1
|
Seemann E, Beeler T, Alfarra M, Cosio M, Chan C, Grant P, Chang Y. Mechanisms of nebivolol-mediated effects on bFGF-induced vascular smooth muscle cell proliferation and migration. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2025; 8:100214. [PMID: 40092223 PMCID: PMC11908610 DOI: 10.1016/j.crphar.2025.100214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/19/2025] Open
Abstract
Background Nebivolol is a β-adrenergic receptor antagonist that has intrinsic activity on β3-adrenergic receptors (β3-ARs). Previous studies suggest that nebivolol inhibits bFGF-induced vascular smooth muscle cell (VSMC) proliferation and migration and vascular injury-induced neointima formation through activation of β3-ARs. However, our recently published data shown that activation of β3-ARs produced the opposite results, suggesting that the mechanisms of nebivolol-mediated effects are not fully understood. The current project was to study the mechanisms of nebivolol's effects on bFGF-induced VSMC proliferation and migration by comparing to the selective β3-AR agonist, CL316,243. Methods VSMCs isolated from Sprague Dawley rat aortas were pretreated with nebivolol or CL316,243 followed by stimulation with bFGF. Cell proliferation and migration and phosphorylation of ERK and AKT were measured. Results We found that pretreatment of VSMCs with nebivolol produced biphasic effects on bFGF-induced VSMC proliferation, manifested as potentiation at lower concentrations and inhibition at the higher concentration. The effects of low concentrations of nebivolol on bFGF-induced VSMC proliferation was blocked by the selective β3-AR antagonist, SR59230A. Nebivolol inhibited bFGF-induced cell migration at all concentrations tested. In addition, only higher concentrations of nebivolol significantly inhibited bFGF-induced AKT phosphorylation but not ERK phosphorylation whereas CL316,243 at all concentrations tested significantly enhanced bFGF-induced VSMC proliferation and migration and higher concentrations of CL316,243 not only enhanced bFGF-induced AKT phosphorylation but also ERK phosphorylation. Conclusion Our data suggest that the effect of nebivolol on bFGF-induced cell proliferation is concentration-dependent. The enhancement on bFGF-induced cell proliferation at lower concentrations appears to be mainly mediated by activation of β3-ARs but the inhibitory effects on bFGF-mediated cell proliferation as well as migration may occur through different mechanisms. AKT signaling is only involved in high concentrations of nebivolol-mediated effects.
Collapse
Affiliation(s)
- Elaina Seemann
- Department of Pharmacology, A.T. Still University of Health Sciences, Kirksville College of Osteopathic Medicine, MO, USA
| | - Trevor Beeler
- Department of Pharmacology, A.T. Still University of Health Sciences, Kirksville College of Osteopathic Medicine, MO, USA
| | - Mohammed Alfarra
- Department of Pharmacology, A.T. Still University of Health Sciences, Kirksville College of Osteopathic Medicine, MO, USA
| | - Mark Cosio
- Department of Pharmacology, A.T. Still University of Health Sciences, Kirksville College of Osteopathic Medicine, MO, USA
| | - Charles Chan
- Department of Pharmacology, A.T. Still University of Health Sciences, Kirksville College of Osteopathic Medicine, MO, USA
| | - Peyton Grant
- Department of Pharmacology, A.T. Still University of Health Sciences, Kirksville College of Osteopathic Medicine, MO, USA
| | - Yingzi Chang
- Department of Pharmacology, A.T. Still University of Health Sciences, Kirksville College of Osteopathic Medicine, MO, USA
| |
Collapse
|
2
|
Yadav CJ, Yadav U, Afrin S, Lee JY, Kamel J, Park KM. Heparin Immobilization Enhances Hemocompatibility, Re-Endothelization, and Angiogenesis of Decellularized Liver Scaffolds. Int J Mol Sci 2024; 25:12132. [PMID: 39596200 PMCID: PMC11595110 DOI: 10.3390/ijms252212132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/04/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
Bioengineered livers are currently an acceptable alternative to orthotopic liver transplants to overcome the scarcity of donors. However, the challenge of using a bioengineered liver is the lack of an intact endothelial layer in the vascular network leading to thrombosis. Heparin-modified surfaces have been demonstrated to decrease thrombogenicity in earlier research. However, in our study, we aimed to apply heparin immobilization to enhance the hemocompatibility, endothelial cell (EC) adhesion, and angiogenesis of rat decellularized liver scaffolds (DLS). Heparin was immobilized on the DLS by the end-point attachment technique. The scaffold's hemocompatibility was assessed using ex vivo blood perfusion and platelet adhesion studies. The heparinized scaffold (HEP-DLS) showed a significantly reduced thrombogenicity and platelet aggregation. HEP-DLS was recellularized with EA.hy926 cells via the portal vein and maintained in the bioreactor for 7 days, showing increased EC adhesion and coverage within the blood vessels. The Resazurin reduction assay confirmed the presence of actively proliferating cells in the HEP-DLS. The scaffolds were implanted subcutaneously into the dorsum of mice for 21 days to evaluate cell migration and angiogenesis. The results showed significant increases in the number of blood vessels in the HEP-DLS group. Our results demonstrated that heparin immobilization reduces thrombosis, promotes re-endothelialization, and enhances angiogenesis in DLS. The research provides insight into the potential use of heparin in the formation of a functioning vasculature.
Collapse
Affiliation(s)
| | | | | | | | | | - Kyung-Mee Park
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (C.J.Y.); (U.Y.); (S.A.); (J.-Y.L.); (J.K.)
| |
Collapse
|
3
|
Yang L, Bai X, Liu Y, Zhu S, Li S, Chen Z, Han T, Jin S, Zang M. Angiosome-Guided Perfusion Decellularization of Fasciocutaneous Flaps. J Reconstr Microsurg 2024. [PMID: 39191422 DOI: 10.1055/a-2404-2608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
BACKGROUND Tissue engineering based on whole-organ perfusion decellularization has successfully generated small-animal organs, including the heart and limbs. Herein, we aimed to use angiosome-guided perfusion decellularization to develop an acellular fasciocutaneous flap matrix with an intact vascular network. METHODS Abdominal flaps of rats were harvested, and the vascular pedicle (iliac artery and vein) was dissected and injected with methylene blue to identify the angiosome region and determine the flap dimension for harvesting. To decellularize flaps, the iliac artery was perfused sequentially with 1% sodium dodecyl sulfate (SDS), deionized water, and 1% Triton-X100. Gross morphology, histology, and DNA quantity of flaps were then obtained. Flaps were also subjected to glycosaminoglycan (GAG) and hydroxyproline content assays and computed tomography angiography. RESULTS Histological assessment indicated that cellular content was completely removed in all flap layers following a 10-hour perfusion in SDS. DNA quantification confirmed 81% DNA removal. Based on biochemical assays, decellularized flaps had hydroxyproline content comparable with that of native flaps, although significantly fewer GAGs (p = 0.0019). Histology and computed tomography angiography illustrated the integrity and perfusability of the vascular system. CONCLUSION The proposed angiosome-guided perfusion decellularization protocol could effectively remove cellular content from rat fasciocutaneous flaps and preserve the integrity of innate vascular networks.
Collapse
Affiliation(s)
- Liya Yang
- Division of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Xueshan Bai
- Division of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yuanbo Liu
- Division of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Shan Zhu
- Division of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Shanshan Li
- Division of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Zixiang Chen
- Division of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Tinglu Han
- Division of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Shengyang Jin
- Division of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Mengqing Zang
- Division of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
4
|
Ketabat F, Alcorn J, Kelly ME, Badea I, Chen X. Cardiac Tissue Engineering: A Journey from Scaffold Fabrication to In Vitro Characterization. SMALL SCIENCE 2024; 4:2400079. [PMID: 40212070 PMCID: PMC11935279 DOI: 10.1002/smsc.202400079] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/18/2024] [Indexed: 04/13/2025] Open
Abstract
Cardiac tissue engineering has been rapidly evolving with diverse applications, ranging from the repair of fibrotic tissue caused by "adverse remodeling," to the replacement of specific segments of heart tissue, and ultimately to the creation of a whole heart. The repair or replacement of cardiac tissue often involves the development of tissue scaffolds or constructs and the subsequent assessment of their performance and functionality. For this, the design and/or selection of biomaterials, and cell types, scaffold fabrication, and in vitro characterizations are the first starting points, yet critical, to ensure success in subsequent implantation in vivo. This highlights the importance of scaffold fabrication and in vitro experiments/characterization with protocols for cardiac tissue engineering. Yet, a comprehensive and critical review of these has not been established and documented. As inspired, herein, the latest development and advances in scaffold fabrication and in vitro characterization for cardiac tissue engineering are critically reviewed, with focus on biomaterials, cell types, additive manufacturing techniques for scaffold fabrication, and common in vitro characterization techniques or methods. This article would be of benefit to the ones who are working on cardiac tissue engineering by providing insights into the scaffold fabrication and in vitro investigations.
