1
|
Peng X, Li L, Peng Y, Zhou G, An Z. Bioengineering and omics approaches for Type 1 diabetes practical research: advancements and constraints. Ann Med 2025; 57:2322047. [PMID: 39704022 DOI: 10.1080/07853890.2024.2322047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 12/21/2024] Open
Abstract
Insulin dependency arises from autoimmunity that targets the β cells of the pancreas, resulting in Type 1 diabetes (T1D). Despite the fact that T1D patients require insulin for survival, insulin does not provide a cure for this disease or prevent its complications. Despite extensive genetic, molecular, and cellular research on T1D over the years, the translation of this understanding into effective clinical therapies continues to pose a significant obstacle. It is therefore difficult to develop effective clinical treatment strategies without a thorough understanding of disease pathophysiology. Pancreatic tissue bioengineering models of human T1D offer a valuable approach to examining and controlling islet function while tackling various facets of the condition. And in recent years, due to advances in high-throughput omics analysis, the genotypic and molecular profiles of T1D have become finer tuned. The present article will examine recent progress in these areas, along with their utilization and constraints in the realm of T1D.
Collapse
Affiliation(s)
- Xi Peng
- Department of Endocrinology and Metabolism, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ling Li
- Department of Endocrinology and Metabolism, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yihua Peng
- Department of Endocrinology and Metabolism, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Guangju Zhou
- Department of Endocrinology and Metabolism, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Zhenmei An
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Campo F, Neroni A, Pignatelli C, Pellegrini S, Marzinotto I, Valla L, Manenti F, Policardi M, Lampasona V, Piemonti L, Citro A. Bioengineering of a human iPSC-derived vascularized endocrine pancreas for type 1 diabetes. Cell Rep Med 2025; 6:101938. [PMID: 39922198 DOI: 10.1016/j.xcrm.2025.101938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 11/18/2024] [Accepted: 01/13/2025] [Indexed: 02/10/2025]
Abstract
Intrahepatic islet transplantation in patients with type 1 diabetes is limited by donor availability and lack of engraftment. Alternative β cell sources and transplantation sites are needed. We demonstrate the feasibility to repurpose a decellularized lung as an endocrine pancreas for β cell replacement. We bioengineer an induced pluripotent stem cell (iPSC)-based version, fabricating a human iPSC-based vascularized endocrine pancreas (iVEP) using iPSC-derived β cells (iPSC-derived islets [SC-islets]) and endothelial cells (iECs). SC-islets and iECs are aggregated into vascularized iβ spheroids (ViβeSs), and over 7 days of culture, spheroids integrate into the bioengineered vasculature, generating a functional, perfusable human endocrine organ. In vitro, the vascularized extracellular matrix (ECM) sustained SC-islet engraftment and survival with a significantly preserved β cell mass and a physiologic insulin release. In vivo, iVEP restores normoglycemia in diabetic NSG mice. We report a human iVEP providing a controlled in vitro insulin-secreting phenotype and in vivo function.
Collapse
Affiliation(s)
- Francesco Campo
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy; Università Vita-Salute San Raffaele, Milan, Italy
| | - Alessia Neroni
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy; Università Vita-Salute San Raffaele, Milan, Italy
| | - Cataldo Pignatelli
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Pellegrini
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ilaria Marzinotto
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Libera Valla
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy; Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany; Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleißheim, Germany
| | - Fabio Manenti
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Martina Policardi
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Vito Lampasona
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorenzo Piemonti
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy; Università Vita-Salute San Raffaele, Milan, Italy
| | - Antonio Citro
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
3
|
Santos da Silva T, da Silva-Júnior LN, Horvath-Pereira BDO, Valbão MCM, Garcia MHH, Lopes JB, Reis CHB, Barreto RDSN, Buchaim DV, Buchaim RL, Miglino MA. The Role of the Pancreatic Extracellular Matrix as a Tissue Engineering Support for the Bioartificial Pancreas. Biomimetics (Basel) 2024; 9:598. [PMID: 39451804 PMCID: PMC11505355 DOI: 10.3390/biomimetics9100598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/22/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic condition primarily managed with insulin replacement, leading to significant treatment costs. Complications include vasculopathy, cardiovascular diseases, nephropathy, neuropathy, and reticulopathy. Pancreatic islet transplantation is an option but its success does not depend solely on adequate vascularization. The main limitations to clinical islet transplantation are the scarcity of human pancreas, the need for immunosuppression, and the inadequacy of the islet isolation process. Despite extensive research, T1DM remains a major global health issue. In 2015, diabetes affected approximately 415 million people, with projected expenditures of USD 1.7 trillion by 2030. Pancreas transplantation faces challenges due to limited organ availability and complex vascularization. T1DM is caused by the autoimmune destruction of insulin-producing pancreatic cells. Advances in biomaterials, particularly the extracellular matrix (ECM), show promise in tissue reconstruction and transplantation, offering structural and regulatory functions critical for cell migration, differentiation, and adhesion. Tissue engineering aims to create bioartificial pancreases integrating insulin-producing cells and suitable frameworks. This involves decellularization and recellularization techniques to develop biological scaffolds. The challenges include replicating the pancreas's intricate architecture and maintaining cell viability and functionality. Emerging technologies, such as 3D printing and advanced biomaterials, have shown potential in constructing bioartificial organs. ECM components, including collagens and glycoproteins, play essential roles in cell adhesion, migration, and differentiation. Clinical applications focus on developing functional scaffolds for transplantation, with ongoing research addressing immunological responses and long-term efficacy. Pancreatic bioengineering represents a promising avenue for T1DM treatment, requiring further research to ensure successful implementation.
Collapse
Affiliation(s)
- Thamires Santos da Silva
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
| | - Leandro Norberto da Silva-Júnior
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
- Postgraduate Department, University of Marília (UNIMAR), Marília 17525-902, Brazil; (M.C.M.V.); (M.H.H.G.); (J.B.L.)
| | - Bianca de Oliveira Horvath-Pereira
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
| | - Maria Carolina Miglino Valbão
- Postgraduate Department, University of Marília (UNIMAR), Marília 17525-902, Brazil; (M.C.M.V.); (M.H.H.G.); (J.B.L.)
| | | | - Juliana Barbosa Lopes
- Postgraduate Department, University of Marília (UNIMAR), Marília 17525-902, Brazil; (M.C.M.V.); (M.H.H.G.); (J.B.L.)
| | - Carlos Henrique Bertoni Reis
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil;
- UNIMAR Beneficent Hospital (HBU), Medical School, University of Marilia (UNIMAR), Marilia 17525-160, Brazil
| | - Rodrigo da Silva Nunes Barreto
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
- Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal 14884-900, Brazil
| | - Daniela Vieira Buchaim
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil;
- Medical School, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil
| | - Rogerio Leone Buchaim
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of Sao Paulo, Bauru 17012-901, Brazil
| | - Maria Angelica Miglino
- Postgraduate Department, University of Marília (UNIMAR), Marília 17525-902, Brazil; (M.C.M.V.); (M.H.H.G.); (J.B.L.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil;
- Postgraduate Program in Animal Health, Production and Environment, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
| |
Collapse
|
4
|
Zacharovová K, Berková Z, Girman P, Saudek F. Adipose tissue-derived mesenchymal stem cells promote the vascularization of pancreatic islets transplanted into decellularized pancreatic skeletons. Transpl Immunol 2024; 86:102106. [PMID: 39128811 DOI: 10.1016/j.trim.2024.102106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
We have recently developed a model of pancreatic islet transplantation into a decellularized pancreatic tail in rats. As the pancreatic skeletons completely lack endothelial cells, we investigated the effect of co-transplantation of mesenchymal stem cells and endothelial cells to promote revascularization. Decellularized matrix of the pancreatic tail was prepared by perfusion with Triton X-100, sodium dodecyl sulfate and DNase solution. Isolated pancreatic islets were infused into the skeletons via the splenic vein either alone, together with adipose tissue-derived mesenchymal stem cells (adMSCs), or with a combination of adMSCs and rat endothelial cells (rat ECs). Repopulated skeletons were transplanted into the subcutaneous tissue and explanted 9 days later for histological examination. Possible immunomodulatory effects of rat adMSCs on the survival of highly immunogenic green protein-expressing human ECs were also tested after their transplantation beneath the renal capsule. The immunomodulatory effects of adMSCs were also tested in vitro using the Invitrogen Click-iT EdU system. In the presence of adMSCs, the proliferation of splenocytes as a response to phytohaemagglutinin A was reduced by 47% (the stimulation index decreased from 1.7 to 0.9, P = 0.008) and the reaction to human ECs was reduced by 58% (the stimulation index decreased from 1.6 to 0.7, P = 0.03). Histological examination of the explanted skeletons seeded only with the islets showed their partial disintegration and only a rare presence of CD31-positive cells. However, skeletons seeded with a combination of islets and adMSCs showed preserved islet morphology and rich vascularity. In contrast, the addition of syngeneic rat ECs resulted in islet-cell necrosis with only few endothelial cells present. Live green fluorescence-positive endothelial cells transplanted either alone or with adMSCs were not detected beneath the renal capsule. Though the adMSCs significantly reduced in vitro proliferation stimulated by either phytohaemagglutinin A or by xenogeneic human ECs, in vivo co-transplanted adMSCs did not suppress the post-transplant immune response to xenogeneic ECs. Even in the syngeneic model, ECs co-transplantation did not lead to sufficient vascularization in the transplant area. In contrast, islet co-transplantation together with adMSCs successfully promoted the revascularization of extracellular matrix in the subcutaneous tissue.
Collapse
Affiliation(s)
- Klára Zacharovová
- Laboratory of Pancreatic Islets, Experimental Medicine Center, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 14021 Prague, Czech Republic.
| | - Zuzana Berková
- Laboratory of Pancreatic Islets, Experimental Medicine Center, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 14021 Prague, Czech Republic.
| | - Peter Girman
- Laboratory of Pancreatic Islets, Experimental Medicine Center, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 14021 Prague, Czech Republic; Diabetes Center, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 14021 Prague, Czech Republic.
| | - František Saudek
- Laboratory of Pancreatic Islets, Experimental Medicine Center, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 14021 Prague, Czech Republic; Diabetes Center, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 14021 Prague, Czech Republic.
| |
Collapse
|
5
|
Berger C, Glaser M, Ziegler AL, Neukel V, Walz F, Zdzieblo D. Generation of a pancreas derived hydrogel for the culture of hiPSC derived pancreatic endocrine cells. Sci Rep 2024; 14:20653. [PMID: 39232042 PMCID: PMC11375036 DOI: 10.1038/s41598-024-67327-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 07/10/2024] [Indexed: 09/06/2024] Open
Abstract
Stem cell-derived β-cells (SC-BCs) represent a potential source for curing diabetes. To date, in vitro generated SC-BCs display an immature phenotype and lack important features in comparison to their bona-fide counterparts. Transplantation into a living animal promotes SC-BCs maturation, indicating that components of the in vivo microenvironment trigger final SC-BCs development. Here, we investigated whether cues of the pancreas specific extracellular matrix (ECM) can improve the differentiation of human induced pluripotent stem cells (hiPSCs) towards β-cells in vitro. To this aim, a pancreas specific ECM (PanMa) hydrogel was generated from decellularized porcine pancreas and its effect on the differentiation of hiPSC-derived pancreatic hormone expressing cells (HECs) was tested. The hydrogel solidified upon neutralization at 37 °C with gelation kinetics similar to Matrigel. Cytocompatibility of the PanMa hydrogel was demonstrated for a culture duration of 21 days. Encapsulation and culture of HECs in the PanMa hydrogel over 7 days resulted in a stable gene and protein expression of most β-cell markers, but did not improve β-cell identity. In conclusion, the study describes the production of a PanMa hydrogel, which provides the basis for the development of ECM hydrogels that are more adapted to the demands of SC-BCs.
Collapse
Affiliation(s)
- Constantin Berger
- Chair Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany.
| | - Markus Glaser
- Chair Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Anna-Lena Ziegler
- Chair Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Valentina Neukel
- Chair Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Fabiola Walz
- Chair Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Daniela Zdzieblo
- Chair Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
- Project Center for Stem Cell Process Engineering, Fraunhofer Institute for Silicate Research, Würzburg, Germany
- Translational Center Regenerative Therapies, Fraunhofer Institute for Silicate Research, Würzburg, Germany
| |
Collapse
|
6
|
Stoian A, Adil A, Biniazan F, Haykal S. Two Decades of Advances and Limitations in Organ Recellularization. Curr Issues Mol Biol 2024; 46:9179-9214. [PMID: 39194760 DOI: 10.3390/cimb46080543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024] Open
Abstract
The recellularization of tissues after decellularization is a relatively new technology in the field of tissue engineering (TE). Decellularization involves removing cells from a tissue or organ, leaving only the extracellular matrix (ECM). This can then be recellularized with new cells to create functional tissues or organs. The first significant mention of recellularization in decellularized tissues can be traced to research conducted in the early 2000s. One of the landmark studies in this field was published in 2008 by Ott, where researchers demonstrated the recellularization of a decellularized rat heart with cardiac cells, resulting in a functional organ capable of contraction. Since then, other important studies have been published. These studies paved the way for the widespread application of recellularization in TE, demonstrating the potential of decellularized ECM to serve as a scaffold for regenerating functional tissues. Thus, although the concept of recellularization was initially explored in previous decades, these studies from the 2000s marked a major turning point in the development and practical application of the technology for the recellularization of decellularized tissues. The article reviews the historical advances and limitations in organ recellularization in TE over the last two decades.
