1
|
Mendonsa AA, Cash KJ. Oxygen-Sensitive Optical Nanosensors: Current Advances and Future Perspectives. ACS Sens 2025. [PMID: 40272943 DOI: 10.1021/acssensors.5c00180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Oxygen sensing is essential across a wide range of fields, from understanding cellular metabolism and disease mechanisms to optimizing industrial and environmental processes. In this Perspective, we highlight key developments in optical architectures (at the nanometer to sub-micrometer scale), including their transduction methods and applications to in vitro, in vivo/in situ, and nonbiological systems. We also discuss future directions for the field in the domain of expanding extra/intracellular and nonbiological sensing. We address improving accessibility for nonexpert users through the need for standardized protocols and scalable production methods. Furthermore, we advocate for fostering interdisciplinary collaborations through academic incubators, conference networking, and strategic citation practices to bridge gaps between fundamental research and applied science to expand the impact of these tools to researchers outside the sensing field. Addressing these challenges will help drive the development of more versatile and widely accessible oxygen sensors, thus advancing innovation across diverse disciplines.
Collapse
Affiliation(s)
- Adrian A Mendonsa
- Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Kevin J Cash
- Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
2
|
Liu YH, Chung MT, Lin HC, Lee TA, Cheng YJ, Huang CC, Wu HM, Tung YC. Shaping early neural development by timed elevated tissue oxygen tension: Insights from multiomic analysis on human cerebral organoids. SCIENCE ADVANCES 2025; 11:eado1164. [PMID: 40073136 PMCID: PMC11900884 DOI: 10.1126/sciadv.ado1164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 02/05/2025] [Indexed: 03/14/2025]
Abstract
Oxygen plays a critical role in early neural development in brains, particularly before establishment of complete vasculature; however, it has seldom been investigated due to technical limitations. This study uses an in vitro human cerebral organoid model with multiomic analysis, integrating advanced microscopies and single-cell RNA sequencing, to monitor tissue oxygen tension during neural development. Results reveal a key period between weeks 4 and 6 with elevated intra-organoid oxygen tension, altered energy homeostasis, and rapid neurogenesis within the organoids. The timed oxygen tension elevation can be suppressed by hypoxia treatment or silencing of neuroglobin gene. This study provides insights into the role of oxygen in early neurogenesis from functional, genotypic, phenotypic, and proteomic aspects. These findings highlight the significance of the timed tissue oxygen tension elevation in neurogenesis and provide insights into the role of neuroglobin in neural development, with potential implications for understanding neurodegenerative diseases and therapeutic strategies.
Collapse
Affiliation(s)
- Yuan-Hsuan Liu
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Meng-Ting Chung
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Hsi-Chieh Lin
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Tse-Ang Lee
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Ya-Jen Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan
| | | | - Hsiao-Mei Wu
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
- Department of Biomechatronics Engineering, National Taiwan University, Taipei, Taiwan
| | - Yi-Chung Tung
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
3
|
Lee LCC, Lo KKW. Shining New Light on Biological Systems: Luminescent Transition Metal Complexes for Bioimaging and Biosensing Applications. Chem Rev 2024; 124:8825-9014. [PMID: 39052606 PMCID: PMC11328004 DOI: 10.1021/acs.chemrev.3c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Luminescence imaging is a powerful and versatile technique for investigating cell physiology and pathology in living systems, making significant contributions to life science research and clinical diagnosis. In recent years, luminescent transition metal complexes have gained significant attention for diagnostic and therapeutic applications due to their unique photophysical and photochemical properties. In this Review, we provide a comprehensive overview of the recent development of luminescent transition metal complexes for bioimaging and biosensing applications, with a focus on transition metal centers with a d6, d8, and d10 electronic configuration. We elucidate the structure-property relationships of luminescent transition metal complexes, exploring how their structural characteristics can be manipulated to control their biological behavior such as cellular uptake, localization, biocompatibility, pharmacokinetics, and biodistribution. Furthermore, we introduce the various design strategies that leverage the interesting photophysical properties of luminescent transition metal complexes for a wide variety of biological applications, including autofluorescence-free imaging, multimodal imaging, organelle imaging, biological sensing, microenvironment monitoring, bioorthogonal labeling, bacterial imaging, and cell viability assessment. Finally, we provide insights into the challenges and perspectives of luminescent transition metal complexes for bioimaging and biosensing applications, as well as their use in disease diagnosis and treatment evaluation.
Collapse
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
4
|
Debruyne A, Okkelman IA, Heymans N, Pinheiro C, Hendrix A, Nobis M, Borisov SM, Dmitriev RI. Live Microscopy of Multicellular Spheroids with the Multimodal Near-Infrared Nanoparticles Reveals Differences in Oxygenation Gradients. ACS NANO 2024; 18:12168-12186. [PMID: 38687976 PMCID: PMC11100290 DOI: 10.1021/acsnano.3c12539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/06/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
Assessment of hypoxia, nutrients, metabolite gradients, and other hallmarks of the tumor microenvironment within 3D multicellular spheroid and organoid models represents a challenging analytical task. Here, we report red/near-infrared (NIR) emitting cell staining with O2-sensitive nanoparticles, which enable measurements of spheroid oxygenation on a conventional fluorescence microscope. Nanosensor probes, termed "MMIR" (multimodal infrared), incorporate an NIR O2-sensitive metalloporphyrin (PtTPTBPF) and deep red aza-BODIPY reference dyes within a biocompatible polymer shell, allowing for oxygen gradient quantification via fluorescence ratio and phosphorescence lifetime readouts. We optimized staining techniques and evaluated the nanosensor probe characteristics and cytotoxicity. Subsequently, we applied nanosensors to the live spheroid models based on HCT116, DPSCs, and SKOV3 cells, at rest, and treated with drugs affecting cell respiration. We found that the growth medium viscosity, spheroid size, and formation method influenced spheroid oxygenation. Some spheroids produced from HCT116 and dental pulp stem cells exhibited "inverted" oxygenation gradients, with higher core oxygen levels than the periphery. This contrasted with the frequently encountered "normal" gradient of hypoxia toward the core caused by diffusion. Further microscopy analysis of spheroids with an "inverted" gradient demonstrated metabolic stratification of cells within spheroids: thus, autofluorescence FLIM of NAD(P)H indicated the formation of a glycolytic core and localization of OxPhos-active cells at the periphery. Collectively, we demonstrate a strong potential of NIR-emitting ratiometric nanosensors for advanced microscopy studies targeting live and quantitative real-time monitoring of cell metabolism and hypoxia in complex 3D tissue models.
Collapse
Affiliation(s)
- Angela
C. Debruyne
- Tissue
Engineering and Biomaterials Group, Department of Human Structure
and Repair, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Irina A. Okkelman
- Tissue
Engineering and Biomaterials Group, Department of Human Structure
and Repair, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium
- Ghent
Light
Microscopy Core, Ghent University, 9000 Ghent, Belgium
| | - Nina Heymans
- Tissue
Engineering and Biomaterials Group, Department of Human Structure
and Repair, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Cláudio Pinheiro
- Laboratory
of Experimental Cancer Research, Department of Human Structure and
Repair, Ghent University, 9000 Ghent, Belgium
- Cancer
Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - An Hendrix
- Laboratory
of Experimental Cancer Research, Department of Human Structure and
Repair, Ghent University, 9000 Ghent, Belgium
- Cancer
Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Max Nobis
- Intravital
Imaging Expertise Center, VIB Center for Cancer Biology, KU Leuven, 3000 Leuven, Belgium
| | - Sergey M. Borisov
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, Graz 8010, Austria
| | - Ruslan I. Dmitriev
- Tissue
Engineering and Biomaterials Group, Department of Human Structure
and Repair, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium
- Ghent
Light
Microscopy Core, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
5
|
Zhdanov AV, Sen R, Devoy C, Li L, Tangney M, Papkovsky DB. Analysis of tumour oxygenation in model animals on a phosphorescence lifetime based macro-imager. Sci Rep 2023; 13:18732. [PMID: 37907625 PMCID: PMC10618169 DOI: 10.1038/s41598-023-46224-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 10/30/2023] [Indexed: 11/02/2023] Open
Abstract
Monitoring of tissue O2 is essential for cancer development and treatment, as hypoxic tumour regions develop resistance to radio- and chemotherapy. We describe a minimally invasive technique for the monitoring of tissue oxygenation in developing grafted tumours, which uses the new phosphorescence lifetime based Tpx3Cam imager. CT26 cells stained with a near-infrared emitting nanoparticulate O2 probe NanO2-IR were injected into mice to produce grafted tumours with characteristic phosphorescence. The tumours were allowed to develop for 3, 7, 10 and 17 days, with O2 imaging experiments performed on live and euthanised animals at different time points. Despite a marked trend towards decreased O2 in dead animals, their tumour areas produced phosphorescence lifetime values between 44 and 47 µs, which corresponded to hypoxic tissue with 5-20 μM O2. After the O2 imaging in animals, confocal Phosphorescence Lifetime Imaging Microscopy was conducted to examine the distribution of NanO2-IR probe in the tumours, which were excised, fixed and sliced for the purpose. The probe remained visible as bright and discrete 'islands' embedded in the tumour tissue until day 17 of tumour growth. Overall, this O2 macro-imaging method using NanO2-IR holds promise for long-term studies with grafted tumours in live animal models, providing quantitative 2D mapping of tissue O2.
Collapse
Affiliation(s)
- Alexander V Zhdanov
- School of Biochemistry and Cell Biology, University College Cork, Pharmacy Building, College Road, Cork, Ireland
| | - Rajannya Sen
- School of Biochemistry and Cell Biology, University College Cork, Pharmacy Building, College Road, Cork, Ireland
| | - Ciaran Devoy
- Cancer Research @UCC, University College Cork, Cork, Ireland
| | - Liang Li
- School of Biochemistry and Cell Biology, University College Cork, Pharmacy Building, College Road, Cork, Ireland
| | - Mark Tangney
- Cancer Research @UCC, University College Cork, Cork, Ireland
| | - Dmitri B Papkovsky
- School of Biochemistry and Cell Biology, University College Cork, Pharmacy Building, College Road, Cork, Ireland.
| |
Collapse
|
6
|
Litvinov IK, Belyaeva TN, Salova AV, Aksenov ND, Chelushkin PS, Solomatina AI, Tunik SP, Kornilova ES. The Dual Luminescence Lifetime pH/Oxygen Sensor: Evaluation of Applicability for Intravital Analysis of 2D- and 3D-Cultivated Human Endometrial Mesenchymal Stromal Cells. Int J Mol Sci 2023; 24:15606. [PMID: 37958592 PMCID: PMC10650141 DOI: 10.3390/ijms242115606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
The oxygenation of cells and tissues and acidification of the cellular endolysosomal system are among the major factors that ensure normal functioning of an organism and are violated in various pathologies. Recording of these parameters and their changes under various conditions is an important task for both basic research and clinical applications. In the present work, we utilized internalizable dual pH/O2 lifetime sensor (Ir-HSA-FITC) based on the covalent conjugation of human serum albumin (HSA) with fluorescein isothiocyanate (FITC) as pH sensor and an orthometalated iridium complex as O2 sensor. The probe was tested for simultaneous detection of acidification level and oxygen concentration in endolysosomes of endometrial mesenchymal stem/stromal cells (enMSCs) cultivated as 2D monolayers and 3D spheroids. Using a combined FLIM/PLIM approach, we found that due to high autofluorescence of enMSCs FITC lifetime signal in control cells was insufficient to estimate pH changes. However, using flow cytometry and confocal microscopy, we managed to detect the FITC signal response to inhibition of endolysosomal acidification by Bafilomycin A1. The iridium chromophore phosphorescence was detected reliably by all methods used. It was demonstrated that the sensor, accumulated in endolysosomes for 24 h, disappeared from proliferating 2D enMSCs by 72 h, but can still be recorded in non-proliferating spheroids. PLIM showed high sensitivity and responsiveness of iridium chromophore phosphorescence to experimental hypoxia both in 2D and 3D cultures. In spheroids, the phosphorescence signal was detected at a depth of up to 60 μm using PLIM and showed a gradient in the intracellular O2 level towards their center.