Collapse
Affiliation(s)
- Farinaz Ketabat
- Division of Biomedical EngineeringUniversity of Saskatchewan57 Campus DriveSaskatoonS7N 5A9Canada
| | - Jane Alcorn
- College of Pharmacy and NutritionUniversity of Saskatchewan107 Wiggins RoadSaskatoonS7N 5E5SaskatchewanCanada
| | - Michael E. Kelly
- Division of Biomedical EngineeringUniversity of Saskatchewan57 Campus DriveSaskatoonS7N 5A9Canada
- Department of Surgery, College of MedicineUniversity of Saskatchewan107 Wiggins RoadSaskatoonS7N 5E5Canada
| | - Ildiko Badea
- College of Pharmacy and NutritionUniversity of Saskatchewan107 Wiggins RoadSaskatoonS7N 5E5SaskatchewanCanada
| | - Xiongbiao Chen
- Division of Biomedical EngineeringUniversity of Saskatchewan57 Campus DriveSaskatoonS7N 5A9Canada
- Department of Mechanical EngineeringUniversity of Saskatchewan57 Campus DriveSaskatoonS7N 5A9Canada
| |
Collapse
|
5
|
Carranza-Rosales P, Valencia-Mercado D, Esquivel-Hernández O, González-Geroniz MI, Bañuelos-García JI, Castruita-Ávila AL, Sánchez-Prieto MA, Viveros-Valdez E, Morán-Martínez J, Balderas-Rentería I, Guzmán-Delgado NE, Carranza-Torres IE. Breast Cancer Tissue Explants: An Approach to Develop Personalized Therapy in Public Health Services. J Pers Med 2023; 13:1521. [PMID: 37888132 PMCID: PMC10608341 DOI: 10.3390/jpm13101521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/18/2023] [Accepted: 10/21/2023] [Indexed: 10/28/2023] Open
Abstract
Breast cancer is one of the main causes of death worldwide. Lately, there is great interest in developing methods that assess individual sensitivity and/or resistance of tumors to antineoplastics to provide personalized therapy for patients. In this study we used organotypic culture of human breast tumor slices to predict the experimental effect of antineoplastics on the viability of tumoral tissue. Samples of breast tumor were taken from 27 patients with clinically advanced breast cancer; slices were obtained and incubated separately for 48 h with paclitaxel, docetaxel, epirubicin, 5-fluorouracil, cyclophosphamide, and cell culture media (control). We determined an experimental tumor sensitivity/resistance (S/R) profile by evaluating tissue viability using the Alamar Blue® metabolic test, and by structural viability (histopathological analyses, necrosis, and inflammation). These parameters were related to immunohistochemical expression of the estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2. The predominant histological type found was infiltrating ductal carcinoma (85.2%), followed by lobular carcinoma (7.4%) and mixed carcinoma (7.4%). Experimental drug resistance was related to positive hormone receptor status in 83% of samples treated with cyclophosphamide (p = 0.027). Results suggest that the tumor S/R profile can help to predict personalized therapy or optimize chemotherapeutic treatments in breast cancer.
Collapse
Affiliation(s)
- Pilar Carranza-Rosales
- Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Calle Jesús Dionisio González # 501, Col. Independencia, Monterrey 64720, NL, Mexico;
| | - Daniel Valencia-Mercado
- Unidad Médica de Alta Especialidad, Hospital de Ginecología y Obstetricia No. 23, Instituto Mexicano del Seguro Social, Avenida Constitución y Félix U, Gómez s/n, Colonia Centro, Monterrey 64000, NL, Mexico; (D.V.-M.); (O.E.-H.); (M.I.G.-G.); (J.I.B.-G.)
| | - Olga Esquivel-Hernández
- Unidad Médica de Alta Especialidad, Hospital de Ginecología y Obstetricia No. 23, Instituto Mexicano del Seguro Social, Avenida Constitución y Félix U, Gómez s/n, Colonia Centro, Monterrey 64000, NL, Mexico; (D.V.-M.); (O.E.-H.); (M.I.G.-G.); (J.I.B.-G.)
| | - Manuel Ismael González-Geroniz
- Unidad Médica de Alta Especialidad, Hospital de Ginecología y Obstetricia No. 23, Instituto Mexicano del Seguro Social, Avenida Constitución y Félix U, Gómez s/n, Colonia Centro, Monterrey 64000, NL, Mexico; (D.V.-M.); (O.E.-H.); (M.I.G.-G.); (J.I.B.-G.)
| | - José Inocente Bañuelos-García
- Unidad Médica de Alta Especialidad, Hospital de Ginecología y Obstetricia No. 23, Instituto Mexicano del Seguro Social, Avenida Constitución y Félix U, Gómez s/n, Colonia Centro, Monterrey 64000, NL, Mexico; (D.V.-M.); (O.E.-H.); (M.I.G.-G.); (J.I.B.-G.)
| | - Ana Lilia Castruita-Ávila
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 25, Instituto Mexicano del Seguro Social, Av Fidel Velázquez s/n, Mitras Nte., Monterrey 64180, NL, Mexico; (A.L.C.-Á.); (M.A.S.-P.)
| | - Mario Alberto Sánchez-Prieto
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 25, Instituto Mexicano del Seguro Social, Av Fidel Velázquez s/n, Mitras Nte., Monterrey 64180, NL, Mexico; (A.L.C.-Á.); (M.A.S.-P.)
| | - Ezequiel Viveros-Valdez
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Pedro de Alba s/n, San Nicolás de los Garza 66450, NL, Mexico;
| | - Javier Morán-Martínez
- Departamento de Biología Celular y Ultraestructura, Facultad de Medicina, Universidad Autónoma de Coahuila, Av. Morelos 900-Oriente, Primera de Cobián Centro, Torreón 27000, CH, Mexico;
| | - Isaías Balderas-Rentería
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Av. Pedro de Alba s/n, San Nicolás de los Garza 66450, NL, Mexico;
| | - Nancy Elena Guzmán-Delgado
- Unidad Médica de Alta Especialidad, Hospital de Cardiología No. 34, Instituto Mexicano del Seguro Social, Av. Lincoln S/N, Col. Valle Verde 2do. Sector, Monterrey 64360, NL, Mexico
| | - Irma Edith Carranza-Torres
- Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Calle Jesús Dionisio González # 501, Col. Independencia, Monterrey 64720, NL, Mexico;
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Pedro de Alba s/n, San Nicolás de los Garza 66450, NL, Mexico;
| |
Collapse
|
6
|
Dittfeld C, Winkelkotte M, Scheer A, Voigt E, Schmieder F, Behrens S, Jannasch A, Matschke K, Sonntag F, Tugtekin SM. Challenges of aortic valve tissue culture - maintenance of viability and extracellular matrix in the pulsatile dynamic microphysiological system. J Biol Eng 2023; 17:60. [PMID: 37770970 PMCID: PMC10538250 DOI: 10.1186/s13036-023-00377-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/14/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Calcific aortic valve disease (CAVD) causes an increasing health burden in the 21st century due to aging population. The complex pathophysiology remains to be understood to develop novel prevention and treatment strategies. Microphysiological systems (MPSs), also known as organ-on-chip or lab-on-a-chip systems, proved promising in bridging in vitro and in vivo approaches by applying integer AV tissue and modelling biomechanical microenvironment. This study introduces a novel MPS comprising different micropumps in conjunction with a tissue-incubation-chamber (TIC) for long-term porcine and human AV incubation (pAV, hAV). RESULTS Tissue cultures in two different MPS setups were compared and validated by a bimodal viability analysis and extracellular matrix transformation assessment. The MPS-TIC conjunction proved applicable for incubation periods of 14-26 days. An increased metabolic rate was detected for pulsatile dynamic MPS culture compared to static condition indicated by increased LDH intensity. ECM changes such as an increase of collagen fibre content in line with tissue contraction and mass reduction, also observed in early CAVD, were detected in MPS-TIC culture, as well as an increase of collagen fibre content. Glycosaminoglycans remained stable, no significant alterations of α-SMA or CD31 epitopes and no accumulation of calciumhydroxyapatite were observed after 14 days of incubation. CONCLUSIONS The presented ex vivo MPS allows long-term AV tissue incubation and will be adopted for future investigation of CAVD pathophysiology, also implementing human tissues. The bimodal viability assessment and ECM analyses approve reliability of ex vivo CAVD investigation and comparability of parallel tissue segments with different treatment strategies regarding the AV (patho)physiology.
Collapse
Affiliation(s)
- Claudia Dittfeld
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Fetscherstr. 76, 01307, Dresden, Germany.
| | - Maximilian Winkelkotte
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Fetscherstr. 76, 01307, Dresden, Germany
| | - Anna Scheer
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Fetscherstr. 76, 01307, Dresden, Germany
| | - Emmely Voigt
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Fetscherstr. 76, 01307, Dresden, Germany
| | - Florian Schmieder
- Fraunhofer Institute for Material and Beam Technology IWS, Dresden, Germany
| | - Stephan Behrens
- Fraunhofer Institute for Material and Beam Technology IWS, Dresden, Germany
| | - Anett Jannasch
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Fetscherstr. 76, 01307, Dresden, Germany
| | - Klaus Matschke
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Fetscherstr. 76, 01307, Dresden, Germany
| | - Frank Sonntag
- Fraunhofer Institute for Material and Beam Technology IWS, Dresden, Germany
| | - Sems-Malte Tugtekin
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Fetscherstr. 76, 01307, Dresden, Germany
| |
Collapse
|
7
|
Liao X, Jérôme V, Agarwal S, Freitag R, Greiner A. High Strength and High Toughness Electrospun Multifibrillar Yarns with Highly Aligned Hierarchy Intended as Anisotropic Extracellular Matrix. Macromol Biosci 2022; 22:e2200291. [PMID: 36126173 DOI: 10.1002/mabi.202200291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/29/2022] [Indexed: 01/15/2023]
Abstract
Electrospun nanofibers can be effectively used as a surrogate for extracellular matrices (ECMs). However, in the context of cellular mechanobiology, their mechanical performances can be enhanced by using nanofibrous materials with a high level of structural organization. Herein, this work develops multifibrillar yarns with superior mechanical performance based on biocompatible polyacrylonitrile (PAN) as surrogate ECM. Nearly perfect aligned nanofibers along with the axis of the multifibrillar yarn are prepared. These highly aligned yarns exhibit high strength, high toughness, good stress relaxation behavior, and are robust enough for technical or medical applications. Further, this work analyzes the influence of the highly aligned-hierarchical topological structure of the material on cell proliferation and cell orientation using cells derived from epithelial and connective tissues. Compared to nonoriented electrospun multifibrillar yarns and flat films, the well-ordered topology in the electrospun PAN multifibrillar yarns triggers an improved proliferation of fibroblasts and epithelial cells. Fibroblasts acquire an elongated morphology analogous to their behavior in the natural ECM. Hence, this heterogeneous multifibrillar material can be used to restore or reproduce the ECM for tissue engineering applications, notably in the skeletal muscle and tendon.