Collapse
Affiliation(s)
- Alina Stoian
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Aisha Adil
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1, Canada
| | - Felor Biniazan
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Siba Haykal
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Reconstructive Oncology, Division of Plastic and Reconstructive Surgery, Smilow Cancer Hospital, Yale, New Haven, CT 06519, USA
| |
Collapse
|
7
|
Mantovani M, Damaceno-Rodrigues N, Ronatty G, Segovia R, Pantanali C, Rocha-Santos V, Caldini E, Sogayar M. Which detergent is most suitable for the generation of an acellular pancreas bioscaffold? Braz J Med Biol Res 2024; 57:e13107. [PMID: 39166604 PMCID: PMC11338550 DOI: 10.1590/1414-431x2024e13107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/14/2024] [Indexed: 08/23/2024] Open
Abstract
Pancreatic bioengineering is a potential therapeutic alternative for type 1 diabetes (T1D) in which the pancreas is decellularized, generating an acellular extracellular matrix (ECM) scaffold, which may be reconstituted by recellularization with several cell types to generate a bioartificial pancreas. No consensus for an ideal pancreatic decellularization protocol exists. Therefore, we aimed to determine the best-suited detergent by comparing sodium dodecyl sulfate (SDS), sodium deoxycholate (SDC), and Triton X-100 at different concentrations. Murine (n=12) and human pancreatic tissue from adult brain-dead donors (n=06) was harvested in accordance with Institutional Ethical Committee of the University of São Paulo Medical School (CEP-FMUSP) and decellularized under different detergent conditions. DNA content, histological analysis, and transmission and scanning electron microscopy were assessed. The most adequate condition for pancreatic decellularization was found to be 4% SDC, displaying: a) effective cell removal; b) maintenance of extracellular matrix architecture; c) proteoglycans, glycosaminoglycans (GAGs), and collagen fibers preservation. This protocol was extrapolated and successfully applied to human pancreas decellularization. The acellular ECM scaffold generated was recelullarized using human pancreatic islets primary clusters. 3D clusters were generated using 0.5×104 cells and then placed on top of acellular pancreatic slices (25 and 50 μm thickness). These clusters tended to connect to the acellular matrix, with visible cells located in the periphery of the clusters interacting with the ECM network of the bioscaffold slices and continued to produce insulin. This study provided evidence on how to improve and accelerate the pancreas decellularization process, while maintaining its architecture and extracellular structure, aiming at pancreatic bioengineering.
Collapse
Affiliation(s)
- M.C. Mantovani
- Grupo NUCEL de Terapia Celular e Molecular, Faculdade de Medicina, Universidade de São Paulo, São Paulo SP, Brasil
- Divisão Técnica de Apoio ao Ensino, Pesquisa e Inovação (DTAPEPI) - Centro de Biotecnologia e Inovação, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - N.R. Damaceno-Rodrigues
- Departamento de Patologia, Laboratório de Biologia Celular, LIM 59, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - G.T.S. Ronatty
- Grupo NUCEL de Terapia Celular e Molecular, Faculdade de Medicina, Universidade de São Paulo, São Paulo SP, Brasil
| | - R.S. Segovia
- Grupo NUCEL de Terapia Celular e Molecular, Faculdade de Medicina, Universidade de São Paulo, São Paulo SP, Brasil
| | - C.A. Pantanali
- Departamento de Gastroenterologia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - V. Rocha-Santos
- Departamento de Gastroenterologia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - E.G. Caldini
- Departamento de Patologia, Laboratório de Biologia Celular, LIM 59, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - M.C. Sogayar
- Grupo NUCEL de Terapia Celular e Molecular, Faculdade de Medicina, Universidade de São Paulo, São Paulo SP, Brasil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
8
|
Dehghani S, Aghaee Z, Soleymani S, Tafazoli M, Ghabool Y, Tavassoli A. An overview of the production of tissue extracellular matrix and decellularization process. Cell Tissue Bank 2024; 25:369-387. [PMID: 37812368 DOI: 10.1007/s10561-023-10112-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/09/2023] [Indexed: 10/10/2023]
Abstract
Thousands of patients need an organ transplant yearly, while only a tiny percentage have this chance to receive a tissue/organ transplant. Nowadays, decellularized animal tissue is one of the most widely used methods to produce engineered scaffolds for transplantation. Decellularization is defined as physically or chemically removing cellular components from tissues while retaining structural and functional extracellular matrix (ECM) components and creating an ECM-derived scaffold. Then, decellularized scaffolds could be reseeded with different cells to fabricate an autologous graft. Effective decellularization methods preserve ECM structure and bioactivity through the application of the agents and techniques used throughout the process. The most valuable agents for the decellularization process depend on biological properties, cellular density, and the thickness of the desired tissue. ECM-derived scaffolds from various mammalian tissues have been recently used in research and preclinical applications in tissue engineering. Many studies have shown that decellularized ECM-derived scaffolds could be obtained from tissues and organs such as the liver, cartilage, bone, kidney, lung, and skin. This review addresses the significance of ECM in organisms and various decellularization agents utilized to prepare the ECM. Also, we describe the current knowledge of the decellularization of different tissues and their applications.
Collapse
Affiliation(s)
- Shima Dehghani
- Department of Biology, Kavian Institute of Higher Education, Mashhad, Iran
| | - Zahra Aghaee
- Department of Biology, Kavian Institute of Higher Education, Mashhad, Iran
| | - Safoura Soleymani
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad, 9177948974, Iran
| | - Maryam Tafazoli
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad, 9177948974, Iran
| | - Yasin Ghabool
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Amin Tavassoli
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad, 9177948974, Iran.
| |
Collapse
|
9
|
Aodi J, Ying L, Chengyang S, Hongfeng Z. Acellular dermal matrix in urethral reconstruction. Front Pediatr 2024; 12:1342906. [PMID: 38405593 PMCID: PMC10884266 DOI: 10.3389/fped.2024.1342906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/30/2024] [Indexed: 02/27/2024] Open
Abstract
The management of severe urethral stricture has always posed a formidable challenge. Traditional approaches such as skin flaps, mucosal grafts, and urethroplasty may not be suitable for lengthy and intricate strictures. In the past two decades, tissue engineering solutions utilizing acellular dermal matrix have emerged as potential alternatives. Acellular dermal matrix (ADM) is a non-immunogenic biological collagen scaffold that has demonstrated its ability to induce layer-by-layer tissue regeneration. The application of ADM in urethral reconstruction through tissue engineering has become a practical endeavor. This article provides an overview of the preparation, characteristics, advantages, and disadvantages of ADM along with its utilization in urethral reconstruction via tissue engineering.
Collapse
Affiliation(s)
| | | | | | - Zhai Hongfeng
- Department of Plastic and Aesthetic Surgery, People’s Hospital of Henan University, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, China
| |
Collapse
|
10
|
Li H, He W, Feng Q, Chen J, Xu X, Lv C, Zhu C, Dong H. Engineering superstable islets-laden chitosan microgels with carboxymethyl cellulose coating for long-term blood glucose regulation in vivo. Carbohydr Polym 2024; 323:121425. [PMID: 37940297 DOI: 10.1016/j.carbpol.2023.121425] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/07/2023] [Accepted: 09/19/2023] [Indexed: 11/10/2023]
Abstract
Islet transplantation to restore endogenous insulin secretion is a promising therapy for type 1 diabetes in clinic. However, host immune rejection seriously limits the survival of transplanted islets. Despite of the various encapsulation strategies and materials developed so far to provide immune isolation for transplanted islets, long-term blood glucose regulation is still difficult due to the inherent defects of the encapsulation materials. Herein, a novel islet-encapsulation composite material with low immunogenicity, good biocompatibility and excellent stability is reported. Specifically, chitosan (CS) microgels (diameter: ∼302 μm) are prepared via Michael addition reaction between maleimide grafted chitosan (CS-Mal) and thiol grafted chitosan (CS-NAC) in droplet-based microfluidic device, and then zwitterionic surface layer is constructed on CS microgel surface by covalent binding between maleimide groups on CS and thiol groups on thiol modified carboxymethyl cellulose (CMC-SH). The as-formed carboxymethyl cellulose coated chitosan (CS@CMC) microgels show not only long-term stability in vivo owing to the non-biodegradability of CMC, but also fantastic anti-adsorption and antifibrosis because of the stable zwitterionic surface layer. As a result, islets encapsulated in the CS@CMC microgels exhibit high viability and good insulin secretion function in vivo, and long-term blood glucose regulation is achieved for 180 days in diabetic mice post-transplantation.
Collapse
Affiliation(s)
- Haofei Li
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Weijun He
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Qi Feng
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Junlin Chen
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Xinbin Xu
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Chuhan Lv
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Changchun Zhu
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Hua Dong
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
11
|
Dhandapani V, Vermette P. Decellularized bladder as scaffold to support proliferation and functionality of insulin-secreting pancreatic cells. J Biomed Mater Res B Appl Biomater 2023; 111:1890-1902. [PMID: 37306142 DOI: 10.1002/jbm.b.35292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/07/2023] [Accepted: 05/31/2023] [Indexed: 06/13/2023]
Abstract
Loss in the number or function of insulin-producing β-cells in pancreatic islets has been associated with diabetes mellitus. Although islet transplantation can be an alternative treatment, complications such as apoptosis, ischaemia and loss of viability have been reported. The use of decellularized organs as scaffolds in tissue engineering is of interest owing to the unique ultrastructure and composition of the extracellular matrix (ECM) believed to act on tissue regeneration. In this study, a cell culture system has been designed to study the effect of decellularized porcine bladder pieces on INS-1 cells, a cell line secreting insulin in response to glucose stimulation. Porcine bladders were decellularized using two techniques: a detergent-containing and a detergent-free methods. The resulting ECMs were characterized for the removal of both cells and dsDNA. INS-1 cells were not viable on ECM produced using detergent (i.e., sodium dodecyl sulfate). INS-1 cells were visualized following 7 days of culture on detergent-free decellularized bladders using a cell viability and metabolism assay (MTT) and cell proliferation quantified (CyQUANT™ NF Cell Proliferation Assay). Further, glucose-stimulated insulin secretion and immunostaining confirmed that cells were functional in response to glucose stimulation, as well as they expressed insulin and interacted with the detergent-free produced ECM, respectively.
Collapse
Affiliation(s)
- Vignesh Dhandapani
- Laboratoire de bio-ingénierie et de biophysique de l'Université de Sherbrooke, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, Sherbrooke, Canada
- Centre de recherche du CHUS, Faculté de médecine et des sciences de la santé, Sherbrooke, Canada
| | - Patrick Vermette
- Laboratoire de bio-ingénierie et de biophysique de l'Université de Sherbrooke, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, Sherbrooke, Canada
- Centre de recherche du CHUS, Faculté de médecine et des sciences de la santé, Sherbrooke, Canada
| |
Collapse
|
12
|
Meșină M, Mîndrilă I, Meșină-Botoran MI, Mîndrilă LA, Pirici I. Partial Decellularization as a Method to Improve the Biocompatibility of Heart Tissue Implants. CURRENT HEALTH SCIENCES JOURNAL 2023; 49:351-361. [PMID: 38314222 PMCID: PMC10832876 DOI: 10.12865/chsj.49.03.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/20/2023] [Indexed: 02/06/2024]
Abstract
Increasing the biocompatibility of some biological implants through tissue engineering is important for regenerative medicine, which recently has a rapid development dynamic. In this study we used tree different washing protocols, respectively with Sodium Lauryl Sulfate (SLS), with Sodium Deoxycholate (SD), and with saline (Sa) to achieve partial decellularization of 2-3mm thick cross-sections through Wistar rat hearts. Pieces of the heart tissue were either histologically analyzed to evaluate the decellularization processes or implanted for 5 days on 9-day-old chick embryo chorioallantoic membrane (CAM) and then histologically analyzed to evaluate CAM-implant interactions. Histological analysis of SLS or SD washed tissues showed different microscopic features of the decellularization processes, SLS-washing leading to the formation of a completely decellularized ECM layer at the periphery of the heart tissue. Both detergents induced changes in the spatial arrangement of collagen fibers of the heart tissue. Histological analysis of the CAM implants shoved that the peripheral zone with complete decellularization induced by SLS increased the biocompatibility of heart tissue implants by favoring neovascularization and cell migration. These results suggested that the biocompatibility of the heart tissue implant can be modulated by the appropriate use of a SLS-based decellularization protocol.
