was confirmed by the 2D-NOESY chromatogram experiment and competition test. The ATP-responsive property of the supramolecular assembly was evaluated by a series of ATP-triggered degradation and siRNA release studies in terms of fluorescence resonance energy transfer, agarose gel electrophoresis assay, and the time course monitoring of the particle size and morphology. Confocal laser scanning microscopy confirmed the intracellular disassembly of the supramolecular polymer and the release of siRNA. The supramolecular assembly showed high buffering capability and was capable of protecting siRNA from RNase degradation. It had high cytocompatibility according to in vitro cytotoxicity and hemolysis assays. LMW-PEI-based supramolecular assembly facilitated cellular entry of siRNA via energy-dependent endocytosis. Moreover, the assembly/SR-A siRNA polyplexes at N/P ratio of 30 was most effective in knocking down SR-A mRNA and inhibiting uptake of modified LDL. Taken together, this work shows that ATP-responsive LMW-PEI-based supramolecular assembly is a promising gene vector and has potential application in treating atherosclerosis.
Collapse
Affiliation(s)
- Cuiping Jiang
- Department of Pharmaceutics , China Pharmaceutical University , Nanjing , Jiangsu 210009 , People's Republic of China
| | - Zitong Qi
- Department of Pharmaceutics , China Pharmaceutical University , Nanjing , Jiangsu 210009 , People's Republic of China
| | - Hengbo Jia
- Department of Pharmaceutics , China Pharmaceutical University , Nanjing , Jiangsu 210009 , People's Republic of China
| | - Yilei Huang
- Department of Pharmaceutics , China Pharmaceutical University , Nanjing , Jiangsu 210009 , People's Republic of China
| | - Yunbo Wang
- Department of Pharmaceutics , China Pharmaceutical University , Nanjing , Jiangsu 210009 , People's Republic of China
| | - Wenli Zhang
- Department of Pharmaceutics , China Pharmaceutical University , Nanjing , Jiangsu 210009 , People's Republic of China
| | - Zimei Wu
- School of Pharmacy , University of Auckland , Private Bag 92019, Auckland , New Zealand
| | - Hu Yang
- Department of Chemical and Life Science Engineering , Virginia Commonwealth University , Richmond , Virginia 23219 , United States.,Department of Pharmaceutics , Virginia Commonwealth University , Richmond , Virginia 23298 , United States.,Massey Cancer Center, Virginia Commonwealth University , Richmond , Virginia 23298 , United States
| | - Jianping Liu
- Department of Pharmaceutics , China Pharmaceutical University , Nanjing , Jiangsu 210009 , People's Republic of China
| |
Collapse
|
40
|
Long RM, Dai QL, Zhou X, Cai DH, Hong YZ, Wang SB, Liu YG. Bacterial magnetosomes-based nanocarriers for co-delivery of cancer therapeutics in vitro. Int J Nanomedicine 2018; 13:8269-8279. [PMID: 30584299 PMCID: PMC6289231 DOI: 10.2147/ijn.s180503] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In recent times, co-delivery of therapeutics has emerged as a promising strategy for treating dreadful diseases such as cancer. MATERIALS AND METHODS In this study, we developed a novel nanocarrier based on bacterial magnetosomes (BMs) that co-loaded with siRNA and doxorubicin (DOX) using polyethyleneimine (PEI) as a cross-linker (BMs/DP/siRNA). The delivery efficiency of siRNA as well as the pH-responsive release of DOX, and synergistic efficacy of these therapeutics in vitro were systematically investigated. RESULTS The structure of DOX-PEI (DP) conjugates that synthesized via hydrazone bond formation was confirmed by 1H nuclear magnetic resonance (NMR). The in vitro release experiments showed that the DP conjugate (DOX-loading efficiency - 5.77%±0.08%) exhibited the long-term release behavior. Furthermore, the optimal BMs/DP/siRNA particle size of 107.2 nm and the zeta potential value of 31.1±1.0 mV facilitated enhanced cellular internalization efficiency. Moreover, the agarose gel electrophoresis showed that the co-delivery system could protect siRNA from degradation in serum and RNase A. In addition, the cytotoxicity assay showed that BMs/DP/siRNA could achieve an excellent synergistic effect compared to that of siRNA delivery alone. The acridine orange (AO)/ethidium bromide (EB) double staining assay also showed that BMs/DP/siRNA complex could induce cells in a stage of late apoptosis and nanocomplex located in the proximity of the nucleus. CONCLUSION The combination of gene and chemotherapeutic drug using BMs is highly efficient, and the BMs/DP/siRNA would be a promising therapeutic strategy for the future therapeutics.