Collapse
Affiliation(s)
- Ilia K. Litvinov
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky av. 4, 194064 Saint-Petersburg, Russia; (I.K.L.); (T.N.B.); (A.V.S.); (N.D.A.)
| | - Tatiana N. Belyaeva
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky av. 4, 194064 Saint-Petersburg, Russia; (I.K.L.); (T.N.B.); (A.V.S.); (N.D.A.)
| | - Anna V. Salova
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky av. 4, 194064 Saint-Petersburg, Russia; (I.K.L.); (T.N.B.); (A.V.S.); (N.D.A.)
| | - Nikolay D. Aksenov
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky av. 4, 194064 Saint-Petersburg, Russia; (I.K.L.); (T.N.B.); (A.V.S.); (N.D.A.)
| | - Pavel S. Chelushkin
- Institute of Chemistry, St. Petersburg State University, Universitetskii av., 26, 198504 Saint-Petersburg, Russia; (P.S.C.); (A.I.S.)
| | - Anastasia I. Solomatina
- Institute of Chemistry, St. Petersburg State University, Universitetskii av., 26, 198504 Saint-Petersburg, Russia; (P.S.C.); (A.I.S.)
| | - Sergey P. Tunik
- Institute of Chemistry, St. Petersburg State University, Universitetskii av., 26, 198504 Saint-Petersburg, Russia; (P.S.C.); (A.I.S.)
| | - Elena S. Kornilova
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky av. 4, 194064 Saint-Petersburg, Russia; (I.K.L.); (T.N.B.); (A.V.S.); (N.D.A.)
- Higher School of Biomedical Systems and Technologies, Peter the Great St. Petersburg Polytechnic University, Khlopina Str. 11, 195251 Saint-Petersburg, Russia
| |
Collapse
|
7
|
Debruyne AC, Okkelman IA, Dmitriev RI. Balance between the cell viability and death in 3D. Semin Cell Dev Biol 2023; 144:55-66. [PMID: 36117019 DOI: 10.1016/j.semcdb.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 11/25/2022]
Abstract
Cell death is a phenomenon, frequently perceived as an absolute event for cell, tissue and the organ. However, the rising popularity and complexity of such 3D multicellular 'tissue building blocks' as heterocellular spheroids, organoids, and 'assembloids' prompts to revise the definition and quantification of cell viability and death. It raises several questions on the overall viability of all the cells within 3D volume and on choosing the appropriate, continuous, and non-destructive viability assay enabling for a single-cell analysis. In this review, we look at cell viability and cell death modalities with attention to the intrinsic features of such 3D models as spheroids, organoids, and bioprints. Furthermore, we look at emerging and promising methodologies, which can help define and understand the balance between cell viability and death in dynamic and complex 3D environments. We conclude that the recent innovations in biofabrication, biosensor probe development, and fluorescence microscopy can help answer these questions.
Collapse
Affiliation(s)
- Angela C Debruyne
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent 9000, Belgium
| | - Irina A Okkelman
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent 9000, Belgium
| | - Ruslan I Dmitriev
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent 9000, Belgium.
| |
Collapse
|
8
|
Samandarsangari M, Kozina DO, Sokolov VV, Komarova AD, Shirmanova MV, Kritchenkov IS, Tunik SP. Biocompatible Phosphorescent O 2 Sensors Based on Ir(III) Complexes for In Vivo Hypoxia Imaging. BIOSENSORS 2023; 13:680. [PMID: 37504079 PMCID: PMC10377268 DOI: 10.3390/bios13070680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/12/2023] [Accepted: 06/22/2023] [Indexed: 07/29/2023]
Abstract
In this work, we obtained three new phosphorescent iridium complexes (Ir1-Ir3) of general stoichiometry [Ir(N^C)2(N^N)]Cl decorated with oligo(ethylene glycol) fragments to make them water-soluble and biocompatible, as well as to protect them from aggregation with biomolecules such as albumin. The major photophysical characteristics of these phosphorescent complexes are determined by the nature of two cyclometallating ligands (N^C) based on 2-pyridine-benzothiophene, since quantum chemical calculations revealed that the electronic transitions responsible for the excitation and emission are localized mainly at these fragments. However, the use of various diimine ligands (N^N) proved to affect the quantum yield of phosphorescence and allowed for changing the complexes' sensitivity to oxygen, due to the variations in the steric accessibility of the chromophore center for O2 molecules. It was also found that the N^N ligands made it possible to tune the biocompatibility of the resulting compounds. The wavelengths of the Ir1-Ir3 emission maxima fell in the range of 630-650 nm, the quantum yields reached 17% (Ir1) in a deaerated solution, and sensitivity to molecular oxygen, estimated as the ratio of emission lifetime in deaerated and aerated water solutions, displayed the highest value, 8.2, for Ir1. The obtained complexes featured low toxicity, good water solubility and the absence of a significant effect of biological environment components on the parameters of their emission. Of the studied compounds, Ir1 and Ir2 were chosen for in vitro and in vivo biological experiments to estimate oxygen concentration in cell lines and tumors. These sensors have demonstrated their effectiveness for mapping the distribution of oxygen and for monitoring hypoxia in the biological objects studied.
Collapse
Affiliation(s)
- Mozhgan Samandarsangari
- Institute of Chemistry, St. Petersburg State University, Universitetskaya Embankment 7-9, 199034 St. Petersburg, Russia
| | - Daria O Kozina
- Institute of Chemistry, St. Petersburg State University, Universitetskaya Embankment 7-9, 199034 St. Petersburg, Russia
| | - Victor V Sokolov
- Institute of Chemistry, St. Petersburg State University, Universitetskaya Embankment 7-9, 199034 St. Petersburg, Russia
| | - Anastasia D Komarova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhskiy Research Medical University, Minin and Pozharsky Sq. 10/1, 603005 Nizhny Novgorod, Russia
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Gagarina Av., 23, 603950 Nizhny Novgorod, Russia
| | - Marina V Shirmanova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhskiy Research Medical University, Minin and Pozharsky Sq. 10/1, 603005 Nizhny Novgorod, Russia
| | - Ilya S Kritchenkov
- Institute of Chemistry, St. Petersburg State University, Universitetskaya Embankment 7-9, 199034 St. Petersburg, Russia
| | - Sergey P Tunik
- Institute of Chemistry, St. Petersburg State University, Universitetskaya Embankment 7-9, 199034 St. Petersburg, Russia
| |
Collapse
|
9
|
Huang LQ, Ding XL, Pan XT, Li ZQ, Wang K, Xia XH. Single-cell thermometry with a nanothermocouple probe. Chem Commun (Camb) 2023; 59:876-879. [PMID: 36598045 DOI: 10.1039/d2cc06110d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Herein, a nanopipette-based thermocouple probe that possesses high temperature resolution, rapid response, good reversibility and stability was constructed and successfully applied for single-cell temperature sensing. Different intracellular temperatures were observed in diverse types of cells, which reveals differences in their metabolism levels. Temperature responses of cancer and normal cells against various exogenous drugs were also demonstrated. The spatially resolved temperature sensing of three-dimensional cell culture models unveils the existence of their inner temperature gradients. This work would facilitate drug screening and disease diagnosis.
Collapse
Affiliation(s)
- Li-Qiu Huang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Xin-Lei Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Xiao-Tong Pan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Zhong-Qiu Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Kang Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
10
|
Heparin Protects Human Neural Progenitor Cells from Zika Virus-Induced Cell Death While Preserving Their Differentiation into Mature Neuroglial Cells. J Virol 2022; 96:e0112222. [PMID: 36121298 PMCID: PMC9555206 DOI: 10.1128/jvi.01122-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Zika virus (ZIKV) is an arbovirus member of the Flaviviridae family that causes severe congenital brain anomalies in infected fetuses. The key target cells of ZIKV infection, human neural progenitor cells (hNPCs), are highly permissive to infection that causes the inhibition of cell proliferation and induces cell death. We have previously shown that pharmaceutical-grade heparin inhibits virus-induced cell death with negligible effects on in vitro virus replication in ZIKV-infected hNPCs at the “high” multiplicity of infection (MOI) of 1. Here, we show that heparin inhibits formation of ZIKV-induced intracellular vacuoles, a signature of paraptosis, and inhibits necrosis and apoptosis of hNPCs grown as neurospheres (NS). To test whether heparin preserved the differentiation of ZIKV-infected hNPCs into neuroglial cells, hNPCs were infected at the MOI of 0.001. In this experimental condition, heparin inhibited ZIKV replication by ca. 2 log10, mostly interfering with virion attachment, while maintaining its protective effect against ZIKV-induced cytopathicity. Heparin preserved differentiation into neuroglial cells of hNPCs that were obtained from either human-induced pluripotent stem cells (hiPSC) or by fetal tissue. Quite surprisingly, multiple additions of heparin to hNPCs enabled prolonged virus replication while preventing virus-induced cytopathicity. Collectively, these results highlight the potential neuroprotective effect of heparin that could serve as a lead compound to develop novel agents for preventing the damage of ZIKV infection on the developing brain. IMPORTANCE ZIKV is a neurotropic virus that invades neural progenitor cells (NPCs), causing inhibition of their proliferation and maturation into neurons and glial cells. We have shown previously that heparin, an anticoagulant also used widely during pregnancy, prevents ZIKV-induced cell death with negligible inhibition of virus replication. Here, we demonstrate that heparin also exerts antiviral activity against ZIKV replication using a much lower infectious inoculum. Moreover, heparin interferes with different modalities of virus-induced cell death. Finally, heparin-induced prevention of virus-induced NPC death allows their differentiation into neuroglial cells despite the intracellular accumulation of virions. These results highlight the potential use of heparin, or pharmacological agents derived from it, in pregnant women to prevent the devastating effects of ZIKV infection on the developing brain of their fetuses.
