1
|
Sapudom J, Alatoom A, Tipay PS, Teo JC. Matrix stiffening from collagen fibril density and alignment modulates YAP-mediated T-cell immune suppression. Biomaterials 2025; 315:122900. [PMID: 39461060 DOI: 10.1016/j.biomaterials.2024.122900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/16/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024]
Abstract
T-cells are essential components of the immune system, adapting their behavior in response to the mechanical environments they encounter within the body. In pathological conditions like cancer, the extracellular matrix (ECM) often becomes stiffer due to increased density and alignment of collagen fibrils, which can have a significant impact on T-cell function. In this study, we explored how these ECM properties-density and fibrillar alignment-affect T-cell behavior using three-dimensional (3D) collagen matrices that mimic these conditions. Our results show that increased matrix stiffness, whether due to higher density or alignment, significantly suppresses T-cell activation, reduces cytokine production, and limits proliferation, largely through enhanced YAP signaling. Individually, matrix alignment appears to lower actin levels in activated T-cells and changes migration behavior in both resting and activated T-cells, an effect not observed in matrices with randomly oriented fibrils. Notably, inhibiting YAP signaling was able to restore T-cell activation and improve immune responses, suggesting a potential strategy to boost the effectiveness of immunotherapy in stiff ECM environments. Overall, this study provides new insights into how ECM characteristics influence T-cell function, offering potential avenues for overcoming ECM-induced immunosuppression in diseases such as cancer.
Collapse
Affiliation(s)
- Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Aseel Alatoom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates; Department of Biomedical and Mechanical Engineering, Tandon School of Engineering, New York University, USA
| | | | - Jeremy Cm Teo
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates; Department of Biomedical and Mechanical Engineering, Tandon School of Engineering, New York University, USA.
| |
Collapse
|
2
|
Clemens C, Gehring R, Riedl P, Pompe T. Matrix deformation and mechanotransduction as markers of breast cancer cell phenotype alteration at matrix interfaces. Biomater Sci 2025; 13:1578-1589. [PMID: 39960148 DOI: 10.1039/d4bm01589d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2025]
Abstract
The dissemination of metastatic cells from the primary tumor into the surrounding tissue is a key event in the progression of cancer. This process involves the migration of cells across defined tissue interfaces that separate the dense tumor tissue from the adjacent healthy tissue. Prior research showed that cell transmigration across collagen I matrix interfaces induces a switch towards a more aggressive phenotype including a change in directionality of migration and chemosensitivity correlated to increased DNA damage during transmigration. Hence, mechanical forces acting at the nucleus during transmigration are hypothesized to trigger phenotype switching. Here, we present results from a particle image velocimetry (PIV) based live cell analysis of breast cancer cell transmigration across sharp matrix interfaces constituted of two collagen type I networks with different pore sizes. We found strong and highly localized collagen network deformation caused by cellular forces at the moment of crossing interfaces from dense into open matrices. Additionally, an increased contractility of transmigrated cells was determined for cells with the switch phenotype. Moreover, studies on mechanotransductive signaling at the nucleus, emerin translocation and YAP activation, indicated a misregulation of these signals for transmigrated cells with altered phenotype. These findings show that matrix interfaces between networks of different pore sizes mechanically challenge invasive breast cancer cells during transmigration by a strong asymmetry of contracting forces, impeding nuclear mechanotransduction pathways, with a subsequent trigger of more aggressive phenotypes.
Collapse
Affiliation(s)
- Cornelia Clemens
- Institute of Biochemistry, Leipzig University, Johannisallee 21-23, 04103, Leipzig, Germany.
| | - Rosa Gehring
- Institute of Biochemistry, Leipzig University, Johannisallee 21-23, 04103, Leipzig, Germany.
| | - Philipp Riedl
- Institute of Biochemistry, Leipzig University, Johannisallee 21-23, 04103, Leipzig, Germany.
| | - Tilo Pompe
- Institute of Biochemistry, Leipzig University, Johannisallee 21-23, 04103, Leipzig, Germany.
| |
Collapse
|
3
|
Persano F, Parodi A, Pallaeva T, Kolesova E, Zamyatnin AA, Pokrovsky VS, De Matteis V, Leporatti S, Cascione M. Atomic Force Microscopy: A Versatile Tool in Cancer Research. Cancers (Basel) 2025; 17:858. [PMID: 40075706 PMCID: PMC11899184 DOI: 10.3390/cancers17050858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/21/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
The implementation of novel analytic methodologies in cancer and biomedical research has enabled the quantification of parameters that were previously disregarded only a few decades ago. A notable example of this paradigm shift is the widespread integration of atomic force microscopy (AFM) into biomedical laboratories, significantly advancing our understanding of cancer cell biology and treatment response. AFM allows for the meticulous monitoring of different parameters at the molecular and nanoscale levels, encompassing critical aspects such as cell morphology, roughness, adhesion, stiffness, and elasticity. These parameters can be systematically investigated in correlation with specific cell treatment, providing important insights into morpho-mechanical properties during normal and treated conditions. The resolution of this system holds the potential for its systematic adoption in clinics; its application could produce useful diagnostic information regarding the aggressiveness of cancer and the efficacy of treatment. This review endeavors to analyze the current literature, underscoring the pivotal role of AFM in biomedical research, especially in cancer cases, while also contemplating its prospective application in a clinical context.
Collapse
Affiliation(s)
- Francesca Persano
- Mathematics and Physics Department “Ennio De Giorgi”, University of Salento, Via Arnesano, 73100 Lecce, Italy; (F.P.); (V.D.M.)
- CNR Nanotec-Istituto di Nanotecnologia, Via Monteroni, 73100 Lecce, Italy
| | - Alessandro Parodi
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia; (A.P.); (T.P.); (E.K.); (V.S.P.)
| | - Tatiana Pallaeva
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia; (A.P.); (T.P.); (E.K.); (V.S.P.)
- Federal Scientific Research Center Crystallography and Photonics, Russian Academy of Sciences, 119333 Moscow, Russia
| | - Ekaterina Kolesova
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia; (A.P.); (T.P.); (E.K.); (V.S.P.)
| | - Andrey A. Zamyatnin
- Department of Biological Chemistry, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Vadim S. Pokrovsky
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia; (A.P.); (T.P.); (E.K.); (V.S.P.)
- N.N. Blokhin Medical Research Center of Oncology, 115478 Moscow, Russia
- Patrice Lumumba People’s Friendship University, 117198 Moscow, Russia
| | - Valeria De Matteis
- Mathematics and Physics Department “Ennio De Giorgi”, University of Salento, Via Arnesano, 73100 Lecce, Italy; (F.P.); (V.D.M.)
- Institute for Microelectronics and Microsystems (IMM), National Research Council (CNR), Via Monteroni, 73100 Lecce, Italy
| | - Stefano Leporatti
- CNR Nanotec-Istituto di Nanotecnologia, Via Monteroni, 73100 Lecce, Italy
| | - Mariafrancesca Cascione
- Mathematics and Physics Department “Ennio De Giorgi”, University of Salento, Via Arnesano, 73100 Lecce, Italy; (F.P.); (V.D.M.)
- Institute for Microelectronics and Microsystems (IMM), National Research Council (CNR), Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
4
|
Fu R, Zhu K, Li Z, Lei L, Li M, Lang X, Yao Y. Type III Collagen Promotes Pseudopodium-Driven Cell Migration. CHEM & BIO ENGINEERING 2025; 2:97-109. [PMID: 40041002 PMCID: PMC11873850 DOI: 10.1021/cbe.4c00133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/14/2024] [Accepted: 09/15/2024] [Indexed: 03/06/2025]
Abstract
The extracellular matrix (ECM), particularly collagen, is acknowledged for its significant impact on cell migration. However, the detailed mechanisms through which it influences pseudopodium formation and cell motility are not yet fully understood. This study delves into the impact of recombinant human type III collagen (hCOL3) on cell migration, specifically focusing on the dynamics of pseudopodia and their contribution to cell motility. The research evaluates the impact of a fragmented form of hCOL3, engineered for the study, on cell motility and pseudopodium behavior using both single-cell and collective-cell migration assays. The results demonstrate that hCOL3 promotes cell migration velocity, augments the effective diffusion coefficient, and enhances directionality in both single-cell and collective migration contexts. Observations from scanning electron microscopy reveal that treatment with hCOL3 increases both the number and length of filopodia, which are crucial for cell migration and interaction with the ECM. The study suggests that hCOL3 facilitates a more targeted and rapid migration. The presence of an increased number of filopodia on surfaces treated with hCOL3 enhances the cell's ability to detect environmental cues and extent, thereby augmenting its migratory capacity. This discovery could potentially lead to greater efficiency in wound healing processes.
Collapse
Affiliation(s)
- Ruiwen Fu
- ZJU-Hangzhou
Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang 311200, China
- College
of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | | | - Zhouyang Li
- ZJU-Hangzhou
Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang 311200, China
| | - Liqun Lei
- The
First Affiliated Hospital, Zhejiang University
School of Medicine, Hangzhou, Zhejiang 311100, China
| | - Ming Li
- Department
of Dermatology, Children’s Hospital
of Fudan University, National Children’s Medical Center, Shanghai 201102, China
| | - Xuye Lang
- ZJU-Hangzhou
Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang 311200, China
- College
of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Yuan Yao
- ZJU-Hangzhou
Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang 311200, China
- College
of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
5
|
Deng L, Olea AR, Ortiz-Perez A, Sun B, Wang J, Pujals S, Palmans ARA, Albertazzi L. Imaging Diffusion and Stability of Single-Chain Polymeric Nanoparticles in a Multi-Gel Tumor-on-a-Chip Microfluidic Device. SMALL METHODS 2024; 8:e2301072. [PMID: 38348928 DOI: 10.1002/smtd.202301072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/29/2024] [Indexed: 10/18/2024]
Abstract
The performance of single-chain polymeric nanoparticles (SCPNs) in biomedical applications highly depends on their conformational stability in cellular environments. Until now, such stability studies are limited to 2D cell culture models, which do not recapitulate the 3D tumor microenvironment well. Here, a microfluidic tumor-on-a-chip model is introduced that recreates the tumor milieu and allows in-depth insights into the diffusion, cellular uptake, and stability of SCPNs. The chip contains Matrigel/collagen-hyaluronic acid as extracellular matrix (ECM) models and is seeded with cancer cell MCF7 spheroids. With this 3D platform, it is assessed how the polymer's microstructure affects the SCPN's behavior when crossing the ECM, and evaluates SCPN internalization in 3D cancer cells. A library of SCPNs varying in microstructure is prepared. All SCPNs show efficient ECM penetration but their cellular uptake/stability behavior depends on the microstructure. Glucose-based nanoparticles display the highest spheroid uptake, followed by charged nanoparticles. Charged nanoparticles possess an open conformation while nanoparticles stabilized by internal hydrogen bonding retain a folded structure inside the tumor spheroids. The 3D microfluidic tumor-on-a-chip platform is an efficient tool to elucidate the interplay between polymer microstructure and SCPN's stability, a key factor for the rational design of nanoparticles for targeted biological applications.
Collapse
Affiliation(s)
- Linlin Deng
- Laboratory for Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Alis R Olea
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 15-21, Barcelona, 08028, Spain
| | - Ana Ortiz-Perez
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Molecular Biosensing for Medical Diagnostics, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Bingbing Sun
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Bio-Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Jianhong Wang
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Bio-Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Silvia Pujals
- Institute for Advanced Chemistry of Catalonia (IQAC), Barcelona, 08034, Spain
| | - Anja R A Palmans
- Laboratory for Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Lorenzo Albertazzi
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Molecular Biosensing for Medical Diagnostics, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| |
Collapse
|
6
|
Sapudom J, Riedl P, Schricker M, Kroy K, Pompe T. Physical network regimes of 3D fibrillar collagen networks trigger invasive phenotypes of breast cancer cells. BIOMATERIALS ADVANCES 2024; 163:213961. [PMID: 39032434 DOI: 10.1016/j.bioadv.2024.213961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/18/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
The mechanical characteristics of the extracellular environment are known to significantly influence cancer cell behavior in vivo and in vitro. The structural complexity and viscoelastic dynamics of the extracellular matrix (ECM) pose significant challenges in understanding its impact on cancer cells. Herein, we report distinct regulatory signatures in the invasion of different breast cancer cell lines into three-dimensional (3D) fibrillar collagen networks, caused by systematic modifications of the physical network properties. By reconstituting collagen networks of thin fibrils, we demonstrate that such networks can display network strand flexibility akin to that of synthetic polymer networks, known to exhibit entropic rubber elasticity. This finding contrasts with the predominant description of the mechanics of fibrillar collagen networks by an enthalpic bending elasticity of rod-like fibrils. Mean-squared displacement analysis of free-standing fibrils confirmed a flexible fiber regime in networks of thin fibrils. Furthermore, collagen fibrils in both networks were softened by the adsorption of highly negatively charged sulfonated polymers and colloidal probe force measurements of network elastic modulus again proofed the occurrence of the two different physical network regimes. Our cell assays revealed that the cellular behavior (morphology, clustering, invasiveness, matrix metalloproteinase (MMP) activity) of the 'weakly invasive' MCF-7 and 'highly invasive' MDA-MB-231 breast cancer cell lines is distinctively affected by the physical (enthalpic/entropic) network regime, and cannot be explained by changes of the network elastic modulus, alone. These results highlight an essential pathway, albeit frequently overlooked, how the physical characteristics of fibrillar ECMs affect cellular behavior. Considering the coexistence of diverse physical network regimes of the ECM in vivo, our findings underscore their critical role of ECM's physical network regimes in tumor progression and other cell functions, and moreover emphasize the significance of 3D in vitro collagen network models for quantifying cell responses in both healthy and pathological states.