Collapse
Affiliation(s)
- Rui-Min Long
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China,
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China,
| | - Qing-Lei Dai
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China,
| | - Xia Zhou
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China,
| | - Duan-Hua Cai
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China,
| | - Ya-Zhen Hong
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China,
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China,
- Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen 361021, China,
| | - Shi-Bin Wang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China,
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China,
- Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen 361021, China,
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China
| | - Yuan-Gang Liu
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China,
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China,
- Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen 361021, China,
| |
Collapse
|
41
|
Zhang Y, Lin L, Liu L, Liu F, Maruyama A, Tian H, Chen X. Ionic-crosslinked polysaccharide/PEI/DNA nanoparticles for stabilized gene delivery. Carbohydr Polym 2018; 201:246-256. [DOI: 10.1016/j.carbpol.2018.08.063] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 01/01/2023]
|
42
|
Amphiphilic core-shell nanoparticles: Synthesis, biophysical properties, and applications. Colloids Surf B Biointerfaces 2018; 172:68-81. [DOI: 10.1016/j.colsurfb.2018.08.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/04/2018] [Accepted: 08/12/2018] [Indexed: 11/18/2022]
|
43
|
Zhao N, Woodle MC, Mixson AJ. Advances in delivery systems for doxorubicin. JOURNAL OF NANOMEDICINE & NANOTECHNOLOGY 2018; 9:519. [PMID: 30613436 PMCID: PMC6319900 DOI: 10.4172/2157-7439.1000519] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Doxorubicin is a widely used chemotherapy agent. Despite its utility, several adverse side effects, especially its irreversible cardiotoxicity and reversible nephrotoxicity, have prompted the development of liposomal carriers, many of which are FDA approved. Antitumor efficacies of approved liposome-Dox preparations can equal or exceed that of conventional doxorubicin. Because these liposomes carriers accumulate in solid tumor tissues via an enhanced permeation and retention (EPR) effect, these carriers have an improved safety profile. Nevertheless, a significant problem with the current drug delivery preparations of doxorubicin is a lack of efficacy toward tumors that exhibit multidrug resistance. In this review, we consider the development of drug delivery systems for doxorubicin, which improve the therapeutic window (efficacy and safety) and which address limitations of the current FDA-approved doxorubicin formulations.
Collapse
Affiliation(s)
- Na Zhao
- Department of Pathology, University Maryland School of Medicine, 10 S. Pine St., University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Martin C Woodle
- Aparna Biosciences Corp, 9119 Gaither Rd., Gaithersburg, MD 20877, United States
| | - A James Mixson
- Department of Pathology, University Maryland School of Medicine, 10 S. Pine St., University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| |
Collapse
|
44
|
Wang Z, Wei Y, Fang G, Hong D, An L, Jiao T, Shi Y, Zang A. Colorectal cancer combination therapy using drug and gene co-delivered, targeted poly(ethylene glycol)-ε-poly(caprolactone) nanocarriers. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:3171-3180. [PMID: 30288022 PMCID: PMC6161722 DOI: 10.2147/dddt.s175614] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Purpose Combination therapy is a promising strategy to treat cancer due to the synergistic effects. The drug and gene co-delivered systems attract more attention in the field of combination therapy. Materials and methods In the present research, poly(ethylene glycol)-ε-poly(caprolactone) block copolymer was used for the co-loading of 5-fluorouracil (5-FU) and gene. The physicochemical characteristics, in vitro and in vivo anticancer, and gene transfection efficiency were tested on colon cancer cells and tumor-bearing mice. Results 5-FU and gene co-loaded nanocarriers had a size of 145 nm. In vivo gene delivery results showed about 60% of gene-positive cells. Tumor volume of nanocarrier groups at day 21 was around 320 mm3, which is significantly smaller compared with free 5-FU group (852 mm3) and control group (1,059 mm3). The maximum 5-FU plasma concentration in nanocarrier groups (49 µg/mL) was significantly greater than free 5-FU (13 µg/mL). At 24 hours, drug level of nanocarrier groups was about 2.8 µg/mL compared with 0.02 µg/mL of free 5-FU. Conclusion The resulting nanocarriers co-loaded with the anticancer drugs and genes could be considered as a promising nanomedicine for colorectal cancer therapy.