Collapse
Affiliation(s)
- Xiaojian Liao
- University of Bayreuth, Macromolecular Chemistry, Bavarian Polymer Institute, 95440, Bayreuth, Germany
| | - Valérie Jérôme
- University of Bayreuth, Process Biotechnology, 95440, Bayreuth, Germany
| | - Seema Agarwal
- University of Bayreuth, Macromolecular Chemistry, Bavarian Polymer Institute, 95440, Bayreuth, Germany
| | - Ruth Freitag
- University of Bayreuth, Process Biotechnology, 95440, Bayreuth, Germany
| | - Andreas Greiner
- University of Bayreuth, Macromolecular Chemistry, Bavarian Polymer Institute, 95440, Bayreuth, Germany
| |
Collapse
|
8
|
Wu T, Rabi SA, Michaud WA, Becerra D, Gilpin SE, Mino-Kenudson M, Ott HC. Protease inhibitor Camostat Mesyalte blocks wild type SARS-CoV-2 and D614G viral entry in human engineered miniature lungs. Biomaterials 2022; 285:121509. [PMID: 35533440 PMCID: PMC8999341 DOI: 10.1016/j.biomaterials.2022.121509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 03/08/2022] [Accepted: 04/01/2022] [Indexed: 02/07/2023]
Abstract
The catastrophic global effects of the SARS-CoV-2 pandemic highlight the need to develop novel therapeutics strategies to prevent and treat viral infections of the respiratory tract. To enable this work, we need scalable, affordable, and physiologically relevant models of the human lung, the primary organ involved in the pathogenesis of COVID-19. To date, most COVID-19 in vitro models rely on platforms such as cell lines and organoids. While 2D and 3D models have provided important insights, human distal lung models that can model epithelial viral uptake have yet to be established. We hypothesized that by leveraging techniques of whole organ engineering and directed differentiation of induced pluripotent stem cells (iPSC) we could model human distal lung epithelium, examine viral infection at the tissue level in real time, and establish a platform for COVID-19 related research ex vivo. In the present study, we used type 2 alveolar epithelial cells (AT2) derived from human iPSCs to repopulate whole rat lung acellular scaffolds and maintained them in extended biomimetic organ culture for 30 days to induce the maturation of distal lung epithelium. We observed emergence of a mixed type 1 and type 2 alveolar epithelial phenotype during tissue formation. When exposing our system to a pseudotyped lentivirus containing the spike of wildtype SARS-CoV-2 and the more virulent D614G, we observed progression of the infection in real time. We then found that the protease inhibitor Camostat Mesyalte significantly reduced viral transfection in distal lung epithelium. In summary, our data show that a mature human distal lung epithelium can serve as a novel moderate throughput research platform to examine viral infection and to evaluate novel therapeutics ex vivo.
Collapse
Affiliation(s)
- Tong Wu
- Massachusetts General Hospital, Center for Regenerative Medicine, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Seyed A. Rabi
- Massachusetts General Hospital, Department of Surgery, Boston, MA, USA,Massachusetts General Hospital, Division of Cardiovascular Surgery, Boston, MA, USA
| | - William A. Michaud
- Massachusetts General Hospital, Department of Surgery, Boston, MA, USA,Massachusetts General Hospital, Division of Surgical Oncology, Boston, MA, USA
| | - David Becerra
- Duke University Medical Center, Department of General Surgery, USA
| | - Sarah E. Gilpin
- Massachusetts General Hospital, Center for Regenerative Medicine, Boston, MA, USA
| | - Mari Mino-Kenudson
- Massachusetts General Hospital, Center for Regenerative Medicine, Boston, MA, USA,Harvard Medical School, Boston, MA, USA,Massachusetts General Hospital, Department of Pathology, Boston, MA, USA
| | - Harald C. Ott
- Massachusetts General Hospital, Center for Regenerative Medicine, Boston, MA, USA,Harvard Medical School, Boston, MA, USA,Massachusetts General Hospital, Department of Surgery, Boston, MA, USA,Corresponding author. Massachusetts General Hospital, Center for Regenerative Medicine, Boston, MA, USA
| |
Collapse
|
9
|
Yang J, Dang H, Xu Y. Recent advancement of decellularization extracellular matrix for tissue engineering and biomedical application. Artif Organs 2022; 46:549-567. [PMID: 34855994 DOI: 10.1111/aor.14126] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/18/2021] [Accepted: 11/15/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Decellularized extracellular matrixs (dECMs) derived from organs and tissues have emerged as a promising tool, as they encompass the characteristics of an ideal tissue scaffold: complex composition, vascular networks and unique tissue-specific architecture. Consequently, their use has propagated throughout tissue engineering and regenerative medicine. dECM can be easily obtained from various tissues/organs by appropriate decellularization protocolsand is entitled to provide necessary cues to cells homing. METHODS In this review, we describe the decellularization and sterilization methods that are commonly used in recent research, the effects of these methods upon biologic scaffold material are discussed. Also, we summarize the recent developments of recellularization and vascularization techniques in regeneration medicine. Additionally, dECM preservation methods is mentioned, which provides the basis for the establishment of organ bank. RESULTS Biomedical applications and the status of current research developments relating to dECM biomaterials are outlined, including transplantation in vivo, disease models and drug screening, organoid, 3D bioprinting, tissue reconstruction and rehabilitation and cell transplantation and culture. Finally, critical challenges and future developing technologies are discussed. CONCLUSIONS With the development of tissue engineering and regenerative medicine, dECM will have broader applications in the field of biomedicine in the near future.
Collapse
Affiliation(s)
- Jiamin Yang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Hangyu Dang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yi Xu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
10
|
Regulation of bFGF-induced effects on rat aortic smooth muscle cells by β3-adrenergic receptors. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100094. [PMID: 35300074 PMCID: PMC8920869 DOI: 10.1016/j.crphar.2022.100094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 01/08/2023] Open
Abstract
Background Basic fibroblast growth factor (bFGF)-mediated vascular smooth muscle cell (VSMC) proliferation and migration play an important role in vascular injury-induced neointima formation and subsequent vascular restenosis, a major event that hinders the long-term success of angioplasty. The function of β3-adrenergic receptors (β3-ARs) in vascular injury-induced neointima formation has not yet been defined. Objectives Our current study explored the possible role of β3-ARs in vascular injury-induced neointima formation by testing its effects on bFGF-induced VSMC migration and proliferation. Methods β3-AR expression in rat carotid arteries was examined at 14 days following a balloon catheter-induced injury. The effects of β3-AR activation on bFGF-induced rat aortic smooth muscle cell proliferation, migration, and signaling transduction (including extracellular-signal-regulated kinase/mitogen activated protein kinase, ERK/MAPK and Protein kinase B, AKT) were tested. Results We found that vascular injury induced upregulation of β3-ARs in neointima. Pretreatment of VSMCs with a selective β3-AR agonist, CL316,243 significantly potentiated bFGF-induced cell migration and proliferation, and ERK and AKT phosphorylation. Our results also revealed that suppressing phosphorylation of ERK and AKT blocked bFGF-induced cell migration and that inhibiting AKT phosphorylation reduced bFGF-mediated cell proliferation. Conclusion Our results suggest that activation of β3-ARs potentiates bFGF-mediated effects on VSMCs by enhancing bFGF-mediated ERK and AKT phosphorylation and that β3-ARs may play a role in vascular injury-induced neointima formation. β3-adrenergic receptor (β3-AR) expression was upregulated in the newly formed intima following rat carotid artery injury. Activation of β3-ARs potentiated bFGF-induced VSMC migration and proliferation and phosphorylation of ERK and/or AKT. Inhibition of ERK or AKT pathways decreased bFGF-induced cell migration. Inhibition of AKT pathway decreased bFGF-induced cell proliferation.
Collapse
|
11
|
Abstract
Evaluation of mesenchymal stem cell seeding efficiency in three-dimensional (3D) scaffolds is a critical step for constructing a potent and useful tissue engineering product for regenerative medicine. To determine the quantity of cells seeded on a scaffold, their condition and viability, and/or to confirm cell adhesion to the scaffold surface, a number of cellular assays are used. The assays are most often based on a direct or indirect colorimetric-, fluorimetric-, bioluminescent-, or isotope-based measurement of changes reflecting the activity of cellular processes. This chapter presents a selection of assays measuring the efficiency of cell seeding on scaffolds, that is, the MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium)) assay, the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, the ATP (adenosine triphosphate), DAPI (4',6-diamidino-2-phenylindole) assay, the Alamar Blue (7-hydroxy-10-oxidophenoxazin-10-ium-3-one, resazurin) assay and the Pico Green dsDNA (N'-[3-(dimethylamino)propyl]-N,N-dimethyl-N'-[4-[(E)-(3-methyl-1,3-benzothiazol-2-ylidene)methyl]-1-phenylquinolin-1-ium-2-yl]propane-1,3-diamine) assay. These assays monitor the number of viable cells, sometimes in conjunction with specifying cell membrane integrity, determine enzymatic activity associated with cell metabolism, measure cell proliferation rate, and assess the total protein or DNA content in the cell-scaffold construct. The choice of the appropriate methods and the details for testing 3D cultures are of utmost importance to properly evaluate tissue engineering products. Still, developing standards for assessment of cell-scaffold constructs remains a challenge in tissue engineering.
Collapse
Affiliation(s)
- Agata Kurzyk
- Department of Cancer Biology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland.
| |
Collapse
|
12
|
Bitounis D, Huang Q, Toprani SM, Setyawati MI, Oliveira N, Wu Z, Tay CY, Ng KW, Nagel ZD, Demokritou P. Printer center nanoparticles alter the DNA repair capacity of human bronchial airway epithelial cells. NANOIMPACT 2022; 25:100379. [PMID: 35559885 PMCID: PMC9661631 DOI: 10.1016/j.impact.2022.100379] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/08/2021] [Accepted: 01/05/2022] [Indexed: 05/26/2023]
Abstract
Nano-enabled, toner-based printing equipment emit nanoparticles during operation. The bioactivity of these nanoparticles as documented in a plethora of published toxicological studies raises concerns about their potential health effects. These include pro-inflammatory effects that can lead to adverse epigenetic alterations and cardiovascular disorders in rats. At the same time, their potential to alter DNA repair pathways at realistic doses remains unclear. In this study, size-fractionated, airborne particles from a printer center in Singapore were sampled and characterized. The PM0.1 size fraction (particles with an aerodynamic diameter less than 100 nm) of printer center particles (PCP) were then administered to human lung adenocarcinoma (Calu-3) or lymphoblastoid (TK6) cells. We evaluated plasma membrane integrity, mitochondrial activity, and intracellular reactive oxygen species (ROS) generation. Moreover, we quantified DNA damage and alterations in the cells' capacity to repair 6 distinct types of DNA lesions. Results show that PCP altered the ability of Calu-3 cells to repair 8oxoG:C lesions and perform nucleotide excision repair, in the absence of acute cytotoxicity or DNA damage. Alterations in DNA repair capacity have been correlated with the risk of various diseases, including cancer, therefore further genotoxicity studies are needed to assess the potential risks of PCP exposure, at both occupational settings and at the end-consumer level.