Collapse
Affiliation(s)
- Jiranuwat Sapudom
- Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany; Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Philipp Riedl
- Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany
| | - Maria Schricker
- Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany
| | - Klaus Kroy
- Institute for Theoretical Physics, Leipzig University, Leipzig 04009, Germany
| | - Tilo Pompe
- Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany.
| |
Collapse
|
7
|
Narasimhan BN, Fraley SI. Degradability tunes ECM stress relaxation and cellular mechanics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.28.605514. [PMID: 39131364 PMCID: PMC11312499 DOI: 10.1101/2024.07.28.605514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
In native extracellular matrices (ECM), cells can use matrix metalloproteinases (MMPs) to degrade and remodel their surroundings. Likewise, synthetic matrices have been engineered to facilitate MMP-mediated cleavage that enables cell spreading, migration, and interactions. However, the intersection of matrix degradability and mechanical properties has not been fully considered. We hypothesized that immediate mechanical changes result from the action of MMPs on the ECM and that these changes are sensed by cells. Using atomic force microscopy (AFM) to measure cell-scale mechanical properties, we find that both fibrillar collagen and synthetic degradable matrices exhibit enhanced stress relaxation after MMP exposure. Cells respond to these relaxation differences by altering their spreading and focal adhesions. We demonstrate that stress relaxation can be tuned through the rational design of matrix degradability. These findings establish a fundamental link between matrix degradability and stress relaxation, which may impact a range of biological applications.
Collapse
Affiliation(s)
| | - Stephanie I. Fraley
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
8
|
Kakkad S, Krishnamachary B, Fackche N, Garner M, Brock M, Huang P, Bhujwalla ZM. Collagen 1 Fiber Volume Predicts for Recurrence of Stage 1 Non-Small Cell Lung Cancer. Tomography 2024; 10:1099-1112. [PMID: 39058055 PMCID: PMC11281282 DOI: 10.3390/tomography10070083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Background: The standard of care for stage 1 NSCLC is upfront surgery followed by surveillance. However, 20-30% of stage 1 NSCLC recur. There is an unmet need to identify individuals likely to recur who would benefit from frequent monitoring and aggressive cancer treatments. Collagen 1 (Col1) fibers detected by second harmonic generation (SHG) microscopy are a major structural component of the extracellular matrix (ECM) of tumors that play a role in cancer progression. Method: We characterized Col1 fibers with SHG microscopy imaging of surgically resected stage 1 NSCLC. Gene expression from RNA sequencing data was used to validate the SHG microscopy findings. Results: We identified a significant (p ≤ 0.05) increase in the Col1 fiber volume in stage 1 NSCLC that recurred. The increase in Col1 fiber volume was supported by significant increases in the gene expression of Col1 in invasive, compared to noninvasive, lung adenocarcinoma. Significant differences were identified in the gene expression of other ECM proteins, as well as CAFs, immune checkpoint markers, immune cytokines, and T-cell markers. Conclusion: Col1 fiber analysis can provide a companion diagnostic test to evaluate the likelihood of tumor recurrence following stage 1 NSCLC. The studies expand our understanding of the role of the ECM in NSCLC recurrence.
Collapse
Affiliation(s)
- Samata Kakkad
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (S.K.); (B.K.)
| | - Balaji Krishnamachary
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (S.K.); (B.K.)
| | - Nadege Fackche
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (N.F.); (M.G.); (M.B.)
| | - Matthew Garner
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (N.F.); (M.G.); (M.B.)
| | - Malcom Brock
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (N.F.); (M.G.); (M.B.)
| | - Peng Huang
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Zaver M. Bhujwalla
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (S.K.); (B.K.)
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
9
|
Ashworth JC, Cox TR. The importance of 3D fibre architecture in cancer and implications for biomaterial model design. Nat Rev Cancer 2024; 24:461-479. [PMID: 38886573 DOI: 10.1038/s41568-024-00704-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/07/2024] [Indexed: 06/20/2024]
Abstract
The need for improved prediction of clinical response is driving the development of cancer models with enhanced physiological relevance. A new concept of 'precision biomaterials' is emerging, encompassing patient-mimetic biomaterial models that seek to accurately detect, treat and model cancer by faithfully recapitulating key microenvironmental characteristics. Despite recent advances allowing tissue-mimetic stiffness and molecular composition to be replicated in vitro, approaches for reproducing the 3D fibre architectures found in tumour extracellular matrix (ECM) remain relatively unexplored. Although the precise influences of patient-specific fibre architecture are unclear, we summarize the known roles of tumour fibre architecture, underlining their implications in cell-matrix interactions and ultimately clinical outcome. We then explore the challenges in reproducing tissue-specific 3D fibre architecture(s) in vitro, highlighting relevant biomaterial fabrication techniques and their benefits and limitations. Finally, we discuss imaging and image analysis techniques (focussing on collagen I-optimized approaches) that could hold the key to mapping tumour-specific ECM into high-fidelity biomaterial models. We anticipate that an interdisciplinary approach, combining materials science, cancer research and image analysis, will elucidate the role of 3D fibre architecture in tumour development, leading to the next generation of patient-mimetic models for mechanistic studies and drug discovery.
Collapse
Affiliation(s)
- Jennifer C Ashworth
- School of Veterinary Medicine & Science, Sutton Bonington Campus, University of Nottingham, Leicestershire, UK.
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, UK.
- Cancer Ecosystems Program, The Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.
| | - Thomas R Cox
- Cancer Ecosystems Program, The Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.
- The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia.
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
10
|
Stehbens SJ, Scarpa E, White MD. Perspectives in collective cell migration - moving forward. J Cell Sci 2024; 137:jcs261549. [PMID: 38904172 DOI: 10.1242/jcs.261549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024] Open
Abstract
Collective cell migration, where cells move as a cohesive unit, is a vital process underlying morphogenesis and cancer metastasis. Thanks to recent advances in imaging and modelling, we are beginning to understand the intricate relationship between a cell and its microenvironment and how this shapes cell polarity, metabolism and modes of migration. The use of biophysical and mathematical models offers a fresh perspective on how cells migrate collectively, either flowing in a fluid-like state or transitioning to more static states. Continuing to unite researchers in biology, physics and mathematics will enable us to decode more complex biological behaviours that underly collective cell migration; only then can we understand how this coordinated movement of cells influences the formation and organisation of tissues and directs the spread of metastatic cancer. In this Perspective, we highlight exciting discoveries, emerging themes and common challenges that have arisen in recent years, and possible ways forward to bridge the gaps in our current understanding of collective cell migration.
Collapse
Affiliation(s)
- Samantha J Stehbens
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, St Lucia, Brisbane, QLD 4072, Australia
- The University of Queensland, Institute for Molecular Bioscience, St Lucia, Brisbane, QLD 4072, Australia
| | - Elena Scarpa
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3DY, UK
| | - Melanie D White
- The University of Queensland, Institute for Molecular Bioscience, St Lucia, Brisbane, QLD 4072, Australia
- The University of Queensland, School of Biomedical Sciences, St Lucia, Brisbane, QLD 4072, Australia
| |
Collapse
|
11
|
Rodríguez-Mandujano L, Pimentel-Domínguez R, Tamariz E, Campos-Puente E, Giraldo-Betancur AL, Avila R. Fibrillogenesis in collagen hydrogels accelerated by carboxylated microbeads. Biomed Mater 2024; 19:045005. [PMID: 38688293 DOI: 10.1088/1748-605x/ad459a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/30/2024] [Indexed: 05/02/2024]
Abstract
Collagen type I is a material widely used for 3D cell culture and tissue engineering. Different architectures, such as gels, sponges, membranes, and nanofibers, can be fabricated with it. In collagen hydrogels, the formation of fibrils and fibers depends on various parameters, such as the source of collagen, pH, temperature, concentration, age, etc. In this work, we study the fibrillogenesis process in collagen type I hydrogels with different types of microbeads embedded, using optical techniques such as turbidity assay and confocal reflectance microscopy. We observe that microbeads embedded in the collagen matrix hydrogels modify the fibrillogenesis. Our results show that carboxylated fluorescent microbeads accelerate 3.6 times the gelation, while silica microbeads slow down the formation of collagen fibrils by a factor of 1.9, both compared to pure collagen hydrogels. Our observations suggest that carboxylate microbeads act as nucleation sites and the early collagen fibrils bind to the microbeads.
Collapse
Affiliation(s)
- Laura Rodríguez-Mandujano
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, 76230 Querétaro, Mexico
| | - Reinher Pimentel-Domínguez
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, 76230 Querétaro, Mexico
| | - Elisa Tamariz
- Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa 91190, Veracruz, Mexico
| | - Edgar Campos-Puente
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, 76230 Querétaro, Mexico
| | - Astrid Lorena Giraldo-Betancur
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Querétaro, Libramiento Norponiente, #2000 C.P., 76230 Querétaro, Mexico
| | - Remy Avila
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, 76230 Querétaro, Mexico
| |
Collapse
|
12
|
Srbova L, Arasalo O, Lehtonen AJ, Pokki J. Measuring mechanical cues for modeling the stromal matrix in 3D cell cultures. SOFT MATTER 2024; 20:3483-3498. [PMID: 38587658 DOI: 10.1039/d3sm01425h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
A breast-cancer tumor develops within a stroma, a tissue where a complex extracellular matrix surrounds cells, mediating the cancer progression through biomechanical and -chemical cues. Current materials partially mimic the stromal matrix in 3D cell cultures but methods for measuring the mechanical properties of the matrix at cell-relevant-length scales and stromal-stiffness levels are lacking. Here, to address this gap, we developed a characterization approach that employs probe-based microrheometry and Bayesian modeling to quantify length-scale-dependent mechanics and mechanical heterogeneity as in the stromal matrix. We examined the interpenetrating network (IPN) composed of alginate scaffolds (for adjusting mechanics) and type-1 collagen (a stromal-matrix constituent). We analyzed viscoelasticity: absolute-shear moduli (stiffness/elasticity) and phase angles (viscous and elastic characteristics). We determined the relationship between microrheometry and rheometry information. Microrheometry reveals lower stiffness at cell-relevant scales, compared to macroscale rheometry, with dependency on the length scale (10 to 100 μm). These data show increasing IPN stiffness with crosslinking until saturation (≃15 mM of Ca2+). Furthermore, we report that IPN stiffness can be adjusted by modulating collagen concentration and interconnectivity (by polymerization temperature). The IPNs are heterogeneous structurally (in SEM) and mechanically. Interestingly, increased alginate crosslinking changes IPN heterogeneity in stiffness but not in phase angle, until the saturation. In contrast, such changes are undetectable in alginate scaffolds. Our nonlinear viscoelasticity analysis at tumor-cell-exerted strains shows that only the softer IPNs stiffen with strain, like the stromal-collagen constituent. In summary, our approach can quantify the stromal-matrix-related viscoelasticity and is likely applicable to other materials in 3D culture.
Collapse
Affiliation(s)
- Linda Srbova
- Department of Electrical Engineering and Automation, Aalto University, Espoo, FI-02150, Finland.
| | - Ossi Arasalo
- Department of Electrical Engineering and Automation, Aalto University, Espoo, FI-02150, Finland.
| | - Arttu J Lehtonen
- Department of Electrical Engineering and Automation, Aalto University, Espoo, FI-02150, Finland.
| | - Juho Pokki
- Department of Electrical Engineering and Automation, Aalto University, Espoo, FI-02150, Finland.
| |
Collapse
|
13
|
Jouybar M, de Winde CM, Wolf K, Friedl P, Mebius RE, den Toonder JMJ. Cancer-on-chip models for metastasis: importance of the tumor microenvironment. Trends Biotechnol 2024; 42:431-448. [PMID: 37914546 DOI: 10.1016/j.tibtech.2023.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 11/03/2023]
Abstract
Cancer-on-chip (CoC) models, based on microfluidic chips harboring chambers for 3D tumor-cell culture, enable us to create a controlled tumor microenvironment (TME). CoC models are therefore increasingly used to systematically study effects of the TME on the various steps in cancer metastasis. Moreover, CoC models have great potential for developing novel cancer therapies and for predicting patient-specific response to cancer treatments. We review recent developments in CoC models, focusing on three main TME components: (i) the anisotropic extracellular matrix (ECM) architectures, (ii) the vasculature, and (iii) the immune system. We aim to provide guidance to biologists to choose the best CoC approach for addressing questions about the role of the TME in metastasis, and to inspire engineers to develop novel CoC technologies.