Collapse
Affiliation(s)
- Mihai Meșină
- 1Doctoral School, University of Medicine and Pharmacy of Craiova
| | - Ion Mîndrilă
- 2Department of Anatomy, Faculty of Medicine, University of Medicine and Pharmacy of Craiova
| | | | | | - Ionica Pirici
- 2Department of Anatomy, Faculty of Medicine, University of Medicine and Pharmacy of Craiova
| |
Collapse
|
13
|
Glorieux L, Vandooren L, Derclaye S, Pyr Dit Ruys S, Oncina-Gil P, Salowka A, Herinckx G, Aajja E, Lemoine P, Spourquet C, Lefort H, Henriet P, Tyteca D, Spagnoli FM, Alsteens D, Vertommen D, Pierreux CE. In-Depth Analysis of the Pancreatic Extracellular Matrix during Development for Next-Generation Tissue Engineering. Int J Mol Sci 2023; 24:10268. [PMID: 37373416 DOI: 10.3390/ijms241210268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
The pancreas is a complex organ consisting of differentiated cells and extracellular matrix (ECM) organized adequately to enable its endocrine and exocrine functions. Although much is known about the intrinsic factors that control pancreas development, very few studies have focused on the microenvironment surrounding pancreatic cells. This environment is composed of various cells and ECM components, which play a critical role in maintaining tissue organization and homeostasis. In this study, we applied mass spectrometry to identify and quantify the ECM composition of the developing pancreas at the embryonic (E) day 14.5 and postnatal (P) day 1 stages. Our proteomic analysis identified 160 ECM proteins that displayed a dynamic expression profile with a shift in collagens and proteoglycans. Furthermore, we used atomic force microscopy to measure the biomechanical properties and found that the pancreatic ECM was soft (≤400 Pa) with no significant change during pancreas maturation. Lastly, we optimized a decellularization protocol for P1 pancreatic tissues, incorporating a preliminary crosslinking step, which effectively preserved the 3D organization of the ECM. The resulting ECM scaffold proved suitable for recellularization studies. Our findings provide insights into the composition and biomechanics of the pancreatic embryonic and perinatal ECM, offering a foundation for future studies investigating the dynamic interactions between the ECM and pancreatic cells.
Collapse
Affiliation(s)
- Laura Glorieux
- Cell Biology Unit, de Duve Institute, UCLouvain, 1200 Brussels, Belgium
| | - Laura Vandooren
- Cell Biology Unit, de Duve Institute, UCLouvain, 1200 Brussels, Belgium
| | - Sylvie Derclaye
- Nanobiophysics Lab, Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium
| | | | - Paloma Oncina-Gil
- Nanobiophysics Lab, Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium
| | - Anna Salowka
- Centre for Gene Therapy and Regenerative Medicine, King's College London, Great Maze Pond, London SE1 9RT, UK
| | - Gaëtan Herinckx
- de Duve Institute and MASSPROT Platform, UCLouvain, 1200 Brussels, Belgium
| | - Elias Aajja
- Cell Biology Unit, de Duve Institute, UCLouvain, 1200 Brussels, Belgium
| | - Pascale Lemoine
- Cell Biology Unit, de Duve Institute, UCLouvain, 1200 Brussels, Belgium
| | | | - Hélène Lefort
- Cell Biology Unit, de Duve Institute, UCLouvain, 1200 Brussels, Belgium
| | - Patrick Henriet
- Cell Biology Unit, de Duve Institute, UCLouvain, 1200 Brussels, Belgium
| | - Donatienne Tyteca
- Cell Biology Unit, de Duve Institute, UCLouvain, 1200 Brussels, Belgium
| | - Francesca M Spagnoli
- Centre for Gene Therapy and Regenerative Medicine, King's College London, Great Maze Pond, London SE1 9RT, UK
| | - David Alsteens
- Nanobiophysics Lab, Louvain Institute of Biomolecular Science and Technology, UCLouvain, 1348 Louvain-la-Neuve, Belgium
| | - Didier Vertommen
- de Duve Institute and MASSPROT Platform, UCLouvain, 1200 Brussels, Belgium
| | | |
Collapse
|
14
|
Uzarski JS, Beck EC, Russell EE, Vanderslice EJ, Holzner ML, Wadhera V, Adamson D, Shapiro R, Davidow DS, Ross JJ, Florman SS. Sustained in vivo perfusion of a re-endothelialized tissue engineered kidney graft in a human-scale animal model. Front Bioeng Biotechnol 2023; 11:1184408. [PMID: 37388767 PMCID: PMC10307518 DOI: 10.3389/fbioe.2023.1184408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/25/2023] [Indexed: 07/01/2023] Open
Abstract
Introduction: Despite progress in whole-organ decellularization and recellularization, maintaining long-term perfusion in vivo remains a hurdle to realizing clinical translation of bioengineered kidney grafts. The objectives for the present study were to define a threshold glucose consumption rate (GCR) that could be used to predict in vivo graft hemocompatibility and utilize this threshold to assess the in vivo performance of clinically relevant decellularized porcine kidney grafts recellularized with human umbilical vein endothelial cells (HUVECs). Materials and methods: Twenty-two porcine kidneys were decellularized and 19 were re-endothelialized using HUVECs. Functional revascularization of control decellularized (n = 3) and re-endothelialized porcine kidneys (n = 16) was tested using an ex vivo porcine blood flow model to define an appropriate metabolic glucose consumption rate (GCR) threshold above which would sustain patent blood flow. Re-endothelialized grafts (n = 9) were then transplanted into immunosuppressed pigs with perfusion measured using angiography post-implant and on days 3 and 7 with 3 native kidneys used as controls. Patent recellularized kidney grafts underwent histological analysis following explant. Results: The glucose consumption rate of recellularized kidney grafts reached a peak of 39.9 ± 9.7 mg/h at 21 ± 5 days, at which point the grafts were determined to have sufficient histological vascular coverage with endothelial cells. Based on these results, a minimum glucose consumption rate threshold of 20 mg/h was set. The revascularized kidneys had a mean perfusion percentage of 87.7% ± 10.3%, 80.9% ± 33.1%, and 68.5% ± 38.6% post-reperfusion on Days 0, 3 and 7, respectively. The 3 native kidneys had a mean post-perfusion percentage of 98.4% ± 1.6%. These results were not statistically significant. Conclusion: This study is the first to demonstrate that human-scale bioengineered porcine kidney grafts developed via perfusion decellularization and subsequent re-endothelialization using HUVEC can maintain patency with consistent blood flow for up to 7 days in vivo. These results lay the foundation for future research to produce human-scale recellularized kidney grafts for transplantation.
Collapse
Affiliation(s)
| | - Emily C. Beck
- Miromatrix Medical Inc., Eden Prairie, MN, United States
| | | | | | - Matthew L. Holzner
- Icahn School of Medicine at Mount Sinai, Recanati/Miller Transplantation Institute, New York, NY, United States
| | - Vikram Wadhera
- Icahn School of Medicine at Mount Sinai, Recanati/Miller Transplantation Institute, New York, NY, United States
| | - Dylan Adamson
- Icahn School of Medicine at Mount Sinai, Recanati/Miller Transplantation Institute, New York, NY, United States
| | - Ron Shapiro
- Icahn School of Medicine at Mount Sinai, Recanati/Miller Transplantation Institute, New York, NY, United States
| | | | - Jeff J. Ross
- Miromatrix Medical Inc., Eden Prairie, MN, United States
| | - Sander S. Florman
- Icahn School of Medicine at Mount Sinai, Recanati/Miller Transplantation Institute, New York, NY, United States
| |
Collapse
|
15
|
The differentiation of human induced pluripotent stem cells into hematopoietic stem cells on 3D bone scaffold in a dynamic culture system. Tissue Cell 2023; 82:102044. [PMID: 36905860 DOI: 10.1016/j.tice.2023.102044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023]
Abstract
Hematopoietic stem cell transplantation is used for cell-based therapy for many hematological disorders. However, difficulty in finding proper donors has limited this source of stem cells. For clinical application, the generation of these cells from induced pluripotent stem cells (iPSs) is a fascinating and endless source. One of the experimental methods to generate HSCs from iPSs is the mimicking of the hematopoietic niche. In the current study, as the first phase of differentiation, embryoid bodies were formed from iPSs. They were then cultured in different dynamic conditions in order to determine the appropriate settings for their differentiation into HSCs. The dynamic culture was composed of DBM Scaffold with or without growth factor. After ten days, the specific HSC markers (CD34, CD133, CD31 and CD45) were assessed using flow-cytometry. Our findings demonstrated that the dynamic conditions were significantly suitable than static ones. In addition, in 3D scaffold and dynamic system the expression of CXCR4, as a homing marker, was increased. These results suggest that the 3D culture bioreactor with DBM scaffold could provide a new approach for differentiation of iPSs into HSCs. Moreover, this system could provide maximum mimicry of bone marrow niche.
Collapse
|
16
|
Goh SK, Bertera S, Richardson T, Banerjee I. Repopulation of decellularized organ scaffolds with human pluripotent stem cell-derived pancreatic progenitor cells. Biomed Mater 2023; 18. [PMID: 36720168 DOI: 10.1088/1748-605x/acb7bf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/31/2023] [Indexed: 02/02/2023]
Abstract
Diabetes is an emerging global epidemic that affects more that 285 million people worldwide. Engineering of endocrine pancreas tissue holds great promise for the future of diabetes therapy. Here we demonstrate the feasibility of re-engineering decellularized organ scaffolds using regenerative cell source. We differentiated human pluripotent stem cells (hPSC) toward pancreatic progenitor (PP) lineage and repopulated decellularized organ scaffolds with these hPSC-PP cells. We observed that hPSCs cultured and differentiated as aggregates are more suitable for organ repopulation than isolated single cell suspension. However, recellularization with hPSC-PP aggregates require a more extensive vascular support, which was found to be superior in decellularized liver over the decellularized pancreas scaffolds. Upon continued culture for nine days with chemical induction in the bioreactor, the seeded hPSC-PP aggregates demonstrated extensive and uniform cellular repopulation and viability throughout the thickness of the liver scaffolds. Furthermore, the decellularized liver scaffolds was supportive of the endocrine cell fate of the engrafted cells. Our novel strategy to engineer endocrine pancreas construct is expected to find potential applications in preclinical testing, drug discovery and diabetes therapy.
Collapse
Affiliation(s)
- Saik-Kia Goh
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Suzanne Bertera
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, United States of America
| | - Thomas Richardson
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Ipsita Banerjee
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| |
Collapse
|
17
|
Pantoja BTDS, Carvalho RC, Miglino MA, Carreira ACO. The Canine Pancreatic Extracellular Matrix in Diabetes Mellitus and Pancreatitis: Its Essential Role and Therapeutic Perspective. Animals (Basel) 2023; 13:ani13040684. [PMID: 36830471 PMCID: PMC9952199 DOI: 10.3390/ani13040684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 02/18/2023] Open
Abstract
Diabetes mellitus and pancreatitis are common pancreatic diseases in dogs, affecting the endocrine and exocrine portions of the organ. Dogs have a significant role in the history of research related to genetic diseases, being considered potential models for the study of human diseases. This review discusses the importance of using the extracellular matrix of the canine pancreas as a model for the study of diabetes mellitus and pancreatitis, in addition to focusing on the importance of using extracellular matrix in new regenerative techniques, such as decellularization and recellularization. Unlike humans, rabbits, mice, and pigs, there are no reports in the literature characterizing the healthy pancreatic extracellular matrix in dogs, in addition to the absence of studies related to matrix components that are involved in triggering diabetes melittus and pancreatitis. The extracellular matrix plays the role of physical support for the cells and allows the regulation of various cellular processes. In this context, it has already been demonstrated that physiologic and pathologic pancreatic changes lead to ECM remodeling, highlighting the importance of an in-depth study of the changes associated with pancreatic diseases.
Collapse
Affiliation(s)
- Bruna Tássia dos Santos Pantoja
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, SP, Brazil
| | - Rafael Cardoso Carvalho
- Department of Animal Science, Center for Agricultural and Environmental Sciences, Federal University of Maranhao, Chapadinha 65500-000, MA, Brazil
| | - Maria Angelica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, SP, Brazil
| | - Ana Claudia Oliveira Carreira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, SP, Brazil
- Center for Natural and Human Sciences, Federal University of ABC, Santo Andre 09280-550, SP, Brazil
- Correspondence: or ; Tel.: +55-11-983229615
| |
Collapse
|
18
|
Borges MF, Maurmann N, Pranke P. Easy-to-Assembly System for Decellularization and Recellularization of Liver Grafts in a Bioreactor. MICROMACHINES 2023; 14:449. [PMID: 36838149 PMCID: PMC9962055 DOI: 10.3390/mi14020449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/31/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Decellularization of organs creates an acellular scaffold, ideal for being repopulated by cells. In this work, a low-cost perfusion system was created to be used in the process of liver decellularization and as a bioreactor after recellularization. It consists of a glass chamber to house the organ coupled to a peristaltic pump to promote liquid flow through the organ vascular tree. The rats' liver decellularization was made with a solution of sodium dodecyl sulfate. The recellularization was made with 108 mesenchymal stromal/stem cells and cultivated for seven days. The decellularized matrices showed an absence of DNA while preserving the collagen and glycosaminoglycans quantities, confirming the efficiency of the process. The functional analyses showed a rise in lactate dehydrogenase levels occurring in the first days of the cultivation, suggesting that there is cell death in this period, which stabilized on the seventh day. Histological analysis showed conservation of the collagen web and some groups of cells next to the vessels. It was possible to establish a system for decellularization and a bioreactor to use for the recellularization method. It is easy to assemble, can be ready to use in little time and be easily sterilized.