Collapse
Affiliation(s)
- Dimitrios Bitounis
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 655 Huntington Ave, Boston, MA 02115, USA
| | - Qiansheng Huang
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 655 Huntington Ave, Boston, MA 02115, USA; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Sneh M Toprani
- John B. Little Center of Radiation Sciences, Department of Environmental Health, Harvard T H Chan School of Public Health, Boston, MA 02115, USA
| | - Magdiel I Setyawati
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Nathalia Oliveira
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 655 Huntington Ave, Boston, MA 02115, USA
| | - Zhuoran Wu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Chor Yong Tay
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; Environmental Chemistry and Materials Centre, Nanyang Environment and Water Research Institution, 1 Cleantech Loop, CleanTech One, Singapore 637141, Singapore; School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Kee Woei Ng
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 655 Huntington Ave, Boston, MA 02115, USA; School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; Environmental Chemistry and Materials Centre, Nanyang Environment and Water Research Institution, 1 Cleantech Loop, CleanTech One, Singapore 637141, Singapore
| | - Zachary D Nagel
- John B. Little Center of Radiation Sciences, Department of Environmental Health, Harvard T H Chan School of Public Health, Boston, MA 02115, USA.
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 655 Huntington Ave, Boston, MA 02115, USA.
| |
Collapse
|
13
|
Ma Y, Wang J, Wu J, Tong C, Zhang T. Meta-analysis of cellular toxicity for graphene via data-mining the literature and machine learning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148532. [PMID: 34328986 DOI: 10.1016/j.scitotenv.2021.148532] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Since graphene is currently incorporated into various consumer products and used in a variety of applications, determining the relationships between the physicochemical properties of graphene and its toxicity is critical for conducting environmental and health risk analyses. Data from the literature suggest that exposure to graphene may result in cytotoxicity. However, existing graphene toxicity data are complex and heterogeneous, making it difficult to conduct risk assessments. Here, we conducted a meta-analysis of published data on the cytotoxicity of graphene based on 792 publications, including 986 cell viability data points, 762 half maximal inhibitory concentration (IC50) data points, and 100 lactate dehydrogenase (LDH) release data points. Models to predict graphene cytotoxicity were then developed based on cell viability, IC50, and LDH release as toxicity endpoints using random forests learning algorithms. The most influential attributes influencing graphene cytotoxicity were revealed to be exposure dose and detection method for cell viability, diameter and surface modification for IC50, and detection method and organ source for LDH release. The meta-analysis produced three sets of key attributes for the three abovementioned toxicity endpoints that can be used in future studies of graphene toxicity. The findings indicate that rigorous data mining protocols can be combined with suitable machine learning tools to develop models with good predictive power and accuracy. The results also provide guidance for the design of safe graphene materials.
Collapse
Affiliation(s)
- Ying Ma
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Jianli Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Jingying Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Chuxuan Tong
- School of Information Technology and Electrical Engineering, The University of Queensland Brisbane, QLD 4072, Australia
| | - Ting Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
14
|
Mahfouzi SH, Amoabediny G, Safiabadi Tali SH. Advances in bioreactors for lung bioengineering: From scalable cell culture to tissue growth monitoring. Biotechnol Bioeng 2021; 118:2142-2167. [PMID: 33629350 DOI: 10.1002/bit.27728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 12/17/2022]
Abstract
Lung bioengineering has emerged to resolve the current lung transplantation limitations and risks, including the shortage of donor organs and the high rejection rate of transplanted lungs. One of the most critical elements of lung bioengineering is bioreactors. Bioreactors with different applications have been developed in the last decade for lung bioengineering approaches, aiming to produce functional reproducible tissue constructs. Here, the current status and advances made in the development and application of bioreactors for bioengineering lungs are comprehensively reviewed. First, bioreactor design criteria are explained, followed by a discussion on using bioreactors as a culture system for scalable expansion and proliferation of lung cells, such as producing epithelial cells from induced pluripotent stem cells (iPSCs). Next, bioreactor systems facilitating and improving decellularization and recellularization of lung tissues are discussed, highlighting the studies that developed bioreactors for producing engineered human-sized lungs. Then, monitoring bioreactors are reviewed, showing their ability to evaluate and optimize the culture conditions for maturing engineered lung tissues, followed by an explanation on the ability of ex vivo lung perfusion systems for reconditioning the lungs before transplantation. After that, lung cancer studies simplified by bioreactors are discussed, showing the potentials of bioreactors in lung disease modeling. Finally, other platforms with the potential of facilitating lung bioengineering are described, including the in vivo bioreactors and lung-on-a-chip models. In the end, concluding remarks and future directions are put forward to accelerate lung bioengineering using bioreactors.
Collapse
Affiliation(s)
- Seyed Hossein Mahfouzi
- Department of Biomedical Engineering, The Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran
| | - Ghassem Amoabediny
- Department of Biomedical Engineering, The Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran.,Department of Biotechnology and Pharmaceutical Engineering, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Seyed Hamid Safiabadi Tali
- Department of Biomedical Engineering, The Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
15
|
Ohata K, Ott HC. Human-scale lung regeneration based on decellularized matrix scaffolds as a biologic platform. Surg Today 2020; 50:633-643. [PMID: 32363425 PMCID: PMC7305261 DOI: 10.1007/s00595-020-02000-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/06/2020] [Indexed: 12/25/2022]
Abstract
Lung transplantation is currently the only curative treatment for patients with end-stage lung disease; however, donor organ shortage and the need for intense immunosuppression limit its broad clinical application. Bioartificial lungs created by combining native matrix scaffolds with patient-derived cells might overcome these problems. Decellularization involves stripping away cells while leaving behind the extracellular matrix scaffold. Cadaveric lungs are decellularized by detergent perfusion, and histologic examination confirms the absence of cellular components but the preservation of matrix proteins. The resulting lung scaffolds are recellularized in a bioreactor that provides biomimetic conditions, including vascular perfusion and liquid ventilation. Cell seeding, engraftment, and tissue maturation are achieved in whole-organ culture. Bioartificial lungs are transplantable, similarly to donor lungs, because the scaffolds preserve the vascular and airway architecture. In rat and porcine transplantation models, successful anastomoses of the vasculature and the airway were achieved, and gas exchange was evident after reperfusion. However, long-term function has not been achieved because of the immaturity of the vascular bed and distal lung epithelia. The goal of this strategy is to create patient-specific transplantable lungs using induced pluripotent stem cell (iPSC)-derived cells. The repopulation of decellularized scaffolds to create transplantable organs is one of possible future clinical applications of iPSCs.
Collapse
Affiliation(s)
- Keiji Ohata
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, CPZN 4800, Boston, MA, 02114, USA
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Harald C Ott
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, CPZN 4800, Boston, MA, 02114, USA.
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
Resazurin-Based Assay for Quantifying Living Cells during Alkaline Phosphatase (ALP) Release. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10113840] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alkaline phosphatase (ALP) is an important reporter gene in the gene expression system, therefore monitoring cellular behavior including cell viability during ALP release is of significance. This assay produced a quantitative resazurin-based assay for cell viability in embryonic and cancer cells during alkaline phosphatase (ALP) release. A post-confluence culture method was applied to induce ALP in the cells of Balb/c 3T3, A549, MCF-7, and Ht-29. The density of each cell type was optimized using the standard cell culture assay. The main parameters affecting the results of resazurin involve the concentration of resazurin, incubation time, and cell number. The redox reaction, in which resazurin is reduced by the cells, was measured by fluorescence at 544 nm and 590 nm. The obtained data were compared with the hemocytometer assay. ALP release was determined using the optical active substrate p-nitrophenyl phosphate and colorimetric assay.