Collapse
Affiliation(s)
- Mohammad Jouybar
- Microsystems, Eindhoven University of Technology, Eindhoven, The Netherlands; Institute for Complex Molecular Systems, Eindhoven, The Netherlands
| | - Charlotte M de Winde
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology & Immunology, Amsterdam, The Netherlands; Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands; Cancer Center Amsterdam, Cancer Biology & Immunology, Amsterdam, The Netherlands
| | - Katarina Wolf
- Department of Medical BioSciences, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter Friedl
- Department of Medical BioSciences, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Cancer Genomics Center, Utrecht, The Netherlands
| | - Reina E Mebius
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology & Immunology, Amsterdam, The Netherlands; Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands; Cancer Center Amsterdam, Cancer Biology & Immunology, Amsterdam, The Netherlands; Amsterdam Institute for Infection and Immunity, Inflammatory diseases, Amsterdam, The Netherlands
| | - Jaap M J den Toonder
- Microsystems, Eindhoven University of Technology, Eindhoven, The Netherlands; Institute for Complex Molecular Systems, Eindhoven, The Netherlands.
| |
Collapse
|
14
|
Liao Z, Lim JJH, Lee JXT, Chua D, Vos MIG, Yip YS, Too CB, Cao H, Wang JK, Shou Y, Tay A, Lehti K, Cheng HS, Tay CY, Tan NS. Attenuating Epithelial-to-Mesenchymal Transition in Cancer through Angiopoietin-Like 4 Inhibition in a 3D Tumor Microenvironment Model. Adv Healthc Mater 2024; 13:e2303481. [PMID: 37987244 DOI: 10.1002/adhm.202303481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Indexed: 11/22/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) plays a crucial role in metastatic cancer progression, and current research, which relies heavily on 2D monolayer cultures, falls short in recapitulating the complexity of a 3D tumor microenvironment. To address this limitation, a transcriptomic meta-analysis is conducted on diverse cancer types undergoing EMT in 2D and 3D cultures. It is found that mechanotransduction is elevated in 3D cultures and is further intensified during EMT, but not during 2D EMT. This analysis reveals a distinct 3D EMT gene signature, characterized by extracellular matrix remodeling coordinated by angiopoietin-like 4 (Angptl4) along with other canonical EMT regulators. Utilizing hydrogel-based 3D matrices with adjustable mechanical forces, 3D cancer cultures are established at varying physiological stiffness levels. A YAP:EGR-1 mediated up-regulation of Angptl4 expression is observed, accompanied by an upregulation of mesenchymal markers, at higher stiffness during cancer EMT. Suppression of Angptl4 using antisense oligonucleotides or anti-cAngptl4 antibodies leads to a dose-dependent abolishment of EMT-mediated chemoresistance and tumor self-organization in 3D, ultimately resulting in diminished metastatic potential and stunted growth of tumor xenografts. This unique programmable 3D cancer cultures simulate stiffness levels in the tumor microenvironment and unveil Angptl4 as a promising therapeutic target to inhibit EMT and impede cancer progression.
Collapse
Affiliation(s)
- Zehuan Liao
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore, 637551, Singapore
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Joseph Jing Heng Lim
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Jeannie Xue Ting Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Damien Chua
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Marcus Ivan Gerard Vos
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Yun Sheng Yip
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Choon Boon Too
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Huan Cao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Jun Kit Wang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yufeng Shou
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, 117599, Singapore
| | - Andy Tay
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, 117599, Singapore
- NUS Tissue Engineering Program, National University of Singapore, Singapore, 117510, Singapore
| | - Kaisa Lehti
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17177, Sweden
- Department of Biomedical Laboratory Science, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
| | - Hong Sheng Cheng
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Chor Yong Tay
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore, 637551, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore
| |
Collapse
|
15
|
Quartey BC, Sapudom J, ElGindi M, Alatoom A, Teo J. Matrix-Bound Hyaluronan Molecular Weight as a Regulator of Dendritic Cell Immune Potency. Adv Healthc Mater 2024; 13:e2303125. [PMID: 38104242 DOI: 10.1002/adhm.202303125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/07/2023] [Indexed: 12/19/2023]
Abstract
Hyaluronic acid (HA) is a glycosaminoglycan in the extracellular matrix with immunoregulatory properties depending on its molecular weight (MW). However, the impact of matrix-bound HA on dendritic cells (DCs) remains unclear due to varying distribution of HA MW under different physiological conditions. To investigate DCs in defined biosystems, 3D collagen matrices modified with HA of specific MW with similar microstructure and HA levels are used. It is found that HA MW influences cytokine binding to matrix, suggesting modulation of cytokine availability by the different HA MWs. These studies on DC immune potency reveal that low MW HA (8-15 kDa) enhances immature DC differentiation and antigen uptake, while medium (MMW-HA; 500-750 kDa) and high MW HA (HMW-HA; 1250-1500 kDa) increase cytokine secretion in mature DCs. The effect on DC phenotype and cytokine secretion by different MWs of HA is independent of CD44. However, blocking the CD44 receptor reveals its potential role in regulating acute inflammation through increased secretion of CCL2, CXCL8, and IL-6. Additionally, MMW- and HMW-HA matrices reduce migratory capacity of DCs, dependent on CD44. Overall, these findings provide insights into MW-dependent effects of matrix-bound HA on DCs, opening avenues for the design of DC-modulating materials to enhance DC-based therapy.
Collapse
Affiliation(s)
- Brian Chesney Quartey
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, 129188, UAE
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA
| | - Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, 129188, UAE
| | - Mei ElGindi
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, 129188, UAE
| | - Aseel Alatoom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, 129188, UAE
- Department of Mechanical Engineering, Tandon School of Engineering, New York University, 6 MetroTech Center, Brooklyn, 11201, USA
| | - Jeremy Teo
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, 129188, UAE
- Department of Mechanical Engineering, Tandon School of Engineering, New York University, 6 MetroTech Center, Brooklyn, 11201, USA
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA
| |
Collapse
|
16
|
Conceição ALC, Müller V, Burandt EC, Mohme M, Nielsen LC, Liebi M, Haas S. Unveiling breast cancer metastasis through an advanced X-ray imaging approach. Sci Rep 2024; 14:1448. [PMID: 38228854 PMCID: PMC10791658 DOI: 10.1038/s41598-024-51945-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/11/2024] [Indexed: 01/18/2024] Open
Abstract
Breast cancer is a significant global health burden, causing a substantial number of deaths. Systemic metastatic tumour cell dissemination is a major cause of poor outcomes. Understanding the mechanisms underlying metastasis is crucial for effective interventions. Changes in the extracellular matrix play a pivotal role in breast cancer metastasis. In this work, we present an advanced multimodal X-ray computed tomography, by combining Small-angle X-ray Scattering Tensor Tomography (SAXS-TT) and X-ray Fluorescence Computed Tomography (XRF-CT). This approach likely brings out valuable information about the breast cancer metastasis cascade. Initial results from its application on a breast cancer specimen reveal the collective influence of key molecules in the metastatic mechanism, identifying a strong correlation between zinc accumulation (associated with matrix metalloproteinases MMPs) and highly oriented collagen. MMPs trigger collagen alignment, facilitating breast cancer cell intravasation, while iron accumulation, linked to angiogenesis and vascular endothelial growth factor VEGF, supports cell proliferation and metastasis. Therefore, these findings highlight the potential of the advanced multimodal X-ray computed tomography approach and pave the way for in-depth investigation of breast cancer metastasis, which may guide the development of novel therapeutic approaches and enable personalised treatment strategies, ultimately improving patient outcomes in breast cancer management.
Collapse
Affiliation(s)
- Andre L C Conceição
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany.
| | - Volkmar Müller
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Eike-Christian Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Malte Mohme
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Leonard C Nielsen
- Department of Physics, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Marianne Liebi
- Department of Physics, Chalmers University of Technology, 41296, Gothenburg, Sweden
- Photon Science Division, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Sylvio Haas
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| |
Collapse
|
17
|
Cortes-Medina M, Bushman AR, Beshay PE, Adorno JJ, Menyhert MM, Hildebrand RM, Agarwal SS, Avendano A, Friedman AK, Song JW. Chondroitin sulfate, dermatan sulfate, and hyaluronic acid differentially modify the biophysical properties of collagen-based hydrogels. Acta Biomater 2024; 174:116-126. [PMID: 38101556 PMCID: PMC10842894 DOI: 10.1016/j.actbio.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/30/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Fibrillar collagens and glycosaminoglycans (GAGs) are structural biomolecules that are natively abundant to the extracellular matrix (ECM). Prior studies have quantified the effects of GAGs on the bulk mechanical properties of the ECM. However, there remains a lack of experimental studies on how GAGs alter other biophysical properties of the ECM, including ones that operate at the length scales of individual cells such as mass transport efficiency and matrix microstructure. This study focuses on the GAG molecules chondroitin sulfate (CS), dermatan sulfate (DS), and hyaluronic acid (HA). CS and DS are stereoisomers while HA is the only non-sulfated GAG. We characterized and decoupled the effects of these GAG molecules on the stiffness, transport, and matrix microarchitecture properties of type I collagen hydrogels using mechanical indentation testing, microfluidics, and confocal reflectance imaging, respectively. We complement these biophysical measurements with turbidity assays to profile collagen aggregate formation. Surprisingly, only HA enhanced the ECM indentation modulus, while all three GAGs had no effect on hydraulic permeability. Strikingly, we show that CS, DS, and HA differentially regulate the matrix microarchitecture of hydrogels due to their alterations to the kinetics of collagen self-assembly. In addition to providing information on how GAGs define key physical properties of the ECM, this work shows new ways in which stiffness measurements, microfluidics, microscopy, and turbidity kinetics can be used complementarily to reveal details of collagen self-assembly and structure. STATEMENT OF SIGNIFICANCE: Collagen and glycosaminoglycans (GAGs) are integral to the structure, function, and bioactivity of the extracellular matrix (ECM). Despite widespread interest in collagen-GAG composite hydrogels, there is a lack of quantitative understanding of how different GAGs alter the biophysical properties of the ECM across tissue, cellular, and subcellular length scales. Here we show using mechanical, microfluidic, microscopy, and analytical methods and measurements that the GAG molecules chondroitin sulfate, dermatan sulfate, and hyaluronic acid differentially regulate the mechanical, transport, and microstructural properties of hydrogels due to their alterations to the kinetics of collagen self-assembly. As such, these results will inform improved design and utilization of collagen-based scaffolds of tailored composition, mechanical properties, molecular availability due to mass transport, and microarchitecture.
Collapse
Affiliation(s)
- Marcos Cortes-Medina
- Department of Biomedical Engineering, The Ohio State University, Columbus OH 43210, USA
| | - Andrew R Bushman
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus OH 43210, USA
| | - Peter E Beshay
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus OH 43210, USA
| | - Jonathan J Adorno
- Department of Biomedical Engineering, The Ohio State University, Columbus OH 43210, USA
| | - Miles M Menyhert
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus OH 43210, USA
| | - Riley M Hildebrand
- Department of Biomedical Engineering, The Ohio State University, Columbus OH 43210, USA
| | - Shashwat S Agarwal
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus OH 43210, USA
| | - Alex Avendano
- Department of Biomedical Engineering, The Ohio State University, Columbus OH 43210, USA
| | - Alicia K Friedman
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus OH 43210, USA
| | - Jonathan W Song
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus OH 43210, USA; The Comprehensive Cancer Center, The Ohio State University, Columbus OH 43210, USA.
| |
Collapse
|
18
|
Shi W, Mirza S, Kuss M, Liu B, Hartin A, Wan S, Kong Y, Mohapatra B, Krishnan M, Band H, Band V, Duan B. Embedded Bioprinting of Breast Tumor Cells and Organoids Using Low-Concentration Collagen-Based Bioinks. Adv Healthc Mater 2023; 12:e2300905. [PMID: 37422447 PMCID: PMC10592394 DOI: 10.1002/adhm.202300905] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023]
Abstract
Bioinks for 3D bioprinting of tumor models should not only meet printability requirements but also accurately maintain and support phenotypes of tumor surrounding cells to recapitulate key tumor hallmarks. Collagen is a major extracellular matrix protein for solid tumors, but low viscosity of collagen solution has made 3D bioprinted cancer models challenging. This work produces embedded, bioprinted breast cancer cells and tumor organoid models using low-concentration collagen I based bioinks. The biocompatible and physically crosslinked silk fibroin hydrogel is used to generate the support bath for the embedded 3D printing. The composition of the collagen I based bioink is optimized with a thermoresponsive hyaluronic acid-based polymer to maintain the phenotypes of both the noninvasive epithelial and invasive breast cancer cells, as well as cancer-associated fibroblasts. Mouse breast tumor organoids are bioprinted using optimized collagen bioink to mimic in vivo tumor morphology. A vascularized tumor model is also created using a similar strategy, with significantly enhanced vasculature formation under hypoxia. This study shows the great potential of embedded bioprinted breast tumor models utilizing a low-concentration collagen-based bioink for advancing the understanding of tumor cell biology and facilitating drug discovery research.
