1
|
Le Meur M, Pignatelli J, Blasi P, Palomo V. Nanoparticles targeting the central circadian clock: Potential applications for neurological disorders. Adv Drug Deliv Rev 2025; 220:115561. [PMID: 40120723 DOI: 10.1016/j.addr.2025.115561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
Circadian rhythms and their involvement with various human diseases, including neurological disorders, have become an intense area of research for the development of new pharmacological treatments. The location of the circadian clock machinery in the central nervous system makes it challenging to reach molecular targets at therapeutic concentrations. In addition, a timely administration of the therapeutic agents is necessary to efficiently modulate the circadian clock. Thus, the use of nanoparticles in circadian clock dysfunctions may accelerate their clinical translation by addressing these two key challenges: enhancing brain penetration and/or enabling their formulation in chronodelivery systems. This review describes the implications of the circadian clock in neurological pathologies, reviews potential molecular targets and their modulators and suggests how the use of nanoparticle-based formulations could improve their clinical success. Finally, the potential integration of nanoparticles into chronopharmaceutical drug delivery systems will be described.
Collapse
Affiliation(s)
- Marion Le Meur
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049 Madrid, Spain; Dipartimento di Farmacia e Biotecnologie (FaBiT), Alma Mater Studiorum - Università di Bologna, 40127 Bologna, Italy
| | - Jaime Pignatelli
- Cajal Institute, Consejo Superior de Investigaciones Científicas (CSIC), 28002 Madrid, Spain; Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Paolo Blasi
- Dipartimento di Farmacia e Biotecnologie (FaBiT), Alma Mater Studiorum - Università di Bologna, 40127 Bologna, Italy.
| | - Valle Palomo
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049 Madrid, Spain; Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; Unidad de Nanobiotecnología asociada al Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain.
| |
Collapse
|
2
|
Maruf A, Milewska M, Dudzisz K, Lalik A, Student S, Salvati A, Wandzik I. Trehalose-Releasing Nanogels: Study on Trehalose Release and Insights into Selected Biologically Relevant Aspects. Biomacromolecules 2025. [PMID: 40228144 DOI: 10.1021/acs.biomac.4c01505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Trehalose has sparked considerable interest in a variety of pharmaceutical applications as well as in cryopreservation. Recently, there have been growing efforts in the development of trehalose delivery nanocarriers to address the issue of the poor bioavailability of trehalose. The majority of the strategies comprise physical entrapment of trehalose, since its covalent, yet biolabile, conjugation is challenging. Here, we present research on trehalose-releasing nanogels, in which covalent, yet biolabile, conjugation of trehalose was achieved through the co-incorporation of trehalose (meth)acrylate(s) together with hydrophilic primary/secondary acrylamides in one polymeric network. In this case, the primary and secondary amide groups participated in ester hydrolysis in the (meth)acrylate units, making the hydrolysis feasible under physiologically relevant conditions. A set of nanogels with precisely selected compositions were synthesized, characterized, and then studied to evaluate the influence of various structural and environmental factors on the release rate of trehalose. The study also provides insights into some other aspects that are important in view of potential biomedical applications, including specific interactions of nanogels through their terminal α-d-glucopyranosyl moieties from pendant trehalose, protein corona formation, and cellular uptake.