Collapse
Affiliation(s)
- Zhiyu Wang
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding 071000, People's Republic of China,
| | - Yaning Wei
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding 071000, People's Republic of China,
| | - Guotao Fang
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding 071000, People's Republic of China,
| | - Dan Hong
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding 071000, People's Republic of China,
| | - Lin An
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding 071000, People's Republic of China,
| | - Ting Jiao
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding 071000, People's Republic of China,
| | - Yan Shi
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding 071000, People's Republic of China,
| | - Aimin Zang
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding 071000, People's Republic of China,
| |
Collapse
|
45
|
Wang F, Zhang L, Bai X, Cao X, Jiao X, Huang Y, Li Y, Qin Y, Wen Y. Stimuli-Responsive Nanocarrier for Co-delivery of MiR-31 and Doxorubicin To Suppress High MtEF4 Cancer. ACS APPLIED MATERIALS & INTERFACES 2018; 10:22767-22775. [PMID: 29897733 DOI: 10.1021/acsami.8b07698] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Gene interference-based therapeutics represent a fascinating challenge and show enormous potential for cancer treatment, in which microRNA is used to correct abnormal gene. On the basis of the above, we introduced microRNA-31 to bind to 3'-untranslated region of mtEF4, resulting in the downregulation of its messenger RNA and protein to trigger cancer cells apoptosis through mitochondria-related pathway. To achieve better therapeutic effect, a mesoporous silica nanoparticle-based controlled nanoplatform had been developed. This system was fabricated by conjugation of microRNA-31 onto doxorubicin-loaded mesoporous silica nanoparticles with a poly(ethyleneimine)/hyaluronic acid coating, and drug release was triggered by acidic environment of tumors. By feat of surface functionalization and tumor-specific conjugation to nanoparticles, our drug delivery system could promote intracellular accumulation of drugs via the active transport at tumor site. More importantly, microRNA-31 not only directly targeted to mtEF4 to promote cell's death, but had synergistic effects when used in combination with doxorubicin, and achieved excellent superadditive effects. As such, our research might provide new insights toward detecting high mtEF4 cancer and exploiting highly effective anticancer drugs.
Collapse
Affiliation(s)
- Fang Wang
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering , University of Science and Technology Beijing , Beijing 100083 , China
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics , Chinese Academy of Sciences , 15 Datun Road , Chaoyang District, Beijing 100101 , China
| | - Lingyun Zhang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics , Chinese Academy of Sciences , 15 Datun Road , Chaoyang District, Beijing 100101 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xiufeng Bai
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics , Chinese Academy of Sciences , 15 Datun Road , Chaoyang District, Beijing 100101 , China
| | - Xintao Cao
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics , Chinese Academy of Sciences , 15 Datun Road , Chaoyang District, Beijing 100101 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xiangyu Jiao
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering , University of Science and Technology Beijing , Beijing 100083 , China
| | - Yan Huang
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering , University of Science and Technology Beijing , Beijing 100083 , China
| | - Yansheng Li
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering , University of Science and Technology Beijing , Beijing 100083 , China
| | - Yan Qin
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics , Chinese Academy of Sciences , 15 Datun Road , Chaoyang District, Beijing 100101 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yongqiang Wen
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering , University of Science and Technology Beijing , Beijing 100083 , China
| |
Collapse
|
46
|