Collapse
Affiliation(s)
- Wen Shi
- Mary and Dick Holland Regenerative Medicine ProgramUniversity of Nebraska Medical CenterOmahaNE68198USA
- Division of CardiologyDepartment of Internal MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Sameer Mirza
- Department of GeneticsCell Biology and AnatomyCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
- Fred and Pamela Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNE68198USA
- Department of ChemistryCollege of ScienceUnited Arab Emirates UniversityAbu DhabiUnited Arab Emirates
| | - Mitchell Kuss
- Mary and Dick Holland Regenerative Medicine ProgramUniversity of Nebraska Medical CenterOmahaNE68198USA
- Division of CardiologyDepartment of Internal MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Bo Liu
- Mary and Dick Holland Regenerative Medicine ProgramUniversity of Nebraska Medical CenterOmahaNE68198USA
- Division of CardiologyDepartment of Internal MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Andrew Hartin
- Mary and Dick Holland Regenerative Medicine ProgramUniversity of Nebraska Medical CenterOmahaNE68198USA
- Division of CardiologyDepartment of Internal MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Shibiao Wan
- Department of GeneticsCell Biology and AnatomyCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
- Fred and Pamela Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Yunfan Kong
- Mary and Dick Holland Regenerative Medicine ProgramUniversity of Nebraska Medical CenterOmahaNE68198USA
- Division of CardiologyDepartment of Internal MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Bhopal Mohapatra
- Department of GeneticsCell Biology and AnatomyCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
- Fred and Pamela Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Mena Krishnan
- Mary and Dick Holland Regenerative Medicine ProgramUniversity of Nebraska Medical CenterOmahaNE68198USA
- Division of CardiologyDepartment of Internal MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Hamid Band
- Eppley InstituteUniversity of Nebraska Medical CenterOmahaNE68198USA
- Fred and Pamela Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Vimla Band
- Department of GeneticsCell Biology and AnatomyCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
- Fred and Pamela Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Bin Duan
- Mary and Dick Holland Regenerative Medicine ProgramUniversity of Nebraska Medical CenterOmahaNE68198USA
- Division of CardiologyDepartment of Internal MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
- Department of SurgeryUniversity of Nebraska Medical CenterOmahaNE68198USA
- Department of Mechanical EngineeringUniversity of Nebraska–LincolnLincolnNE68588USA
| |
Collapse
|
19
|
Sapudom J, Karaman S, Quartey BC, Mohamed WKE, Mahtani N, Garcia-Sabaté A, Teo J. Collagen Fibril Orientation Instructs Fibroblast Differentiation Via Cell Contractility. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301353. [PMID: 37249413 PMCID: PMC10401101 DOI: 10.1002/advs.202301353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/03/2023] [Indexed: 05/31/2023]
Abstract
Collagen alignment is one of the key microarchitectural signatures of many pathological conditions, including scarring and fibrosis. Investigating how collagen alignment modulates cellular functions will pave the way for understanding tissue scarring and regeneration and new therapeutic strategies. However, current approaches for the fabrication of three-dimensional (3D) aligned collagen matrices are low-throughput and require special devices. To overcome these limitations, a simple approach to reconstitute homogeneous 3D collagen matrices with adjustable degree of fibril alignment using 3D printed inclined surfaces is developed. By characterizing the mechanical properties of reconstituted matrices, it is found that the elastic modulus of collagen matrices is enhanced with an increase in the alignment degree. The reconstituted matrices are used to study fibroblast behavior to reveal the progression of scar formation where a gradual enhancement of collagen alignment can be observed. It is found that matrices with aligned fibrils trigger fibroblast differentiation into myofibroblasts via cell contractility, while collagen stiffening through a crosslinker does not. The results suggest the impact of collagen fibril organization on the regulation of fibroblast differentiation. Overall, this approach to reconstitute 3D collagen matrices with fibril alignment opens opportunities for biomimetic pathological-relevant tissue in vitro, which can be applied for other biomedical research.
Collapse
Affiliation(s)
- Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, 129188, UAE
| | - Shaza Karaman
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, 129188, UAE
| | - Brian Chesney Quartey
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, 129188, UAE
| | - Walaa Kamal Eldin Mohamed
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, 129188, UAE
| | - Nick Mahtani
- School of Engineering, Ecole Polytechnique Federale de Lausanne, Lausanne, 1015, Switzerland
| | - Anna Garcia-Sabaté
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, 129188, UAE
| | - Jeremy Teo
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, 129188, UAE
- Department of Mechanical and Biomedical Engineering, Tandon School of Engineering, New York University, New York, 11201, USA
| |
Collapse
|
20
|
Avard RC, Broad ML, Zandkarimi F, Devanny AJ, Hammer JL, Yu K, Guzman A, Kaufman LJ. DISC-3D: dual-hydrogel system enhances optical imaging and enables correlative mass spectrometry imaging of invading multicellular tumor spheroids. Sci Rep 2023; 13:12383. [PMID: 37524722 PMCID: PMC10390472 DOI: 10.1038/s41598-023-38699-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/13/2023] [Indexed: 08/02/2023] Open
Abstract
Multicellular tumor spheroids embedded in collagen I matrices are common in vitro systems for the study of solid tumors that reflect the physiological environment and complexities of the in vivo environment. While collagen I environments are physiologically relevant and permissive of cell invasion, studying spheroids in such hydrogels presents challenges to key analytical assays and to a wide array of imaging modalities. While this is largely due to the thickness of the 3D hydrogels that in other samples can typically be overcome by sectioning, because of their highly porous nature, collagen I hydrogels are very challenging to section, especially in a manner that preserves the hydrogel network including cell invasion patterns. Here, we describe a novel method for preparing and cryosectioning invasive spheroids in a two-component (collagen I and gelatin) matrix, a technique we term dual-hydrogel in vitro spheroid cryosectioning of three-dimensional samples (DISC-3D). DISC-3D does not require cell fixation, preserves the architecture of invasive spheroids and their surroundings, eliminates imaging challenges, and allows for use of techniques that have infrequently been applied in three-dimensional spheroid analysis, including super-resolution microscopy and mass spectrometry imaging.
Collapse
Affiliation(s)
- Rachel C Avard
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Megan L Broad
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
- Department of Chemistry, Cardiff University, Cardiff, CF10 3AT, Wales, UK
| | | | | | - Joseph L Hammer
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Karen Yu
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
- Department of Physics, Columbia University, New York, NY, 10027, USA
| | - Asja Guzman
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Laura J Kaufman
- Department of Chemistry, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
21
|
ElGindi M, Sapudom J, Garcia Sabate A, Chesney Quartey B, Alatoom A, Al-Sayegh M, Li R, Chen W, Teo J. Effects of an aged tissue niche on the immune potency of dendritic cells using simulated microgravity. NPJ AGING 2023; 9:14. [PMID: 37393393 DOI: 10.1038/s41514-023-00111-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/18/2023] [Indexed: 07/03/2023]
Abstract
Microgravity accelerates the aging of various physiological systems, and it is well acknowledged that aged individuals and astronauts both have increased susceptibility to infections and poor response to vaccination. Immunologically, dendritic cells (DCs) are the key players in linking innate and adaptive immune responses. Their distinct and optimized differentiation and maturation phases play a critical role in presenting antigens and mounting effective lymphocyte responses for long-term immunity. Despite their importance, no studies to date have effectively investigated the effects of microgravity on DCs in their native microenvironment, which is primarily located within tissues. Here, we address a significantly outstanding research gap by examining the effects of simulated microgravity via a random positioning machine on both immature and mature DCs cultured in biomimetic collagen hydrogels, a surrogate for tissue matrices. Furthermore, we explored the effects of loose and dense tissues via differences in collagen concentration. Under these various environmental conditions, the DC phenotype was characterized using surface markers, cytokines, function, and transcriptomic profiles. Our data indicate that aged or loose tissue and exposure to RPM-induced simulated microgravity both independently alter the immunogenicity of immature and mature DCs. Interestingly, cells cultured in denser matrices experience fewer effects of simulated microgravity at the transcriptome level. Our findings are a step forward to better facilitate healthier future space travel and enhance our understanding of the aging immune system on Earth.
Collapse
Affiliation(s)
- Mei ElGindi
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, PO Box 129188, United Arab Emirates
| | - Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, PO Box 129188, United Arab Emirates
| | - Anna Garcia Sabate
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, PO Box 129188, United Arab Emirates
| | - Brian Chesney Quartey
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, PO Box 129188, United Arab Emirates
| | - Aseel Alatoom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, PO Box 129188, United Arab Emirates
| | - Mohamed Al-Sayegh
- Biology Division, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Rui Li
- Department of Biomedical Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA
| | - Weiqiang Chen
- Department of Biomedical Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA
- Department of Mechanical and Aerospace Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA
| | - Jeremy Teo
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, PO Box 129188, United Arab Emirates.
- Department of Biomedical Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA.
- Department of Mechanical and Aerospace Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA.
| |
Collapse
|
22
|
Amens JN, Bahçecioğlu G, Dwyer K, Yue XS, Stack MS, Hilliard TS, Zorlutuna P. Maternal obesity driven changes in collagen linearity of breast extracellular matrix induces invasive mammary epithelial cell phenotype. Biomaterials 2023; 297:122110. [PMID: 37062214 PMCID: PMC10192205 DOI: 10.1016/j.biomaterials.2023.122110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 01/31/2023] [Accepted: 04/01/2023] [Indexed: 04/18/2023]
Abstract
Obesity has been linked with numerous health issues as well as an increased risk of breast cancer. Although effects of direct obesity in patient outcomes is widely studied, effects of exposure to obesity-related systemic influences in utero have been overlooked. In this study, we investigated the effect of multigenerational obesity on epithelial cell migration and invasion using decellularized breast tissues explanted from normal female mouse pups from a diet induced multigenerational obesity mouse model. We first studied the effect of multigenerational diet on the mechanical properties, adipocyte size, and collagen structure of these mouse breast tissues, and then, examined the migration and invasion behavior of normal (KTB-21) and cancerous (MDA-MB-231) human mammary epithelial cells on the decellularized matrices from each diet group. Breast tissues of mice whose dams had been fed with high-fat diet exhibited larger adipocytes and thicker and curvier collagen fibers, but only slightly elevated elastic modulus and inflammatory cytokine levels. MDA-MB-231 cancer cell motility and invasion were significantly greater on the decellularized matrices from mice whose dams were fed with high-fat diet. A similar trend was observed with normal KTB-21 cells. Our results showed that the collagen curvature was the dominating factor on this enhanced motility and stretching the matrices to equalize the collagen fiber linearity of the matrices ameliorated the observed increase in cell migration and invasion in the mice that were exposed to a high-fat diet in utero. Previous studies indicated an increase in serum leptin concentration for those children born to an obese mother. We generated extracellular matrices using primary fibroblasts exposed to various concentrations of leptin. This produced curvier ECM and increased breast cancer cell motility for cells seeded on the decellularized ECM generated with increasing leptin concentration. Our study shows that exposure to obesity in utero is influential in determining the extracellular matrix structure, and that the resultant change in collagen curvature is a critical factor in regulating the migration and invasion of breast cancer cells.
Collapse
Affiliation(s)
- Jensen N Amens
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Gökhan Bahçecioğlu
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Kiera Dwyer
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Xiaoshan S Yue
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - M Sharon Stack
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Tyvette S Hilliard
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Pinar Zorlutuna
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA; Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA; Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
23
|
Adam S, Mohanan A, Bakshi S, Ghadai A, Majumdar S. Network architecture dependent mechanical response in temperature responsive collagen-PNIPAM composites. Colloids Surf B Biointerfaces 2023; 227:113380. [PMID: 37263106 DOI: 10.1016/j.colsurfb.2023.113380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/03/2023]
Abstract
Collagen is the most abundant protein in the mammalian extracellular matrix. In-vitro collagen-based materials with specific mechanical properties are important for various bio-medical and tissue-engineering applications. Here, we study the reversible mechanical switching behaviour of a bio-compatible composite formed by collagen networks seeded with thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) microgel particles, by exploiting the swelling/de-swelling of the particles across the lower critical solution temperature (LCST). Interestingly, we find that the shear modulus of the system reversibly enhances whenever the diameter of the microgel particles is changed from that corresponding to the polymerization temperature of the composite, irrespective of swelling or, de-swelling. However, the degree of such enhancement significantly depends on the temperature-dependent collagen network architecture quantified by the mesh size of the network. Furthermore, confocal imaging of the composite during the temperature switching reveals that the reversible clustering of microgel particles above LCST plays a crucial role in the observed switching response.
Collapse
Affiliation(s)
- Shibil Adam
- Soft Condensed Matter Group, Raman Research Institute, Bengaluru 560080, Karnataka, India
| | - Akhil Mohanan
- Soft Condensed Matter Group, Raman Research Institute, Bengaluru 560080, Karnataka, India
| | - Swarnadeep Bakshi
- Soft Condensed Matter Group, Raman Research Institute, Bengaluru 560080, Karnataka, India
| | - Abhishek Ghadai
- Soft Condensed Matter Group, Raman Research Institute, Bengaluru 560080, Karnataka, India
| | - Sayantan Majumdar
- Soft Condensed Matter Group, Raman Research Institute, Bengaluru 560080, Karnataka, India.
| |
Collapse
|
24
|
Cortes-Medina M, Bushman AR, Beshay PE, Adorno JJ, Menyhert MM, Hildebrand RM, Agarwal SS, Avendano A, Song JW. Chondroitin sulfate, dermatan sulfate, and hyaluronic acid differentially modify the biophysical properties of collagen-based hydrogels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541626. [PMID: 37293049 PMCID: PMC10245839 DOI: 10.1101/2023.05.22.541626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fibrillar collagens and glycosaminoglycans (GAGs) are structural biomolecules that are natively abundant to the extracellular matrix (ECM). Prior studies have quantified the effects of GAGs on the bulk mechanical properties of the ECM. However, there remains a lack of experimental studies on how GAGs alter other biophysical properties of the ECM, including ones that operate at the length scales of individual cells such as mass transport efficiency and matrix microstructure. Here we characterized and decoupled the effects of the GAG molecules chondroitin sulfate (CS) dermatan sulfate (DS) and hyaluronic acid (HA) on the stiffness (indentation modulus), transport (hydraulic permeability), and matrix microarchitecture (pore size and fiber radius) properties of collagen-based hydrogels. We complement these biophysical measurements of collagen hydrogels with turbidity assays to profile collagen aggregate formation. Here we show that CS, DS, and HA differentially regulate the biophysical properties of hydrogels due to their alterations to the kinetics of collagen self-assembly. In addition to providing information on how GAGs play significant roles in defining key physical properties of the ECM, this work shows new ways in which stiffness measurements, microscopy, microfluidics, and turbidity kinetics can be used complementary to reveal details of collagen self-assembly and structure.