Collapse
|
11
|
Capturing the third dimension in drug discovery: Spatially-resolved tools for interrogation of complex 3D cell models. Biotechnol Adv 2021; 55:107883. [PMID: 34875362 DOI: 10.1016/j.biotechadv.2021.107883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023]
Abstract
Advanced three-dimensional (3D) cell models have proven to be capable of depicting architectural and microenvironmental features of several tissues. By providing data of higher physiological and pathophysiological relevance, 3D cell models have been contributing to a better understanding of human development, pathology onset and progression mechanisms, as well as for 3D cell-based assays for drug discovery. Nonetheless, the characterization and interrogation of these tissue-like structures pose major challenges on the conventional analytical methods, pushing the development of spatially-resolved technologies. Herein, we review recent advances and pioneering technologies suitable for the interrogation of multicellular 3D models, while capable of retaining biological spatial information. We focused on imaging technologies and omics tools, namely transcriptomics, proteomics and metabolomics. The advantages and shortcomings of these novel methodologies are discussed, alongside the opportunities to intertwine data from the different tools.
Collapse
|
12
|
Santos SIP, de Oliveira VC, Pieri NCG, Bressan FF, Ambrósio CE, Feitosa MLT. Isolation and characterization of neural stem cells from fetal canine spinal cord. Neurosci Lett 2021; 765:136293. [PMID: 34662661 DOI: 10.1016/j.neulet.2021.136293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/29/2021] [Accepted: 10/10/2021] [Indexed: 10/20/2022]
Abstract
Neurogenesis in adult mammals occurs mainly in the subventricular and subgranular areas of the brain, but there are also reports of its occurrence in the spinal cord. In a study on rats, neural stem cells and neuroprogenitor cells could be obtained through primary spinal cord culture, but there are no studies on these cells in canine species, to date. Dogs represent an appropriate animal model for studies on neurogenesis and neurological disorders. In addition, they are animals of great affective value, and the therapeutic use of neural stem cells can represent a breakthrough in regenerative veterinary medicine. Therefore, this study aimed to determine a protocol for the isolation, culture, and characterization of neural and neuroprogenitor stem cells derived from the spinal cord of canine fetuses. The cells were isolated from spinal cord fragments and cultured in serum-free culture medium supplemented with EGF and FGF-2 growth factors. These cells were observed daily by optical microscopy to analyze their morphological characteristics. From the third day in vitro, it was possible to observe translucent cell groupings, similar to the neurospheres, which approximately ranged from 50 µm to 200 µm at seven days in vitro. Throughout the culture period, the neurospheres developed ribbons in their periphery that migrated and communicated with other neurospheres. RT-PCR revealed that the cells expressed the characteristic genes SOX2, NESTIN, and GFAP. In addition to gene expression, the cells were phenotypically marked in the immunofluorescence assay for the proteins Nestin, GFAP, and β-tubulin III, characterizing them as neurospheres. Our results suggest that the spinal cord may be a source of neural stem cells and neural progenitor cells in canine fetuses. These cells may be an interesting option for neurogenesis and neuroregenerative therapy studies.
Collapse
Affiliation(s)
- Sarah Ingrid Pinto Santos
- Department of Veterinary Clinics, State University of Maranhão, Maranhão, Brazil; Faculty of Animal Science and Food Engineering, Sao Paulo University, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
13
|
Becker L, Janssen N, Layland SL, Mürdter TE, Nies AT, Schenke-Layland K, Marzi J. Raman Imaging and Fluorescence Lifetime Imaging Microscopy for Diagnosis of Cancer State and Metabolic Monitoring. Cancers (Basel) 2021; 13:cancers13225682. [PMID: 34830837 PMCID: PMC8616063 DOI: 10.3390/cancers13225682] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 02/08/2023] Open
Abstract
Hurdles for effective tumor therapy are delayed detection and limited effectiveness of systemic drug therapies by patient-specific multidrug resistance. Non-invasive bioimaging tools such as fluorescence lifetime imaging microscopy (FLIM) and Raman-microspectroscopy have evolved over the last decade, providing the potential to be translated into clinics for early-stage disease detection, in vitro drug screening, and drug efficacy studies in personalized medicine. Accessing tissue- and cell-specific spectral signatures, Raman microspectroscopy has emerged as a diagnostic tool to identify precancerous lesions, cancer stages, or cell malignancy. In vivo Raman measurements have been enabled by recent technological advances in Raman endoscopy and signal-enhancing setups such as coherent anti-stokes Raman spectroscopy or surface-enhanced Raman spectroscopy. FLIM enables in situ investigations of metabolic processes such as glycolysis, oxidative stress, or mitochondrial activity by using the autofluorescence of co-enzymes NADH and FAD, which are associated with intrinsic proteins as a direct measure of tumor metabolism, cell death stages and drug efficacy. The combination of non-invasive and molecular-sensitive in situ techniques and advanced 3D tumor models such as patient-derived organoids or microtumors allows the recapitulation of tumor physiology and metabolism in vitro and facilitates the screening for patient-individualized drug treatment options.
Collapse
Affiliation(s)
- Lucas Becker
- Department for Medical Technologies and Regenerative Medicine, Institute of Biomedical Engineering, University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| | - Nicole Janssen
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, University of Tübingen, 72076 Tübingen, Germany
| | - Shannon L Layland
- Department for Medical Technologies and Regenerative Medicine, Institute of Biomedical Engineering, University of Tübingen, 72076 Tübingen, Germany
| | - Thomas E Mürdter
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, University of Tübingen, 72076 Tübingen, Germany
| | - Anne T Nies
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, University of Tübingen, 72076 Tübingen, Germany
| | - Katja Schenke-Layland
- Department for Medical Technologies and Regenerative Medicine, Institute of Biomedical Engineering, University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
- Cardiovascular Research Laboratories, Department of Medicine/Cardiology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90073, USA
| | - Julia Marzi
- Department for Medical Technologies and Regenerative Medicine, Institute of Biomedical Engineering, University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| |
Collapse
|
14
|
McKeegan PJ, Boardman SF, Wanless AA, Boyd G, Warwick LJ, Lu J, Gnanaprabha K, Picton HM. Intracellular oxygen metabolism during bovine oocyte and preimplantation embryo development. Sci Rep 2021; 11:21245. [PMID: 34711892 PMCID: PMC8553752 DOI: 10.1038/s41598-021-99512-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/24/2021] [Indexed: 11/11/2022] Open
Abstract
We report a novel method to profile intrcellular oxygen concentration (icO2) during in vitro mammalian oocyte and preimplantation embryo development using a commercially available multimodal phosphorescent nanosensor (MM2). Abattoir-derived bovine oocytes and embryos were incubated with MM2 in vitro. A series of inhibitors were applied during live-cell multiphoton imaging to record changes in icO2 associated with mitochondrial processes. The uncoupler carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) uncouples mitochondrial oxygen consumption to its maximum, while antimycin inhibits complex III to ablate mitochondrial oxygen consumption. Increasing oxygen consumption was expected to reduce icO2 and decreasing oxygen consumption to increase icO2. Use of these inhibitors quantifies how much oxygen is consumed at basal in comparison to the upper and lower limits of mitochondrial function. icO2 measurements were compared to mitochondrial DNA copy number analysed by qPCR. Antimycin treatment increased icO2 for all stages tested, suggesting significant mitochondrial oxygen consumption at basal. icO2 of oocytes and preimplantation embryos were unaffected by FCCP treatment. Inner cell mass icO2 was lower than trophectoderm, perhaps reflecting limitations of diffusion. Mitochondrial DNA copy numbers were similar between stages in the range 0.9-4 × 106 copies and did not correlate with icO2. These results validate the MM2 probe as a sensitive, non-toxic probe of intracellular oxygen concentration in mammalian oocytes and preimplantation embryos.
Collapse
Affiliation(s)
- Paul J McKeegan
- Reproduction and Early Development Research Group, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Clarendon Way, Leeds, LS2 9JT, UK.
- Centre for Anatomical and Human Sciences, Hull York Medical School, University of Hull, Hull, HU6 7RX, UK.
| | - Selina F Boardman
- Reproduction and Early Development Research Group, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Clarendon Way, Leeds, LS2 9JT, UK
- CARE Fertility, Manchester, England, UK
| | - Amy A Wanless
- Reproduction and Early Development Research Group, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Clarendon Way, Leeds, LS2 9JT, UK
- Assisted Conception Unit, Ninewells Hospital, Dundee, Scotland, UK
| | - Grace Boyd
- Reproduction and Early Development Research Group, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Clarendon Way, Leeds, LS2 9JT, UK
- Department of Biological Sciences, University of York, Wentworth Way, York, YO10 5DD, England, UK
| | - Laura J Warwick
- Reproduction and Early Development Research Group, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Clarendon Way, Leeds, LS2 9JT, UK
- St James's University Hospital, Beckett Street, Leeds, LS9 7TF, England, UK
| | - Jianping Lu
- Reproduction and Early Development Research Group, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Clarendon Way, Leeds, LS2 9JT, UK
| | - Keerthi Gnanaprabha
- Reproduction and Early Development Research Group, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Clarendon Way, Leeds, LS2 9JT, UK
- GCRM Fertility, 21 Fifty Pitches Way, Glasgow, G51 4FD, Scotland, UK
| | - Helen M Picton
- Reproduction and Early Development Research Group, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Clarendon Way, Leeds, LS2 9JT, UK
| |
Collapse
|
15
|
ZUSHI K, KITAZUMI Y, SOWA K, KANO K, SHIRAI O. Kinetic Analysis of Oxygen Dissolution by Bubble-attaching Electrodes. BUNSEKI KAGAKU 2021. [DOI: 10.2116/bunsekikagaku.70.551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Kento ZUSHI
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| | - Yuki KITAZUMI
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| | - Keisei SOWA
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| | - Kenji KANO
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| | - Osamu SHIRAI
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| |
Collapse
|
16
|
Gkika K, Noorani S, Walsh N, Keyes TE. Os(II)-Bridged Polyarginine Conjugates: The Additive Effects of Peptides in Promoting or Preventing Permeation in Cells and Multicellular Tumor Spheroids. Inorg Chem 2021; 60:8123-8134. [PMID: 33978399 PMCID: PMC8277133 DOI: 10.1021/acs.inorgchem.1c00769] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Indexed: 12/05/2022]
Abstract
The preparation of two polyarginine conjugates of the complex Os(II) [bis-(4'-(4-carboxyphenyl)-2,2':6',2″-terpyridine)] [Os-(Rn)2]x+ (n = 4 and 8; x = 10 and 18) is reported, to explore whether the R8 peptide sequence that promotes cell uptake requires a contiguous amino acid sequence for membrane permeation or if this can be accomplished in a linearly bridged structure with the additive effect of shorter peptide sequences. The conjugates exhibit NIR emission centered at 754 nm and essentially oxygen-insensitive emission with a lifetime of 89 ns in phosphate-buffered saline. The uptake, distribution, and cytotoxicity of the parent complex and peptide derivatives were compared in 2D cell monolayers and a three-dimensional (3D) multicellular tumor spheroid (MCTS) model. Whereas, the bis-octaarginine sequences were impermeable to cells and spheroids, and the bis-tetraarginine conjugate showed excellent cellular uptake and accumulation in two 2D monolayer cell lines and remarkable in-depth penetration of 3D MCTSs of pancreatic cancer cells. Overall, the data indicates that cell permeability can be promoted via non-contiguous sequences of arginine residues bridged across the metal centre.