Collapse
|
17
|
Moser PT, Gerli M, Diercks GR, Evangelista-Leite D, Charest JM, Gershlak JR, Ren X, Gilpin SE, Jank BJ, Gaudette GR, Hartnick CJ, Ott HC. Creation of Laryngeal Grafts from Primary Human Cells and Decellularized Laryngeal Scaffolds. Tissue Eng Part A 2020; 26:543-555. [DOI: 10.1089/ten.tea.2019.0128] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Philipp T. Moser
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Mattia Gerli
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Great Ormond Street Institute of Child Health, University College London Medical School, London, United Kingdom
| | - Gillian R. Diercks
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | | | - Jonathan M. Charest
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Joshua R. Gershlak
- Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Xi Ren
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Sarah E. Gilpin
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Bernhard J. Jank
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Otolaryngology, Medical University of Vienna, Vienna, Austria
| | - Glenn R. Gaudette
- Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Christopher J. Hartnick
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Harald C. Ott
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Thoracic Surgery, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Tsuchiya T, Doi R, Obata T, Hatachi G, Nagayasu T. Lung Microvascular Niche, Repair, and Engineering. Front Bioeng Biotechnol 2020; 8:105. [PMID: 32154234 PMCID: PMC7047880 DOI: 10.3389/fbioe.2020.00105] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 02/03/2020] [Indexed: 12/28/2022] Open
Abstract
Biomaterials have been used for a long time in the field of medicine. Since the success of "tissue engineering" pioneered by Langer and Vacanti in 1993, tissue engineering studies have advanced from simple tissue generation to whole organ generation with three-dimensional reconstruction. Decellularized scaffolds have been widely used in the field of reconstructive surgery because the tissues used to generate decellularized scaffolds can be easily harvested from animals or humans. When a patient's own cells can be seeded onto decellularized biomaterials, theoretically this will create immunocompatible organs generated from allo- or xeno-organs. The most important aspect of lung tissue engineering is that the delicate three-dimensional structure of the organ is maintained during the tissue engineering process. Therefore, organ decellularization has special advantages for lung tissue engineering where it is essential to maintain the extremely thin basement membrane in the alveoli. Since 2010, there have been many methodological developments in the decellularization and recellularization of lung scaffolds, which includes improvements in the decellularization protocols and the selection and preparation of seeding cells. However, early transplanted engineered lungs terminated in organ failure in a short period. Immature vasculature reconstruction is considered to be the main cause of engineered organ failure. Immature vasculature causes thrombus formation in the engineered lung. Successful reconstruction of a mature vasculature network would be a major breakthrough in achieving success in lung engineering. In order to regenerate the mature vasculature network, we need to remodel the vascular niche, especially the microvasculature, in the organ scaffold. This review highlights the reconstruction of the vascular niche in a decellularized lung scaffold. Because the vascular niche consists of endothelial cells (ECs), pericytes, extracellular matrix (ECM), and the epithelial-endothelial interface, all of which might affect the vascular tight junction (TJ), we discuss ECM composition and reconstruction, the contribution of ECs and perivascular cells, the air-blood barrier (ABB) function, and the effects of physiological factors during the lung microvasculature repair and engineering process. The goal of the present review is to confirm the possibility of success in lung microvascular engineering in whole organ engineering and explore the future direction of the current methodology.
Collapse
Affiliation(s)
- Tomoshi Tsuchiya
- Department of Surgical Oncology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Division of Nucleic Acid Drug Development, Research Institute for Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Ryoichiro Doi
- Department of Surgical Oncology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Tomohiro Obata
- Department of Surgical Oncology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Go Hatachi
- Department of Surgical Oncology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Takeshi Nagayasu
- Department of Surgical Oncology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
19
|
Onder OC, Utroša P, Caserman S, Podobnik M, Žnidarič MT, Grdadolnik J, Kovačič S, Žagar E, Pahovnik D. Emulsion-templated synthetic polypeptide scaffolds prepared by ring-opening polymerization of N-carboxyanhydrides. Polym Chem 2020. [DOI: 10.1039/d0py00387e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ring-opening polymerization of N-carboxyanhydrides was performed in oil-in-oil high internal phase emulsion to obtain well-defined macroporous synthetic polypeptides.
Collapse
Affiliation(s)
- Ozgun Can Onder
- Department of Polymer Chemistry and Technology
- National Institute of Chemistry
- 1000 Ljubljana
- Slovenia
| | - Petra Utroša
- Department of Polymer Chemistry and Technology
- National Institute of Chemistry
- 1000 Ljubljana
- Slovenia
| | - Simon Caserman
- Department of Molecular Biology and Nanobiotechnology
- National Institute of Chemistry
- 1000 Ljubljana
- Slovenia
| | - Marjetka Podobnik
- Department of Molecular Biology and Nanobiotechnology
- National Institute of Chemistry
- 1000 Ljubljana
- Slovenia
| | - Magda Tušek Žnidarič
- Department of Biotechnology and Systems Biology
- National Institute of Biology
- 1000 Ljubljana
- Slovenia
| | - Jože Grdadolnik
- Theory Department
- National Institute of Chemistry
- 1000 Ljubljana
- Slovenia
| | - Sebastijan Kovačič
- Department of Polymer Chemistry and Technology
- National Institute of Chemistry
- 1000 Ljubljana
- Slovenia
| | - Ema Žagar
- Department of Polymer Chemistry and Technology
- National Institute of Chemistry
- 1000 Ljubljana
- Slovenia
| | - David Pahovnik
- Department of Polymer Chemistry and Technology
- National Institute of Chemistry
- 1000 Ljubljana
- Slovenia
| |
Collapse
|
20
|
Gorman DE, Wu T, Gilpin SE, Ott HC. A Fully Automated High-Throughput Bioreactor System for Lung Regeneration. Tissue Eng Part C Methods 2019; 24:671-678. [PMID: 30362896 DOI: 10.1089/ten.tec.2018.0259] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
IMPACT STATEMENT This work presents methods for ex vivo lung recellularization and biomimetic culture in a high-throughput and consistent manner. These methods allow for the testing of multiple variables, all of which are simultaneously controlled and monitored on a single fully automated pump system, and subsequent assessment of both epithelial and endothelial repair and tissue regeneration. This system provides a controlled environment for tissue repair, wherein key variables can be modified, monitored, reproduced, and optimized to advance the goal of ex vivo tissue regeneration based on native organ scaffolds.
Collapse
Affiliation(s)
- Daniel E Gorman
- 1 Center for Regenerative Medicine , Massachusetts General Hospital, Boston, Massachusetts
| | - Tong Wu
- 1 Center for Regenerative Medicine , Massachusetts General Hospital, Boston, Massachusetts.,2 Harvard Medical School , Boston, Massachusetts
| | - Sarah E Gilpin
- 1 Center for Regenerative Medicine , Massachusetts General Hospital, Boston, Massachusetts.,2 Harvard Medical School , Boston, Massachusetts
| | - Harald C Ott
- 1 Center for Regenerative Medicine , Massachusetts General Hospital, Boston, Massachusetts.,2 Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
21
|
Rettinger CL, Wang HC. Current Advancements in the Development and Characterization of Full-Thickness Adult Neuroretina Organotypic Culture Systems. Cells Tissues Organs 2019; 206:119-132. [PMID: 30879015 DOI: 10.1159/000497296] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/25/2019] [Indexed: 11/19/2022] Open
Abstract
Retinal degenerative diseases such as macular degeneration, glaucoma, and diabetic retinopathy constitute the leading cause of blindness in the industrialized world. There is a continuous demand in investigative ophthalmic research for the development of new treatment modalities for retinal therapy. Unfortunately, efforts to identify novel neuroprotective and neuroregenerative agents have often been hindered by an experimental model gap that exists between high-throughput methods via dissociated cells and preclinical animal models. Even though dissociated cell culture is rapid and high-throughput, it is limited in its ability to reproduce the in vivo conditions. In contrast, preclinical animal models may offer greater fidelity, albeit they lack efficiency and experimental control. Retina explant cultures provide an ideal bridge to close this gap and have been used to study an array of biological processes such as retinal development and neurodegeneration. However, it is often difficult to interpret findings from these studies due to the wide variety of experimental species and culture methods used. This review provides a comprehensive overview of current ex vivo neuroretina culture methods and assessments, with a focus on their suitability, advantages, and disadvantages, along with novel insights and perspectives on the organotypic culture model as a high-throughput platform for screening promising molecules for retinal regeneration.
Collapse
Affiliation(s)
- Christina L Rettinger
- Ocular and Sensory Trauma Task Area, U.S. Army Institute of Surgical Research, Fort Sam Houston, Texas, USA,
| | - Heuy-Ching Wang
- Ocular and Sensory Trauma Task Area, U.S. Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| |
Collapse
|
22
|
Wei M, Zhang Y, Li G, Ni Y, Wang S, Zhang F, Zhang R, Yang N, Shao S, Wang P. A cell viability assessment approach based on electrical wound-healing impedance characteristics. Biosens Bioelectron 2019; 124-125:25-32. [DOI: 10.1016/j.bios.2018.09.080] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 10/28/2022]
|
23
|
Improving functional re-endothelialization of acellular liver scaffold using REDV cell-binding domain. Acta Biomater 2018; 78:151-164. [PMID: 30071351 DOI: 10.1016/j.actbio.2018.07.046] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 07/02/2018] [Accepted: 07/26/2018] [Indexed: 12/15/2022]
Abstract
Engineering of functional vascularized liver tissues holds great promise in addressing donor organ shortage for transplantation. Whole organ decellularization is a cell removal method that retains the native vascular structures of the organ such that it can be anastomosed with the recipient circulation after recellularization with healthy cells. However, a main hurdle to successful implantation of bioengineered organ is the inability to efficiently re-endothelialize the vasculature with a functional endothelium, resulting in blood clotting which is the primary cause of failure in early transplant studies. Here, we present an efficient approach for enhancing re-endothelialization of decellularized rat liver scaffolds by conjugating the REDV cell-binding domain to improve attachment of endothelial cells (EC) on vascular wall surfaces. In order to facilitate expression and purification of the peptide, REDV was fused with elastin-like peptide (ELP) that confers thermally triggered aggregation behavior to the fusion protein. After validating the adhesive properties of the REDV-ELP peptide, we covalently coupled REDV-ELP to the blood vasculature of decellularized rat livers and seeded EC using perfusion of the portal vein. We showed that REDV-ELP increased cell attachment, spreading and proliferation of EC within the construct resulting in uniform endothelial lining of the scaffold vasculature. We further observed that REDV-ELP conjugation dramatically reduced platelet adhesion and activation. Altogether, our results demonstrate that this method allowed functional re-endothelialization of liver scaffold and show great potential toward the generation of functional bioengineered liver for long-term transplantation. STATEMENT OF SIGNIFICANCE There is a critical need for novel organ replacement therapies as the grafts for transplantation fall short of demand. Recent advances in tissue engineering, through the use of decellularized scaffolds, have opened the possibility that engineered grafts could be used as substitutes for donor livers. However, successful implantation has been challenged by the inability to create a functional vasculature. Our research study reports a new strategy to increase efficiency of endothelialization by increasing the affinity of the vascular matrix for endothelial cells. We functionalized decellularized liver scaffold using elastin-like peptides grafted with REDV cell binding domain. We showed that REDV-ELP conjugation improve endothelial cell attachment and proliferation within the scaffold, demonstrating the feasibility of re-endothelializing a whole liver vasculature using our technique.