Collapse
Affiliation(s)
- Ali Maruf
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, Gliwice, 44-100 Poland
- Biotechnology Center, Silesian University of Technology, Krzywoustego 8, Gliwice 44-100, Poland
| | - Małgorzata Milewska
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, Gliwice, 44-100 Poland
- Biotechnology Center, Silesian University of Technology, Krzywoustego 8, Gliwice 44-100, Poland
| | - Katarzyna Dudzisz
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, Gliwice, 44-100 Poland
- Biotechnology Center, Silesian University of Technology, Krzywoustego 8, Gliwice 44-100, Poland
- Joint Doctoral School, Silesian University of Technology, Akademicka 2A, Gliwice 44-100, Poland
| | - Anna Lalik
- Biotechnology Center, Silesian University of Technology, Krzywoustego 8, Gliwice 44-100, Poland
- Department of Systems Biology and Engineering, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Akademicka 16, Gliwice 44-100, Poland
| | - Sebastian Student
- Biotechnology Center, Silesian University of Technology, Krzywoustego 8, Gliwice 44-100, Poland
- Department of Systems Biology and Engineering, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Akademicka 16, Gliwice 44-100, Poland
| | - Anna Salvati
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Ilona Wandzik
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, Gliwice, 44-100 Poland
- Biotechnology Center, Silesian University of Technology, Krzywoustego 8, Gliwice 44-100, Poland
| |
Collapse
|
3
|
Dong N, Ali-Khiavi P, Ghavamikia N, Pakmehr S, Sotoudegan F, Hjazi A, Gargari MK, Gargari HK, Behnamrad P, Rajabi M, Elhami A, Saffarfar H, Nourizadeh M. Nanomedicine in the treatment of Alzheimer's disease: bypassing the blood-brain barrier with cutting-edge nanotechnology. Neurol Sci 2025; 46:1489-1507. [PMID: 39638950 DOI: 10.1007/s10072-024-07871-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024]
Abstract
Alzheimer's disease (AD) remains a formidable challenge in the field of neurodegenerative disorders, necessitating innovative therapeutic strategies. Nanomedicine, leveraging nanomaterials, has emerged as a promising avenue for AD treatment, with a key emphasis on overcoming the blood-brain barrier (BBB) to enhance drug delivery efficiency. This review provides a comprehensive analysis of recent advancements in the application of nanomaterials for AD therapy, highlighting their unique properties and functions. The blood-brain barrier, a complex physiological barrier, poses a significant hurdle for traditional drug delivery to the brain. Nanomedicine addresses this challenge by utilizing various nanomaterials such as liposomes, polymeric nanoparticles, and metal nanoparticles. These nanocarriers enable improved drug bioavailability, sustained release, and targeted delivery to specific brain regions affected by AD pathology. The review discusses the diverse range of nanomaterials employed in AD treatment, exploring their capacity to encapsulate therapeutic agents, modulate drug release kinetics, and enhance drug stability. Additionally, the multifunctionality of nanomaterials allows for simultaneous imaging and therapy, facilitating early diagnosis and intervention. Key aspects covered include the interaction of nanomaterials with Aβ aggregates, the role of antioxidants in mitigating oxidative stress, and the potential of nanomedicine in alleviating neuroinflammation associated with AD. Furthermore, the safety, biocompatibility, and toxicity profiles of various nanomaterials are scrutinized to ensure their clinical applicability. In conclusion, this review underscores the pivotal role of nanomedicine and nanomaterials in revolutionizing AD treatment strategies. By specifically addressing BBB challenges, these innovative approaches offer new avenues for targeted drug delivery and improved therapeutic outcomes in the complex landscape of Alzheimer's disease.
Collapse
Affiliation(s)
- Nana Dong
- College of Basic Medical Sciences, China Three Gorges University, 443000, Yichang, Hubei Province, China
| | - Payam Ali-Khiavi
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Nima Ghavamikia
- Cardiovascular Research Institute, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Farzaneh Sotoudegan
- Quality Control of Medicines and Supplements Group, Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | | | | | - Parisa Behnamrad
- Department of Pharmaceutics, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Anis Elhami
- Faculty of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Saffarfar
- Cardiovascular Research Institute, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Nourizadeh
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Yang H, Tan H, Wen H, Xin P, Liu Y, Deng Z, Xu Y, Gao F, Zhang L, Ye Z, Zhang Z, Chen Y, Wang Y, Sun J, Lam JWY, Zhao Z, Kwok RTK, Qiu Z, Tang BZ. Recent Progress in Nanomedicine for the Diagnosis and Treatment of Alzheimer's Diseases. ACS NANO 2024; 18:33792-33826. [PMID: 39625718 DOI: 10.1021/acsnano.4c11966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that causes memory loss and progressive and permanent deterioration of cognitive function. The most challenging issue in combating AD is its complicated pathogenesis, which includes the deposition of amyloid β (Aβ) plaques, intracellular hyperphosphorylated tau protein, neurofibrillary tangles (NFT), etc. Despite rapid advancements in mechanistic research and drug development for AD, the currently developed drugs only improve cognitive ability and temporarily relieve symptoms but cannot prevent the development of AD. Moreover, the blood-brain barrier (BBB) creates a huge barrier to drug delivery in the brain. Therefore, effective diagnostic tools and treatments are urgently needed. In recent years, nanomedicine has provided opportunities to overcome the challenges and limitations associated with traditional diagnostics or treatments. Various types of nanoparticles (NPs) play an essential role in nanomedicine for the diagnosis and treatment of AD, acting as drug carriers to improve targeting and bioavailability across/bypass the BBB or acting as drugs directly on AD lesions. This review categorizes different types of NPs and summarizes their applications in nanomedicine for the diagnosis and treatment of AD. It also discusses the challenges associated with clinical applications and explores the latest developments and prospects of nanomedicine for AD.