Collapse
Affiliation(s)
- Marcos Cortes-Medina
- Department of Biomedical Engineering, The Ohio State University, Columbus OH 43210
| | - Andrew R Bushman
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus OH 43210
| | - Peter E Beshay
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus OH 43210
| | - Jonathan J Adorno
- Department of Biomedical Engineering, The Ohio State University, Columbus OH 43210
| | - Miles M Menyhert
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus OH 43210
| | - Riley M Hildebrand
- Department of Biomedical Engineering, The Ohio State University, Columbus OH 43210
| | - Shashwat S Agarwal
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus OH 43210
| | - Alex Avendano
- Department of Biomedical Engineering, The Ohio State University, Columbus OH 43210
| | - Jonathan W Song
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus OH 43210
- The Comprehensive Cancer Center, The Ohio State University, Columbus OH 43210
| |
Collapse
|
25
|
Hayn A, Fischer T, Mierke CT. The role of ADAM8 in the mechanophenotype of MDA-MB-231 breast cancer cells in 3D extracellular matrices. Front Cell Dev Biol 2023; 11:1148162. [PMID: 37287457 PMCID: PMC10242107 DOI: 10.3389/fcell.2023.1148162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/11/2023] [Indexed: 06/09/2023] Open
Abstract
The majority of investigations of cancer cells have been performed in an oversimplified 2D in vitro environment. In the last decade there is a trend toward more sophisticated 3D in vitro cell culture model systems that can bridge the existing gap between 2D in vitro and in vivo experiments in the field of biophysical and cell biological cancer cell research. Here, we hypothesize that the bidirectional interplay between breast cancer cells and their tumor microenvironment is critical for the outcome of the disease. Thereby, the tissue remodeling processes evoked by cancer cells are important for cancer cell-driven mechanical probing of their matrix environment and on cancer cell adhesion and motility. When remodeling processes have been explored, the emphasis was placed on matrix metalloproteinases and rather not on a disintegrin and metalloproteases (ADAMs). However, the role of ADAM8 in cell mechanics regulating cellular motility in 3D collagen matrices is still unclear. Thus, in this study, we focus on the function of ADAM8 in matrix remodeling and migration of 3D extracellular matrix scaffolds. Therefore, human MDA-MB-231 breast carcinoma cells with ADAM8 knocked down, referred to as ADAM8-KD cells, as well as MDA-MB-231 scrambled control cells, referred to as ADAM8-Ctrl cells, have been used to examine their ability to interact with and migrate in dense extracellular 3D matrices. The fiber displacements, as the capacity of cells to deform the environmental 3D matrix scaffold, has been observed. ADAM8-KD cells displace collagen fibers more strongly than ADAM8-Ctrl cells. Moreover, ADAM8-KD cells migrated more numerous in 3D collagen matrices compared to ADAM8-Ctrl cells. The impairment of ADAM8 using the ADAM8 inhibitor BK-1361 led to significantly increased fiber displacements of ADAM8-Ctrl cells to the levels of ADAM8-KD cells. In contrast, the inhibitor had no effect on ADAM8-KD cells in terms of fiber displacements as well as on the quantitative characteristics of cell invasion of ADAM8-Ctrl cells, albeit the cells that were found in the matrix invaded considerably deeper. When matrix remodeling by cells is impaired through GM6001, a broad-band metalloproteinase inhibitor, the fiber displacements of both cell types increased. In fact, ADAM8 is known to degrade fibronectin in a direct and/or indirect manner. The supplementation of fibronectin before polymerization of the 3D collagen matrices caused an enhancement in fiber displacements as well as in cell invasion into fibronectin-collagen matrices of ADAM8-Ctrl cells, whereas the fiber displacements of ADAM8-KD cells did not change. However, fibrinogen and laminin supplementation induced an increase in fiber displacements of both cell types. Thus, the impact of fibronectin on selective increase in fiber displacement of ADAM8-Ctrl cells appears to be ADAM8-dependent. As a consequence, the presence of ADAM8 may provide an explanation for the longstanding controversial results of fibronectin enrichment on malignant progression of cancers such as breast cancer. Finally, ADAM8 is apparently essential for providing cell-driven fiber displacements of the extracellular matrix microenvironment, which fosters 3D motility in a fibronectin-rich environment. Contribution to the field. Currently, the role of ADAM8 has been explored in 2D or at maximum 2.5D in vitro cell culture motility assays. However, the mechanical characteristics of these two cell types have not been examined. In this study, the function of ADAM8 in breast cancer is refined by providing in vitro cell investigations in 3D collagen fiber matrices of various conditions. ADAM8 has been shown to be involved in the reduced generation of fiber displacements and in influencing breast cancer cell migration. However, especially in the presence of fibronectin in 3Dcollagen fiber matrices, the fiber displacements of ADAM8-Ctrl cells are increased.
Collapse
|
26
|
Higgins G, Higgins F, Peres J, Lang DM, Abdalrahman T, Zaman MH, Prince S, Franz T. Intracellular mechanics and TBX3 expression jointly dictate the spreading mode of melanoma cells in 3D environments. Exp Cell Res 2023; 428:113633. [PMID: 37172754 DOI: 10.1016/j.yexcr.2023.113633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Cell stiffness and T-box transcription factor 3 (TBX3) expression have been identified as biomarkers of melanoma metastasis in 2D environments. This study aimed to determine how mechanical and biochemical properties of melanoma cells change during cluster formation in 3D environments. Vertical growth phase (VGP) and metastatic (MET) melanoma cells were embedded in 3D collagen matrices of 2 and 4 mg/ml collagen concentrations, representing low and high matrix stiffness. Mitochondrial fluctuation, intracellular stiffness, and TBX3 expression were quantified before and during cluster formation. In isolated cells, mitochondrial fluctuation decreased and intracellular stiffness increased with increase in disease stage from VGP to MET and increased matrix stiffness. TBX3 was highly expressed in soft matrices but diminished in stiff matrices for VGP and MET cells. Cluster formation of VGP cells was excessive in soft matrices but limited in stiff matrices, whereas for MET cells it was limited in soft and stiff matrices. In soft matrices, VGP cells did not change the intracellular properties, whereas MET cells exhibited increased mitochondrial fluctuation and decreased TBX3 expression. In stiff matrices, mitochondrial fluctuation and TBX3 expression increased in VGP and MET, and intracellular stiffness increased in VGP but decreased in MET cells. The findings suggest that soft extracellular environments are more favourable for tumour growth, and high TBX3 levels mediate collective cell migration and tumour growth in the earlier VGP disease stage but play a lesser role in the later metastatic stage of melanoma.
Collapse
Affiliation(s)
- Ghodeejah Higgins
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Observatory, South Africa
| | - Faatiemah Higgins
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Observatory, South Africa
| | - Jade Peres
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Observatory, South Africa
| | - Dirk M Lang
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Observatory, South Africa
| | - Tamer Abdalrahman
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Observatory, South Africa
| | - Muhammad H Zaman
- Department of Biomedical Engineering, Boston University, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Sharon Prince
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Observatory, South Africa
| | - Thomas Franz
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Observatory, South Africa; Bioengineering Science Research Group, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK.
| |
Collapse
|
27
|
Peng J, Yin X, Yun W, Meng X, Huang Z. Radiotherapy-induced tumor physical microenvironment remodeling to overcome immunotherapy resistance. Cancer Lett 2023; 559:216108. [PMID: 36863506 DOI: 10.1016/j.canlet.2023.216108] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/14/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023]
Abstract
The clinical benefits of immunotherapy are proven in many cancers, but a significant number of patients do not respond well to immunotherapy. The tumor physical microenvironment (TpME) has recently been shown to affect the growth, metastasis and treatment of solid tumors. The tumor microenvironment (TME) has unique physical hallmarks: 1) unique tissue microarchitecture, 2) increased stiffness, 3) elevated solid stress, and 4) elevated interstitial fluid pressure (IFP), which contribute to tumor progression and immunotherapy resistance in a variety of ways. Radiotherapy, a traditional and powerful treatment, can remodel the matrix and blood flow associated with the tumor to improve the response rate of immune checkpoint inhibitors (ICIs) to a certain extent. Herein, we first review the recent research advances on the physical properties of the TME and then explain how TpME is involved in immunotherapy resistance. Finally, we discuss how radiotherapy can remodel TpME to overcome immunotherapy resistance.
Collapse
Affiliation(s)
- Jianfeng Peng
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Xiaoyan Yin
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Wenhua Yun
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Xiangjiao Meng
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.
| | - Zhaoqin Huang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|
28
|
Cameron AP, Gao S, Liu Y, Zhao CX. Impact of hydrogel biophysical properties on tumor spheroid growth and drug response. BIOMATERIALS ADVANCES 2023; 149:213421. [PMID: 37060634 DOI: 10.1016/j.bioadv.2023.213421] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/17/2023]
Abstract
The extracellular matrix (ECM) plays a critical role in regulating cell-matrix interactions during tumor progression. These interactions are due in large part to the biophysical properties responding to cancer cell interactions. Within in vitro models, the ECM is mimicked by hydrogels, which possess adjustable biophysical properties that are integral to tumor development. This work presents a systematic and comparative study on the impact of the biophysical properties of two widely used natural hydrogels, Matrigel and collagen gel, on tumor growth and drug response. The biophysical properties of Matrigel and collagen including complex modulus, loss tangent, diffusive permeability, and pore size, were characterised. Then the spheroid growth rates in these two hydrogels were monitored for spheroids with two different sizes (140 μm and 500 μm in diameters). An increased migratory growth was observed in the lower concentration of both the gels. The effect of spheroid incorporation within the hydrogel had a minimal impact on the hydrogel's complex modulus. Finally, 3D tumor models using different concentrations of hydrogels were applied for drug treatment using paclitaxel. Spheroids cultured in hydrogels with different concentrations showed different drug response, demonstrating the significant effect of the choice of hydrogels and their concentrations on the drug response results despite using the same spheroids. This study provides useful insights into the effect of hydrogel biophysical properties on spheroid growth and drug response and highlights the importance of hydrogel selection and in vitro model design.
Collapse
Affiliation(s)
- Anna P Cameron
- Australian institute of Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Song Gao
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, Australia
| | - Yun Liu
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, Australia
| | - Chun-Xia Zhao
- Australian institute of Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia; School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, Australia.
| |
Collapse
|
29
|
Tang RZ, Liu XQ. Biophysical cues of in vitro biomaterials-based artificial extracellular matrix guide cancer cell plasticity. Mater Today Bio 2023; 19:100607. [PMID: 36960095 PMCID: PMC10027567 DOI: 10.1016/j.mtbio.2023.100607] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/10/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023] Open
Abstract
Clinical evidence supports a role for the extracellular matrix (ECM) in cancer plasticity across multiple tumor types. The lack of in vitro models that represent the native ECMs is a significant challenge for cancer research and drug discovery. Therefore, a major motivation for developing new tumor models is to create the artificial ECM in vitro. Engineered biomaterials can closely mimic the architectural and mechanical properties of ECM to investigate their specific effects on cancer progression, offering an alternative to animal models for the testing of cancer cell behaviors. In this review, we focused on the biomaterials from different sources applied in the fabrication of the artificial ECM and their biophysical cues to recapitulate key features of tumor niche. Furthermore, we summarized how the distinct biophysical cues guided cell behaviors of cancer plasticity, including morphology, epithelial-to-mesenchymal transition (EMT), enrichment of cancer stem cells (CSCs), proliferation, migration/invasion and drug resistance. We also discuss the future opportunities in using the artificial ECM for applications of tumorigenesis research and precision medicine, as well as provide useful messages of principles for designing suitable biomaterial scaffolds.