Collapse
Affiliation(s)
- Maurício Felisberto Borges
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90610-000, Brazil
| | - Natasha Maurmann
- Postgraduate Program in Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90050-170, Brazil
| | - Patricia Pranke
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90610-000, Brazil
| |
Collapse
|
19
|
Tissue engineering of decellularized pancreas scaffolds for regenerative medicine in diabetes. Acta Biomater 2023; 157:49-66. [PMID: 36427686 DOI: 10.1016/j.actbio.2022.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
Diabetes mellitus is a global disease requiring long-term treatment and monitoring. At present, pancreas or islet transplantation is the only reliable treatment for achieving stable euglycemia in Type I diabetes patients. However, the shortage of viable pancreata for transplantation limits the use of this therapy for the majority of patients. Organ decellularization and recellularization is emerging as a promising solution to overcome the shortage of viable organs for transplantation by providing a potential alternative source of donor organs. Several studies on decellularization and recellularization of rodent, porcine, and human pancreata have been performed, and show promise for generating usable decellularized pancreas scaffolds for subsequent recellularization and transplantation. In this state-of-the-art review, we provide an overview of the latest advances in pancreas decellularization, recellularization, and revascularization. We also discuss clinical considerations such as potential transplantation sites, donor source, and immune considerations. We conclude with an outlook on the remaining work that needs to be done in order to realize the goal of using this technology to create bioengineered pancreata for transplantation in diabetes patients. STATEMENT OF SIGNIFICANCE: Pancreas or islet transplantation is a means of providing insulin-independence in diabetes patients. However, due to the shortage of viable pancreata, whole-organ decellularization and recellularization is emerging as a promising solution to overcome organ shortage for transplantation. Several studies on decellularization and recellularization of rodent, porcine, and human pancreata have shown promise for generating usable decellularized pancreas scaffolds for subsequent recellularization and transplantation. In this state-of-the-art review, we highlight the latest advances in pancreas decellularization, recellularization, and revascularization. We also discuss clinical considerations such as potential transplantation sites, donor source, and immune considerations. We conclude with future work that needs to be done in order to realize clinical translation of bioengineered pancreata for transplantation in diabetes patients.
Collapse
|
20
|
Toprakhisar B, Verfaillie CM, Kumar M. Advances in Recellularization of Decellularized Liver Grafts with Different Liver (Stem) Cells: Towards Clinical Applications. Cells 2023; 12:301. [PMID: 36672236 PMCID: PMC9856398 DOI: 10.3390/cells12020301] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Liver transplantation is currently the only curative therapy for patients with acute or chronic liver failure. However, a dramatic gap between the number of available liver grafts and the number of patients on the transplantation waiting list emphasizes the need for valid liver substitutes. Whole-organ engineering is an emerging field of tissue engineering and regenerative medicine. It aims to generate transplantable and functional organs to support patients on transplantation waiting lists until a graft becomes available. It comprises two base technologies developed in the last decade; (1) organ decellularization to generate a three-dimensional (3D) extracellular matrix scaffold of an organ, and (2) scaffold recellularization to repopulate both the parenchymal and vascular compartments of a decellularized organ. In this review article, recent advancements in both technologies, in relation to liver whole-organ engineering, are presented. We address the potential sources of hepatocytes and non-parenchymal liver cells for repopulation studies, and the role of stem-cell-derived liver progeny is discussed. In addition, different cell seeding strategies, possible graft modifications, and methods used to evaluate the functionality of recellularized liver grafts are outlined. Based on the knowledge gathered from recent transplantation studies, future directions are summarized.
Collapse
Affiliation(s)
- Burak Toprakhisar
- Stem Cell Institute, Department of Stem Cell and Developmental Biology, KU Leuven, 3000 Leuven, Belgium
| | | | | |
Collapse
|
21
|
Decellularization of Human Pancreatic Fragments with Pronounced Signs of Structural Changes. Int J Mol Sci 2022; 24:ijms24010119. [PMID: 36613557 PMCID: PMC9820198 DOI: 10.3390/ijms24010119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
A significant lack of donor organs restricts the opportunity to obtain tissue-specific scaffolds for tissue-engineering technologies. One of the acceptable solutions is the development of decellularization protocols for a human donor pancreas unsuitable for transplantation. A protocol of obtaining a biocompatible tissue-specific scaffold from decellularized fragments with pronounced human pancreas lipomatosis signs with preserved basic fibrillary proteins of a pancreatic tissue extracellular matrix was developed. The scaffold supports the adhesion and proliferation of human adipose derived stem cell (hADSCs) and prolongs the viability and insulin-producing function of pancreatic islets. Experiments conducted allow for the reliance on the prospects of using the donor pancreas unsuitable for transplantation in the technologies of tissue engineering and regenerative medicine, including the development of a tissue equivalent of a pancreas.
Collapse
|
22
|
Li Z, Du Y, Wang X. Pancreatic Lineage Cell Differentiation of Bone Marrow Mesenchymal Stromal Cells on Acellular Pancreatic Bioscaffold. Pancreas 2022; 51:1411-1426. [PMID: 37099787 DOI: 10.1097/mpa.0000000000002184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
OBJECTIVES We evaluated the potential differentiation ability of bone mesenchymal stromal cells (BMSCs) into pancreatic lineage cells on a rat acellular pancreatic bioscaffold (APB) and the effect of differentiated BMSCs in vivo. METHODS The BMSCs were dynamically or statically cultured with or without growth factor in both culture systems. We assessed the cytological behavior and differentiation. We also evaluated the pancreatic fibrosis and pathological scores. RESULTS The proliferation rates of BMSCs were significantly higher in the APB groups. The APB induced BMSCs to express mRNA markers at higher levels. All tested pancreatic functional proteins were also expressed at higher levels in the APB group. The secretion of metabolic enzymes was higher in the APB system. The ultrastructure of BMSCs in the APB group further revealed the morphological characteristics of pancreatic-like cells. For the in vivo study, the pancreatic fibrosis and pathological scores were significantly lower in the differentiated BMSCs group. In addition, in both the in vitro and the in vivo study, growth factor significantly improved proliferation, differentiation, and pancreatic cell therapy. CONCLUSIONS The APB can promote BMSC differentiation toward pancreatic lineage and pancreatic-like phenotypes, giving it the potential for use in pancreatic cell therapies and tissue engineering.
Collapse
Affiliation(s)
| | - Yue Du
- Department of Public Health, Tianjin Medical University, Tianjin, China
| | | |
Collapse
|
23
|
Decellularized Pancreatic Tail as Matrix for Pancreatic Islet Transplantation into the Greater Omentum in Rats. J Funct Biomater 2022; 13:jfb13040171. [PMID: 36278640 PMCID: PMC9589982 DOI: 10.3390/jfb13040171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/29/2022] Open
Abstract
Infusing pancreatic islets into the portal vein currently represents the preferred approach for islet transplantation, despite considerable loss of islet mass almost immediately after implantation. Therefore, approaches that obviate direct intravascular placement are urgently needed. A promising candidate for extrahepatic placement is the omentum. We aimed to develop an extracellular matrix skeleton from the native pancreas that could provide a microenvironment for islet survival in an omental flap. To that end, we compared different decellularization approaches, including perfusion through the pancreatic duct, gastric artery, portal vein, and a novel method through the splenic vein. Decellularized skeletons were compared for size, residual DNA content, protein composition, histology, electron microscopy, and MR imaging after repopulation with isolated islets. Compared to the other approaches, pancreatic perfusion via the splenic vein provided smaller extracellular matrix skeletons, which facilitated transplantation into the omentum, without compromising other requirements, such as the complete depletion of cellular components and the preservation of pancreatic extracellular proteins. Repeated MR imaging of iron-oxide-labeled pancreatic islets showed that islets maintained their position in vivo for 49 days. Advanced environmental scanning electron microscopy demonstrated that islets remained integrated with the pancreatic skeleton. This novel approach represents a proof-of-concept for long-term transplantation experiments.
Collapse
|
24
|
Khorsandi L, Orazizadeh M, Bijan Nejad D, Heidari Moghadam A, Nejaddehbashi F, Asadi Fard Y. Spleen extracellular matrix provides a supportive microenvironment for β-cell function. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:1159-1165. [PMID: 36246063 PMCID: PMC9526894 DOI: 10.22038/ijbms.2022.65233.14360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/10/2022] [Indexed: 11/06/2022]
Abstract
Objectives Type 1 diabetes mellitus is a common autoimmune and multifactorial disorder. Researchers have been interested in making a favorable islet-like tissue model for the treatment of diabetes. The main objective of this study was to determine the effects of the spleen extracellular matrix (S-ECM) on the function of the MIN6 cell line (a β-cell model). Materials and Methods In this experimental research, Wistar rat spleens were decellularized by sodium dodecyl sulfate (SDS) and Triton X-100. S-ECM was characterized by histological assessments, scanning electron microscopy, determination of residua DNA, and examination of the mechanical tensile property. Then, MIN6 cells were seeded on S-ECM scaffold. Glucose-stimulated insulin secretion and mRNA expression of insulin-related genes were examined to confirm the function of the cells. Results The main components of S-ECM such as collagen and glycosaminoglycan remained after decellularization. Furthermore, very low residual DNA and appropriate mechanical behavior of S-ECM provided an ideal extracellular microenvironment for the MIN6 cells. GSIS results showed that the seeded cells in S-ECM secreted more insulin than the traditional two-dimensional (2D) culture. The expression of specific insulin-related genes such as PDX-1, insulin, Maf-A, and Glut-2 in the recellularized scaffold was more significant than in the 2D traditional cultured cells. Also, MTT assay results showed that S-ECM were no cytotoxic effects on the MIN6 cells. Conclusion These results collectively have evidenced that S-ECM is a suitable scaffold for stabilizing artificial pancreatic islands.
Collapse
Affiliation(s)
- Layasadat Khorsandi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahmoud Orazizadeh
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Darioush Bijan Nejad
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abbas Heidari Moghadam
- Department of Anatomical Sciences, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Fereshteh Nejaddehbashi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Yousef Asadi Fard
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,Corresponding author: Yousef Asadi Fard. Department of Anatomical Sciences, Faculty of Medicine Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
25
|
Ponomareva AS, Baranova NV, Miloserdov IA, Sevastianov VI. In vitro effect of bioscaffolds on viability and insulin‑producing function of human islets of Langerhans. RUSSIAN JOURNAL OF TRANSPLANTOLOGY AND ARTIFICIAL ORGANS 2022. [DOI: 10.15825/1995-1191-2022-4-109-117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The culture of islets of Langerhans with bioscaffolds – extracellular matrix (ECM) mimetics – can provide a native microenvironment suitable for islets. This is one of the main conditions for creating a pancreatic tissue equivalent.Objective: to compare the secretory capacity of viable human pancreatic islets in monoculture (control group) and cultured in the presence of two bioscaffolds: biopolymer collagen-based hydrogel scaffold (experimental group 1) and tissue-specific scaffold from decellularized deceased donor pancreas (experimental group 2).Materials and methods. Islets of Langerhans were isolated from the caudal pancreas using a collagenase technique. The viability of cultured islets was accessed by vital fluorescence staining, while secretory capacity was evaluated by enzyme-linked immunosorbent assay (ELISA).Results. Pancreatic islets cultured with bioscaffolds showed no signs of degradation and fragmentation, they remained viable throughout the entire period of observation (7 days). The monoculture of islets showed significant destructive changes during this period. Basal insulin levels in experimental groups 1 and 2 increased by 18.8% and 39.5% on day 1 of culture compared to the control group, by 72.8% and 102.7% on day 4 of incubation, and by 146.4% and 174.6% on day 7, respectively. The insulin secretion level of islets with tissue-specific scaffolds was 17.4% higher than that when cultured with biopolymer collagen-based scaffolds.Conclusion. Biopolymer and tissue-specific ECM mimetics contribute not only to preservation of the viability of isolated islets of Langerhans but also maintain their insulin secretion capacity for 7 days at a higher level in comparison with monoculture. The experiments revealed that the use of a tissue-specific scaffold for the creation of a pancreatic tissue equivalent has slight potential advantage over biopolymer scaffold.