Yu J, Li W, Yu D. Atrial natriuretic peptide modified oleate adenosine prodrug lipid nanocarriers for the treatment of myocardial infarction: in vitro and in vivo evaluation. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:1697-1706. [PMID: 29928113 PMCID: PMC6001834 DOI: 10.2147/dddt.s166749] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Purpose Myocardial infarction is a major cause of mortality and heart failure worldwide. One of the most effective methods of this injury is direct delivery of cardioprotective drugs to ischemia–reperfusion (IR) myocardium. The aim of the present study was to fabricate an adenosine (Ade) prodrug-based, atrial natriuretic peptide (ANP)-modified nanosystem for the treatment of myocardial infarction. Materials and methods Oleate adenosine prodrug (Ade-OA) and ANP-distearoylphosphatidylethanolamine-polyethylene glycol were synthesized. ANP-modified Ade-loaded lipid nanocarriers (ANP Ade/LNCs) were then self-assembled by using solvent evaporation method. In vitro drug release in the presence of plasma was evaluated. In vivo inhibition effect on infarct size, tissue distribution, and pharmacokinetics were investigated in rats with ischemic myocardium after intravenous injection. Results In vivo inhibition effect on infarct size, tissue distribution, and pharmacokinetics studies in acute myocardial infarction (AMI) rats showed that ANP Ade/LNCs exhibited better efficiency than non-modified Ade/LNCs and free Ade in all respects. Conclusion These results indicated that the ANP Ade/LNCs can be used as a promising system for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Jianjun Yu
- Department of Emergency, Shandong Jining No 1 People's Hospital, Jining 272011, Shandong, People's Republic of China
| | - Wei Li
- Department of Outpatient, Shandong Jining No 1 People's Hospital, Jining 272011, Shandong, People's Republic of China
| | - Dongmei Yu
- Department of Public Health, Shandong Jining No 1 People's Hospital, Jining 272011, Shandong, People's Republic of China
| |
Collapse
|
47
|
Ebrahimian M, Taghavi S, Ghoreishi M, Sedghi S, Amel Farzad S, Ramezani M, Hashemi M. Evaluation of Efficiency of Modified Polypropylenimine (PPI) with Alkyl Chains as Non-viral Vectors Used in Co-delivery of Doxorubicin and TRAIL Plasmid. AAPS PharmSciTech 2018; 19:1029-1036. [PMID: 29116619 DOI: 10.1208/s12249-017-0913-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/23/2017] [Indexed: 11/30/2022] Open
Abstract
In this study, co-delivery system was achieved via plasmid encoding TNF related apoptosis inducing ligand (pTRAIL) and doxorubicin (DOX) using carrier based on polypropylenimine (PPI) modified with 10-bromodecanoic acid. Incorporation of alkylcarboxylate chain to PPIs (G4 and G5) could improve transfection efficiency via overcoming the plasma membrane barrier of the cells and decrease cytotoxicity of PPI. Characterization of fabricated NPs revealed that PPI G5 in which 30% of primary amines were substituted by alkyl carboxylate chain (PPI G5-Alkyl 30%) has higher drug loading as compared to the other formulations. PPI G5-Alkyl 30% indicated a decreased drug release may be due to alkyl chains on the surface of PPI, which serve as an additional hindrance for drug diffusion. In vitro cytotoxicity experiments demonstrated that co-delivery system induced apoptosis of tumor cells more efficiently than each of delivery system alone. Furthermore, these results revealed that our combined delivery platform of pTRAIL and DOX using Alkyl-modified PPI G5 can significantly improve the anti-tumor activity and this strategy might develop a new therapeutic window for cancer treatment.
Collapse
|
48
|
Zhang P, Wu J, Xiao F, Zhao D, Luan Y. Disulfide bond based polymeric drug carriers for cancer chemotherapy and relevant redox environments in mammals. Med Res Rev 2018; 38:1485-1510. [PMID: 29341223 DOI: 10.1002/med.21485] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 12/14/2017] [Accepted: 12/26/2017] [Indexed: 12/14/2022]
Abstract
Increasing numbers of disulfide linkage-employing polymeric drug carriers that utilize the reversible peculiarity of this unique covalent bond have been reported. The reduction-sensitive disulfide bond is usually employed as a linkage between hydrophilic and hydrophobic polymers, polymers and drugs, or as cross-linkers in polymeric drug carriers. These polymeric drug carriers are designed to exploit the significant redox potential difference between the reducing intracellular environments and relatively oxidizing extracellular spaces. In addition, these drug carriers can release a considerable amount of anticancer drug in response to the reducing environment when they reach tumor tissues, effectively improving antitumor efficacy. This review focuses on various disulfide linkage-employing polymeric drug carriers. Important redox thiol pools, including GSH/GSSG, Cys/CySS, and Trx1, as well as redox environments in mammals, will be introduced.