Collapse
Affiliation(s)
- Rui-Zhi Tang
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, PR China
| | - Xi-Qiu Liu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| |
Collapse
|
30
|
Liu C, Nguyen RY, Pizzurro GA, Zhang X, Gong X, Martinez AR, Mak M. Self-assembly of mesoscale collagen architectures and applications in 3D cell migration. Acta Biomater 2023; 155:167-181. [PMID: 36371004 PMCID: PMC9805527 DOI: 10.1016/j.actbio.2022.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022]
Abstract
3D in vitro tumor models have recently been investigated as they can recapitulate key features in the tumor microenvironment. Reconstruction of a biomimetic scaffold is critical in these models. However, most current methods focus on modulating local properties, e.g. micro- and nano-scaled topographies, without capturing the global millimeter or intermediate mesoscale features. Here we introduced a method for modulating the collagen I-based extracellular matrix structure by disruption of fibrillogenesis and the gelation process through mechanical agitation. With this method, we generated collagen scaffolds that are thickened and wavy at a larger scale while featuring global softness. Thickened collagen patches were interconnected with loose collagen networks, highly resembling collagen architecture in the tumor stroma. This thickened collagen network promoted tumor cell dissemination. In addition, this novel modified scaffold triggered differences in morphology and migratory behaviors of tumor cells. Altogether, our method for altered collagen architecture paves new ways for studying in detail cell behavior in physiologically relevant biological processes. STATEMENT OF SIGNIFICANCE: Tumor progression usually involves chronic tissue damage and repair processes. Hallmarks of tumors are highly overlapped with those of wound healing. To mimic the tumor milieu, collagen-based scaffolds are widely used. These scaffolds focus on modulating microscale topographies and mechanics, lacking global architecture similarity compared with in vivo architecture. Here we introduced one type of thick collagen bundles that mimics ECM architecture in human skin scars. These thickened collagen bundles are long and wavy while featuring global softness. This collagen architecture imposes fewer steric restraints and promotes tumor cell dissemination. Our findings demonstrate a distinct picture of cell behaviors and intercellular interactions, highlighting the importance of collagen architecture and spatial heterogeneity of the tumor microenvironment.
Collapse
Affiliation(s)
- Chang Liu
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, United States
| | - Ryan Y Nguyen
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, United States
| | - Gabriela A Pizzurro
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, United States
| | - Xingjian Zhang
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, United States
| | - Xiangyu Gong
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, United States
| | | | - Michael Mak
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, United States.
| |
Collapse
|
31
|
Edwin PERG, Kumar S, Roy S, Roy B, Bajpai SK. Anisotropic 3D confinement of MCF-7 cells induces directed cell-migration and viscoelastic anisotropy of cell-membrane. Phys Biol 2023; 20. [DOI: 10.1088/1478-3975/ac9bc1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Tumor-associated collagen signature-3 (TACS-3) is a prognostic indicator for breast cancer survival. It is characterized by highly organized, parallel bundles of collagen fibers oriented perpendicular to the tumor boundary, serving as directional, confining channels for cancer cell invasion. Here we design a TACS-3-mimetic anisotropic, confined collagen I matrix and examine the relation between anisotropy of matrix, directed cellular migration, and anisotropy of cell membrane-the first direct contact between TACS-3 and cell-using Michigan Cancer Foundation-7 (MCF-7) cells as cancer-model. Using unidirectional freezing, we generated ∼50 μm-wide channels filled with collagen I. Optical tweezer (OT) microrheology shows that anisotropic confinement increases collagen viscoelasticity by two orders of magnitude, and the elastic modulus is significantly greater along the direction of anisotropic confinement compared to that along the orthogonal direction, thus establishing matrix anisotropy. Furthermore, MCF-7 cells embedded in anisotropic collagen I, exhibit directionality in cellular morphology and migration. Finally, using customized OT to trap polystyrene probes bound to cell-membrane (and not to ECM) of either free cells or cells under anisotropic confinement, we quantified the effect of matrix anisotropy on membrane viscoelasticity, both in-plane and out-of-plane, vis-à-vis the membrane. Both bulk and viscous modulus of cell-membrane of MCF-7 cells exhibit significant anisotropy under anisotropic confinement. Moreover, the cell membrane of MCF-7 cells under anisotropic confinement is significantly softer (both in-plane and out-of-plane moduli) despite their local environment being five times stiffer than free cells. In order to test if the coupling between anisotropy of extracellular matrix and anisotropy of cell-membrane is regulated by cell-cytoskeleton, actin cytoskeleton was depolymerized for both free and confined cells. Results show that cell membrane viscoelasticity of confined MCF-7 cells is unaffected by actin de-polymerization, in contrast to free cells. Together, these findings suggest that anisotropy of ECM induces directed migration and correlates with anisotropy of cell-membrane viscoelasticity of the MCF-7 cells in an actin-independent manner.
Collapse
|
32
|
Clark AG, Maitra A, Jacques C, Bergert M, Pérez-González C, Simon A, Lederer L, Diz-Muñoz A, Trepat X, Voituriez R, Vignjevic DM. Self-generated gradients steer collective migration on viscoelastic collagen networks. NATURE MATERIALS 2022; 21:1200-1210. [PMID: 35637338 DOI: 10.1038/s41563-022-01259-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
Growing evidence suggests that the physical properties of the cellular microenvironment influence cell migration. However, it is not currently understood how active physical remodelling by cells affects migration dynamics. Here we report that cell clusters seeded on deformable collagen-I networks display persistent collective migration despite not showing any apparent intrinsic polarity. Clusters generate transient gradients in collagen density and alignment due to viscoelastic relaxation of the collagen networks. Combining theory and experiments, we show that crosslinking collagen networks or reducing cell cluster size results in reduced network deformation, shorter viscoelastic relaxation time and smaller gradients, leading to lower migration persistence. Traction force and Brillouin microscopy reveal asymmetries in force distributions and collagen stiffness during migration, providing evidence of mechanical cross-talk between cells and their substrate during migration. This physical model provides a mechanism for self-generated directional migration on viscoelastic substrates in the absence of internal biochemical polarity cues.
Collapse
Affiliation(s)
- Andrew G Clark
- Cell Biology and Cancer Unit, Institut Curie, PSL Research University, CNRS, Paris, France.
- Institute of Cell Biology and Immunology, Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany.
- Center for Personalized Medicine, University of Tübingen, Tübingen, Germany.
| | - Ananyo Maitra
- Laboratoire Jean Perrin, Sorbonne Université and CNRS, Paris, France.
- Laboratoire de Physique Théorique et Modélisation, CNRS, CY Cergy Paris Université, Cergy-Pontoise Cedex, France.
| | - Cécile Jacques
- Cell Biology and Cancer Unit, Institut Curie, PSL Research University, CNRS, Paris, France
| | - Martin Bergert
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Carlos Pérez-González
- Cell Biology and Cancer Unit, Institut Curie, PSL Research University, CNRS, Paris, France
| | - Anthony Simon
- Cell Biology and Cancer Unit, Institut Curie, PSL Research University, CNRS, Paris, France
| | - Luc Lederer
- Cell Biology and Cancer Unit, Institut Curie, PSL Research University, CNRS, Paris, France
| | - Alba Diz-Muñoz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia, The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- Facultat de Medicina, University of Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Barcelona, Spain
| | - Raphaël Voituriez
- Laboratoire de Physique Théorique et Modélisation, CNRS, CY Cergy Paris Université, Cergy-Pontoise Cedex, France
- Laboratoire de Physique Théorique de la Matière Condensée, Sorbonne Université and CNRS, Paris, France
| | | |
Collapse
|
33
|
ElGindi M, Sapudom J, Laws P, Garcia-Sabaté A, Daqaq MF, Teo J. 3D microenvironment attenuates simulated microgravity-mediated changes in T cell transcriptome. Cell Mol Life Sci 2022; 79:508. [PMID: 36063234 PMCID: PMC11803002 DOI: 10.1007/s00018-022-04531-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/05/2022] [Accepted: 08/17/2022] [Indexed: 11/03/2022]
Abstract
Human space travel and exploration are of interest to both the industrial and scientific community. However, there are many adverse effects of spaceflight on human physiology. In particular, there is a lack of understanding of the extent to which microgravity affects the immune system. T cells, key players of the adaptive immune system and long-term immunity, are present not only in blood circulation but also reside within the tissue. As of yet, studies investigating the effects of microgravity on T cells are limited to peripheral blood or traditional 2D cell culture that recapitulates circulating blood. To better mimic interstitial tissue, 3D cell culture has been well established for physiologically and pathologically relevant models. In this work, we utilize 2D cell culture and 3D collagen matrices to gain an understanding of how simulated microgravity, using a random positioning machine, affects both circulating and tissue-resident T cells. T cells were studied in both resting and activated stages. We found that 3D cell culture attenuates the effects of simulated microgravity on the T cells transcriptome and nuclear irregularities compared to 2D cell culture. Interestingly, simulated microgravity appears to have less effect on activated T cells compared to those in the resting stage. Overall, our work provides novel insights into the effects of simulated microgravity on circulating and tissue-resident T cells which could provide benefits for the health of space travellers.
Collapse
Affiliation(s)
- Mei ElGindi
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Praveen Laws
- Laboratory of Applied Nonlinear Dynamics, Division of Engineering, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Anna Garcia-Sabaté
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Mohammed F Daqaq
- Laboratory of Applied Nonlinear Dynamics, Division of Engineering, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Jeremy Teo
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates.
- Department of Mechanical and Biomedical Engineering, New York University, Brooklyn, NY, 11201, USA.
| |
Collapse
|
34
|
Martinez-Garcia FD, Fischer T, Hayn A, Mierke CT, Burgess JK, Harmsen MC. A Beginner’s Guide to the Characterization of Hydrogel Microarchitecture for Cellular Applications. Gels 2022; 8:gels8090535. [PMID: 36135247 PMCID: PMC9498492 DOI: 10.3390/gels8090535] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/17/2022] [Accepted: 08/23/2022] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM) is a three-dimensional, acellular scaffold of living tissues. Incorporating the ECM into cell culture models is a goal of cell biology studies and requires biocompatible materials that can mimic the ECM. Among such materials are hydrogels: polymeric networks that derive most of their mass from water. With the tuning of their properties, these polymer networks can resemble living tissues. The microarchitectural properties of hydrogels, such as porosity, pore size, fiber length, and surface topology can determine cell plasticity. The adequate characterization of these parameters requires reliable and reproducible methods. However, most methods were historically standardized using other biological specimens, such as 2D cell cultures, biopsies, or even animal models. Therefore, their translation comes with technical limitations when applied to hydrogel-based cell culture systems. In our current work, we have reviewed the most common techniques employed in the characterization of hydrogel microarchitectures. Our review provides a concise description of the underlying principles of each method and summarizes the collective data obtained from cell-free and cell-loaded hydrogels. The advantages and limitations of each technique are discussed, and comparisons are made. The information presented in our current work will be of interest to researchers who employ hydrogels as platforms for cell culture, 3D bioprinting, and other fields within hydrogel-based research.
Collapse
Affiliation(s)
- Francisco Drusso Martinez-Garcia
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713 GZ Groningen, The Netherlands
- W.J. Kolff Research Institute, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Tony Fischer
- Biological Physics Division, Peter Debye Institute of Soft Matter Physics, Faculty of Physics and Earth Science, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany
| | - Alexander Hayn
- Biological Physics Division, Peter Debye Institute of Soft Matter Physics, Faculty of Physics and Earth Science, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany
- Clinic and Polyclinic for Oncology, Gastroenterology, Hepatology, Pneumology, Infectiology Department of Hepatology, University Hospital Leipzig, Liebigstr. 19, 04103 Leipzig, Germany
| | - Claudia Tanja Mierke
- Biological Physics Division, Peter Debye Institute of Soft Matter Physics, Faculty of Physics and Earth Science, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany
- Correspondence: (C.T.M.); (M.C.H.)
| | - Janette Kay Burgess
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713 GZ Groningen, The Netherlands
- W.J. Kolff Research Institute, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713 AV Groningen, The Netherlands
| | - Martin Conrad Harmsen
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713 GZ Groningen, The Netherlands
- W.J. Kolff Research Institute, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713 AV Groningen, The Netherlands
- Correspondence: (C.T.M.); (M.C.H.)
| |
Collapse
|
35
|
Pajic-Lijakovic I, Milivojevic M, Clark AG. Collective Cell Migration on Collagen-I Networks: The Impact of Matrix Viscoelasticity. Front Cell Dev Biol 2022; 10:901026. [PMID: 35859899 PMCID: PMC9289519 DOI: 10.3389/fcell.2022.901026] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/10/2022] [Indexed: 01/01/2023] Open
Abstract
Collective cell migration on extracellular matrix (ECM) networks is a key biological process involved in development, tissue homeostasis and diseases such as metastatic cancer. During invasion of epithelial cancers, cell clusters migrate through the surrounding stroma, which is comprised primarily of networks of collagen-I fibers. There is growing evidence that the rheological and topological properties of collagen networks can impact cell behavior and cell migration dynamics. During migration, cells exert mechanical forces on their substrate, resulting in an active remodeling of ECM networks that depends not only on the forces produced, but also on the molecular mechanisms that dictate network rheology. One aspect of collagen network rheology whose role is emerging as a crucial parameter in dictating cell behavior is network viscoelasticity. Dynamic reorganization of ECM networks can induce local changes in network organization and mechanics, which can further feed back on cell migration dynamics and cell-cell rearrangement. A number of studies, including many recent publications, have investigated the mechanisms underlying structural changes to collagen networks in response to mechanical force as well as the role of collagen rheology and topology in regulating cell behavior. In this mini-review, we explore the cause-consequence relationship between collagen network viscoelasticity and cell rearrangements at various spatiotemporal scales. We focus on structural alterations of collagen-I networks during collective cell migration and discuss the main rheological parameters, and in particular the role of viscoelasticity, which can contribute to local matrix stiffening during cell movement and can elicit changes in cell dynamics.