Collapse
Affiliation(s)
- Karmel
S. Gkika
- School
of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | - Sara Noorani
- School
of Biotechnology, National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Naomi Walsh
- School
of Biotechnology, National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Tia E. Keyes
- School
of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
17
|
Dmitriev RI, Intes X, Barroso MM. Luminescence lifetime imaging of three-dimensional biological objects. J Cell Sci 2021; 134:1-17. [PMID: 33961054 PMCID: PMC8126452 DOI: 10.1242/jcs.254763] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A major focus of current biological studies is to fill the knowledge gaps between cell, tissue and organism scales. To this end, a wide array of contemporary optical analytical tools enable multiparameter quantitative imaging of live and fixed cells, three-dimensional (3D) systems, tissues, organs and organisms in the context of their complex spatiotemporal biological and molecular features. In particular, the modalities of luminescence lifetime imaging, comprising fluorescence lifetime imaging (FLI) and phosphorescence lifetime imaging microscopy (PLIM), in synergy with Förster resonance energy transfer (FRET) assays, provide a wealth of information. On the application side, the luminescence lifetime of endogenous molecules inside cells and tissues, overexpressed fluorescent protein fusion biosensor constructs or probes delivered externally provide molecular insights at multiple scales into protein-protein interaction networks, cellular metabolism, dynamics of molecular oxygen and hypoxia, physiologically important ions, and other physical and physiological parameters. Luminescence lifetime imaging offers a unique window into the physiological and structural environment of cells and tissues, enabling a new level of functional and molecular analysis in addition to providing 3D spatially resolved and longitudinal measurements that can range from microscopic to macroscopic scale. We provide an overview of luminescence lifetime imaging and summarize key biological applications from cells and tissues to organisms.
Collapse
Affiliation(s)
- Ruslan I. Dmitriev
- Tissue Engineering and Biomaterials Group, Department of
Human Structure and Repair, Faculty of Medicine and Health Sciences,
Ghent University, Ghent 9000,
Belgium
| | - Xavier Intes
- Department of Biomedical Engineering, Center for
Modeling, Simulation and Imaging for Medicine (CeMSIM),
Rensselaer Polytechnic Institute, Troy, NY
12180-3590, USA
| | - Margarida M. Barroso
- Department of Molecular and Cellular
Physiology, Albany Medical College,
Albany, NY 12208, USA
| |
Collapse
|
18
|
Fritsche E, Haarmann-Stemmann T, Kapr J, Galanjuk S, Hartmann J, Mertens PR, Kämpfer AAM, Schins RPF, Tigges J, Koch K. Stem Cells for Next Level Toxicity Testing in the 21st Century. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006252. [PMID: 33354870 DOI: 10.1002/smll.202006252] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/13/2020] [Indexed: 06/12/2023]
Abstract
The call for a paradigm change in toxicology from the United States National Research Council in 2007 initiates awareness for the invention and use of human-relevant alternative methods for toxicological hazard assessment. Simple 2D in vitro systems may serve as first screening tools, however, recent developments infer the need for more complex, multicellular organotypic models, which are superior in mimicking the complexity of human organs. In this review article most critical organs for toxicity assessment, i.e., skin, brain, thyroid system, lung, heart, liver, kidney, and intestine are discussed with regards to their functions in health and disease. Embracing the manifold modes-of-action how xenobiotic compounds can interfere with physiological organ functions and cause toxicity, the need for translation of such multifaceted organ features into the dish seems obvious. Currently used in vitro methods for toxicological applications and ongoing developments not yet arrived in toxicity testing are discussed, especially highlighting the potential of models based on embryonic stem cells and induced pluripotent stem cells of human origin. Finally, the application of innovative technologies like organs-on-a-chip and genome editing point toward a toxicological paradigm change moves into action.
Collapse
Affiliation(s)
- Ellen Fritsche
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
- Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, 40225, Germany
| | | | - Julia Kapr
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Saskia Galanjuk
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Julia Hartmann
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Peter R Mertens
- Department of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke-University Magdeburg, Magdeburg, 39106, Germany
| | - Angela A M Kämpfer
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Roel P F Schins
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Julia Tigges
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Katharina Koch
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| |
Collapse
|
19
|
Phosphorescence-based ratiometric probes: Design, preparation and applications in sensing, imaging and biomedicine therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213694] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
20
|
Mizukami K, Katano A, Shiozaki S, Yoshihara T, Goda N, Tobita S. In vivo O 2 imaging in hepatic tissues by phosphorescence lifetime imaging microscopy using Ir(III) complexes as intracellular probes. Sci Rep 2020; 10:21053. [PMID: 33273499 PMCID: PMC7713648 DOI: 10.1038/s41598-020-76878-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/28/2020] [Indexed: 01/14/2023] Open
Abstract
Phosphorescence lifetime imaging microscopy (PLIM) combined with an oxygen (O2)-sensitive luminescent probe allows for high-resolution O2 imaging of living tissues. Herein, we present phosphorescent Ir(III) complexes, (btp)2Ir(acac-DM) (Ir-1) and (btp-OH)3Ir (Ir-2), as useful O2 probes for PLIM measurement. These small-molecule probes were efficiently taken up into cultured cells and accumulated in specific organelles. Their excellent cell-permeable properties allowed for efficient staining of three-dimensional cell spheroids, and thereby phosphorescence lifetime measurements enabled the evaluation of the O2 level and distribution in spheroids, including the detection of alterations in O2 levels by metabolic stimulation with an effector. We took PLIM images of hepatic tissues of living mice by intravenously administrating these probes. The PLIM images clearly visualized the O2 gradient in hepatic lobules with cellular-level resolution, and the O2 levels were derived based on calibration using cultured cells; the phosphorescence lifetime of Ir-1 gave reasonable O2 levels, whereas Ir-2 exhibited much lower O2 levels. Intravenous administration of NH4Cl to mice caused the hepatic tissues to experience hypoxia, presumably due to O2 consumption to produce ATP required for ammonia detoxification, suggesting that the metabolism of the probe molecule might affect liver O2 levels.
Collapse
Affiliation(s)
- Kiichi Mizukami
- Department of Chemistry and Chemical Biology, School of Science and Technology, Gunma University, Kiryu, Gunma, 376-8515, Japan
| | - Ayaka Katano
- Department of Chemistry and Chemical Biology, School of Science and Technology, Gunma University, Kiryu, Gunma, 376-8515, Japan
| | - Shuichi Shiozaki
- Department of Chemistry and Chemical Biology, School of Science and Technology, Gunma University, Kiryu, Gunma, 376-8515, Japan
| | - Toshitada Yoshihara
- Department of Chemistry and Chemical Biology, School of Science and Technology, Gunma University, Kiryu, Gunma, 376-8515, Japan.
| | - Nobuhito Goda
- Department of Life Science and Medical BioScience, School of Advanced Science and Engineering, Waseda University, Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Seiji Tobita
- Department of Chemistry and Chemical Biology, School of Science and Technology, Gunma University, Kiryu, Gunma, 376-8515, Japan.
| |
Collapse
|
21
|
Sen R, Zhdanov AV, Bastiaanssen TFS, Hirvonen LM, Svihra P, Fitzgerald P, Cryan JF, Andersson-Engels S, Nomerotski A, Papkovsky DB. Mapping O 2 concentration in ex-vivo tissue samples on a fast PLIM macro-imager. Sci Rep 2020; 10:19006. [PMID: 33149165 PMCID: PMC7642408 DOI: 10.1038/s41598-020-75928-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 10/08/2020] [Indexed: 12/27/2022] Open
Abstract
O2 PLIM microscopy was employed in various studies, however current platforms have limitations in sensitivity, image acquisition speed, accuracy and general usability. We describe a new PLIM imager based on the Timepix3 camera (Tpx3cam) and its application for imaging of O2 concentration in various tissue samples stained with a nanoparticle based probe, NanO2-IR. Upon passive staining of mouse brain, lung or intestinal tissue surface with minute quantities of NanO2-IR or by microinjecting the probe into the lumen of small or large intestine fragments, robust phosphorescence intensity and lifetime signals were produced, which allow mapping of O2 in the tissue within 20 s. Inhibition of tissue respiration or limitation of O2 diffusion to tissue produced the anticipated increases or decreases in O2 levels, respectively. The difference in O2 concentration between the colonic lumen and air-exposed serosal surface was around 140 µM. Furthermore, subcutaneous injection of 5 µg of the probe in intact organs (a paw or tail of sacrificed mice) enabled efficient O2 imaging at tissue depths of up to 0.5 mm. Overall, the PLIM imager holds promise for metabolic imaging studies with various ex vivo models of animal tissue, and also for use in live animals.
Collapse
Affiliation(s)
- Rajannya Sen
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Alexander V Zhdanov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Thomaz F S Bastiaanssen
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Liisa M Hirvonen
- Centre for Microscopy, Characterisation and Analysis (CMCA), The University of Western Australia, Crawley, WA, 6009, Australia
| | - Peter Svihra
- Department of Physics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, 115 19, Prague, Czech Republic
- Department of Physics and Astronomy, School of Natural Sciences, The University of Manchester, Manchester, M139PL, UK
| | | | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | | | - Andrei Nomerotski
- Physics Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Dmitri B Papkovsky
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.
| |
Collapse
|
22
|
Calpe B, Kovacs WJ. High-throughput screening in multicellular spheroids for target discovery in the tumor microenvironment. Expert Opin Drug Discov 2020; 15:955-967. [PMID: 32364413 DOI: 10.1080/17460441.2020.1756769] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Solid tumors are highly influenced by a complex tumor microenvironment (TME) that cannot be modeled with conventional two-dimensional (2D) cell culture. In addition, monolayer culture conditions tend to induce undesirable molecular and phenotypic cellular changes. The discrepancy between in vitro and in vivo is an important factor accounting for the high failure rate in drug development. Three-dimensional (3D) multicellular tumor spheroids (MTS) more closely resemble the in vivo situation in avascularized tumors. AREAS COVERED This review describes the use of MTS for anti-cancer drug discovery, with an emphasis on high-throughput screening (HTS) compatible assays. In particular, we focus on how these assays can be used for target discovery in the context of the TME. EXPERT OPINION Arrayed MTS in microtiter plates are HTS compatible but remain more expensive and time consuming than their 2D culture counterpart. It is therefore imperative to use assays with multiplexed readouts, in order to maximize the information that can be gained with the screen. In this context, high-content screening allowing to uncover microenvironmental dependencies is the true added value of MTS-based screening compared to 2D culture-based screening. Hit translation in animal models will, however, be key to allow a broader use of MTS-based screening in industry.