Collapse
|
24
|
Metabolic glycan labeling and chemoselective functionalization of native biomaterials. Biomaterials 2018; 182:127-134. [PMID: 30118980 DOI: 10.1016/j.biomaterials.2018.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 01/01/2023]
Abstract
Decellularized native extracellular matrix (ECM) biomaterials are widely used in tissue engineering and have reached clinical application as biomesh implants. To enhance their regenerative properties and postimplantation performance, ECM biomaterials could be functionalized via immobilization of bioactive molecules. To facilitate ECM functionalization, we developed a metabolic glycan labeling approach using physiologic pathways to covalently incorporate click-reactive azide ligands into the native ECM of a wide variety of rodent tissues and organs in vivo, and into the ECM of isolated rodent and porcine lungs cultured ex vivo. The incorporated azides within the ECM were preserved after decellularization and served as chemoselective ligands for subsequent bioconjugation via click chemistry. As proof of principle, we generated alkyne-modified heparin, immobilized it onto azide-incorporated acellular lungs, and demonstrated its bioactivity by Antithrombin III immobilization and Factor Xa inhibition. The herein reported metabolic glycan labeling approach represents a novel platform technology for manufacturing click-reactive native ECM biomaterials, thereby enabling efficient and chemoselective functionalization of these materials to facilitate tissue regeneration and repair.
Collapse
|
25
|
Rettinger CL, Wang HC. Quantitative Assessment of Retina Explant Viability in a Porcine Ex Vivo Neuroretina Model. J Ocul Pharmacol Ther 2018; 34:521-530. [PMID: 29924674 DOI: 10.1089/jop.2018.0021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
PURPOSE Given that porcine and human retinas have similar structures and characteristics, ex vivo culture of porcine neuroretina provides an attractive model for studying mechanisms of human retinal injury and degenerative disease. Here, we describe the method that was used to establish and characterize an adult porcine retina culture system as a rapid screening tool for retinal survival in real time. METHODS Neuroretina explants 8 mm in diameter were harvested from adult swine and cultured on porous cell culture inserts with adjustable heights. Retina explant viability was evaluated at 1, 4, 7, 11, and 14 days of culture using a resazurin-based metabolic assay. The explants were analyzed morphologically through immunohistochemistry for glial activation and apoptosis. Morphometric analysis was also performed on hematoxylin and eosin-stained retina sections from each time point. RESULTS The viability of retina explants gradually decreased over time in culture. The laminar structure of the neuroretina was well preserved during the first 7 days. However, by day 14, most explants showed significant loss of cells in each laminar layer and obvious thinning. Overall, the progressive loss of retinal lamination and thickness, and increase in apoptotic nuclei with activated hypertrophic Müller cells were well correlated with the metabolic activity of the ex vivo neuroretina explants. CONCLUSIONS This study was the first report to describe the use of a high-throughput and quantitative method for monitoring retina explant viability in real time. Ex vivo neuroretina cultures closely mimic the functional dynamics of the organ, and can be used efficiently to screen novel therapeutics for retinal neurodegenerative disease.
Collapse
Affiliation(s)
- Christina L Rettinger
- Ocular and Sensory Trauma Task Area, United States Army Institute of Surgical Research , Fort Sam Houston, Texas
| | - Heuy-Ching Wang
- Ocular and Sensory Trauma Task Area, United States Army Institute of Surgical Research , Fort Sam Houston, Texas
| |
Collapse
|
26
|
Mahfouzi SH, Amoabediny G, Doryab A, Safiabadi-Tali SH, Ghanei M. Noninvasive Real-Time Assessment of Cell Viability in a Three-Dimensional Tissue. Tissue Eng Part C Methods 2018; 24:197-204. [DOI: 10.1089/ten.tec.2017.0371] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Seyed Hossein Mahfouzi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
- The Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran
| | - Ghassem Amoabediny
- The Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran
- Department of Biochemical and Pharmaceutical Engineering, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Ali Doryab
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
- The Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran
| | - Seyed Hamid Safiabadi-Tali
- The Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran
- Department of Biochemical and Pharmaceutical Engineering, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mostafa Ghanei
- Chemical Injuries Research Center and Department of Pulmonary Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
|
28
|
Skiles ML, Brown KS, Tatz W, Swingle K, Brown HL. Quantitative analysis of composite umbilical cord tissue health using a standardized explant approach and an assay of metabolic activity. Cytotherapy 2018; 20:564-575. [PMID: 29429941 DOI: 10.1016/j.jcyt.2018.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 12/07/2017] [Accepted: 01/04/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND Umbilical cord (UC) tissue can be collected in a noninvasive procedure and is enriched in progenitor cells with potential therapeutic value. Mesenchymal stromal cells (MSCs) can be reliably harvested from fresh or cryopreserved UC tissue by explant outgrowth with no apparent impact on functionality. A number of stem cell banks offer cryopreservation of UC tissue, alongside cord blood, for future cell-based applications. In this setting, measuring and monitoring UC quality is critical. MATERIALS AND METHODS UC explants were evaluated using a plating and scoring system accounting for cell attachment and proliferation. Explant scores for fresh and cryopreserved-then-thawed tissue from the same UC were compared. Metabolic activity of composite UC tissue was also assayed after exposure of the tissue to conditions anticipated to affect UC quality and compared with explant scores within the same UC. RESULTS All fresh and cryopreserved tissues yielded MSC-like cells, and cryopreservation of the tissue did not prevent the ability to isolate MSCs by the explant method. Thawed UC tissue scores were 91% (±0.6%; P = 0.0009) that of the fresh, biologically identical tissue. Within the same UC, explant scores correlated well to both cell yield (R2 = 0.85) and tissue metabolic activity (R2 = 0.69). DISCUSSION A uniform explant scoring assay can provide information about the quality of composite UC tissue. Such quantitative measurement is useful for analysis of tissue variability and process monitoring. Additionally, a metabolic assay of UC tissue health provides results that correlate well to explant scoring results.
Collapse
Affiliation(s)
- Matthew L Skiles
- Scientific and Medical Affairs, Cbr Systems, Inc., South San Francisco, California, USA.
| | - Katherine S Brown
- Scientific and Medical Affairs, Cbr Systems, Inc., South San Francisco, California, USA
| | - William Tatz
- Laboratory Operations, Cbr Systems, Inc., Tucson, Arizona, USA
| | - Kristen Swingle
- Consumer Sales and Operations, Cbr Systems, Inc., Tucson, Arizona, USA
| | - Heather L Brown
- Scientific and Medical Affairs, Cbr Systems, Inc., South San Francisco, California, USA
| |
Collapse
|
29
|
Meng F, Assiri A, Dhar D, Broering D. Whole liver engineering: A promising approach to develop functional liver surrogates. Liver Int 2017; 37:1759-1772. [PMID: 28393454 DOI: 10.1111/liv.13444] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 03/28/2017] [Indexed: 02/13/2023]
Abstract
Liver donor shortage remains the biggest challenge for patients with end-stage liver failures. While bioartificial liver devices have been developed as temporary supports for patients waiting for transplantation, their applications have been limited clinically. Whole liver engineering is a biological scaffold based regenerative medicine approach that holds promise for developing functional liver surrogates. Significant advancements have been made since the first report in 2010. This review focuses on the recent achievements of whole liver engineering studies.
Collapse
Affiliation(s)
- Fanwei Meng
- Organ Transplantation Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Abdallah Assiri
- Organ Transplantation Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Dipok Dhar
- Organ Transplantation Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Dieter Broering
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
30
|
Destefani AC, Sirtoli GM, Nogueira BV. Advances in the Knowledge about Kidney Decellularization and Repopulation. Front Bioeng Biotechnol 2017; 5:34. [PMID: 28620603 PMCID: PMC5451511 DOI: 10.3389/fbioe.2017.00034] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/03/2017] [Indexed: 12/15/2022] Open
Abstract
End-stage renal disease (ESRD) is characterized by the progressive deterioration of renal function that may compromise different tissues and organs. The major treatment indicated for patients with ESRD is kidney transplantation. However, the shortage of available organs, as well as the high rate of organ rejection, supports the need for new therapies. Thus, the implementation of tissue bioengineering to organ regeneration has emerged as an alternative to traditional organ transplantation. Decellularization of organs with chemical, physical, and/or biological agents generates natural scaffolds, which can serve as basis for tissue reconstruction. The recellularization of these scaffolds with different cell sources, such as stem cells or adult differentiated cells, can provide an organ with functionality and no immune response after in vivo transplantation on the host. Several studies have focused on improving these techniques, but until now, there is no optimal decellularization method for the kidney available yet. Herein, an overview of the current literature for kidney decellularization and whole-organ recellularization is presented, addressing the pros and cons of the actual techniques already developed, the methods adopted to evaluate the efficacy of the procedures, and the challenges to be overcome in order to achieve an optimal protocol.
Collapse
Affiliation(s)
- Afrânio Côgo Destefani
- Tissue Engineering Core—LUCCAR, Morphology, Federal University of Espírito Santo (UFES), Vitória, Brazil
- Health Sciences Center, Federal University of Espírito Santo (UFES), Vitória, Brazil
- Health Sciences Center, Postgraduate Program in Biotechnology/RENORBIO, Vitória, Brazil
| | - Gabriela Modenesi Sirtoli
- Tissue Engineering Core—LUCCAR, Morphology, Federal University of Espírito Santo (UFES), Vitória, Brazil
- Health Sciences Center, Federal University of Espírito Santo (UFES), Vitória, Brazil
| | - Breno Valentim Nogueira
- Tissue Engineering Core—LUCCAR, Morphology, Federal University of Espírito Santo (UFES), Vitória, Brazil
- Health Sciences Center, Federal University of Espírito Santo (UFES), Vitória, Brazil
- Health Sciences Center, Postgraduate Program in Biotechnology/RENORBIO, Vitória, Brazil
| |
Collapse
|
31
|
Wu T, Economopoulos KP, Ott HC. Engineering Bioartificial Lungs for Transplantation. CURRENT STEM CELL REPORTS 2017. [DOI: 10.1007/s40778-017-0082-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
32
|
Uzarski JS, DiVito MD, Wertheim JA, Miller WM. Essential design considerations for the resazurin reduction assay to noninvasively quantify cell expansion within perfused extracellular matrix scaffolds. Biomaterials 2017; 129:163-175. [PMID: 28343003 DOI: 10.1016/j.biomaterials.2017.02.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/11/2017] [Indexed: 12/29/2022]
Abstract
Precise measurement of cellularity within bioartificial tissues and extracellular matrix (ECM) scaffolds is necessary to augment rigorous characterization of cellular behavior, as accurate benchmarking of tissue function to cell number allows for comparison of data across experiments and between laboratories. Resazurin, a soluble dye that is reduced to highly fluorescent resorufin in proportion to the metabolic activity of a cell population, is a valuable, noninvasive tool to measure cell number. We investigated experimental conditions in which resazurin reduction is a reliable indicator of cellularity within three-dimensional (3D) ECM scaffolds. Using three renal cell populations, we demonstrate that correlation of viable cell numbers with the rate of resorufin generation may deviate from linearity at higher cell densities, lower resazurin working volumes, or longer incubation times that all contribute to depleting the pool of resazurin. In conclusion, while the resazurin reduction assay provides a powerful, noninvasive readout of metrics enumerating cellularity and growth within ECM scaffolds, assay conditions may strongly influence its applicability for accurate quantification of cell number. The approach and methodological recommendations presented herein may be used as a guide for application-specific optimization of this assay to obtain rigorous and accurate measurement of cellular content in bioengineered tissues.