Collapse
Affiliation(s)
- Han Yang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong China
| | - Haozhe Tan
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Haifei Wen
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Peikun Xin
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Yanling Liu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Ziwei Deng
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Yanning Xu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Feng Gao
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Liping Zhang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Ziyue Ye
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Zicong Zhang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Yunhao Chen
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Yueze Wang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Jianwei Sun
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong China
| | - Jacky W Y Lam
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong China
| | - Zheng Zhao
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Ryan T K Kwok
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong China
| | - Zijie Qiu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong China
| |
Collapse
|
5
|
Naselli F, Volpes S, Cardinale PS, Palumbo FS, Cancilla F, Lopresti F, Villanova V, Girgenti A, Nuzzo D, Caradonna F, Picone P. New Nanovesicles from Prickly Pear Fruit Juice: A Resource with Antioxidant, Anti-Inflammatory, and Nutrigenomic Properties. Cells 2024; 13:1756. [PMID: 39513863 PMCID: PMC11544800 DOI: 10.3390/cells13211756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Plant-derived nanovesicles represent a novel approach in the field of plant-derived biomaterials, offering a sustainable and biocompatible option for various biomedical applications. The unique properties of these vesicles, such as their ability to encapsulate bioactive compounds, make them suitable for therapeutic, cosmetic, and nutraceutical purposes. In this study, we have, for the first time, successfully bio-fabricated vesicles derived from Opuntia ficus-indica (FicoVes) using an efficient and cost-effective method. Characterized by a size of approximately of 114 nm and a negative zeta potential of -20.9 mV, FicoVes exhibited excellent biocompatibility and hemocompatibility, showing no reduction in the viability of human and animal cells. Our results showed that FicoVes possess significant antioxidant properties as they reduced ROS generation in TBH-stimulated cells. FicoVes displayed anti-inflammatory properties by reducing the expression of pro-inflammatory cytokines (Il 1β, TNF α) and enhancing the expression of anti-inflammatory cytokines (IL4, IL10) following an inflammatory stimulus. Furthermore, FicoVes accelerated epithelial wound closure in L929 fibroblast monolayers in a dose-dependent manner, highlighting their potential role in tissue repair. This study establishes FicoVes as a promising candidate for nutrigenomic applications, particularly in the context of inflammation-related disorders and wound healing. Further research, including in vivo studies, is essential to validate these findings and fully explore their therapeutic potential.
Collapse
Affiliation(s)
- Flores Naselli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Building 16, 90128 Palermo, Italy; (S.V.); (P.S.C.); (F.S.P.); (F.C.); (V.V.); (F.C.)
- Institute for Biomedical Research and Innovation, National Research Council of Italy, Via U. La Malfa, 153, 90146 Palermo, Italy; (A.G.); (D.N.); (P.P.)
| | - Sara Volpes
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Building 16, 90128 Palermo, Italy; (S.V.); (P.S.C.); (F.S.P.); (F.C.); (V.V.); (F.C.)
| | - Paola Sofia Cardinale
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Building 16, 90128 Palermo, Italy; (S.V.); (P.S.C.); (F.S.P.); (F.C.); (V.V.); (F.C.)
| | - Fabio Salvatore Palumbo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Building 16, 90128 Palermo, Italy; (S.V.); (P.S.C.); (F.S.P.); (F.C.); (V.V.); (F.C.)