Collapse
Affiliation(s)
- Blaise Calpe
- Institute of Molecular Health Sciences, ETH Zurich , Zurich, Switzerland.,Department of Biology, Debiopharm , Lausanne, Switzerland
| | - Werner J Kovacs
- Institute of Molecular Health Sciences, ETH Zurich , Zurich, Switzerland
| |
Collapse
|
23
|
Elagin V, Kuznetsova D, Grebenik E, Zolotov DA, Istranov L, Zharikova T, Istranova E, Polozova A, Reunov D, Kurkov A, Shekhter A, Gafarova ER, Asadchikov V, Borisov SM, Dmitriev RI, Zagaynova E, Timashev P. Multiparametric Optical Bioimaging Reveals the Fate of Epoxy Crosslinked Biomeshes in the Mouse Subcutaneous Implantation Model. Front Bioeng Biotechnol 2020; 8:107. [PMID: 32140465 PMCID: PMC7042178 DOI: 10.3389/fbioe.2020.00107] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/03/2020] [Indexed: 12/13/2022] Open
Abstract
Biomeshes based on decellularized bovine pericardium (DBP) are widely used in reconstructive surgery due to their wide availability and the attractive biomechanical properties. However, their efficacy in clinical applications is often affected by the uncontrolled immunogenicity and proteolytic degradation. To address this issue, we present here in vivo multiparametric imaging analysis of epoxy crosslinked DBPs to reveal their fate after implantation. We first analyzed the structure of the crosslinked DBP using scanning electron microscopy and evaluated proteolytic stability and cytotoxicity. Next, using combination of fluorescence and hypoxia imaging, X-ray computed microtomography and histology techniques we studied the fate of DBPs after subcutaneous implantation in animals. Our approach revealed high resistance to biodegradation, gradual remodeling of a surrounding tissue forming the connective tissue capsule and calcification of crosslinked DBPs. These changes were concomitant to the development of hypoxia in the samples within 3 weeks after implantation and subsequent induction of angiogenesis and vascularization. Collectively, presented approach provides new insights on the transplantation of the epoxy crosslinked biomeshes, the risks associated with its applications in soft-tissue reconstruction and can be transferred to studies of other types of implants.
Collapse
Affiliation(s)
- Vadim Elagin
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Daria Kuznetsova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Ekaterina Grebenik
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Denis A Zolotov
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre "Crystallography and Photonics" Russian Academy of Sciences, Moscow, Russia
| | - Leonid Istranov
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Tatiana Zharikova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Elena Istranova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Anastasia Polozova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Dmitry Reunov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Alexandr Kurkov
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Anatoly Shekhter
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Elvira R Gafarova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Victor Asadchikov
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre "Crystallography and Photonics" Russian Academy of Sciences, Moscow, Russia
| | - Sergey M Borisov
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Graz, Austria
| | - Ruslan I Dmitriev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia.,School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Elena Zagaynova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia.,Institute of Photonic Technologies, Federal Scientific Research Centre "Crystallography and Photonics" Russian Academy of Sciences, Moscow, Russia.,Department of Polymers and Composites, N.N. Semenov Institute of Chemical Physics, Moscow, Russia
| |
Collapse
|
24
|
Okkelman IA, Neto N, Papkovsky DB, Monaghan MG, Dmitriev RI. A deeper understanding of intestinal organoid metabolism revealed by combining fluorescence lifetime imaging microscopy (FLIM) and extracellular flux analyses. Redox Biol 2020; 30:101420. [PMID: 31935648 PMCID: PMC6957829 DOI: 10.1016/j.redox.2019.101420] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/13/2019] [Accepted: 12/29/2019] [Indexed: 12/21/2022] Open
Abstract
Stem cells and the niche in which they reside feature a complex microenvironment with tightly regulated homeostasis, cell-cell interactions and dynamic regulation of metabolism. A significant number of organoid models has been described over the last decade, yet few methodologies can enable single cell level resolution analysis of the stem cell niche metabolic demands, in real-time and without perturbing integrity. Here, we studied the redox metabolism of Lgr5-GFP intestinal organoids by two emerging microscopy approaches based on luminescence lifetime measurement - fluorescence-based FLIM for NAD(P)H, and phosphorescence-based PLIM for real-time oxygenation. We found that exposure of stem (Lgr5-GFP) and differentiated (no GFP) cells to high and low glucose concentrations resulted in measurable shifts in oxygenation and redox status. NAD(P)H-FLIM and O2-PLIM both indicated that at high 'basal' glucose conditions, Lgr5-GFP cells had lower activity of oxidative phosphorylation when compared with cells lacking Lgr5. However, when exposed to low (0.5 mM) glucose, stem cells utilized oxidative metabolism more dynamically than non-stem cells. The high heterogeneity of complex 3D architecture and energy production pathways of Lgr5-GFP organoids were also confirmed by the extracellular flux (XF) analysis. Our data reveals that combined analysis of NAD(P)H-FLIM and organoid oxygenation by PLIM represents promising approach for studying stem cell niche metabolism in a live readout.
Collapse
Affiliation(s)
- Irina A Okkelman
- Laboratory of Biophysics and Bioanalysis, ABCRF, University College Cork, Cavanagh Pharmacy Building, College Road, Cork, T12 K8AF, Ireland
| | - Nuno Neto
- Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin, Ireland
| | - Dmitri B Papkovsky
- Laboratory of Biophysics and Bioanalysis, ABCRF, University College Cork, Cavanagh Pharmacy Building, College Road, Cork, T12 K8AF, Ireland
| | - Michael G Monaghan
- Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin, Ireland; Advanced Materials and BioEngineering Research (AMBER) Centre at Trinity College Dublin and Royal College of Surgeons in Ireland, Dublin, Ireland.
| | - Ruslan I Dmitriev
- Laboratory of Biophysics and Bioanalysis, ABCRF, University College Cork, Cavanagh Pharmacy Building, College Road, Cork, T12 K8AF, Ireland; Institute for Regenerative Medicine, I.M. Sechenov First Moscow State University, Moscow, Russian Federation.
| |
Collapse
|
25
|
Newland B, Ehret F, Hoppe F, Eigel D, Pette D, Newland H, Welzel PB, Kempermann G, Werner C. Macroporous heparin-based microcarriers allow long-term 3D culture and differentiation of neural precursor cells. Biomaterials 2020; 230:119540. [DOI: 10.1016/j.biomaterials.2019.119540] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 10/03/2019] [Accepted: 10/08/2019] [Indexed: 01/14/2023]
|
26
|
Okkelman IA, Puschhof J, Papkovsky DB, Dmitriev RI. Visualization of Stem Cell Niche by Fluorescence Lifetime Imaging Microscopy. Methods Mol Biol 2020; 2171:65-97. [PMID: 32705636 DOI: 10.1007/978-1-0716-0747-3_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Fluorescence lifetime imaging microscopy (FLIM), enabling live quantitative multiparametric analyses, is an emerging bioimaging approach in tissue engineering and regenerative medicine. When combined with stem cell-derived intestinal organoid models, FLIM allows for tracing stem cells and monitoring of their proliferation, metabolic fluxes, and oxygenation. It is compatible with the use of live Matrigel-grown intestinal organoids produced from primary adult stem cells, crypts, and transgenic Lgr5-GFP mice. In this chapter we summarize available experimental protocols, imaging platforms (one- and two-photon excited FLIM, phosphorescence lifetime imaging microscopy (PLIM)) and provide the anticipated data for FLIM imaging of the live intestinal organoids, focusing on labeling of cell proliferation, its colocalization with the stem cell niche, measured local oxygenation, autofluorescence, and some other parameters. The protocol is illustrated with examples of multiparameter imaging, employing spectral and "time domain"-based separation of dyes, probes, and assays.
Collapse
Affiliation(s)
- Irina A Okkelman
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Jens Puschhof
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - Dmitri B Papkovsky
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Ruslan I Dmitriev
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.
| |
Collapse
|
27
|
Okkelman IA, Papkovsky DB, Dmitriev RI. Estimation of the Mitochondrial Membrane Potential Using Fluorescence Lifetime Imaging Microscopy. Cytometry A 2019; 97:471-482. [PMID: 31486581 DOI: 10.1002/cyto.a.23886] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/11/2019] [Accepted: 08/19/2019] [Indexed: 12/19/2022]
Abstract
Monitoring of cell metabolism represents an important application area for fluorescence lifetime imaging microscopy (FLIM). In particular, assessment of mitochondrial membrane potential (MMP) in complex three-dimensional multicellular in vitro, ex vivo, and in vivo models would enable improved segmentation and functional discrimination of cell types, directly report on the mitochondrial function and complement the quenched-phosphorescence detection of cellular O2 and two-photon excited FLIM of endogenous NAD(P)H. Here, we report the green and orange-emitting fluorescent dyes SYTO and tetramethylrhodamine methyl ester (TMRM) as potential FLIM probes for MMP. In addition to nuclear, SYTO 16 and 24 dyes also display mitochondrial accumulation. FLIM with the culture of human colon cancer HCT116 cells allowed observation of the heterogeneity of mitochondrial polarization during the cell cycle progression. The dyes also demonstrated good performance with 3D cultures of Lgr5-GFP mouse intestinal organoids, providing efficient and quick cell staining and compatibility with two-photon excitation. Multiplexed imaging of Lgr5-GFP, proliferating cells (Hoechst 33342-aided FLIM), and TMRM-FLIM allowed us to identify the population of metabolically active cells in stem cell niche. TMRM-FLIM enabled to visualize the differences in membrane potential between Lgr5-positive and other proliferating and differentiated cell types. Altogether, SYTO 24 and TMRM dyes represent promising markers for advanced FLIM-based studies of cell bioenergetics with complex 3D and in vivo models. © 2019 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Irina A Okkelman
- Laboratory of Biophysics and Bioanalysis, ABCRF, School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Dmitri B Papkovsky
- Laboratory of Biophysics and Bioanalysis, ABCRF, School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Ruslan I Dmitriev
- Laboratory of Biophysics and Bioanalysis, ABCRF, School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.,Institute for Regenerative Medicine, I.M. Sechenov First Moscow State University, Moscow, Russian Federation
| |
Collapse
|
28
|
Endothelial-neurosphere crosstalk in microwell arrays regulates self-renewal and differentiation of human neural stem cells. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.02.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
29
|
Sheth DB, Gratzl M. Electrochemical mapping of oxygenation in the three-dimensional multicellular tumour hemi-spheroid. Proc Math Phys Eng Sci 2019; 475:20180647. [PMID: 31236040 PMCID: PMC6545061 DOI: 10.1098/rspa.2018.0647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 04/29/2019] [Indexed: 01/09/2023] Open
Abstract
Blood capillaries deliver oxygen and nutrients to surrounding micro-regions of tissue and carry away metabolic waste. In normal tissue, capillaries are close enough to keep all the cells viable. In solid tumours, the capillary system is chaotic and typical inter-capillary distances are larger than in normal tissue. Therefore, hypoxic regions develop. Drug molecules may not reach these areas at concentrations above the lethal level. The combined effect of low drug concentrations and local hypoxia, often exacerbated by acidity, leads to therapy failure. To better understand the interplay between hypoxia and poor drug penetration, oxygenation needs to be assessed in different areas of inter-capillary tissue. The multicellular tumour spheroid is a well-established three-dimensional (3D) in vitro model of the capillary microenvironment. It is used to mimic nascent tumours and micro-metastases as well. In this work, we demonstrate for the first time that dynamic intra-spheroidal oxygen maps can be obtained at the 3D multicellular tumour hemi-spheroid (MCH) using a non-invasive microelectrode array. The same oxygen distributions exist inside the equivalent but less accessible full spheroid. The MCH makes high throughput-high content analysis of spheroids feasible and thus can assist studies on basic cancer biology, drug development and personalized medicine.