Collapse
Affiliation(s)
- A. S. Ponomareva
- Shumakov National Medical Research Center of Transplantology and Artificial Organs
| | - N. V. Baranova
- Shumakov National Medical Research Center of Transplantology and Artificial Organs
| | - I. A. Miloserdov
- Shumakov National Medical Research Center of Transplantology and Artificial Organs
| | - V. I. Sevastianov
- Shumakov National Medical Research Center of Transplantology and Artificial Organs
| |
Collapse
|
26
|
Pignatelli C, Campo F, Neroni A, Piemonti L, Citro A. Bioengineering the Vascularized Endocrine Pancreas: A Fine-Tuned Interplay Between Vascularization, Extracellular-Matrix-Based Scaffold Architecture, and Insulin-Producing Cells. Transpl Int 2022; 35:10555. [PMID: 36090775 PMCID: PMC9452644 DOI: 10.3389/ti.2022.10555] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/11/2022] [Indexed: 11/23/2022]
Abstract
Intrahepatic islet transplantation is a promising β-cell replacement strategy for the treatment of type 1 diabetes. Instant blood-mediated inflammatory reactions, acute inflammatory storm, and graft revascularization delay limit islet engraftment in the peri-transplant phase, hampering the success rate of the procedure. Growing evidence has demonstrated that islet engraftment efficiency may take advantage of several bioengineering approaches aimed to recreate both vascular and endocrine compartments either ex vivo or in vivo. To this end, endocrine pancreas bioengineering is an emerging field in β-cell replacement, which might provide endocrine cells with all the building blocks (vascularization, ECM composition, or micro/macro-architecture) useful for their successful engraftment and function in vivo. Studies on reshaping either the endocrine cellular composition or the islet microenvironment have been largely performed, focusing on a single building block element, without, however, grasping that their synergistic effect is indispensable for correct endocrine function. Herein, the review focuses on the minimum building blocks that an ideal vascularized endocrine scaffold should have to resemble the endocrine niche architecture, composition, and function to foster functional connections between the vascular and endocrine compartments. Additionally, this review highlights the possibility of designing bioengineered scaffolds integrating alternative endocrine sources to overcome donor organ shortages and the possibility of combining novel immune-preserving strategies for long-term graft function.
Collapse
Affiliation(s)
- Cataldo Pignatelli
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Campo
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Alessia Neroni
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Lorenzo Piemonti
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Antonio Citro
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
27
|
Talaei-Khozani T, Yaghoubi A. An overview of post transplantation events of decellularized scaffolds. Transpl Immunol 2022; 74:101640. [PMID: 35667545 DOI: 10.1016/j.trim.2022.101640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 12/19/2022]
Abstract
Regenerative medicine and tissue engineering are reasonable techniques for repairing failed tissues and could be a suitable alternative to organ transplantation. One of the most widely used methods for preparing bioscaffolds is the decellularization procedure. Although cell debris and DNA are removed from the decellularized tissues, important compositions of the extracellular matrix including proteins, proteoglycans, and glycoproteins are nearly preserved. Moreover, the obtained scaffolds have a 3-dimensional (3D) structure, appropriate naïve mechanical properties, and good biocompatibility. After transplantation, different types of host cells migrate to the decellularized tissues. Histological and immunohistochemical assessment of the different bioscaffolds after implantation reveals the migration of parenchymal cells, angiogenesis, as well as the invasion of inflammatory and giant foreign cells. In this review, the events after transplantation including angiogenesis, scaffold degradation, and the presence of immune and tissue-specific progenitor cells in the decellularized scaffolds in various hosts, are discussed.
Collapse
Affiliation(s)
- Tahereh Talaei-Khozani
- Histotomorphometry and stereology research center, Shiraz University of Medical Sciences, Shiraz, Iran; Tissue engineering lab, Anatomy Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Atefeh Yaghoubi
- Tissue engineering lab, Anatomy Department, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
28
|
Tremmel DM, Sackett SD, Feeney AK, Mitchell SA, Schaid MD, Polyak E, Chlebeck PJ, Gupta S, Kimple ME, Fernandez LA, Odorico JS. A human pancreatic ECM hydrogel optimized for 3-D modeling of the islet microenvironment. Sci Rep 2022; 12:7188. [PMID: 35504932 PMCID: PMC9065104 DOI: 10.1038/s41598-022-11085-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/04/2022] [Indexed: 02/07/2023] Open
Abstract
Extracellular matrix (ECM) plays a multitude of roles, including supporting cells through structural and biochemical interactions. ECM is damaged in the process of isolating human islets for clinical transplantation and basic research. A platform in which islets can be cultured in contact with natural pancreatic ECM is desirable to better understand and support islet health, and to recapitulate the native islet environment. Our study demonstrates the derivation of a practical and durable hydrogel from decellularized human pancreas that supports human islet survival and function. Islets embedded in this hydrogel show increased glucose- and KCl-stimulated insulin secretion, and improved mitochondrial function compared to islets cultured without pancreatic matrix. In extended culture, hydrogel co-culture significantly reduced levels of apoptosis compared to suspension culture and preserved controlled glucose-responsive function. Isolated islets displayed altered endocrine and non-endocrine cell arrangement compared to in situ islets; hydrogel preserved an islet architecture more similar to that observed in situ. RNA sequencing confirmed that gene expression differences between islets cultured in suspension and hydrogel largely fell within gene ontology terms related to extracellular signaling and adhesion. Natural pancreatic ECM improves the survival and physiology of isolated human islets.
Collapse
Affiliation(s)
- Daniel M Tremmel
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
| | - Sara Dutton Sackett
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
| | - Austin K Feeney
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Samantha A Mitchell
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael D Schaid
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.,William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Erzsebet Polyak
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Peter J Chlebeck
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Sakar Gupta
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Michelle E Kimple
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.,William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | | | - Jon S Odorico
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
29
|
Gorobets S, Gorobets O, Gorobets Y, Bulaievska M. Chain-Like Structures of Biogenic and Nonbiogenic Magnetic Nanoparticles in Vascular Tissues. Bioelectromagnetics 2022; 43:119-143. [PMID: 35077582 DOI: 10.1002/bem.22390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 12/11/2021] [Accepted: 01/08/2022] [Indexed: 12/29/2022]
Abstract
In this paper, slices of organs from various organisms (animals, plants, fungi) were investigated by using atomic force microscopy and magnetic force microscopy to identify common features of localization of both biogenic and nonbiogenic magnetic nanoparticles. It was revealed that both biogenic and nonbiogenic magnetic nanoparticles are localized in the form of chains of separate nanoparticles or chains of conglomerates of nanoparticles in the walls of the capillaries of animals and the walls of the conducting tissue of plants and fungi. Both biogenic and nonbiogenic magnetic nanoparticles are embedded as a part of the transport system in multicellular organisms. In connection with this, a new idea of the function of biogenic magnetic nanoparticles is discussed, that the chains of biogenic magnetic nanoparticles and chains of conglomerates of biogenic magnetic nanoparticles represent ferrimagnetic organelles of a specific purpose. Besides, magnetic dipole-dipole interaction of biogenic magnetic nanoparticles with magnetically labeled drugs or contrast agents for magnetic resonance imaging should be considered when designing the drug delivery and other medical systems because biogenic magnetic nanoparticles in capillary walls will serve as the trapping centers for the artificial magnetic nanoparticles. The aggregates of both artificial and biogenic magnetic nanoparticles can be formed, contributing to the risk of vascular occlusion. Bioelectromagnetics. 43:119-143, 2022. © 2021 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Svitlana Gorobets
- National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine
| | - Oksana Gorobets
- National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine.,Institute of Magnetism NAS of Ukraine and MES of Ukraine, Kyiv, Ukraine
| | - Yuri Gorobets
- National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine.,Institute of Magnetism NAS of Ukraine and MES of Ukraine, Kyiv, Ukraine
| | - Maryna Bulaievska
- National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine
| |
Collapse
|
30
|
Jiang L, Shen Y, Liu Y, Zhang L, Jiang W. Making human pancreatic islet organoids: Progresses on the cell origins, biomaterials and three-dimensional technologies. Theranostics 2022; 12:1537-1556. [PMID: 35198056 PMCID: PMC8825586 DOI: 10.7150/thno.66670] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/27/2021] [Indexed: 11/05/2022] Open
Abstract
Diabetes is one of the most socially challenging health concerns. Even though islet transplantation has shown promise for insulin-dependent diabetes, there is still no effective method for curing diabetes due to the severe shortage of transplantable donors. In recent years, organoid technology has attracted lots of attention as organoid can mirror the human organ in vivo to the maximum extent in vitro, thus bridging the gap between cellular- and tissue/organ-level biological models. Concurrently, human pancreatic islet organoids are expected to be a considerable source of islet transplantation. To construct human islet-like organoids, the seeding cells, biomaterials and three-dimensional structure are three key elements. Herein, this review summarizes current progresses about the cell origins, biomaterials and advanced technology being applied to make human islet organoids, and discusses the advantages, shortcomings, and future challenges of them as well. We hope this review can offer a cross-disciplinary perspective to build human islet organoids and provide insights for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Lai Jiang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Yiru Shen
- College of Life Sciences, Wuhan University, Wuhan 430071, China
| | - Yajing Liu
- Asia Regenerative Medicine Ltd., Shenzhen 518110, China
| | - Lei Zhang
- Asia Regenerative Medicine Ltd., Shenzhen 518110, China
| | - Wei Jiang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Human Genetics Resource Preservation Center of Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| |
Collapse
|
31
|
Hackethal J, Dungel P, Teuschl AH. Frequently used strategies to isolate ECM proteins from human placenta and adipose tissue. Tissue Eng Part C Methods 2021; 27:649-660. [PMID: 34751590 DOI: 10.1089/ten.tec.2021.0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The natural extracellular matrix (ECM) provides the optimal environment for cells. Many enzymatic or non-enzymatic based strategies to extract ECM proteins from tissues were published over the last years. However, every single isolation strategy reported so far is associated with specific bottlenecks. Experiment: In this study, frequently used strategies to isolate extracellular matrix (ECM) from human placenta or adipose tissue using Tris-, serum, or pepsin-based buffers were compared. The resulting ECM proteins were biochemically characterized by analysis of cellular remnants using HOECHST DNA staining, glycosaminoglycan (GAG) content by dimethylemethylene blue (DMMB), visualization of protein bands using SDS PAGE analysis combined with amino acid quantification and assessment of the pro-angiogenic profile using an angiogenesis array. RESULTS Tris-NaCl extracted ECM proteins showed a high heterogenic degree of extracted proteins, bioactive growth factors and GAGS, but no collagen-I. Active serum extracted ECM showed significant lower DNA remnants when compared to the Tris-NaCl isolation strategy. Pepsin-extracted ECM was rich in collagen-I and low amounts of remaining bioactive growth factors. This strategy was most effective to reduce DNA amounts when compared to the other isolation strategies. Pepsin-extracted ECM from both tissues easily gelled at 37°C, whereas the other extracted ECM strategies did not gel at 37°C (Tris-NaCl: liquid; serum: sponge). CONCLUSIONS All relevant characteristics (DNA residues, ECM diversity and bioactivity, shape) of the extracted ECM proteins highly depend on its isolation strategy and could still be optimized.
Collapse
Affiliation(s)
- Johannes Hackethal
- THT Biomaterials, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria;
| | - Peter Dungel
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, 497572, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria;
| | - Andreas Herbert Teuschl
- University of Applied Sciences Technikum Wien, Department of Biochemical Engineering, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria;
| |
Collapse
|
32
|
Park JO, Park HY, Shin SC, Lee DH, Lee BJ. Perfusion-Decellularized Larynx as a Natural 3D Scaffold in a Rabbit Model. ORL J Otorhinolaryngol Relat Spec 2021; 84:81-88. [PMID: 34736264 DOI: 10.1159/000515227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 02/12/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Decellularized larynges could be used as scaffolds to regenerate the larynx. The purpose of this study was to establish a perfusion decellularization protocol to produce a 3-dimensional whole laryngeal extracellular matrix (ECM) scaffold in a rabbit model. METHODS The larynges of 20 rabbits assigned to the study group were harvested and decellularized using a perfusion decellularization protocol, while the larynges of 10 rabbits in the control group were harvested and untreated. Macroscopic and microscopic morphological analyses, a molecular analysis, a cellular content analysis, and scanning electron microscopy were performed. RESULTS A histological analysis showed the absence of cellular components, the presence of the ECM, and an intact cartilage structure filled with chondrocytes. The mean total DNA amounts of the native larynx, decellularized larynx, and decellularized cartilage-free larynx were 1,826.40, 434.70, and 41.40 μg/µL, respectively; those for the decellularized larynx and decellularized cartilage-free larynx were significantly lower (p < 0.001 and p < 0.001, respectively). The total amount of DNA in the decellularized sample was significantly lower compared to that in the native sample, at 57.2% in cartilage (p < 0.001), 2.4% in the thyroid gland (p < 0.001), 2.7% in muscle (p < 0.001), 1.6% in vessels (p < 0.001), and 4.8% in the vocal cords (p < 0.001). CONCLUSION Our perfusion decellularization protocol is feasible and reproducible to produce a 3-dimensional whole laryngeal ECM scaffold in a rabbit.