- Institute for Biomedical Research and Innovation, National Research Council of Italy, Via U. La Malfa, 153, 90146 Palermo, Italy; (A.G.); (D.N.); (P.P.)
| | - Francesco Cancilla
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Building 16, 90128 Palermo, Italy; (S.V.); (P.S.C.); (F.S.P.); (F.C.); (V.V.); (F.C.)
| | - Francesco Lopresti
- Department of Engineering, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy;
| | - Valeria Villanova
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Building 16, 90128 Palermo, Italy; (S.V.); (P.S.C.); (F.S.P.); (F.C.); (V.V.); (F.C.)
| | - Antonella Girgenti
- Institute for Biomedical Research and Innovation, National Research Council of Italy, Via U. La Malfa, 153, 90146 Palermo, Italy; (A.G.); (D.N.); (P.P.)
| | - Domenico Nuzzo
- Institute for Biomedical Research and Innovation, National Research Council of Italy, Via U. La Malfa, 153, 90146 Palermo, Italy; (A.G.); (D.N.); (P.P.)
| | - Fabio Caradonna
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Building 16, 90128 Palermo, Italy; (S.V.); (P.S.C.); (F.S.P.); (F.C.); (V.V.); (F.C.)
- Institute for Biomedical Research and Innovation, National Research Council of Italy, Via U. La Malfa, 153, 90146 Palermo, Italy; (A.G.); (D.N.); (P.P.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Pasquale Picone
- Institute for Biomedical Research and Innovation, National Research Council of Italy, Via U. La Malfa, 153, 90146 Palermo, Italy; (A.G.); (D.N.); (P.P.)
| |
Collapse
|
6
|
Song Q, Li J, Li T, Li H. Nanomaterials that Aid in the Diagnosis and Treatment of Alzheimer's Disease, Resolving Blood-Brain Barrier Crossing Ability. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403473. [PMID: 39101248 PMCID: PMC11481234 DOI: 10.1002/advs.202403473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/04/2024] [Indexed: 08/06/2024]
Abstract
As a form of dementia, Alzheimer's disease (AD) suffers from no efficacious cure, yet AD treatment is still imperative, as it ameliorates the symptoms or prevents it from deteriorating or maintains the current status to the longest extent. The human brain is the most sensitive and complex organ in the body, which is protected by the blood-brain barrier (BBB). This yet induces the difficulty in curing AD as the drugs or nanomaterials that are much inhibited from reaching the lesion site. Thus, BBB crossing capability of drug delivery system remains a significant challenge in the development of neurological therapeutics. Fortunately, nano-enabled delivery systems possess promising potential to achieve multifunctional diagnostics/therapeutics against various targets of AD owing to their intriguing advantages of nanocarriers, including easy multifunctionalization on surfaces, high surface-to-volume ratio with large payloads, and potential ability to cross the BBB, making them capable of conquering the limitations of conventional drug candidates. This review, which focuses on the BBB crossing ability of the multifunctional nanomaterials in AD diagnosis and treatment, will provide an insightful vision that is conducive to the development of AD-related nanomaterials.
Collapse
Affiliation(s)
- Qingting Song
- Department of ChemistryThe Chinese University of Hong KongHong KongChina
| | - Junyou Li
- Department of ChemistryThe Chinese University of Hong KongHong KongChina
| | - Ting Li
- Department of ChemistryThe Chinese University of Hong KongHong KongChina
| | - Hung‐Wing Li
- Department of ChemistryThe Chinese University of Hong KongHong KongChina
| |
Collapse
|
7
|
Picone P, Palumbo FS, Cancilla F, Girgenti A, Cancemi P, Muccilli V, Francesco AD, Cimino M, Cipollina C, Soligo M, Manni L, Sferrazza G, Scalisi L, Nuzzo D. Brain biodistribution of myelin nanovesicles with targeting potential for multiple sclerosis. Acta Biomater 2024; 187:352-365. [PMID: 39159713 DOI: 10.1016/j.actbio.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024]
Abstract
Multiple sclerosis (MS) is a complex autoimmune disease with multiple players. In particular, peripheral (myelin-reactive CD4+ T lymphocytes) and central immune cells (microglia) are involved in the neuroinflammatory process and are found in MS brain lesions. New nanotechnological approaches that can cross the blood-brain barrier and specifically target the key players in the disease using biocompatible nanomaterials with low immunoreactivity represent an important challenge. To this end, nanoparticles and nanovesicles have been studied to induce immune tolerance to a wide range of myelin-derived antigens as potential approaches against MS. To this aim, we extracted myelin from bovine brain and produced myelin-based nanovesicles (MyVes) by nanoprecipitation. MyVes have a diameter of about 100 nm, negative zeta potential and contain the typical proteins of the myelin sheath. The results showed that MyVes are not cytotoxic, are hemocompatibile and do not induce an inflammatory response. In vitro experiments showed that MyVes are specifically taken up by microglial