Collapse
Affiliation(s)
| | - Milan Milivojevic
- University of Belgrade, Faculty of Technology and Metallurgy, Belgrade, Serbia
| | - Andrew G. Clark
- University of Stuttgart, Institute of Cell Biology and Immunology, Stuttgart, Germany
- University of Stuttgart, Stuttgart Research Center Systems Biology, Stuttgart, Germany
- University of Tübingen, Center for Personalized Medicine, Tübingen, Germany
| |
Collapse
|
36
|
Gradual Stress-Relaxation of Hydrogel Regulates Cell Spreading. Int J Mol Sci 2022; 23:ijms23095170. [PMID: 35563561 PMCID: PMC9100461 DOI: 10.3390/ijms23095170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 01/27/2023] Open
Abstract
There is growing evidence that the mechanical properties of extracellular matrices (ECMs), including elasticity and stress-relaxation, greatly influence the function and form of the residing cells. However, the effects of elasticity and stress-relaxation are often correlated, making the study of the effect of stress-relaxation on cellular behaviors difficult. Here, we designed a hybrid network hydrogel with a controllable stress-relaxation gradient and a constant elasticity. The hydrogel is crosslinked by covalent bonds and dynamic peptide-metal ion coordination interactions. The stress-relaxation gradient is controlled by spatially controlling the coordination and covalent crosslinker ratios. The different parts of the hydrogel exhibit distinct stress-relaxation amplitudes but the have same stress-relaxation timescale. Based on this hydrogel, we investigate the influence of hydrogel stress-relaxation on cell spreading. Our results show that the spreading of cells is suppressed at an increasing stress-relaxation amplitude with a fixed elasticity and stress-relaxation timescale. Our study provides a universal route to tune the stress-relaxation of hydrogels without changing their components and elasticity, which may be valuable for systematic investigations of the stress-relaxation gradient in cell cultures and organoid constructions.
Collapse
|
37
|
Cameron AP, Zeng B, Liu Y, Wang H, Soheilmoghaddam F, Cooper-White J, Zhao CX. Biophysical properties of hydrogels for mimicking tumor extracellular matrix. BIOMATERIALS ADVANCES 2022; 136:212782. [PMID: 35929332 DOI: 10.1016/j.bioadv.2022.212782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/01/2022] [Accepted: 03/26/2022] [Indexed: 06/15/2023]
Abstract
The extracellular matrix (ECM) is an essential component of the tumor microenvironment. It plays a critical role in regulating cell-cell and cell-matrix interactions. However, there is lack of systematic and comparative studies on different widely-used ECM mimicking hydrogels and their properties, making the selection of suitable hydrogels for mimicking different in vivo conditions quite random. This study systematically evaluates the biophysical attributes of three widely used natural hydrogels (Matrigel, collagen gel and agarose gel) including complex modulus, loss tangent, diffusive permeability and pore size. A new and facile method was developed combining Critical Point Drying, Scanning Electron Microscopy imaging and a MATLAB image processing program (CSM method) for the characterization of hydrogel microstructures. This CSM method allows accurate measurement of the hydrogel pore size down to nanometer resolution. Furthermore, a microfluidic device was implemented to measure the hydrogel permeability (Pd) as a function of particle size and gel concentration. Among the three gels, collagen gel has the lowest complex modulus, medium pore size, and the highest loss tangent. Agarose gel exhibits the highest complex modulus, the lowest loss tangent and the smallest pore size. Collagen gel and Matrigel produced complex moduli close to that estimated for cancer ECM. The Pd of these hydrogels decreases significantly with the increase of particle size. By assessing different hydrogels' biophysical characteristics, this study provides valuable insights for tailoring their properties for various three-dimensional cancer models.
Collapse
Affiliation(s)
- Anna P Cameron
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Bijun Zeng
- Diamantina Institute, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Yun Liu
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Haofei Wang
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Farhad Soheilmoghaddam
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Justin Cooper-White
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia; School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chun-Xia Zhao
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
38
|
Jiang R, Huang J, Sun X, Chu X, Wang F, Zhou J, Fan Q, Pang L. Construction of in vitro 3-D model for lung cancer-cell metastasis study. BMC Cancer 2022; 22:438. [PMID: 35449036 PMCID: PMC9027834 DOI: 10.1186/s12885-022-09546-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/08/2022] [Indexed: 11/11/2022] Open
Abstract
Background Cancer metastasis is the main cause of mortality in cancer patients. However, the drugs targeting metastasis processes are still lacking, which is partially due to the short of effective in vitro model for cell invasion studies. The traditional 2-D culture method cannot reveal the interaction between cells and the surrounding extracellular matrix during invasion process, while the animal models usually are too complex to explain mechanisms in detail. Therefore, a precise and efficient 3-D in vitro model is highly desirable for cell invasion studies and drug screening tests. Methods Precise micro-fabrication techniques are developed and integrated with soft hydrogels for constructing of 3-D lung-cancer micro-environment, mimicking the pulmonary gland or alveoli as in vivo. Results A 3-D in vitro model for cancer cell culture and metastasis studies is developed with advanced micro-fabrication technique, combining microfluidic system with soft hydrogel. The constructed microfluidic platform can provide nutrition and bio-chemical factors in a continuous transportation mode and has the potential to form stable chemical gradient for cancer invasion research. Hundreds of micro-chamber arrays are constructed within the collagen gel, ensuring that all surrounding substrates for tumor cells are composed of natural collagen hydrogel, like the in vivo micro-environment. The 3-D in vitro model can also provide a fully transparent platform for the visual observation of the cell morphology, proliferation, invasion, cell-assembly, and even the protein expression by immune-fluorescent tests if needed. The lung-cancer cells A549 and normal lung epithelial cells (HPAEpiCs) have been seeded into the 3-D system. It is found out that cells can normally proliferate in the microwells for a long period. Moreover, although the cancer cells A549 and alveolar epithelial cells HPAEpiCs have the similar morphology on 2-D solid substrate, in the 3-D system the cancer cells A549 distributed sparsely as single round cells on the extracellular matrix (ECM) when they attached to the substrate, while the normal lung epithelial cells can form cell aggregates, like the structure of normal tissue. Importantly, cancer cells cultured in the 3-D in vitro model can exhibit the interaction between cells and extracellular matrix. As shown in the confocal microscope images, the A549 cells present round and isolated morphology without much invasion into ECM, while starting from around Day 5, cells changed their shape to be spindle-like, as in mesenchymal morphology, and then started to destroy the surrounding ECM and invade out of the micro-chambers. Conclusions A 3-D in vitro model is constructed for cancer cell invasion studies, combining the microfluidic system and micro-chamber structures within hydrogel. To show the invasion process of lung cancer cells, the cell morphology, proliferation, and invasion process are all analyzed. The results confirmed that the micro-environment in the 3-D model is vital for revealing the lung cancer cell invasion as in vivo. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09546-9.
Collapse
Affiliation(s)
- Rongrong Jiang
- Department of Cardiothoracic Surgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Jiechun Huang
- Department of Cardiothoracic Surgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Xiaotian Sun
- Department of Cardiothoracic Surgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Xianglin Chu
- Department of Cardiothoracic Surgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Fangrui Wang
- Department of Cardiothoracic Surgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Jie Zhou
- Qibao Community Health Service Center, Shanghai, P.R. China
| | - Qihui Fan
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter and Biological Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.
| | - Liewen Pang
- Department of Cardiothoracic Surgery, Huashan Hospital, Fudan University, Shanghai, P.R. China.
| |
Collapse
|
39
|
The Molecular Interaction of Collagen with Cell Receptors for Biological Function. Polymers (Basel) 2022; 14:polym14050876. [PMID: 35267698 PMCID: PMC8912536 DOI: 10.3390/polym14050876] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 01/25/2023] Open
Abstract
Collagen, an extracellular protein, covers the entire human body and has several important biological functions in normal physiology. Recently, collagen from non-human sources has attracted attention for therapeutic management and biomedical applications. In this regard, both land-based animals such as cow, pig, chicken, camel, and sheep, and marine-based resources such as fish, octopus, starfish, sea-cucumber, and jellyfish are widely used for collagen extraction. The extracted collagen is transformed into collagen peptides, hydrolysates, films, hydrogels, scaffolds, sponges and 3D matrix for food and biomedical applications. In addition, many strategic ideas are continuously emerging to develop innovative advanced collagen biomaterials. For this purpose, it is important to understand the fundamental perception of how collagen communicates with receptors of biological cells to trigger cell signaling pathways. Therefore, this review discloses the molecular interaction of collagen with cell receptor molecules to carry out cellular signaling in biological pathways. By understanding the actual mechanism, this review opens up several new concepts to carry out next level research in collagen biomaterials.
Collapse
|
40
|
Liu X, Fu S, Jiao Y, Hu M, Li C, Wang F, Wang L. A loofah-inspired scaffold with enhanced mimicking mechanics and tumor cells distribution for in vitro tumor cell culture platform. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 135:112672. [DOI: 10.1016/j.msec.2022.112672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/17/2021] [Accepted: 01/16/2022] [Indexed: 10/19/2022]
|
41
|
Riedl P, Schricker M, Pompe T. Stiffness Variation of 3D Collagen Networks by Surface Functionalization of Network Fibrils with Sulfonated Polymers. Gels 2021; 7:266. [PMID: 34940326 PMCID: PMC8702206 DOI: 10.3390/gels7040266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/03/2021] [Accepted: 12/11/2021] [Indexed: 11/16/2022] Open
Abstract
Fibrillar collagen is the most prominent protein in the mammalian extracellular matrix. Therefore, it is also widely used for cell culture research and clinical therapy as a biomimetic 3D scaffold. Charged biopolymers, such as sulfated glycosaminoglycans, occur in vivo in close contact with collagen fibrils, affecting many functional properties such as mechanics and binding of growth factors. For in vitro application, the functions of sulfated biopolymer decorations of fibrillar collagen materials are hardly understood. Herein, we report new results on the stiffness dependence of 3D collagen I networks by surface functionalization of the network fibrils with synthetic sulfonated polymers, namely, poly(styrene sulfonate) (PSS) and poly(vinyl sulfonate) (PVS). A non-monotonic stiffness dependence on the amount of adsorbed polymer was found for both polymers. The stiffness dependence correlated to a transition from mono- to multilayer adsorption of sulfonated polymers on the fibrils, which was most prominent for PVS. PVS mono- and multilayers caused a network stiffness change by a factor of 0.3 and 2, respectively. A charge-dependent weakening of intrafibrillar salt bridges by the adsorbed sulfonated polymers leading to fibrillar softening is discussed as the mechanism for the stiffness decrease in the monolayer regime. In contrast, multilayer adsorption can be assumed to induce interfibrillar bridging and an increase in network stiffness. Our in vitro results have a strong implication on in vivo characteristics of fibrillar collagen I, as sulfated glycosaminoglycans frequently attach to collagen fibrils in various tissues, calling for an up to now overlooked impact on matrix and tendon mechanics.
Collapse
Affiliation(s)
| | | | - Tilo Pompe
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, 04103 Leipzig, Germany; (P.R.); (M.S.)
| |
Collapse
|
42
|
3D in vitro M2 macrophage model to mimic modulation of tissue repair. NPJ Regen Med 2021; 6:83. [PMID: 34848722 PMCID: PMC8633361 DOI: 10.1038/s41536-021-00193-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 10/29/2021] [Indexed: 12/19/2022] Open
Abstract
Distinct anti-inflammatory macrophage (M2) subtypes, namely M2a and M2c, are reported to modulate the tissue repair process tightly and chronologically by modulating fibroblast differentiation state and functions. To establish a well-defined three-dimensional (3D) cell culture model to mimic the tissue repair process, we utilized THP-1 human monocytic cells and a 3D collagen matrix as a biomimetic tissue model. THP-1 cells were differentiated into macrophages, and activated using IL-4/IL-13 (MIL-4/IL-13) and IL-10 (MIL-10). Both activated macrophages were characterized by both their cell surface marker expression and cytokine secretion profile. Our cell characterization suggested that MIL-4/IL-13 and MIL-10 demonstrate M2a- and M2c-like subtypes, respectively. To mimic the initial and resolution phases during the tissue repair, both activated macrophages were co-cultured with fibroblasts and myofibroblasts. We showed that MIL-4/IL-13 were able to promote matrix synthesis and remodeling by induction of myofibroblast differentiation via transforming growth factor beta-1 (TGF-β1). On the contrary, MIL-10 demonstrated the ability to resolve the tissue repair process by dedifferentiation of myofibroblast via IL-10 secretion. Overall, our study demonstrated the importance and the exact roles of M2a and M2c-like macrophage subtypes in coordinating tissue repair in a biomimetic model. The established model can be applied for high-throughput platforms for improving tissue healing and anti-fibrotic drugs testing, as well as other biomedical studies.
Collapse
|
43
|
Fibroblast Differentiation and Matrix Remodeling Impaired under Simulated Microgravity in 3D Cell Culture Model. Int J Mol Sci 2021; 22:ijms222111911. [PMID: 34769342 PMCID: PMC8584780 DOI: 10.3390/ijms222111911] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/25/2021] [Accepted: 10/30/2021] [Indexed: 02/06/2023] Open
Abstract
Exposure to microgravity affects astronauts' health in adverse ways. However, less is known about the extent to which fibroblast differentiation during the wound healing process is affected by the lack of gravity. One of the key steps of this process is the differentiation of fibroblasts into myofibroblasts, which contribute functionally through extracellular matrix production and remodeling. In this work, we utilized collagen-based three-dimensional (3D) matrices to mimic interstitial tissue and studied fibroblast differentiation under simulated microgravity (sµG). Our results demonstrated that alpha-smooth muscle actin (αSMA) expression and translocation of Smad2/3 into the cell nucleus were reduced upon exposure to sµG compared to the 1g control, which suggests the impairment of fibroblast differentiation under sµG. Moreover, matrix remodeling and production were decreased under sµG, which is in line with the impaired fibroblast differentiation. We further investigated changes on a transcriptomic level using RNA sequencing. The results demonstrated that sµG has less effect on fibroblast transcriptomes, while sµG triggers changes in the transcriptome of myofibroblasts. Several genes and biological pathways found through transcriptome analysis have previously been reported to impair fibroblast differentiation. Overall, our data indicated that fibroblast differentiation, as well as matrix production and remodeling, are impaired in 3D culture under sµG conditions.