Collapse
Affiliation(s)
- Jun-Ook Park
- Department of Otolaryngology-Head and Neck Surgery, Catholic University College of Medicine, Seoul, Republic of Korea
| | - Hee-Young Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Pusan National University School of Medicine, Pusan National University, Busan, Republic of Korea
| | - Sung-Chan Shin
- Department of Otorhinolaryngology-Head and Neck Surgery, Pusan National University School of Medicine, Pusan National University, Busan, Republic of Korea
| | - Dong-Hyun Lee
- Department of Otolaryngology-Head and Neck Surgery, Catholic University College of Medicine, Seoul, Republic of Korea
| | - Byung-Joo Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Pusan National University School of Medicine, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
33
|
Koyyada A, Orsu P. Bio nanocomposites of graphene oxide with carboxymethyl guargum: fabrication and characterization and application for type 1 diabetes. Biomed Mater 2021; 16. [PMID: 34607317 DOI: 10.1088/1748-605x/ac2c8e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/04/2021] [Indexed: 12/24/2022]
Abstract
Islet cells transplantation has limitations like low survivability, which can be overcome by using extracellular matrix mimicking three-dimensional (3D) scaffolds, which supports the growth and proliferation of seeded cells. This study was aimed to investigate the role of novel 3D carboxymethyl guargum (CMGG) nanocomposite with reduced graphene oxide (rGO) for proliferation of pancreatic islet cells (RIN-5F) and rate of insulin secretion of RIN-5F cells. Scanning electron microscope and Fourier transform infrared results have demonstrated good porosity and the chemical interactions between CMGG and rGO. Mechanical testing and thermogravimetric analysis of nanofibers have shown good tensile strength and thermal stability with rGO in the nanocomposite. These scaffolds demonstratedin vitrobiocompatibility with acceptable ranges of biodegradability and hemocompatibility. Thein vitrocell proliferation and viability of RIN-5F cells on 3D CMGG nanofibers have significantly increased compared to two-dimensional (2D) cell control. Moreover, the glucose dependent insulin secretion of RIN-5F cells on CMGG nanocomposite has significantly increased upto 4-5 folds than cells on 2D cell control. The biomaterials used in this 3D nanofiber scaffold have shown to be biodegradable and hemocompatible and can be a promising platform for the proliferation and secretion of insulin from beta cells and can be effectively used in transplantation type-1 diabetes.
Collapse
Affiliation(s)
- Arun Koyyada
- Department of Pharmacology, GITAM Institute of Pharmacy, GITAM Deemed to be University, Visakhapatnam 530045, India
| | - Prabhakar Orsu
- Department of Pharmacology, GITAM Institute of Pharmacy, GITAM Deemed to be University, Visakhapatnam 530045, India
| |
Collapse
|
34
|
In Vitro Disease Models of the Endocrine Pancreas. Biomedicines 2021; 9:biomedicines9101415. [PMID: 34680532 PMCID: PMC8533367 DOI: 10.3390/biomedicines9101415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
The ethical constraints and shortcomings of animal models, combined with the demand to study disease pathogenesis under controlled conditions, are giving rise to a new field at the interface of tissue engineering and pathophysiology, which focuses on the development of in vitro models of disease. In vitro models are defined as synthetic experimental systems that contain living human cells and mimic tissue- and organ-level physiology in vitro by taking advantage of recent advances in tissue engineering and microfabrication. This review provides an overview of in vitro models and focuses specifically on in vitro disease models of the endocrine pancreas and diabetes. First, we briefly review the anatomy, physiology, and pathophysiology of the human pancreas, with an emphasis on islets of Langerhans and beta cell dysfunction. We then discuss different types of in vitro models and fundamental elements that should be considered when developing an in vitro disease model. Finally, we review the current state and breakthroughs in the field of pancreatic in vitro models and conclude with some challenges that need to be addressed in the future development of in vitro models.
Collapse
|
35
|
Hashemi J, Kajbafzadeh AM, Ghorbani F, Soleimani M, Arefian E, Khorramirouz R, Enderami SE, Pasalar P. Application of iPSCs derived pancreatic β-like cells using pancreatic bio-scaffold. Exp Cell Res 2021; 405:112667. [PMID: 34107273 DOI: 10.1016/j.yexcr.2021.112667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 11/17/2022]
Abstract
This study aimed toengineer a pancreatic tissue. Intact rat pancreases were successfully decellularized, and were reseeded with human-induced pluripotent stem cells using different 2D and 3D culture growth factors. The differentiation process was assessed for the presence of a pancreas-like tissue. The histology and SEM analysis revealed cell attachment in all samples, except for the Exp4, and the Flow-cytometry provided 87% viability for the differentiated cells. In Exp1, PDX1 with the positive expression of 2.87±0.06 was dramatically higher than Exp2 with a 2.44±0.06 reaction. NGN3-reactions were 8±0.1 and 6.6±0.2 in Exp1 and Exp2 at P < 0.05, respectively. C-peptide with the expression of 7.5±0.7 in Exp3 was almost equal to that in Exp1 and Exp2. Glucagon (5.1±1) and PDX1 (3.2±0.82) in Exp3 indicated no significant difference. The significant upregulations of pancreatic endocrine markers (PDX1 and NGN3), and the cell-specific glucose transporter (GLUT2) were observed in the differentiated IPCs in the 3D culture of Exp2 after 21 days. The highest insulin and C-peptide concentrations were observed in Exp2. In Exp3, insulin secretion in response to high glucose and 10 mM arginine was 42.43 ±6.34 μU/ml. A decellularized pancreas in the presence of hiPSCs and growth factors could be efficiently used as a natural scaffold.
Collapse
Affiliation(s)
- Javad Hashemi
- Department of Pathobiology and Laboratory Sciences, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Abdol-Mohammad Kajbafzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Section of Tissue Engineering and Stem Cells Therapy, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fariba Ghorbani
- Tracheal Diseases Research Center (TDRC), National Research Institute of Tuberculosis & Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Arefian
- Molecular Virology Lab, Department of Microbiology, School of Biology, College of Science, University of Tehran, Iran
| | - Reza Khorramirouz
- Pediatric Urology and Regenerative Medicine Research Center, Section of Tissue Engineering and Stem Cells Therapy, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Ehsan Enderami
- Molecular and cell biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Parvin Pasalar
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
36
|
Hashemi J, Barati G, Bibak B. Decellularized Matrix Bioscaffolds: Implementation of Native Microenvironment in Pancreatic Tissue Engineering. Pancreas 2021; 50:942-951. [PMID: 34643609 DOI: 10.1097/mpa.0000000000001868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
ABSTRACT Type 1 diabetes is an autoimmune disease, and its incidence is usually estimated in the range of 5% to 10%. Currently, the administration of exogenous insulin is the standard of care therapy. However, this therapy is not effective in some patients who may develop some chronic complications. Islet transplantation into the liver is another therapy with promising outcomes; however, the long-term efficacy of this therapeutic option is limited to a small number of patients. Because native extracellular matrix (ECM) components provide a suitable microenvironment for islet functions, engineering a 3-dimensional construct that recapitulates the native pancreatic environment could address these obstacles. Many attempts have been conducted to mimic an in vivo microenvironment to increase the survival of islets or islet-like clusters. With the advent of decellularization technology, it is possible to use a native ECM in organ engineering. Pancreatic decellularized bioscaffold provides proper cell-cell and cell-ECM interactions and retains growth factors that are critical in the determination of cell fate within a native organ. This review summarizes the current knowledge of decellularized matrix technology and addresses its possible limitations before use in the clinic.
Collapse
Affiliation(s)
- Javad Hashemi
- From the Department of Pathobiology and Laboratory Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd
| | | | | |
Collapse
|
37
|
Abstract
Cell-based therapy is a promising approach in the field of regenerative medicine. As cells are formed into spheroids, their survival, functions, and engraftment in the transplanted site are significantly improved compared to single cell transplantation. To improve the therapeutic effect of cell spheroids even further, various biomaterials (e.g., nano- or microparticles, fibers, and hydrogels) have been developed for spheroid engineering. These biomaterials not only can control the overall spheroid formation (e.g., size, shape, aggregation speed, and degree of compaction), but also can regulate cell-to-cell and cell-to-matrix interactions in spheroids. Therefore, cell spheroids in synergy with biomaterials have recently emerged for cell-based regenerative therapy. Biomaterials-assisted spheroid engineering has been extensively studied for regeneration of bone or/and cartilage defects, critical limb ischemia, and myocardial infarction. Furthermore, it has been expanded to pancreas islets and hair follicle transplantation. This paper comprehensively reviews biomaterials-assisted spheroid engineering for regenerative therapy.
Collapse
Affiliation(s)
- Na-Hyun Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
| | - Oyunchimeg Bayaraa
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
| | - Zhou Zechu
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
| | | |
Collapse
|
38
|
Chitosan/Gelatin/PVA Scaffolds for Beta Pancreatic Cell Culture. Polymers (Basel) 2021; 13:polym13142372. [PMID: 34301129 PMCID: PMC8309518 DOI: 10.3390/polym13142372] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023] Open
Abstract
Chitosan scaffolds based on blending polymers are a common strategy used in tissue engineering. The objective of this study was evaluation the properties of scaffolds based on a ternary blend of chitosan (Chi), gelatin (Ge), and polyvinyl alcohol (PVA) (Chi/Ge/PVA), which were prepared by cycles of freeze-thawing and freeze-drying. It then was used for three-dimensional BRIN-BD11 beta-cells culturing. Weight ratios of Chi/Ge/PVA (1:1:1, 2:2:1, 2:3:1, and 3:2:1) were proposed and porosity, pore size, degradation, swelling rate, compressive strength, and cell viability analyzed. All ternary blend scaffolds structures are highly porous (with a porosity higher than 80%) and interconnected. The pore size distribution varied from 0.6 to 265 μm. Ternary blends scaffolds had controllable degradation rates compared to binary blend scaffolds, and an improved swelling capacity of the samples with increasing chitosan concentration was found. An increase in Young’s modulus and compressive strength was observed with increasing gelatin concentration. The highest compressive strength reached 101.6 Pa. The MTT assay showed that the ternary blends scaffolds P3 and P4 supported cell viability better than the binary blend scaffold. Therefore, these results illustrated that ternary blends scaffolds P3 and P4 could provide a better environment for BRIN-BD11 cell proliferation.
Collapse
|
39
|
Strategies for Vascularizing Pancreatic Islets and Stem Cell–Derived Islet Organoids. CURRENT TRANSPLANTATION REPORTS 2021. [DOI: 10.1007/s40472-021-00334-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
40
|
Wang D, Zhu Y, Huang Y, Zhu J, Zhu B, Zhao Y, Lu Y, Wang Z, Guo Y. Pancreatic Extracellular Matrix/Alginate Hydrogels Provide a Supportive Microenvironment for Insulin-Producing Cells. ACS Biomater Sci Eng 2021; 7:3793-3805. [PMID: 34251797 DOI: 10.1021/acsbiomaterials.1c00269] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Type 1 diabetes mellitus (T1DM), as an autoimmune deficiency disease, is associated with an absolute deficiency of insulin subject to islet β-cell destruction. Insulin-producing cells (IPCs) differentiated from induced pluripotent stem cells are an ideal replacement origin of β-cells, which can be applied for cell transplantation therapies in T1DM. At present, more strategies focus on inducing and differentiating to obtain IPCs; however, the unsatisfactory differentiation efficiency and the lack of ideal carriers for in vivo transplantation limited their application. It is necessary to consider the cell microenvironment by constructing a biomimetic niche to improve the differentiation and transplantation efficiency. The main components of the extracellular matrix derived from pancreatic (the niche of β-cells) decellularization were retained, which could provide the ideal extracellular microenvironment for IPCs. In this research, a hydrogel prepared with alginate (Alg) and the pancreatic extracellular matrix (pECM) was assessed for the beneficial outcomes on encapsulated IPCs. The results showed that pECM/Alg improved the differentiation efficiency and promoted insulin secretion and the expression of insulin-related genes as well. Besides, pECM/Alg-encapsulated IPCs exhibited obvious biocompatibility in vivo, which can prolong the transplantation effect and hypoglycemic function by reducing the inflammatory reaction. RNA-seq indicated that the PI3K/Akt pathway may be related to the improvement of the differentiation efficiency and function of IPCs. In general, the pECM/Alg hydrogel provides an ideal biomimetic microenvironment for IPCs and is suitable for in vivo transplantation.