Collapse
Affiliation(s)
- Joseph S Uzarski
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Michael D DiVito
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jason A Wertheim
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Surgery, Jesse Brown VA Medical Center, Chicago, IL 60612, USA; Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA; Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA.
| | - William M Miller
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA; Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
33
|
Gilpin SE, Charest JM, Ren X, Tapias LF, Wu T, Evangelista-Leite D, Mathisen DJ, Ott HC. Regenerative potential of human airway stem cells in lung epithelial engineering. Biomaterials 2016; 108:111-9. [PMID: 27622532 DOI: 10.1016/j.biomaterials.2016.08.055] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/25/2016] [Accepted: 08/31/2016] [Indexed: 12/24/2022]
Abstract
Bio-engineered organs for transplantation may ultimately provide a personalized solution for end-stage organ failure, without the risk of rejection. Building upon the process of whole organ perfusion decellularization, we aimed to develop novel, translational methods for the recellularization and regeneration of transplantable lung constructs. We first isolated a proliferative KRT5(+)TP63(+) basal epithelial stem cell population from human lung tissue and demonstrated expansion capacity in conventional 2D culture. We then repopulated acellular rat scaffolds in ex vivo whole organ culture and observed continued cell proliferation, in combination with primary pulmonary endothelial cells. To show clinical scalability, and to test the regenerative capacity of the basal cell population in a human context, we then recellularized and cultured isolated human lung scaffolds under biomimetic conditions. Analysis of the regenerated tissue constructs confirmed cell viability and sustained metabolic activity over 7 days of culture. Tissue analysis revealed extensive recellularization with organized tissue architecture and morphology, and preserved basal epithelial cell phenotype. The recellularized lung constructs displayed dynamic compliance and rudimentary gas exchange capacity. Our results underline the regenerative potential of patient-derived human airway stem cells in lung tissue engineering. We anticipate these advances to have clinically relevant implications for whole lung bioengineering and ex vivo organ repair.
Collapse
Affiliation(s)
- Sarah E Gilpin
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, United States; Harvard Medical School, United States; Center for Regenerative Medicine, Massachusetts General Hospital, United States
| | - Jonathan M Charest
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, United States; Center for Regenerative Medicine, Massachusetts General Hospital, United States
| | - Xi Ren
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, United States; Harvard Medical School, United States; Center for Regenerative Medicine, Massachusetts General Hospital, United States
| | - Luis F Tapias
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, United States; Harvard Medical School, United States; Center for Regenerative Medicine, Massachusetts General Hospital, United States
| | - Tong Wu
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, United States; Harvard Medical School, United States; Center for Regenerative Medicine, Massachusetts General Hospital, United States
| | - Daniele Evangelista-Leite
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, United States; Center for Regenerative Medicine, Massachusetts General Hospital, United States
| | - Douglas J Mathisen
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, United States; Harvard Medical School, United States
| | - Harald C Ott
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, United States; Harvard Medical School, United States; Center for Regenerative Medicine, Massachusetts General Hospital, United States
| |
Collapse
|
34
|
Poornejad N, Schaumann LB, Buckmiller EM, Momtahan N, Gassman JR, Ma HH, Roeder BL, Reynolds PR, Cook AD. The impact of decellularization agents on renal tissue extracellular matrix. J Biomater Appl 2016; 31:521-533. [PMID: 27312837 DOI: 10.1177/0885328216656099] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The combination of patient-specific cells with scaffolds obtained from natural sources may result in improved regeneration of human tissues. Decellularization of the native tissue is the first step in this technology. Effective decellularization uses agents that lyse cells and remove all cellular materials, leaving intact collagenous extracellular matrices (ECMs). Removing cellular remnants prevents an immune response while preserving the underlying structure. In this study, the impact of five decellularization agents (0.1 N NaOH, 1% peracetic acid, 3% Triton X-100, 1% sodium dodecyl sulfate (SDS), and 0.05% trypsin/EDTA) on renal tissue was examined using slices of porcine kidneys. The NaOH solution induced the most efficient cell removal, and resulted in the highest amount of cell viability and proliferation after recellularization, although it also produced the most significant damage to collagenous fiber networks, glycosaminoglycans (GAGs) and fibroblast growth factor (FGF). The SDS solution led to less severe damage to the ECM structure but it resulted in lower metabolic activity and less proliferation. Peracetic acid and Triton X-100 resulted in minimum disruption of ECMs and the most preserved GAGs and FGF. However, these last two agents were not as efficient in removing cellular materials as NaOH and SDS, especially peracetic acid, which left more than 80% of cellular material within the ECM. As a proof of principle, after completing the comparison studies using slices of renal ECM, the NaOH process was used to decellularize a whole kidney, with good results. The overall results demonstrate the significant effect of cell lysing agents and the importance of developing an optimized protocol to avoid extensive damage to the ECM while retaining the ability to support cell growth.
Collapse
Affiliation(s)
- Nafiseh Poornejad
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Lara B Schaumann
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Evan M Buckmiller
- Department of Genetics and Biotechnology, Brigham Young University, Provo, UT, USA
| | - Nima Momtahan
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Jason R Gassman
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, USA
| | - Ho Hin Ma
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, USA
| | | | - Paul R Reynolds
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, USA
| | - Alonzo D Cook
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| |
Collapse
|
35
|
Stabler CT, Caires LC, Mondrinos MJ, Marcinkiewicz C, Lazarovici P, Wolfson MR, Lelkes PI. Enhanced Re-Endothelialization of Decellularized Rat Lungs. Tissue Eng Part C Methods 2016; 22:439-50. [PMID: 26935764 DOI: 10.1089/ten.tec.2016.0012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Decellularized lung tissue has been recognized as a potential platform to engineer whole lung organs suitable for transplantation or for modeling a variety of lung diseases. However, many technical hurdles remain before this potential may be fully realized. Inability to efficiently re-endothelialize the pulmonary vasculature with a functional endothelium appears to be the primary cause of failure of recellularized lung scaffolds in early transplant studies. Here, we present an optimized approach for enhanced re-endothelialization of decellularized rodent lung scaffolds with rat lung microvascular endothelial cells (ECs). This was achieved by adjusting the posture of the lung to a supine position during cell seeding through the pulmonary artery. The supine position allowed for significantly more homogeneous seeding and better cell retention in the apex regions of all lobes than the traditional upright position, especially in the right upper and left lobes. Additionally, the supine position allowed for greater cell retention within large diameter vessels (proximal 100-5000 μm) than the upright position, with little to no difference in the small diameter distal vessels. EC adhesion in the proximal regions of the pulmonary vasculature in the decellularized lung was dependent on the binding of EC integrins, specifically α1β1, α2β1, and α5β1 integrins to, respectively, collagen type-I, type-IV, and fibronectin in the residual extracellular matrix. Following in vitro maturation of the seeded constructs under perfusion culture, the seeded ECs spread along the vascular wall, leading to a partial reestablishment of endothelial barrier function as inferred from a custom-designed leakage assay. Our results suggest that attention to cellular distribution within the whole organ is of paramount importance for restoring proper vascular function.
Collapse
Affiliation(s)
- Collin T Stabler
- 1 Department of Bioengineering, College of Engineering, Temple University , Philadelphia, Pennsylvania
| | - Luiz C Caires
- 1 Department of Bioengineering, College of Engineering, Temple University , Philadelphia, Pennsylvania.,2 Department of Biology, Institute of Biological Sciences, Federal University of Juiz de Fora, MG, Brazil
| | - Mark J Mondrinos
- 1 Department of Bioengineering, College of Engineering, Temple University , Philadelphia, Pennsylvania
| | - Cezary Marcinkiewicz
- 1 Department of Bioengineering, College of Engineering, Temple University , Philadelphia, Pennsylvania
| | - Philip Lazarovici
- 1 Department of Bioengineering, College of Engineering, Temple University , Philadelphia, Pennsylvania
| | - Marla R Wolfson
- 3 Department of Physiology, Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Peter I Lelkes
- 1 Department of Bioengineering, College of Engineering, Temple University , Philadelphia, Pennsylvania
| |
Collapse
|
36
|
Poornejad N, Schaumann LB, Buckmiller EM, Roeder BL, Cook AD. Current Cell-Based Strategies for Whole Kidney Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2016; 22:358-370. [PMID: 26905375 DOI: 10.1089/ten.teb.2015.0520] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chronic kidney diseases affect thousands of people worldwide. Although hemodialysis alleviates the situation by filtering the patient's blood, it does not replace other kidney functions such as hormone release or homeostasis regulation. Consequently, orthotopic transplantation of donor organs is the ultimate treatment for patients suffering from end-stage renal failure. Unfortunately, the number of patients on the waiting list far exceeds the number of donors. In addition, recipients must remain on immunosuppressive medications for the remainder of their lives, which increases the risk of morbidity due to their weakened immune system. Despite recent advancements in whole organ transplantation, 40% of recipients will face rejection of implanted organs with a life expectancy of only 10 years. Bioengineered patient-specific kidneys could be an inexhaustible source of healthy kidneys without the risk of immune rejection. The purpose of this article is to review the pros and cons of several bioengineering strategies used in recent years and their unresolved issues. These strategies include repopulation of natural scaffolds with a patient's cells, de-novo generation of kidneys using patient-induced pluripotent stem cells combined with stepwise differentiation, and the creation of a patient's kidney in the embryos of other mammalian species.