cells and are able to induce the expression of the anti-inflammatory cytokine IL-4. In addition, we have used biodistribution experiments to show that MyVes are able to reach the brain after intranasal administration. Finally, MyVes induced the production of the anti-inflammatory cytokines IL-10 and IL-4 in peripheral blood mononuclear cells isolated from MS patients. Taken together, these data provide proof of concept that MyVes may represent a safe nanosystem capable of promoting anti-inflammatory effects by modulating both central and peripheral immune cells to treat neuroinflammation in MS. STATEMENT OF SIGNIFICANCE: Recently, nanoparticles and nanovesicles have been investigated as potential approaches for the treatment of neurodegenerative diseases. We propose the use of myelin nanovesicles (MyVes) as a potential application to counteract neuroinflammation in multiple sclerosis (MS). Approximately 2.8 million people worldwide are estimated to live with MS. It is an autoimmune disease directed toward various myelin-derived antigens. Both peripheral immune cells (lymphocytes) and central immune cells (microglia) actively contribute to MS brain lesions. MyVes, due to their myelin nature, specific characteristics (size, zeta potential, and presence of myelin proteins), biocompatibility, and ability to cross the blood-brain barrier, could represent the first nanosystem capable of promoting anti-inflammatory actions by modulating both central and peripheral immune cells to treat neuroinflammation in MS.
Collapse
Affiliation(s)
- Pasquale Picone
- Istituto per la Ricerca e l'Innovazione Biomedica, CNR, via U. La Malfa 153, Palermo 90146, Italy.
| | - Fabio Salvatore Palumbo
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Viale delle Scienze, Palermo 90128, Italy
| | - Francesco Cancilla
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Viale delle Scienze, Palermo 90128, Italy
| | - Antonella Girgenti
- Istituto per la Ricerca e l'Innovazione Biomedica, CNR, via U. La Malfa 153, Palermo 90146, Italy
| | - Patrizia Cancemi
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Viale delle Scienze, Palermo 90128, Italy
| | - Vera Muccilli
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria, 6, Catania I-95125, Italy
| | - Antonella Di Francesco
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria, 6, Catania I-95125, Italy
| | | | - Chiara Cipollina
- Istituto per la Ricerca e l'Innovazione Biomedica, CNR, via U. La Malfa 153, Palermo 90146, Italy; Fondazione RiMED, Palermo, Italy
| | - Marzia Soligo
- Istituto di Farmacologia Traslazionale, CNR, Via Fosso del Cavaliere 100, Roma 00133, Italy
| | - Luigi Manni
- Istituto di Farmacologia Traslazionale, CNR, Via Fosso del Cavaliere 100, Roma 00133, Italy
| | - Gianluca Sferrazza
- Istituto di Farmacologia Traslazionale, CNR, Via Fosso del Cavaliere 100, Roma 00133, Italy; Dipartimento di Scienze Biomediche, CNR, Roma 00185, Italy
| | - Luca Scalisi
- Centro Medico di Fisioterapia Villa Sarina, Alcamo, Palermo 91011, Italy
| | - Domenico Nuzzo
- Istituto per la Ricerca e l'Innovazione Biomedica, CNR, via U. La Malfa 153, Palermo 90146, Italy.
| |
Collapse
|
8
|
Khan TTS, Sheikh Z, Maleknia S, Oveissi F, Fathi A, Abrams T, Ong HX, Traini D. Intranasal delivery of glucagon-like peptide-1 to the brain for obesity treatment: opportunities and challenges. Expert Opin Drug Deliv 2024; 21:1081-1101. [PMID: 39086086 DOI: 10.1080/17425247.2024.2387110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/04/2024] [Accepted: 07/29/2024] [Indexed: 08/02/2024]
Abstract
INTRODUCTION Glucagon-like peptide-1 receptor agonists (GLP-1 RAs), approved by the US FDA for obesity treatment, are typically administered subcutaneously, an invasive method leading to suboptimal patient adherence and peripheral side effects. Additionally, this route requires the drug to cross the restrictive blood-brain barrier (BBB), limiting its safety and effectiveness in weight management and cognitive addiction disorders. Delivering the drug intranasally could overcome these drawbacks. AREAS COVERED This review summarizes GLP-1 RAs used as anti-obesity agents, focusing on the intranasal route as a potential pathway to deliver these biomolecules to the brain. It also discusses strategies to overcome challenges associated with nasal delivery. EXPERT OPINION Nose-to-brain (N2B) pathways can address limitations of the subcutaneous route for GLP-1 RAs. However, peptide delivery to the brain is challenging due to nasal physiological barriers and the drug's physicochemical properties. Innovative approaches, such as cell permeation enhancers, mucoadhesive systems, and nanocarriers in nasal formulations, along with efficient drug delivery devices, show promising preclinical results. Despite this, successful preclinical data does not guarantee clinical effectiveness, highlighting the need for comprehensive clinical investigations to optimize formulations and fully utilize the nose-to-brain interface for peptide delivery.