Collapse
|
44
|
Rasouli R, Tabrizian M. Rapid Formation of Multicellular Spheroids in Boundary-Driven Acoustic Microstreams. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101931. [PMID: 34418307 DOI: 10.1002/smll.202101931] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/25/2021] [Indexed: 06/13/2023]
Abstract
3D cell spheroid culture has emerged as a more faithful recreation of cell growth environment compared to conventional 2D culture, as it can maintain tissue structures, physicochemical characteristics, and cell phenotypes. The majority of current spheroid formation methods are limited to a physical agglomeration of the desired cell type, and then relying on cell capacity to secrete extracellular matrix to form coherent spheroids. Hence, apart from being time-consuming, their success in leading to functional spheroid formation is also cell-type dependent. In this study, a boundary-driven acoustic microstreaming tool is presented that can simultaneously congregate cells and generate sturdy cell clusters through incorporating a bioadhesive such as collagen for rapid production of spheroids. The optimized mixture of type I collagen (0.42 mg mL-1 ) and methylcellulose (0.4% w/v ) accelerates the coagulation of cell-matrix as fast as 10 s while avoiding their adhesion to the device, and thereby offering easy spheroid retrieval. The versatility of the platform is shown for the production of MDA-MB-231 and MCF-7 spheroids, multicellular spheroids, and composite spheroids made of cells and microparticles. The ability to produce densely packed spheroids embedded within a biomimetic extracellular matrix component, along with rapid formation and easy collection of spheroids render the proposed device a step in technology development required to realize potentials of 3D constructs such as building blocks for the emerging field of bottom-up tissue engineering.
Collapse
Affiliation(s)
- Reza Rasouli
- Biomedical Engineering Department, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Maryam Tabrizian
- Biomedical Engineering Department, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada
- Faculty of Dentistry, McGill University, Montreal, Quebec, H3A 1G1, Canada
| |
Collapse
|
45
|
Martinez-Garcia FD, de Hilster RHJ, Sharma PK, Borghuis T, Hylkema MN, Burgess JK, Harmsen MC. Architecture and Composition Dictate Viscoelastic Properties of Organ-Derived Extracellular Matrix Hydrogels. Polymers (Basel) 2021; 13:polym13183113. [PMID: 34578013 PMCID: PMC8470996 DOI: 10.3390/polym13183113] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 01/13/2023] Open
Abstract
The proteins and polysaccharides of the extracellular matrix (ECM) provide architectural support as well as biochemical and biophysical instruction to cells. Decellularized, ECM hydrogels replicate in vivo functions. The ECM’s elasticity and water retention renders it viscoelastic. In this study, we compared the viscoelastic properties of ECM hydrogels derived from the skin, lung and (cardiac) left ventricle and mathematically modelled these data with a generalized Maxwell model. ECM hydrogels from the skin, lung and cardiac left ventricle (LV) were subjected to a stress relaxation test under uniaxial low-load compression at a 20%/s strain rate and the viscoelasticity determined. Stress relaxation data were modelled according to Maxwell. Physical data were compared with protein and sulfated GAGs composition and ultrastructure SEM. We show that the skin-ECM relaxed faster and had a lower elastic modulus than the lung-ECM and the LV-ECM. The skin-ECM had two Maxwell elements, the lung-ECM and the LV-ECM had three. The skin-ECM had a higher number of sulfated GAGs, and a highly porous surface, while both the LV-ECM and the lung-ECM had homogenous surfaces with localized porous regions. Our results show that the elasticity of ECM hydrogels, but also their viscoelastic relaxation and gelling behavior, was organ dependent. Part of these physical features correlated with their biochemical composition and ultrastructure.
Collapse
Affiliation(s)
- Francisco Drusso Martinez-Garcia
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713 GZ Groningen, The Netherlands; (F.D.M.-G.); (R.H.J.d.H.); (T.B.); (M.N.H.); (J.K.B.)
- W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands;
| | - Roderick Harold Jan de Hilster
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713 GZ Groningen, The Netherlands; (F.D.M.-G.); (R.H.J.d.H.); (T.B.); (M.N.H.); (J.K.B.)
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713 AV Groningen, The Netherlands
| | - Prashant Kumar Sharma
- W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands;
- Department of Biomedical Engineering-FB40, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Theo Borghuis
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713 GZ Groningen, The Netherlands; (F.D.M.-G.); (R.H.J.d.H.); (T.B.); (M.N.H.); (J.K.B.)
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713 AV Groningen, The Netherlands
| | - Machteld Nelly Hylkema
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713 GZ Groningen, The Netherlands; (F.D.M.-G.); (R.H.J.d.H.); (T.B.); (M.N.H.); (J.K.B.)
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713 AV Groningen, The Netherlands
| | - Janette Kay Burgess
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713 GZ Groningen, The Netherlands; (F.D.M.-G.); (R.H.J.d.H.); (T.B.); (M.N.H.); (J.K.B.)
- W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands;
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713 AV Groningen, The Netherlands
| | - Martin Conrad Harmsen
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713 GZ Groningen, The Netherlands; (F.D.M.-G.); (R.H.J.d.H.); (T.B.); (M.N.H.); (J.K.B.)
- W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands;
- Correspondence:
| |
Collapse
|
46
|
Vinje JB, Guadagno NA, Progida C, Sikorski P. Analysis of Actin and Focal Adhesion Organisation in U2OS Cells on Polymer Nanostructures. NANOSCALE RESEARCH LETTERS 2021; 16:143. [PMID: 34524556 PMCID: PMC8443752 DOI: 10.1186/s11671-021-03598-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND In this work, we explore how U2OS cells are affected by arrays of polymer nanopillars fabricated on flat glass surfaces. We focus on describing changes to the organisation of the actin cytoskeleton and in the location, number and shape of focal adhesions. From our findings we identify that the cells can be categorised into different regimes based on their spreading and adhesion behaviour on nanopillars. A quantitative analysis suggests that cells seeded on dense nanopillar arrays are suspended on top of the pillars with focal adhesions forming closer to the cell periphery compared to flat surfaces or sparse pillar arrays. This change is analogous to similar responses for cells seeded on soft substrates. RESULTS In this work, we explore how U2OS cells are affected by arrays of polymer nanopillars fabricated on flat glass surfaces. We focus on describing changes to the organisation of the actin cytoskeleton and in the location, number and shape of focal adhesions. From our findings we identify that the cells can be categorised into different regimes based on their spreading and adhesion behaviour on nanopillars. A quantitative analysis suggests that cells seeded on dense nanopillar arrays are suspended on top of the pillars with focal adhesions forming closer to the cell periphery compared to flat surfaces or sparse pillar arrays. This change is analogous to similar responses for cells seeded on soft substrates. CONCLUSION Overall, we show that the combination of high throughput nanofabrication, advanced optical microscopy, molecular biology tools to visualise cellular processes and data analysis can be used to investigate how cells interact with nanostructured surfaces and will in the future help to create culture substrates that induce particular cell function.
Collapse
Affiliation(s)
- Jakob B Vinje
- Department of Physics, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
- Department of Electronic Systems, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | | | - Cinzia Progida
- Department of Biosciences, University of Oslo (UiO), Oslo, Norway
| | - Pawel Sikorski
- Department of Physics, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
47
|
Tan ML, Ling L, Fischbach C. Engineering strategies to capture the biological and biophysical tumor microenvironment in vitro. Adv Drug Deliv Rev 2021; 176:113852. [PMID: 34197895 PMCID: PMC8440401 DOI: 10.1016/j.addr.2021.113852] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/11/2022]
Abstract
Despite decades of research and advancements in diagnostic and treatment modalities, cancer remains a major global healthcare challenge. This is due in part to a lack of model systems that allow investigating the mechanisms underlying tumor development, progression, and therapy resistance under relevant conditions in vitro. Tumor cell interactions with their surroundings influence all stages of tumorigenesis and are shaped by both biological and biophysical cues including cell-cell and cell-extracellular matrix (ECM) interactions, tissue architecture and mechanics, and mass transport. Engineered tumor models provide promising platforms to elucidate the individual and combined contributions of these cues to tumor malignancy under controlled and physiologically relevant conditions. This review will summarize current knowledge of the biological and biophysical microenvironmental cues that influence tumor development and progression, present examples of in vitro model systems that are presently used to study these interactions and highlight advancements in tumor engineering approaches to further improve these technologies.
Collapse
Affiliation(s)
- Matthew L Tan
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Lu Ling
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
48
|
Slay EE, Meldrum FC, Pensabene V, Amer MH. Embracing Mechanobiology in Next Generation Organ-On-A-Chip Models of Bone Metastasis. FRONTIERS IN MEDICAL TECHNOLOGY 2021; 3:722501. [PMID: 35047952 PMCID: PMC8757701 DOI: 10.3389/fmedt.2021.722501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/09/2021] [Indexed: 12/31/2022] Open
Abstract
Bone metastasis in breast cancer is associated with high mortality. Biomechanical cues presented by the extracellular matrix play a vital role in driving cancer metastasis. The lack of in vitro models that recapitulate the mechanical aspects of the in vivo microenvironment hinders the development of novel targeted therapies. Organ-on-a-chip (OOAC) platforms have recently emerged as a new generation of in vitro models that can mimic cell-cell interactions, enable control over fluid flow and allow the introduction of mechanical cues. Biomaterials used within OOAC platforms can determine the physical microenvironment that cells reside in and affect their behavior, adhesion, and localization. Refining the design of OOAC platforms to recreate microenvironmental regulation of metastasis and probe cell-matrix interactions will advance our understanding of breast cancer metastasis and support the development of next-generation metastasis-on-a-chip platforms. In this mini-review, we discuss the role of mechanobiology on the behavior of breast cancer and bone-residing cells, summarize the current capabilities of OOAC platforms for modeling breast cancer metastasis to bone, and highlight design opportunities offered by the incorporation of mechanobiological cues in these platforms.
Collapse
Affiliation(s)
- Ellen E. Slay
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | | | - Virginia Pensabene
- School of School of Electronic and Electrical Engineering, University of Leeds, Leeds, United Kingdom
- School of Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom
| | - Mahetab H. Amer
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
49
|
Ullm F, Pompe T. Fibrillar biopolymer-based scaffolds to study macrophage-fibroblast crosstalk in wound repair. Biol Chem 2021; 402:1309-1324. [PMID: 34392640 DOI: 10.1515/hsz-2021-0164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/09/2021] [Indexed: 01/02/2023]
Abstract
Controlled wound healing requires a temporal and spatial coordination of cellular activities within the surrounding extracellular matrix (ECM). Disruption of cell-cell and cell-matrix communication results in defective repair, like chronic or fibrotic wounds. Activities of macrophages and fibroblasts crucially contribute to the fate of closing wounds. To investigate the influence of the ECM as an active part controlling cellular behavior, coculture models based on fibrillar 3D biopolymers such as collagen have already been successfully used. With well-defined biochemical and biophysical properties such 3D scaffolds enable in vitro studies on cellular processes including infiltration and differentiation in an in vivo like microenvironment. Further, paracrine and autocrine signaling as well as modulation of soluble mediator transport inside the ECM can be modeled using fibrillar 3D scaffolds. Herein, we review the usage of these scaffolds in in vitro coculture models allowing in-depth studies on the crosstalk between macrophages and fibroblasts during different stages of cutaneous wound healing. A more accurate mimicry of the various processes of cellular crosstalk at the different stages of wound healing will contribute to a better understanding of the impact of biochemical and biophysical environmental parameters and help to develop further strategies against diseases such as fibrosis.
Collapse
Affiliation(s)
- Franziska Ullm
- Faculty of Life Sciences, Institute of Biochemistry, Leipzig University, D-04103Leipzig, Germany
| | - Tilo Pompe
- Faculty of Life Sciences, Institute of Biochemistry, Leipzig University, D-04103Leipzig, Germany
| |
Collapse
|
50
|
Chakraborty S, DePalma TJ, Skardal A. Increasing Accuracy of In Vitro Cancer Models: Engineering Stromal Complexity into Tumor Organoid Platforms. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Srija Chakraborty
- Department of Biomedical Engineering The Ohio State University 3022 Fontana Labs 140 W. 19th Avenue Columbus OH 43210 USA
| | - Thomas J. DePalma
- Department of Biomedical Engineering The Ohio State University 3022 Fontana Labs 140 W. 19th Avenue Columbus OH 43210 USA
| | - Aleksander Skardal
- Department of Biomedical Engineering The Ohio State University 3022 Fontana Labs 140 W. 19th Avenue Columbus OH 43210 USA
- Center for Cancer Engineering The Ohio State University and Arthur G. James Comprehensive Cancer Center Columbus OH 43210 USA
| |
Collapse
|