Collapse
Affiliation(s)
| | - Miklόs Gratzl
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
30
|
Zhou C, Zhao WX, You FT, Geng ZX, Peng HS. Highly Stable and Luminescent Oxygen Nanosensor Based on Ruthenium-Containing Metallopolymer for Real-Time Imaging of Intracellular Oxygenation. ACS Sens 2019; 4:984-991. [PMID: 30859818 DOI: 10.1021/acssensors.9b00131] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metal complex-based luminescent oxygen nanosensors have been intensively studied for biomedical applications. In terms of monitoring dynamics of intracellular oxygen, however, high-quality nanosensors are still badly needed, because of stringent requirements on stability, biocompatibility and luminescence intensity, aside from oxygen sensitivity. In this paper, we reported a type of highly luminescent and stable oxygen nanosensors prepared from metallopolymer. First, a novel ruthenium(II)-containing metallopolymer was synthesized by chelating the oxygen probe [Ru(bpy)3]2+ with a bipyridine-branched hydrophobic copolymer, which was then doped into polymeric nanoparticles (NPs) by a reprecipitation method, followed by further conjugation to selectively target mitochondria (Mito-NPs). The resultant Mtio-NPs possessed a small hydrodynamic size of ∼85 nm, good biocompatibility and high stability resulting from PEGylation and stable nature of Ru-complex. Because the complexed [Ru(bpy)3]2+ homogeneously resided on particle surface, Mito-NPs exhibited strong luminescence at 608 nm that was free of aggregation-caused-quenching, the utmost oxygen sensitivity of free [Ru(bpy)3]2+ probe ( Q = 75%), and linear Stern-Volmer oxygen luminescence quenching plots. Taking advantage of the mitochondria-specific nanosensors, intracellular oxygenation and deoxygenation processes were real-time monitored for 10 min by confocal luminescence imaging, visualized by the gradual weakening (by more than 90%) and enhancing (by 50%) of the red emission, respectively.
Collapse
Affiliation(s)
- Chao Zhou
- College of Science, Minzu University of China, Beijing, 100081, China
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Wu-xing Zhao
- College of Science, Minzu University of China, Beijing, 100081, China
| | - Fang-tian You
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Zhao-xin Geng
- College of Science, Minzu University of China, Beijing, 100081, China
| | - Hong-shang Peng
- College of Science, Minzu University of China, Beijing, 100081, China
| |
Collapse
|
31
|
Koren K, Moßhammer M, Scholz VV, Borisov SM, Holst G, Kühl M. Luminescence Lifetime Imaging of Chemical Sensors-A Comparison between Time-Domain and Frequency-Domain Based Camera Systems. Anal Chem 2019; 91:3233-3238. [PMID: 30758940 DOI: 10.1021/acs.analchem.8b05869] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Luminescence lifetime based imaging is still the most reliable method for generating chemical images using chemical sensor technology. However, only few commercial systems are available that enable imaging lifetimes within the relevant nanosecond to microsecond range. In this technical note we compare the performance of an older time-domain (TD) based camera system with a frequency-domain (FD) based camera system regarding their measuring characteristics and applicability for O2 and pH imaging in environmental samples and with different indicator dye systems emitting in the visible and near-infrared part of the spectrum. We conclude that the newly introduced FD imaging system delivers comparable if not better results than its predecessor, now enabling robust and simple chemical imaging based on FD luminescence lifetime measurements.
Collapse
Affiliation(s)
- Klaus Koren
- Aarhus University Centre for Water Technology, Section for Microbiology, Department of Bioscience , Aarhus University , Ny Munkegade , DK-8000 Aarhus C , Denmark
| | - Maria Moßhammer
- Marine Biological Section, Department of Biology , University of Copenhagen , Strandpromenaden 5 , DK-3000 Helsingør , Denmark
| | - Vincent V Scholz
- Center for Electromicrobiology , Aarhus University , DK-8000 Aarhus , Denmark
| | - Sergey M Borisov
- Institute of Analytical Chemistry and Food Chemistry , Graz University of Technology , Stremayrgasse 9 , AT-8010 Graz , Austria
| | | | - Michael Kühl
- Marine Biological Section, Department of Biology , University of Copenhagen , Strandpromenaden 5 , DK-3000 Helsingør , Denmark.,Climate Change Cluster , University of Technology Sydney , Ultimo , NSW 2007 , Australia
| |
Collapse
|
32
|
Papkovsky DB, Dmitriev RI. Imaging of oxygen and hypoxia in cell and tissue samples. Cell Mol Life Sci 2018; 75:2963-2980. [PMID: 29761206 PMCID: PMC11105559 DOI: 10.1007/s00018-018-2840-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/24/2018] [Accepted: 05/07/2018] [Indexed: 01/17/2023]
Abstract
Molecular oxygen (O2) is a key player in cell mitochondrial function, redox balance and oxidative stress, normal tissue function and many common disease states. Various chemical, physical and biological methods have been proposed for measurement, real-time monitoring and imaging of O2 concentration, state of decreased O2 (hypoxia) and related parameters in cells and tissue. Here, we review the established and emerging optical microscopy techniques allowing to visualize O2 levels in cells and tissue samples, mostly under in vitro and ex vivo, but also under in vivo settings. Particular examples include fluorescent hypoxia stains, fluorescent protein reporter systems, phosphorescent probes and nanosensors of different types. These techniques allow high-resolution mapping of O2 gradients in live or post-mortem tissue, in 2D or 3D, qualitatively or quantitatively. They enable control and monitoring of oxygenation conditions and their correlation with other biomarkers of cell and tissue function. Comparison of these techniques and corresponding imaging setups, their analytical capabilities and typical applications are given.
Collapse
Affiliation(s)
- Dmitri B Papkovsky
- School of Biochemistry and Cell Biology, University College Cork, Cavanagh Pharmacy Building, College Road, Cork, Ireland.
| | - Ruslan I Dmitriev
- School of Biochemistry and Cell Biology, University College Cork, Cavanagh Pharmacy Building, College Road, Cork, Ireland.
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russian Federation.
| |
Collapse
|
33
|
Akiyama H, Takahashi I, Shimoda Y, Mukai R, Yoshihara T, Tobita S. Ir(iii) complex-based oxygen imaging of living cells and ocular fundus with a gated ICCD camera. Photochem Photobiol Sci 2018; 17:846-853. [PMID: 29808210 DOI: 10.1039/c8pp00122g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Phosphorescence lifetime imaging methods using oxygen-sensitive probes are very useful for visualizing the oxygen status of living cells and tissues with high spatial resolution. We aim to develop a useful oxygen detection technique combining a phosphorescent oxygen probe and an optimal detection method. Herein we present a biological oxygen imaging method using a microscope equipped with a gated intensified charge-coupled device (ICCD) camera as a detector and an Ir(iii) complex as a phosphorescent oxygen probe. Microscopic luminescence images of monolayer HT-29 cells (human colorectal adenocarcinoma cells) obtained using the cell-penetrating Ir(iii) complex BTPDM1 and an inverted microscope demonstrated that this method allowed visualization of the oxygen gradient produced in a monolayer of cultured cells when the monolayer is covered with a thin coverslip. Furthermore, combining the IR-emitting Ir(iii) complex DTTPH-PEG24 with a macrozoom microscope equipped with a gated ICCD camera enabled both the visualization of retinal vessels near the optic disc and the monitoring of oxygen level changes in a rabbit retina upon changing the inhaled oxygen content.
Collapse
Affiliation(s)
- H Akiyama
- Department of Ophthalmology and Medicine and Biological Science, Graduate School of Medicine, Gunma University, Showa-machi, Maebashi, Gunma 371-8512, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Gorkun AA, Shpichka AI, Zurina IM, Koroleva AV, Kosheleva NV, Nikishin DA, Butnaru DV, Timashev PS, Repin VS, Saburina IN. Angiogenic potential of spheroids from umbilical cord and adipose-derived multipotent mesenchymal stromal cells within fibrin gel. Biomed Mater 2018; 13:044108. [DOI: 10.1088/1748-605x/aac22d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
35
|
Simultaneous Phosphorescence and Fluorescence Lifetime Imaging by Multi-Dimensional TCSPC and Multi-Pulse Excitation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1035:19-30. [PMID: 29080128 DOI: 10.1007/978-3-319-67358-5_2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
TCSPC FLIM/PLIM is based on a multi-dimensional time-correlated single-photon counting process. The sample is scanned by a high-frequency-pulsed laser beam which is additionally modulated on/off synchronously with the pixels of the scan. FLIM is obtained by building up the distribution of the photons over the scanning coordinates and the times of the photons in the excitation pulse sequence, PLIM is obtained by building up the photon distribution over the scanning coordinates and the photon times in the modulation period. FLIM and PLIM data are thus obtained simultaneously within the same imaging process. Since the technique uses not only one but many excitation pulses for every phosphorescence signal period the sensitivity is much higher than for techniques that excite with a single pulse only. TCSPC FLIM/PLIM works both with one-photon and two-photon excitation, does not require a reduction of the laser pulse repetition rate by a pulse picker, and eliminates the need of high pulse energy for phosphorescence excitation.