Collapse
Affiliation(s)
- Tanisha Tabassum Sayka Khan
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, New South Wales, Australia
- School of Pharmacy, Brac University, Dhaka, Bangladesh
| | - Zara Sheikh
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, New South Wales, Australia
- School of Pharmacy, Brac University, Dhaka, Bangladesh
| | - Simin Maleknia
- Tetratherix Technology Pty Ltd, Sydney, New South Wales, Australia
| | - Farshad Oveissi
- Tetratherix Technology Pty Ltd, Sydney, New South Wales, Australia
- School of Chemical and Biomolecular Engineering, The University of Sydney, Camperdown, New South Wales, Australia
| | - Ali Fathi
- Tetratherix Technology Pty Ltd, Sydney, New South Wales, Australia
- School of Chemical and Biomolecular Engineering, The University of Sydney, Camperdown, New South Wales, Australia
| | - Terence Abrams
- Tetratherix Technology Pty Ltd, Sydney, New South Wales, Australia
| | - Hui Xin Ong
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, New South Wales, Australia
| | - Daniela Traini
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, New South Wales, Australia
| |
Collapse
|
9
|
Ansari MA, Tripathi T, Venkidasamy B, Monziani A, Rajakumar G, Alomary MN, Alyahya SA, Onimus O, D'souza N, Barkat MA, Al-Suhaimi EA, Samynathan R, Thiruvengadam M. Multifunctional Nanocarriers for Alzheimer's Disease: Befriending the Barriers. Mol Neurobiol 2024; 61:3042-3089. [PMID: 37966683 DOI: 10.1007/s12035-023-03730-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023]
Abstract
Neurodegenerative diseases (NDDs) have been increasing in incidence in recent years and are now widespread worldwide. Neuronal death is defined as the progressive loss of neuronal structure or function which is closely associated with NDDs and represents the intrinsic features of such disorders. Amyotrophic lateral sclerosis, frontotemporal dementia, Alzheimer's, Parkinson's, and Huntington's diseases (AD, PD, and HD, respectively) are considered neurodegenerative diseases that affect a large number of people worldwide. Despite the testing of various drugs, there is currently no available therapy that can remedy or effectively slow the progression of these diseases. Nanomedicine has the potential to revolutionize drug delivery for the management of NDDs. The use of nanoparticles (NPs) has recently been developed to improve drug delivery efficiency and is currently subjected to extensive studies. Nanoengineered particles, known as nanodrugs, can cross the blood-brain barrier while also being less invasive compared to the most treatment strategies in use. Polymeric, magnetic, carbonic, and inorganic NPs are examples of NPs that have been developed to improve drug delivery efficiency. Primary research studies using NPs to cure AD are promising, but thorough research is needed to introduce these approaches to clinical use. In the present review, we discussed the role of metal-based NPs, polymeric nanogels, nanocarrier systems such as liposomes, solid lipid NPs, polymeric NPs, exosomes, quantum dots, dendrimers, polymersomes, carbon nanotubes, and nanofibers and surfactant-based systems for the therapy of neurodegenerative diseases. In addition, we highlighted nanoformulations such as N-butyl cyanoacrylate, poly(butyl cyanoacrylate), D-penicillamine, citrate-coated peptide, magnetic iron oxide, chitosan (CS), lipoprotein, ceria, silica, metallic nanoparticles, cholinesterase inhibitors, an acetylcholinesterase inhibitors, metal chelators, anti-amyloid, protein, and peptide-loaded NPs for the treatment of AD.