Collapse
Affiliation(s)
- Dongzhi Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P. R China
| | - Yi Zhu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P. R China
| | - Yan Huang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P. R China
| | - Jiachen Zhu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P. R China.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Biwen Zhu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P. R China
| | - Yahong Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Yuhua Lu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Zhiwei Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Yibing Guo
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P. R China
| |
Collapse
|
41
|
Lee NH, Bayaraa O, Zechu Z, Kim HS. Biomaterials-assisted spheroid engineering for regenerative therapy. BMB Rep 2021; 54:356-367. [PMID: 34154700 PMCID: PMC8328824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/23/2021] [Accepted: 06/15/2021] [Indexed: 04/04/2024] Open
Abstract
Cell-based therapy is a promising approach in the field of regenerative medicine. As cells are formed into spheroids, their survival, functions, and engraftment in the transplanted site are significantly improved compared to single cell transplantation. To improve the therapeutic effect of cell spheroids even further, various biomaterials (e.g., nano- or microparticles, fibers, and hydrogels) have been developed for spheroid engineering. These biomaterials not only can control the overall spheroid formation (e.g., size, shape, aggregation speed, and degree of compaction), but also can regulate cell-to-cell and cell-to-matrix interactions in spheroids. Therefore, cell spheroids in synergy with biomaterials have recently emerged for cell-based regenerative therapy. Biomaterials-assisted spheroid engineering has been extensively studied for regeneration of bone or/and cartilage defects, critical limb ischemia, and myocardial infarction. Furthermore, it has been expanded to pancreas islets and hair follicle transplantation. This paper comprehensively reviews biomaterials-assisted spheroid engineering for regenerative therapy. [BMB Reports 2021; 54(7): 356-367].
Collapse
Affiliation(s)
- Na-Hyun Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
| | - Oyunchimeg Bayaraa
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
| | - Zhou Zechu
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
| | - Hye Sung Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan 31116, Korea
| |
Collapse
|
42
|
Ramírez-Marín Y, Abad-Contreras DE, Ustarroz-Cano M, Pérez-Gallardo NS, Villafuerte-García L, Puente-Guzmán DM, del Villar-Velasco JL, Rodríguez-López LA, Torres-Villalobos G, Mercado MÁ, Tapia-Jurado J, Martínez-García FD, Harmsen MC, Piña-Barba MC, Giraldo-Gomez DM. Perfusion Decellularization of Extrahepatic Bile Duct Allows Tissue-Engineered Scaffold Generation by Preserving Matrix Architecture and Cytocompatibility. MATERIALS 2021; 14:ma14113099. [PMID: 34198787 PMCID: PMC8201334 DOI: 10.3390/ma14113099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/24/2021] [Accepted: 06/02/2021] [Indexed: 12/19/2022]
Abstract
Reconstruction of bile ducts damaged remains a vexing medical problem. Surgeons have few options when it comes to a long segment reconstruction of the bile duct. Biological scaffolds of decellularized biliary origin may offer an approach to support the replace of bile ducts. Our objective was to obtain an extracellular matrix scaffold derived from porcine extrahepatic bile ducts (dECM-BD) and to analyze its biological and biochemical properties. The efficiency of the tailored perfusion decellularization process was assessed through histology stainings. Results from 4'-6-diamidino-2-phenylindole (DAPI), Hematoxylin and Eosin (H&E) stainings, and deoxyribonucleic acid (DNA) quantification showed proper extracellular matrix (ECM) decellularization with an effectiveness of 98%. Immunohistochemistry results indicate an effective decrease in immunogenic marker as human leukocyte antigens (HLA-A) and Cytokeratin 7 (CK7) proteins. The ECM of the bile duct was preserved according to Masson and Herovici stainings. Data derived from scanning electron microscopy (SEM) and thermogravimetric analysis (TGA) showed the preservation of the dECM-BD hierarchical structures. Cytotoxicity of dECM-BD was null, with cells able to infiltrate the scaffold. In this work, we standardized a decellularization method that allows one to obtain a natural bile duct scaffold with hierarchical ultrastructure preservation and adequate cytocompatibility.
Collapse
Affiliation(s)
- Yolik Ramírez-Marín
- Program of Medical Specialization General Surgery, Division of Posgraduate Studies, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Avenida Universidad 3000, Circuito de Posgrados, Unidad de Posgrado Edificio “E” 2° piso, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico;
- National Institute of Medical Sciences and Nutrition of Mexico Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Secc. 16, Tlalpan, Ciudad de México 14080, Mexico; (L.A.R.-L.); (G.T.-V.); (M.Á.M.)
| | - David Eduardo Abad-Contreras
- Laboratory for Biomaterials, Materials Research Institute, National Autonomous University of Mexico (UNAM), Avenida Universidad 3000, Circuito Exterior, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (D.E.A.-C.); (M.C.P.-B.)
| | - Martha Ustarroz-Cano
- Department of Cell and Tissue Biology, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Avenida Universidad 3000, Circuito Interior, Edificio “A” 3° piso, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico;
| | - Norma S. Pérez-Gallardo
- Surgical Training Section, Faculty of Veterinary Medicine and Animal Husbandry, National Autonomous University of Mexico (UNAM), Avenida Universidad 3000, Circuito Exterior, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (N.S.P.-G.); (L.V.-G.); (D.M.P.-G.); (J.L.d.V.-V.)
| | - Lorena Villafuerte-García
- Surgical Training Section, Faculty of Veterinary Medicine and Animal Husbandry, National Autonomous University of Mexico (UNAM), Avenida Universidad 3000, Circuito Exterior, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (N.S.P.-G.); (L.V.-G.); (D.M.P.-G.); (J.L.d.V.-V.)
| | - Dulce Maria Puente-Guzmán
- Surgical Training Section, Faculty of Veterinary Medicine and Animal Husbandry, National Autonomous University of Mexico (UNAM), Avenida Universidad 3000, Circuito Exterior, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (N.S.P.-G.); (L.V.-G.); (D.M.P.-G.); (J.L.d.V.-V.)
| | - Jorge Luna del Villar-Velasco
- Surgical Training Section, Faculty of Veterinary Medicine and Animal Husbandry, National Autonomous University of Mexico (UNAM), Avenida Universidad 3000, Circuito Exterior, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (N.S.P.-G.); (L.V.-G.); (D.M.P.-G.); (J.L.d.V.-V.)
| | - Leonardo Alejandro Rodríguez-López
- National Institute of Medical Sciences and Nutrition of Mexico Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Secc. 16, Tlalpan, Ciudad de México 14080, Mexico; (L.A.R.-L.); (G.T.-V.); (M.Á.M.)
| | - Gonzalo Torres-Villalobos
- National Institute of Medical Sciences and Nutrition of Mexico Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Secc. 16, Tlalpan, Ciudad de México 14080, Mexico; (L.A.R.-L.); (G.T.-V.); (M.Á.M.)
| | - Miguel Ángel Mercado
- National Institute of Medical Sciences and Nutrition of Mexico Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Secc. 16, Tlalpan, Ciudad de México 14080, Mexico; (L.A.R.-L.); (G.T.-V.); (M.Á.M.)
| | - Jesús Tapia-Jurado
- Unit of Advanced Medical Simulation, Division of Posgraduate Studies, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Avenida Universidad 3000, Circuito de Posgrados, Unidad de Posgrado Edificio “B” 2° piso, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico;
| | - Francisco Drusso Martínez-García
- Department of Pathology and Medical Biology, University Medical Center Groningen University of Groningen, Hanzeplein 1, 9713 Groningen, The Netherlands; (F.D.M.-G.); (M.C.H.)
| | - Martin Conrad Harmsen
- Department of Pathology and Medical Biology, University Medical Center Groningen University of Groningen, Hanzeplein 1, 9713 Groningen, The Netherlands; (F.D.M.-G.); (M.C.H.)
| | - M. Cristina Piña-Barba
- Laboratory for Biomaterials, Materials Research Institute, National Autonomous University of Mexico (UNAM), Avenida Universidad 3000, Circuito Exterior, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (D.E.A.-C.); (M.C.P.-B.)
| | - David M. Giraldo-Gomez
- Department of Cell and Tissue Biology, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Avenida Universidad 3000, Circuito Interior, Edificio “A” 3° piso, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico;
- Microscopy Core Facility, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Avenida Universidad 3000, Circuito Interior, Edificio “A” planta baja, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico
- Correspondence:
| |
Collapse
|
43
|
Ortega MA, Rodríguez-Comas J, Yavas O, Velasco-Mallorquí F, Balaguer-Trias J, Parra V, Novials A, Servitja JM, Quidant R, Ramón-Azcón J. In Situ LSPR Sensing of Secreted Insulin in Organ-on-Chip. BIOSENSORS-BASEL 2021; 11:bios11050138. [PMID: 33924867 PMCID: PMC8144989 DOI: 10.3390/bios11050138] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/17/2021] [Accepted: 04/25/2021] [Indexed: 01/10/2023]
Abstract
Organ-on-a-chip (OOC) devices offer new approaches for metabolic disease modeling and drug discovery by providing biologically relevant models of tissues and organs in vitro with a high degree of control over experimental variables for high-content screening applications. Yet, to fully exploit the potential of these platforms, there is a need to interface them with integrated non-labeled sensing modules, capable of monitoring, in situ, their biochemical response to external stimuli, such as stress or drugs. In order to meet this need, we aim here to develop an integrated technology based on coupling a localized surface plasmon resonance (LSPR) sensing module to an OOC device to monitor the insulin in situ secretion in pancreatic islets, a key physiological event that is usually perturbed in metabolic diseases such as type 2 diabetes (T2D). As a proof of concept, we developed a biomimetic islet-on-a-chip (IOC) device composed of mouse pancreatic islets hosted in a cellulose-based scaffold as a novel approach. The IOC was interfaced with a state-of-the-art on-chip LSPR sensing platform to monitor the in situ insulin secretion. The developed platform offers a powerful tool to enable the in situ response study of microtissues to external stimuli for applications such as a drug-screening platform for human models, bypassing animal testing.
Collapse
Affiliation(s)
- María A. Ortega
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac, 10-12, 08028 Barcelona, Spain; (M.A.O.); (J.R.-C.); (F.V.-M.); (J.B.-T.); (V.P.)
| | - Júlia Rodríguez-Comas
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac, 10-12, 08028 Barcelona, Spain; (M.A.O.); (J.R.-C.); (F.V.-M.); (J.B.-T.); (V.P.)
| | - Ozlem Yavas
- Plasmon Nano-Optics Group, ICFO-Institute for Photonics Sciences, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain; (O.Y.); (R.Q.)
| | - Ferran Velasco-Mallorquí
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac, 10-12, 08028 Barcelona, Spain; (M.A.O.); (J.R.-C.); (F.V.-M.); (J.B.-T.); (V.P.)
| | - Jordina Balaguer-Trias
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac, 10-12, 08028 Barcelona, Spain; (M.A.O.); (J.R.-C.); (F.V.-M.); (J.B.-T.); (V.P.)
| | - Victor Parra
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac, 10-12, 08028 Barcelona, Spain; (M.A.O.); (J.R.-C.); (F.V.-M.); (J.B.-T.); (V.P.)
| | - Anna Novials
- Diabetes and Obesity Research Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (A.N.); (J.M.S.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), 28029 Madrid, Spain
| | - Joan M. Servitja
- Diabetes and Obesity Research Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (A.N.); (J.M.S.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), 28029 Madrid, Spain
| | - Romain Quidant
- Plasmon Nano-Optics Group, ICFO-Institute for Photonics Sciences, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain; (O.Y.); (R.Q.)
- Nanophotonic Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | - Javier Ramón-Azcón
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac, 10-12, 08028 Barcelona, Spain; (M.A.O.); (J.R.-C.); (F.V.-M.); (J.B.-T.); (V.P.)
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
- Correspondence:
| |
Collapse
|
44
|
Nakayama-Iwatsuki K, Yanagisawa K, Tanaka D, Hirabayashi M, Negishi J, Hochi S. Acellular matrix derived from rat liver improves the functionality of rat pancreatic islets before or after vitrification. Cryobiology 2021; 100:90-95. [PMID: 33757759 DOI: 10.1016/j.cryobiol.2021.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/26/2021] [Accepted: 03/16/2021] [Indexed: 12/18/2022]
Abstract
Cryopreservation of pancreatic islets can overcome the severe shortage of islet donors in clinical islet transplantation, but the impaired quality of post-warm islets need improvement. This present study was conducted to investigate whether the pre- or post-treatment of rat islets with liver decellularized matrix (LDM) for vitrification can improve the viability (FDA/PI double staining) and the functionality (glucose-stimulated insulin secretion [GSIS] assay). Rat LDM was prepared by high-hydrostatic pressure, lyophilization, and re-suspension in saline. Co-culturing of isolated islets with 0 (control), 30, 60, or 90 μg/ml LDM for 24 h resulted in the comparable viability among the 4 groups (98.7-99.6%) and the higher insulin secretion potential in 30 and 60 μg/ml LDM treatment groups than the control group (stimulation index [SI]: 12.1 and 12.7, respectively, vs. 6.5 in the control group, P < 0.05). When the islets co-cultured with 60 μg/ml LDM were vitrified-warmed on a nylon mesh cryodevice, the viability and the GSIS of the post-warm islets were not improved. Post-treatment of vitrified-warmed islets with 60 μg/ml LDM during the recovery culture for 12 h resulted in the comparable clearance of degenerating cell debris from the post-warm islets, while their insulin secretion potential was improved (SI: 5.0 vs. 3.5 in the control group, P < 0.05). These findings indicate that the components in LDM can enhance the insulin secretion potential of rat islets suffering damage by enzymatic stress during the islet isolation process or by cryoinjuries during the vitrification-warming process.