Collapse
|
36
|
Okkelman IA, Foley T, Papkovsky DB, Dmitriev RI. Multi-Parametric Imaging of Hypoxia and Cell Cycle in Intestinal Organoid Culture. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1035:85-103. [PMID: 29080132 DOI: 10.1007/978-3-319-67358-5_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dynamics of oxygenation of tissue and stem cell niches are important for understanding physiological function of the intestine in normal and diseased states. Only a few techniques allow live visualization of tissue hypoxia at cellular level and in three dimensions. We describe an optimized protocol, which uses cell-penetrating O2-sensitive probe, Pt-Glc and phosphorescence lifetime imaging microscopy (PLIM), to analyze O2 distribution in mouse intestinal organoids. Unlike the other indirect and end-point hypoxia stains, or point measurements with microelectrodes, this method provides high-resolution real-time visualization of O2 in organoids. Multiplexing with conventional fluorescent live cell imaging probes such as the Hoechst 33342-based FLIM assay of cell proliferation, and immunofluorescence staining of endogenous proteins, allows analysis of key physiologic parameters under O2 control in organoids. The protocol is useful for gastroenterology and physiology of intestinal tissue, hypoxia research, regenerative medicine, studying host-microbiota interactions and bioenergetics.
Collapse
Affiliation(s)
- Irina A Okkelman
- Laboratory of Biophysics and Bioanalysis, School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Tara Foley
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Dmitri B Papkovsky
- Laboratory of Biophysics and Bioanalysis, School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Ruslan I Dmitriev
- Metabolic Imaging Group, School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.
| |
Collapse
|
37
|
Metabolic Reprogramming and the Recovery of Physiological Functionality in 3D Cultures in Micro-Bioreactors. Bioengineering (Basel) 2018. [PMID: 29518979 PMCID: PMC5874888 DOI: 10.3390/bioengineering5010022] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The recovery of physiological functionality, which is commonly seen in tissue mimetic three-dimensional (3D) cellular aggregates (organoids, spheroids, acini, etc.), has been observed in cells of many origins (primary tissues, embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and immortal cell lines). This plurality and plasticity suggest that probably several basic principles promote this recovery process. The aim of this study was to identify these basic principles and describe how they are regulated so that they can be taken in consideration when micro-bioreactors are designed. Here, we provide evidence that one of these basic principles is hypoxia, which is a natural consequence of multicellular structures grown in microgravity cultures. Hypoxia drives a partial metabolic reprogramming to aerobic glycolysis and an increased anabolic synthesis. A second principle is the activation of cytoplasmic glutaminolysis for lipogenesis. Glutaminolysis is activated in the presence of hypo- or normo-glycaemic conditions and in turn is geared to the hexosamine pathway. The reducing power needed is produced in the pentose phosphate pathway, a prime function of glucose metabolism. Cytoskeletal reconstruction, histone modification, and the recovery of the physiological phenotype can all be traced to adaptive changes in the underlying cellular metabolism. These changes are coordinated by mTOR/Akt, p53 and non-canonical Wnt signaling pathways, while myc and NF-kB appear to be relatively inactive. Partial metabolic reprogramming to aerobic glycolysis, originally described by Warburg, is independent of the cell’s rate of proliferation, but is interwoven with the cells abilities to execute advanced functionality needed for replicating the tissues physiological performance.
Collapse
|
38
|
Matsushiro Y, Kato-Negishi M, Onoe H. Differentiation of 3D-shape-controlled mouse neural stem cell to neural tissues in closed agarose microchambers. Biotechnol Bioeng 2018; 115:1614-1623. [DOI: 10.1002/bit.26559] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/14/2018] [Accepted: 02/05/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Yuki Matsushiro
- Department of Mechanical Engineering; Faculty of Science and Technology; Keio University; Kohoku-ku Yokohama Japan
| | - Midori Kato-Negishi
- Institute of Industrial Science; The University of Tokyo; Meguro-ku Tokyo Japan
- Laboratory of Bio-Analytical Chemistry; Research Institute of Pharmaceutical Sciences; Faculty of Pharmacy; Musashino University; Nishitokyo-shi Japan
| | - Hiroaki Onoe
- Department of Mechanical Engineering; Faculty of Science and Technology; Keio University; Kohoku-ku Yokohama Japan
| |
Collapse
|
39
|
Mueller BJ, Zhdanov AV, Borisov SM, Foley T, Okkelman IA, Tsytsarev V, Tang Q, Erzurumlu RS, Chen Y, Zhang H, Toncelli C, Klimant I, Papkovsky DB, Dmitriev RI. Nanoparticle-based fluoroionophore for analysis of potassium ion dynamics in 3D tissue models and in vivo. ADVANCED FUNCTIONAL MATERIALS 2018; 28:1704598. [PMID: 30271316 PMCID: PMC6157274 DOI: 10.1002/adfm.201704598] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The imaging of real-time fluxes of K+ ions in live cell with high dynamic range (5-150 mM) is of paramount importance for neuroscience and physiology of the gastrointestinal tract, kidney and other tissues. In particular, the research on high-performance deep-red fluorescent nanoparticle-based biosensors is highly anticipated. We found that BODIPY-based FI3 K+-sensitive fluoroionophore encapsulated in cationic polymer RL100 nanoparticles displays unusually strong efficiency in staining of broad spectrum of cell models, such as primary neurons and intestinal organoids. Using comparison of brightness, photostability and fluorescence lifetime imaging microscopy (FLIM) we confirmed that FI3 nanoparticles display distinctively superior intracellular staining compared to the free dye. We evaluated FI3 nanoparticles in real-time live cell imaging and found that it is highly useful for monitoring intra- and extracellular K+ dynamics in cultured neurons. Proof-of-concept in vivo brain imaging confirmed applicability of the biosensor for visualization of epileptic seizures. Collectively, this data makes fluoroionophore FI3 a versatile cross-platform fluorescent biosensor, broadly compatible with diverse experimental models and that crown ether-based polymer nanoparticles can provide a new venue for design of efficient fluorescent probes.
Collapse
Affiliation(s)
- Bernhard J. Mueller
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Alexander V. Zhdanov
- ABCRF, School of Biochemistry and Cell biology, University College Cork, Cork, Ireland
| | - Sergey M. Borisov
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Tara Foley
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Irina A. Okkelman
- ABCRF, School of Biochemistry and Cell biology, University College Cork, Cork, Ireland
| | - Vassiliy Tsytsarev
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Qinggong Tang
- Fischell Department of Bioengineering, University of Maryland, College Park, 20740 MD, USA
| | - Reha S. Erzurumlu
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yu Chen
- Fischell Department of Bioengineering, University of Maryland, College Park, 20740 MD, USA
| | - Haijiang Zhang
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | - Claudio Toncelli
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | - Ingo Klimant
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Dmitri B. Papkovsky
- ABCRF, School of Biochemistry and Cell biology, University College Cork, Cork, Ireland
| | - Ruslan I. Dmitriev
- ABCRF, School of Biochemistry and Cell biology, University College Cork, Cork, Ireland
| |
Collapse
|
40
|
Zhang KY, Yu Q, Wei H, Liu S, Zhao Q, Huang W. Long-Lived Emissive Probes for Time-Resolved Photoluminescence Bioimaging and Biosensing. Chem Rev 2018; 118:1770-1839. [DOI: 10.1021/acs.chemrev.7b00425] [Citation(s) in RCA: 479] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Kenneth Yin Zhang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Qi Yu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Huanjie Wei
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Shujuan Liu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Qiang Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
- Shaanxi
Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), Xi’an 710072, P. R. China
- Key
Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced
Materials (IAM), Jiangsu National Synergetic Innovation Center for
Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211800, P. R. China
| |
Collapse
|
41
|
Loughran G, Jungreis I, Tzani I, Power M, Dmitriev RI, Ivanov IP, Kellis M, Atkins JF. Stop codon readthrough generates a C-terminally extended variant of the human vitamin D receptor with reduced calcitriol response. J Biol Chem 2018; 293:4434-4444. [PMID: 29386352 PMCID: PMC5868278 DOI: 10.1074/jbc.m117.818526] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/30/2018] [Indexed: 12/25/2022] Open
Abstract
Although stop codon readthrough is used extensively by viruses to expand their gene expression, verified instances of mammalian readthrough have only recently been uncovered by systems biology and comparative genomics approaches. Previously, our analysis of conserved protein coding signatures that extend beyond annotated stop codons predicted stop codon readthrough of several mammalian genes, all of which have been validated experimentally. Four mRNAs display highly efficient stop codon readthrough, and these mRNAs have a UGA stop codon immediately followed by CUAG (UGA_CUAG) that is conserved throughout vertebrates. Extending on the identification of this readthrough motif, we here investigated stop codon readthrough, using tissue culture reporter assays, for all previously untested human genes containing UGA_CUAG. The readthrough efficiency of the annotated stop codon for the sequence encoding vitamin D receptor (VDR) was 6.7%. It was the highest of those tested but all showed notable levels of readthrough. The VDR is a member of the nuclear receptor superfamily of ligand-inducible transcription factors, and it binds its major ligand, calcitriol, via its C-terminal ligand-binding domain. Readthrough of the annotated VDR mRNA results in a 67 amino acid-long C-terminal extension that generates a VDR proteoform named VDRx. VDRx may form homodimers and heterodimers with VDR but, compared with VDR, VDRx displayed a reduced transcriptional response to calcitriol even in the presence of its partner retinoid X receptor.