Collapse
Affiliation(s)
- Pei Zhang
- School of Pharmaceutical Science, Shandong University, Jinan, P. R. China
| | - Jilian Wu
- School of Pharmaceutical Science, Shandong University, Jinan, P. R. China
| | - Fengmei Xiao
- Binzhou Tuberculosis Prevention and Treatment Hospital, Binzhou, P. R. China
| | - Dujuan Zhao
- School of Pharmaceutical Science, Shandong University, Jinan, P. R. China
| | - Yuxia Luan
- School of Pharmaceutical Science, Shandong University, Jinan, P. R. China
| |
Collapse
|
49
|
Yang S, Ren Z, Chen M, Wang Y, You B, Chen W, Qu C, Liu Y, Zhang X. Nucleolin-Targeting AS1411-Aptamer-Modified Graft Polymeric Micelle with Dual pH/Redox Sensitivity Designed To Enhance Tumor Therapy through the Codelivery of Doxorubicin/TLR4 siRNA and Suppression of Invasion. Mol Pharm 2018; 15:314-325. [PMID: 29250957 DOI: 10.1021/acs.molpharmaceut.7b01093] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In this article, a novel graft polymeric micelle with targeting function ground on aptamer AS1411 was synthesized. The micelle was based on chitosan-ss-polyethylenimine-urocanic acid (CPU) with dual pH/redox sensitivity and targeting effects. This micelle was produced for codelivering Toll-like receptor 4 siRNA (TLR4-siRNA) and doxorubicin (Dox). In vitro investigation revealed the sustained gene and drug release from Dox-siRNA-loaded micelles under physiological conditions, and this codelivery nanosystem exhibited high dual pH/redox sensitivity, rapid intracellular drug release, and improved cytotoxicity against A549 cells in vitro. Furthermore, the micelles loaded with TLR4-siRNA inhibited the migration and invasion of A549. Excellent tumor penetrating efficacy was also noted in the A549 tumor spheroids and solid tumor slices. In vivo, multiple results demonstrated the excellent tumor-targeting ability of AS1411-chitosan-ss-polyethylenimine-urocanic acid (ACPU) micelle in tumor tissues. The micelles exhibited excellent antitumor efficacy and low toxicity in the systemic circulation in lung-tumor-bearing BALB/c mice. These results conclusively demonstrated the great potential of the new graft copolymer micelle with targeting function for the targeted and efficient codelivery of chemotherapeutic drugs and genes in cancer treatment.
Collapse
Affiliation(s)
- Shudi Yang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University , 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Zhaoxiang Ren
- Jiangsu Key Laboratory for Translational Research and Therapy for Neuropsycho-disorders & Department of Pharmacology College of Pharmaceutical Sciences, Soochow University , Suzhou 215123, P. R. China
| | - Mengtian Chen
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University , 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Ying Wang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University , 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Bengang You
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University , 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Weiliang Chen
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University , 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Chenxi Qu
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University , 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Yang Liu
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University , 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Xuenong Zhang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University , 199 Ren'ai Road, Suzhou 215123, P. R. China
| |
Collapse
|
50
|
Song Z, Liu T, Chen T. Overcoming blood–brain barrier by HER2-targeted nanosystem to suppress glioblastoma cell migration, invasion and tumor growth. J Mater Chem B 2018; 6:568-579. [PMID: 32254485 DOI: 10.1039/c7tb02677c] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we synthesize an HER2 antibody-conjugated selenium nanoparticle platform can efficiently deliver both therapeutic agents and diagnostic agents (superparamagnetic iron oxide nanoparticles) across the BBB into the tumor tissues and enhances their effects on brain tumor treatment and MR imaging.
Collapse
Affiliation(s)
- Zhenhuan Song
- The First Affiliated Hospital, and Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Ting Liu
- The First Affiliated Hospital, and Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Tianfeng Chen
- The First Affiliated Hospital, and Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| |
Collapse
|