Collapse
Affiliation(s)
- Kenyu Nakayama-Iwatsuki
- Graduate School of Science and Technology, Shinshu University, Ueda, Nagano, 386-8567, Japan; National Institute for Physiological Sciences, Okazaki, Aichi, 444-8787, Japan
| | - Kotaro Yanagisawa
- Graduate School of Science and Technology, Shinshu University, Ueda, Nagano, 386-8567, Japan
| | - Dan Tanaka
- Graduate School of Science and Technology, Shinshu University, Ueda, Nagano, 386-8567, Japan
| | - Masumi Hirabayashi
- National Institute for Physiological Sciences, Okazaki, Aichi, 444-8787, Japan; School of Life Science, The Graduate University for Advanced Studies, Okazaki, Aichi, 444-8787, Japan
| | - Jun Negishi
- Graduate School of Science and Technology, Shinshu University, Ueda, Nagano, 386-8567, Japan; Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano, 386-8567, Japan
| | - Shinichi Hochi
- Graduate School of Science and Technology, Shinshu University, Ueda, Nagano, 386-8567, Japan; Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano, 386-8567, Japan.
| |
Collapse
|
45
|
Joyce K, Fabra GT, Bozkurt Y, Pandit A. Bioactive potential of natural biomaterials: identification, retention and assessment of biological properties. Signal Transduct Target Ther 2021; 6:122. [PMID: 33737507 PMCID: PMC7973744 DOI: 10.1038/s41392-021-00512-8] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/29/2020] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
Biomaterials have had an increasingly important role in recent decades, in biomedical device design and the development of tissue engineering solutions for cell delivery, drug delivery, device integration, tissue replacement, and more. There is an increasing trend in tissue engineering to use natural substrates, such as macromolecules native to plants and animals to improve the biocompatibility and biodegradability of delivered materials. At the same time, these materials have favourable mechanical properties and often considered to be biologically inert. More importantly, these macromolecules possess innate functions and properties due to their unique chemical composition and structure, which increase their bioactivity and therapeutic potential in a wide range of applications. While much focus has been on integrating these materials into these devices via a spectrum of cross-linking mechanisms, little attention is drawn to residual bioactivity that is often hampered during isolation, purification, and production processes. Herein, we discuss methods of initial material characterisation to determine innate bioactivity, means of material processing including cross-linking, decellularisation, and purification techniques and finally, a biological assessment of retained bioactivity of a final product. This review aims to address considerations for biomaterials design from natural polymers, through the optimisation and preservation of bioactive components that maximise the inherent bioactive potency of the substrate to promote tissue regeneration.
Collapse
Affiliation(s)
- Kieran Joyce
- School of Medicine, National University of Ireland, Galway, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
| | - Georgina Targa Fabra
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
| | - Yagmur Bozkurt
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland.
| |
Collapse
|
46
|
Generation of high yield insulin-producing cells (IPCs) from various sources of stem cells. VITAMINS AND HORMONES 2021; 116:235-268. [PMID: 33752820 DOI: 10.1016/bs.vh.2021.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Type 1 diabetes mellitus occurs when beta cell mass is reduced to less than 20% of the normal level due to immune system destruction of beta cell resulting in an inability to secrete enough insulin. The prevalence of diabetes is expanding according to the American Diabetes Association and the World Health Organization (WHO), foretold to exceed 350 million by 2030. The current treatment does not cure many of the serious complications associated with the disease such as neuropathy, nephropathy, dyslipidemia, retinopathy and cardiovascular disease. Whole pancreas or isolated pancreatic islet transplantation as an alternative therapy can prevent or reduce some of the complications of diabetes. However, the shortage of matched organ or islets cells donor and alloimmune responses limit this therapeutic strategy. Recently, several reports have raised extremely promising results to use different sources of stem cells to differentiate insulin-producing cells and focus on the expansion of these alternative sources. Stem cells, due to their potential for multiple differentiation and self-renewal can differentiate into all cell types, including insulin-producing cells (IPCs). Generation of new beta cells can be achieved from various stem cell sources, including embryonic stem cells (ESCs), adult stem cells, such as mesenchymal stem cells (MSCs) and induced pluripotent stem cells (iPSCs). Thus, this chapter discusses on the assistance of cellular reprogramming of various stem cells as candidates for the generation of IPCs using transcription factors/miRNA, cytokines/small molecules and tissue engineering.
Collapse
|
47
|
Wang J, Kong L, Gafur A, Peng X, Kristi N, Xu J, Ma X, Wang N, Humphry R, Durkan C, Zhang H, Ye Z, Wang G. Photooxidation crosslinking to recover residual stress in decellularized blood vessel. Regen Biomater 2021; 8:rbaa058. [PMID: 33738112 PMCID: PMC7955719 DOI: 10.1093/rb/rbaa058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/17/2020] [Accepted: 12/07/2020] [Indexed: 12/01/2022] Open
Abstract
Decellularization method based on trypsin-digestion is widely used to construct small diameter vascular grafts. However, this method will reduce the opening angle of the blood vessel and result in the reduction of residual stress. Residual stress reduced has an adverse effect on the compliance and permeability of small diameter vascular grafts. To improve the situation, acellular blood vessels were treated with glutaraldehyde and photooxidation crosslinking respectively, and the changes of opening angle, circumferential residual strain of native blood vessels, decellularized arteries and crosslinked blood vessels were measured by means of histological examination, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) in this study. The opening angle of decellularized arteries significantly restored after photooxidation crosslinking (P = 0.0216), while that of glutaraldehyde crosslinking blood vessels reduced. The elastic fibers inside the blood vessels became densely rearranged after photooxidation crosslinking. The results of finite element simulation showed that the residual stress increased with the increase of opening angle. In this study, we found at the first time that photooxidation crosslinking method could significantly increase the residual stress of decellularized vessels, which provides biomechanical support for the development of new biomaterials of vascular grafts.
Collapse
Affiliation(s)
- Jintao Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Lingwen Kong
- Department of Cardiothoracic Surgery, Central Hospital of Chongqing University, Chongqing Emergency Medical Center, Chongqing 400014, China
| | - Alidha Gafur
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Xiaobo Peng
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Natalia Kristi
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Jing Xu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Xingshuang Ma
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Nan Wang
- The Nanoscience Centre, University of Cambridge, Cambridge CB3 0FF, UK
| | - Rose Humphry
- The Nanoscience Centre, University of Cambridge, Cambridge CB3 0FF, UK
| | - Colm Durkan
- The Nanoscience Centre, University of Cambridge, Cambridge CB3 0FF, UK
| | - Haijun Zhang
- National Local Joint Engineering Laboratory for Biomedical Material Modification, Dezhou, Shandong 251100, China
| | - Zhiyi Ye
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Guixue Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| |
Collapse
|
48
|
Nouri Barkestani M, Naserian S, Uzan G, Shamdani S. Post-decellularization techniques ameliorate cartilage decellularization process for tissue engineering applications. J Tissue Eng 2021; 12:2041731420983562. [PMID: 33738088 PMCID: PMC7934046 DOI: 10.1177/2041731420983562] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/06/2020] [Indexed: 12/17/2022] Open
Abstract
Due to the current lack of innovative and effective therapeutic approaches, tissue engineering (TE) has attracted much attention during the last decades providing new hopes for the treatment of several degenerative disorders. Tissue engineering is a complex procedure, which includes processes of decellularization and recellularization of biological tissues or functionalization of artificial scaffolds by active cells. In this review, we have first discussed those conventional steps, which have led to great advancements during the last several years. Moreover, we have paid special attention to the new methods of post-decellularization that can significantly ameliorate the efficiency of decellularized cartilage extracellular matrix (ECM) for the treatment of osteoarthritis (OA). We propose a series of post-decellularization procedures to overcome the current shortcomings such as low mechanical strength and poor bioactivity to improve decellularized ECM scaffold towards much more efficient and higher integration.
Collapse
Affiliation(s)
| | - Sina Naserian
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France.,Université Paris-Saclay, CNRS, Centre de Nanosciences et Nanotechnologies C2N, UMR9001, Palaiseau, France.,CellMedEx, Saint Maur Des Fossés, France
| | - Georges Uzan
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France.,Paris-Saclay University, Villejuif, France
| | - Sara Shamdani
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France.,CellMedEx, Saint Maur Des Fossés, France
| |
Collapse
|
49
|
Sonpho E, Wootthichairangsan C, Ishida M, Inoue T, Agata K, Maleehuan A, Charngkaew K, Chomanee N, Moonsom S, Wongtrakoongate P, Chairoungdua A, Ounjai P. ECM-Body: A Cell-Free 3D Biomimetic Scaffold Derived from Intact Planarian Body. Zoolog Sci 2021; 37:307-313. [PMID: 32729708 DOI: 10.2108/zs190135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/11/2020] [Indexed: 11/17/2022]
Abstract
Extracellular matrix (ECM) plays key roles in shaping fates of stem cells, not only by providing a suitable niche but also by mediating physical and biochemical cues. Despite intensive investigations on regeneration, the roles of ECM in fate determination of stem cells in animals with great regenerative potency, such as planarian, have remained unclear. Here, we developed a method for decellularizing and isolating extracellular matrix from planarians. Although the isolated scaffold appears translucent, it contains all the internal features resembling those of the structure of intact planarians, and we thus called it the "ECM-body". Nuclear staining demonstrated that the ECM-body contains very few or no remaining cells. Histological sections displayed well-preserved morphological integrity of the specimen. Scanning electron microscopy showed a porous surface on the ECM-body, potentially suitable for housing cells. Furthermore, our preliminary experiment suggested that ECM-body can be utilized as a biomimetic scaffold for cell culture as it may support survival of injected neoblasts.
Collapse
Affiliation(s)
- Ekasit Sonpho
- Department of Biology, Faculty of Science, Mahidol University, 10400, Thailand.,Center of Excellence on Environmental Health and Toxicology (EHT), Office of Higher Education Commission, Ministry of Education, 10400, Thailand
| | | | - Miyuki Ishida
- Department of Life Science, Faculty of Science, Gakushuin University, Tokyo 171-8588, Japan
| | - Takeshi Inoue
- Department of Life Science, Faculty of Science, Gakushuin University, Tokyo 171-8588, Japan
| | - Kiyokazu Agata
- Department of Life Science, Faculty of Science, Gakushuin University, Tokyo 171-8588, Japan
| | | | - Komgrid Charngkaew
- Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, 10700, Thailand
| | - Nusara Chomanee
- Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, 10700, Thailand
| | - Saengduen Moonsom
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, 10400, Thailand
| | | | - Arthit Chairoungdua
- Department of Physiology, Faculty of Science, Mahidol University, 10400, Thailand
| | - Puey Ounjai
- Department of Biology, Faculty of Science, Mahidol University, 10400, Thailand.,Center of Excellence on Environmental Health and Toxicology (EHT), Office of Higher Education Commission, Ministry of Education, 10400, Thailand,
| |
Collapse
|
50
|
3D Scaffolds to Model the Hematopoietic Stem Cell Niche: Applications and Perspectives. MATERIALS 2021; 14:ma14030569. [PMID: 33530372 PMCID: PMC7865713 DOI: 10.3390/ma14030569] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/19/2022]
Abstract
Hematopoietic stem cells (HSC) are responsible for the production of blood and immune cells during life. HSC fate decisions are dependent on signals from specialized microenvironments in the bone marrow, termed niches. The HSC niche is a tridimensional environment that comprises cellular, chemical, and physical elements. Introductorily, we will revise the current knowledge of some relevant elements of the niche. Despite the importance of the niche in HSC function, most experimental approaches to study human HSCs use bidimensional models. Probably, this contributes to the failure in translating many in vitro findings into a clinical setting. Recreating the complexity of the bone marrow microenvironment in vitro would provide a powerful tool to achieve in vitro production of HSCs for transplantation, develop more effective therapies for hematologic malignancies and provide deeper insight into the HSC niche. We previously demonstrated that an optimized decellularization method can preserve with striking detail the ECM architecture of the bone marrow niche and support HSC culture. We will discuss the potential of this decellularized scaffold as HSC niche model. Besides decellularized scaffolds, several other methods have been reported to mimic some characteristics of the HSC niche. In this review, we will examine these models and their applications, advantages, and limitations.
Collapse
|