Collapse
Affiliation(s)
- Gary Loughran
- From the School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland,
| | - Irwin Jungreis
- Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, and
| | - Ioanna Tzani
- From the School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Michael Power
- From the School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Ruslan I Dmitriev
- From the School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Ivaylo P Ivanov
- From the School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, and
| | - John F Atkins
- From the School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland, .,Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112-5330
| |
Collapse
|
42
|
Gao Y, Lin Y, Liu T, Chen H, Yang X, Tian C, Du L, Li M. Bioluminescent Probe for Tumor Hypoxia Detection via CYP450 Reductase in Living Animals. Anal Chem 2017; 89:12488-12493. [DOI: 10.1021/acs.analchem.7b03597] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yuqi Gao
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE),
School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Yuxing Lin
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE),
School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Tingting Liu
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE),
School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Hui Chen
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE),
School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Xiaofeng Yang
- School
of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Chengsen Tian
- School
of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, Shandong 250200, China
| | - Lupei Du
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE),
School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Minyong Li
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE),
School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
- State
Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
43
|
Okkelman IA, Foley T, Papkovsky DB, Dmitriev RI. Live cell imaging of mouse intestinal organoids reveals heterogeneity in their oxygenation. Biomaterials 2017; 146:86-96. [DOI: 10.1016/j.biomaterials.2017.08.043] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 08/30/2017] [Indexed: 02/06/2023]
|
44
|
Raza A, Colley HE, Baggaley E, Sazanovich IV, Green NH, Weinstein JA, Botchway SW, MacNeil S, Haycock JW. Oxygen Mapping of Melanoma Spheroids using Small Molecule Platinum Probe and Phosphorescence Lifetime Imaging Microscopy. Sci Rep 2017; 7:10743. [PMID: 28878302 PMCID: PMC5587740 DOI: 10.1038/s41598-017-11153-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/21/2017] [Indexed: 02/05/2023] Open
Abstract
Solid tumours display varied oxygen levels and this characteristic can be exploited to develop new diagnostic tools to determine and exploit these variations. Oxygen is an efficient quencher of emission of many phosphorescent compounds, thus oxygen concentration could in many cases be derived directly from relative emission intensity and lifetime. In this study, we extend our previous work on phosphorescent, low molecular weight platinum(II) complex as an oxygen sensing probe to study the variation in oxygen concentration in a viable multicellular 3D human tumour model. The data shows one of the first examples of non-invasive, real-time oxygen mapping across a melanoma tumour spheroid using one-photon phosphorescence lifetime imaging microscopy (PLIM) and a small molecule oxygen sensitive probe. These measurements were quantitative and enabled real time oxygen mapping with high spatial resolution. This combination presents as a valuable tool for optical detection of both physiological and pathological oxygen levels in a live tissue mass and we suggest has the potential for broader clinical application.
Collapse
Affiliation(s)
- Ahtasham Raza
- Materials Science & Engineering, University of Sheffield, Sheffield, S3 7HQ, UK
| | - Helen E Colley
- School of Clinical Dentistry, University of Sheffield, Sheffield, S10 2TA, UK
| | | | - Igor V Sazanovich
- Research Complex at Harwell (CLF), STFC Rutherford Appleton Laboratory, Oxford, OX11 0QX, UK
| | - Nicola H Green
- Materials Science & Engineering, University of Sheffield, Sheffield, S3 7HQ, UK
| | - Julia A Weinstein
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK
| | - Stanley W Botchway
- Research Complex at Harwell (CLF), STFC Rutherford Appleton Laboratory, Oxford, OX11 0QX, UK
| | - Sheila MacNeil
- Materials Science & Engineering, University of Sheffield, Sheffield, S3 7HQ, UK
| | - John W Haycock
- Materials Science & Engineering, University of Sheffield, Sheffield, S3 7HQ, UK.
| |
Collapse
|
45
|
Leek R, Grimes DR, Harris AL, McIntyre A. Methods: Using Three-Dimensional Culture (Spheroids) as an In Vitro Model of Tumour Hypoxia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 899:167-96. [PMID: 27325267 DOI: 10.1007/978-3-319-26666-4_10] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Regions of hypoxia in tumours can be modelled in vitro in 2D cell cultures with a hypoxic chamber or incubator in which oxygen levels can be regulated. Although this system is useful in many respects, it disregards the additional physiological gradients of the hypoxic microenvironment, which result in reduced nutrients and more acidic pH. Another approach to hypoxia modelling is to use three-dimensional spheroid cultures. In spheroids, the physiological gradients of the hypoxic tumour microenvironment can be inexpensively modelled and explored. In addition, spheroids offer the advantage of more representative modelling of tumour therapy responses compared with 2D culture. Here, we review the use of spheroids in hypoxia tumour biology research and highlight the different methodologies for spheroid formation and how to obtain uniformity. We explore the challenge of spheroid analyses and how to determine the effect on the hypoxic versus normoxic components of spheroids. We discuss the use of high-throughput analyses in hypoxia screening of spheroids. Furthermore, we examine the use of mathematical modelling of spheroids to understand more fully the hypoxic tumour microenvironment.
Collapse
Affiliation(s)
- Russell Leek
- Nuffield Division of Clinical Laboratory Sciences, Department of Oncology, University of Oxford, Oxford, OX3 9DU, UK
| | - David Robert Grimes
- Gray Laboratory, Cancer Research UK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, off Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Adrian L Harris
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Alan McIntyre
- Cancer Biology, Division of Cancer and Stem Cells, University of Nottingham, QMC, D Floor, West Block, W/D/1374, Nottingham, NG7 2UH, UK.
| |
Collapse
|
46
|
Chimenti I, Massai D, Morbiducci U, Beltrami AP, Pesce M, Messina E. Stem Cell Spheroids and Ex Vivo Niche Modeling: Rationalization and Scaling-Up. J Cardiovasc Transl Res 2017; 10:150-166. [PMID: 28289983 DOI: 10.1007/s12265-017-9741-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/27/2017] [Indexed: 02/08/2023]
Abstract
Improved protocols/devices for in vitro culture of 3D cell spheroids may provide essential cues for proper growth and differentiation of stem/progenitor cells (S/PCs) in their niche, allowing preservation of specific features, such as multi-lineage potential and paracrine activity. Several platforms have been employed to replicate these conditions and to generate S/PC spheroids for therapeutic applications. However, they incompletely reproduce the niche environment, with partial loss of its highly regulated network, with additional hurdles in the field of cardiac biology, due to debated resident S/PCs therapeutic potential and clinical translation. In this contribution, the essential niche conditions (metabolic, geometric, mechanical) that allow S/PCs maintenance/commitment will be discussed. In particular, we will focus on both existing bioreactor-based platforms for the culture of S/PC as spheroids, and on possible criteria for the scaling-up of niche-like spheroids, which could be envisaged as promising tools for personalized cardiac regenerative medicine, as well as for high-throughput drug screening.
Collapse
Affiliation(s)
- Isotta Chimenti
- Department of Medical Surgical Sciences and Biotechnology, "La Sapienza" University of Rome, Rome, Italy
| | - Diana Massai
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic-, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Umberto Morbiducci
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | | | - Maurizio Pesce
- Tissue Engineering Research Unit, "Centro Cardiologico Monzino", IRCCS, Milan, Italy
| | - Elisa Messina
- Department of Pediatrics and Infant Neuropsychiatry, "Umberto I" Hospital, "La Sapienza" University, Viale Regina Elena 324, 00161, Rome, Italy.
| |
Collapse
|
47
|
Oxygen imaging of living cells and tissues using luminescent molecular probes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2017. [DOI: 10.1016/j.jphotochemrev.2017.01.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
48
|
Zhang P, Wang J, Huang H, Qiu K, Huang J, Ji L, Chao H. Enhancing the photothermal stability and photothermal efficacy of AuNRs and AuNTs by grafting with Ru(ii) complexes. J Mater Chem B 2017; 5:671-678. [DOI: 10.1039/c6tb01991a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In this paper, we found that the ruthenium complex-functionalized AuNRs (AuNRs@Ru) and AuNTs (AuNTs@Ru) exhibited better photothermal stability and higher photothermal efficiency than AuNRs and AuNTs.In vivotumor model studies showed that AuNRs@Ru and AuNRs@Ru were effective for the photothermal destruction of tumors.
Collapse
Affiliation(s)
- Pingyu Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Jinquan Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Huaiyi Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Kangqiang Qiu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Juanjuan Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- China
| |
Collapse
|
49
|
Okkelman IA, Dmitriev RI, Foley T, Papkovsky DB. Use of Fluorescence Lifetime Imaging Microscopy (FLIM) as a Timer of Cell Cycle S Phase. PLoS One 2016; 11:e0167385. [PMID: 27973570 PMCID: PMC5156356 DOI: 10.1371/journal.pone.0167385] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 11/14/2016] [Indexed: 12/14/2022] Open
Abstract
Incorporation of thymidine analogues in replicating DNA, coupled with antibody and fluorophore staining, allows analysis of cell proliferation, but is currently limited to monolayer cultures, fixed cells and end-point assays. We describe a simple microscopy imaging method for live real-time analysis of cell proliferation, S phase progression over several division cycles, effects of anti-proliferative drugs and other applications. It is based on the prominent (~ 1.7-fold) quenching of fluorescence lifetime of a common cell-permeable nuclear stain, Hoechst 33342 upon the incorporation of 5-bromo-2'-deoxyuridine (BrdU) in genomic DNA and detection by fluorescence lifetime imaging microscopy (FLIM). We show that quantitative and accurate FLIM technique allows high-content, multi-parametric dynamic analyses, far superior to the intensity-based imaging. We demonstrate its uses with monolayer cell cultures, complex 3D tissue models of tumor cell spheroids and intestinal organoids, and in physiological study with metformin treatment.
Collapse
Affiliation(s)
- Irina A. Okkelman
- School of Biochemistry and Cell Biology, ABCRF, University College Cork, College Road, Cork, Ireland
| | - Ruslan I. Dmitriev
- School of Biochemistry and Cell Biology, ABCRF, University College Cork, College Road, Cork, Ireland
| | - Tara Foley
- Department of Anatomy and Neuroscience, University College Cork, Western Road, Cork, Ireland
| | - Dmitri B. Papkovsky
- School of Biochemistry and Cell Biology, ABCRF, University College Cork, College Road, Cork, Ireland
| |
Collapse
|
50
|
Jenkins J, Borisov SM, Papkovsky DB, Dmitriev RI. Sulforhodamine Nanothermometer for Multiparametric Fluorescence Lifetime Imaging Microscopy. Anal Chem 2016; 88:10566-10572. [PMID: 27696826 DOI: 10.1021/acs.analchem.6b02675] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Live cells function within narrow limits of physiological temperature (T) and O2 and metabolite concentrations. We have designed a cell-permeable T-sensitive fluorescence lifetime-based nanoprobe based on lipophilic sulforhodamine, which stains 2D and 3D cell models, shows cytoplasmic localization, and has a robust response to T (∼0.037 ns/K). Subsequently, we evaluated the probe and fluorescence lifetime imaging microscopy (FLIM) technique for combined imaging of T and O2 gradients in metabolically active cells. We found that in adherent 2D culture of HCT116 cells intracellular T and O2 are close to ambient values. However, in 3D spheroid structures having size >200 μm, T and O2 gradients become pronounced. These microgradients can be enhanced by treatment with mitochondrial uncouplers or dissipated by drug-induced disaggregation of the spheroids. Thus, we demonstrate the existence of local microgradients of T in 3D cell models and utility of combined imaging of O2 and T.
Collapse
Affiliation(s)
- James Jenkins
- School of Biochemistry and Cell Biology, University College Cork , Cork, Ireland
| | - Sergey M Borisov
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology , 8010 Graz, Austria
| | - Dmitri B Papkovsky
- School of Biochemistry and Cell Biology, University College Cork , Cork, Ireland
| | - Ruslan I Dmitriev
- School of Biochemistry and Cell Biology, University College Cork , Cork, Ireland
| |
Collapse
|