Collapse
Affiliation(s)
- Nafiseh Poornejad
- 1 Department of Chemical Engineering, Brigham Young University , Provo, Utah
| | - Lara B Schaumann
- 1 Department of Chemical Engineering, Brigham Young University , Provo, Utah
| | - Evan M Buckmiller
- 2 Department of Genetics and Biotechnology, Brigham Young University , Provo, Utah
| | | | - Alonzo D Cook
- 1 Department of Chemical Engineering, Brigham Young University , Provo, Utah
| |
Collapse
|
37
|
Poornejad N, Momtahan N, Salehi ASM, Scott DR, Fronk CA, Roeder BL, Reynolds PR, Bundy BC, Cook AD. Efficient decellularization of whole porcine kidneys improves reseeded cell behavior. Biomed Mater 2016; 11:025003. [DOI: 10.1088/1748-6041/11/2/025003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
38
|
Stadler M, Walter S, Walzl A, Kramer N, Unger C, Scherzer M, Unterleuthner D, Hengstschläger M, Krupitza G, Dolznig H. Increased complexity in carcinomas: Analyzing and modeling the interaction of human cancer cells with their microenvironment. Semin Cancer Biol 2015; 35:107-24. [DOI: 10.1016/j.semcancer.2015.08.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/19/2015] [Accepted: 08/21/2015] [Indexed: 02/08/2023]
|
39
|
Stabler CT, Lecht S, Mondrinos MJ, Goulart E, Lazarovici P, Lelkes PI. Revascularization of decellularized lung scaffolds: principles and progress. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1273-85. [PMID: 26408553 DOI: 10.1152/ajplung.00237.2015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/23/2015] [Indexed: 02/07/2023] Open
Abstract
There is a clear unmet clinical need for novel biotechnology-based therapeutic approaches to lung repair and/or replacement, such as tissue engineering of whole bioengineered lungs. Recent studies have demonstrated the feasibility of decellularizing the whole organ by removal of all its cellular components, thus leaving behind the extracellular matrix as a complex three-dimensional (3D) biomimetic scaffold. Implantation of decellularized lung scaffolds (DLS), which were recellularized with patient-specific lung (progenitor) cells, is deemed the ultimate alternative to lung transplantation. Preclinical studies demonstrated that, upon implantation in rodent models, bioengineered lungs that were recellularized with airway and vascular cells were capable of gas exchange for up to 14 days. However, the long-term applicability of this concept is thwarted in part by the failure of current approaches to reconstruct a physiologically functional, quiescent endothelium lining the entire vascular tree of reseeded lung scaffolds, as inferred from the occurrence of hemorrhage into the airway compartment and thrombosis in the vasculature in vivo. In this review, we explore the idea that successful whole lung bioengineering will critically depend on 1) preserving and/or reestablishing the integrity of the subendothelial basement membrane, especially of the ultrathin respiratory membrane separating airways and capillaries, during and following decellularization and 2) restoring vascular physiological functionality including the barrier function and quiescence of the endothelial lining following reseeding of the vascular compartment. We posit that physiological reconstitution of the pulmonary vascular tree in its entirety will significantly promote the clinical translation of the next generation of bioengineered whole lungs.
Collapse
Affiliation(s)
- Collin T Stabler
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, Pennsylvania
| | - Shimon Lecht
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, Pennsylvania
| | - Mark J Mondrinos
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ernesto Goulart
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil; and
| | - Philip Lazarovici
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Peter I Lelkes
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, Pennsylvania;
| |
Collapse
|
40
|
Ren X, Moser PT, Gilpin SE, Okamoto T, Wu T, Tapias LF, Mercier FE, Xiong L, Ghawi R, Scadden DT, Mathisen DJ, Ott HC. Engineering pulmonary vasculature in decellularized rat and human lungs. Nat Biotechnol 2015; 33:1097-102. [PMID: 26368048 DOI: 10.1038/nbt.3354] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 08/08/2015] [Indexed: 11/09/2022]
Abstract
Bioengineered lungs produced from patient-derived cells may one day provide an alternative to donor lungs for transplantation therapy. Here we report the regeneration of functional pulmonary vasculature by repopulating the vascular compartment of decellularized rat and human lung scaffolds with human cells, including endothelial and perivascular cells derived from induced pluripotent stem cells. We describe improved methods for delivering cells into the lung scaffold and for maturing newly formed endothelium through co-seeding of endothelial and perivascular cells and a two-phase culture protocol. Using these methods we achieved ∼75% endothelial coverage in the rat lung scaffold relative to that of native lung. The regenerated endothelium showed reduced vascular resistance and improved barrier function over the course of in vitro culture and remained patent for 3 days after orthotopic transplantation in rats. Finally, we scaled our approach to the human lung lobe and achieved efficient cell delivery, maintenance of cell viability and establishment of perfusable vascular lumens.
Collapse
Affiliation(s)
- Xi Ren
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Philipp T Moser
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Sarah E Gilpin
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Tatsuya Okamoto
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Tong Wu
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Luis F Tapias
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Francois E Mercier
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Linjie Xiong
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Raja Ghawi
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Harvard College, Cambridge, Massachusetts, USA
| | - David T Scadden
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Douglas J Mathisen
- Harvard Medical School, Boston, Massachusetts, USA.,Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Harald C Ott
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
41
|
Tapias LF, Gilpin SE, Ren X, Wei L, Fuchs BC, Tanabe KK, Lanuti M, Ott HC. Assessment of Proliferation and Cytotoxicity in a Biomimetic Three-Dimensional Model of Lung Cancer. Ann Thorac Surg 2015; 100:414-21. [DOI: 10.1016/j.athoracsur.2015.04.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/03/2015] [Accepted: 04/07/2015] [Indexed: 11/27/2022]
|
42
|
Uzarski JS, Bijonowski BM, Wang B, Ward HH, Wandinger-Ness A, Miller WM, Wertheim JA. Dual-Purpose Bioreactors to Monitor Noninvasive Physical and Biochemical Markers of Kidney and Liver Scaffold Recellularization. Tissue Eng Part C Methods 2015; 21:1032-43. [PMID: 25929317 DOI: 10.1089/ten.tec.2014.0665] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Analysis of perfusion-based bioreactors for organ engineering and a detailed evaluation of physical and biochemical parameters that measure dynamic changes within maturing cell-laden scaffolds are critical components of ex vivo tissue development that remain understudied topics in the tissue and organ engineering literature. Intricately designed bioreactors that house developing tissue are critical to properly recapitulate the in vivo environment, deliver nutrients within perfused media, and monitor physiological parameters of tissue development. Herein, we provide an in-depth description and analysis of two dual-purpose perfusion bioreactors that improve upon current bioreactor designs and enable comparative analyses of ex vivo scaffold recellularization strategies and cell growth performance during long-term maintenance culture of engineered kidney or liver tissues. Both bioreactors are effective at maximizing cell seeding of small-animal organ scaffolds and maintaining cell survival in extended culture. We further demonstrate noninvasive monitoring capabilities for tracking dynamic changes within scaffolds as the native cellular component is removed during decellularization and model human cells are introduced into the scaffold during recellularization and proliferate in maintenance culture. We found that hydrodynamic pressure drop (ΔP) across the retained scaffold vasculature is a noninvasive measurement of scaffold integrity. We further show that ΔP, and thus resistance to fluid flow through the scaffold, decreases with cell loss during decellularization and correspondingly increases to near normal values for whole organs following recellularization of the kidney or liver scaffolds. Perfused media may be further sampled in real time to measure soluble biomarkers (e.g., resazurin, albumin, or kidney injury molecule-1) that indicate degree of cellular metabolic activity, synthetic function, or engraftment into the scaffold. Cell growth within bioreactors is validated for primary and immortalized cells, and the design of each bioreactor is scalable to accommodate any three-dimensional scaffold (e.g., synthetic or naturally derived matrix) that contains conduits for nutrient perfusion to deliver media to growing cells and monitor noninvasive parameters during scaffold repopulation, broadening the applicability of these bioreactor systems.
Collapse
Affiliation(s)
- Joseph S Uzarski
- 1 Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine , Chicago, Illinois
- 2 Department of Surgery, Northwestern University Feinberg School of Medicine , Chicago, Illinois
| | - Brent M Bijonowski
- 1 Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine , Chicago, Illinois
- 2 Department of Surgery, Northwestern University Feinberg School of Medicine , Chicago, Illinois
| | - Bo Wang
- 1 Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine , Chicago, Illinois
- 2 Department of Surgery, Northwestern University Feinberg School of Medicine , Chicago, Illinois
| | - Heather H Ward
- 3 Department of Internal Medicine, University of New Mexico HSC , Albuquerque, New Mexico
| | | | - William M Miller
- 5 Department of Chemical and Biological Engineering, Northwestern University , Evanston, Illinois
- 6 Chemistry of Life Processes Institute, Northwestern University , Evanston, Illinois
| | - Jason A Wertheim
- 1 Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine , Chicago, Illinois
- 2 Department of Surgery, Northwestern University Feinberg School of Medicine , Chicago, Illinois
- 6 Chemistry of Life Processes Institute, Northwestern University , Evanston, Illinois
- 7 Department of Surgery, Jesse Brown VA Medical Center , Chicago, Illinois
- 8 Simpson Querrey Institute for BioNanotechnology in Medicine, Northwestern University , Chicago, Illinois
- 9 Department of Biomedical Engineering, Northwestern University , Evanston, Illinois
| |
Collapse
|