Collapse
Affiliation(s)
- Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Takshashila Tripathi
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Alan Monziani
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Govindasamy Rajakumar
- Department of Orthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Mohammad N Alomary
- Advanced Diagnostic and Therapeutic Institute, King Abdulaziz City for Science and Technology, 11442, Riyadh, Saudi Arabia
| | - Sami A Alyahya
- Wellness and Preventive Medicine Institute, King Abdulaziz City for Science and Technology, 11442, Riyadh, Saudi Arabia
| | - Oriane Onimus
- Faculty of Basic and Biomedical Sciences, University of Paris, Paris, France
| | - Naomi D'souza
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Md Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Hafr Al-Batin, Saudi Arabia
| | - Ebtesam A Al-Suhaimi
- Research Consultation Department, Vice Presidency for Scientific Research and Innovation, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Ramkumar Samynathan
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
10
|
Rana MM, Arifuzzaman M, Akhtar N, Haque MR, Sarkar SK, Nurunnobi M, Sarder MA, Asaduzzaman SM. Physically cross-linked scaffold composed of hydroxyapatite-chitosan-alginate-polyamide has potential to trigger bone regeneration in craniofacial defect. JOURNAL OF POLYMER ENGINEERING 2024; 44:211-222. [DOI: 10.1515/polyeng-2022-0205] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Abstract
Recently, the fabrication of a scaffold from biomaterials has been increased due to the lack of adequate natural bone for grafting. In this study, hydroxyapatite-chitosan-alginate-polyamide (HCAP) synthetic scaffold was fabricated using the thermally induced phase separation (TIPS) technique. The scaffold was cross-linked with either a chemical cross-linker (calcium chloride, 2-hydroxyethyl methacrylate (HEMA), or glutaraldehyde (GTA)) or a physical cross-linker (gamma irradiation (IR)) resulting in scaffolds HCAP-CaCl2, HCAP-HEMA, HCAP-GTA, and HCAP-IR, respectively. The cross-linked scaffolds were characterized based on physicochemical properties, cytotoxicity, and biocompatibility. HCAP-GTA showed the highest density and the lowest swelling ratio and biodegradation rate closely matching with those of the HCAP-IR. Porosity and density of the HCAP, HCAP-IR, and HCAP-GTA scaffolds were 92.14, 87.26, and 83.33 %, and 0.241, 0.307, and 0.335 g/cm3, respectively. The swelling ratio for the same scaffolds was 149, 110, and 108 % after 72 h of observation. Brine shrimp cytotoxicity and RBC biocompatibility assay confirmed the non-toxic nature of HCAP-IR and HCAP-GTA scaffolds. The HCAP-IR scaffold was tested for bone regeneration in the rabbit mandible defect model. Histological analysis revealed the regeneration of new bone and restoration of bone defect at the site of injury. These findings indicate that radiation induced physically cross-linked HCAP scaffold could be used as an alternative in bone defect replacement therapy.
Collapse
Affiliation(s)
- Md. Masud Rana
- Institute of Tissue Banking and Biomaterial Research , Atomic Energy Research Establishment , Dhaka , 1349 , Bangladesh
| | - Md. Arifuzzaman
- Institute of Tissue Banking and Biomaterial Research , Atomic Energy Research Establishment , Dhaka , 1349 , Bangladesh
| | - Naznin Akhtar
- Institute of Tissue Banking and Biomaterial Research , Atomic Energy Research Establishment , Dhaka , 1349 , Bangladesh
| | | | | | - Md. Nurunnobi
- Department of Pharmaceutical Sciences, School of Pharmacy , University of Texas at El Paso , El Paso , TX , 79902 , USA
| | - Md. Aliuzzaman Sarder
- Engineering Division , Bangladesh Atomic energy Commission , Dhaka , 1207 , Bangladesh
| | - Sikder M. Asaduzzaman
- Institute of Tissue Banking and Biomaterial Research , Atomic Energy Research Establishment , Dhaka , 1349 , Bangladesh
| |
Collapse
|
11
|
Cooper CG, Kafetzis KN, Patabendige A, Tagalakis AD. Blood-brain barrier disruption in dementia: Nano-solutions as new treatment options. Eur J Neurosci 2024; 59:1359-1385. [PMID: 38154805 DOI: 10.1111/ejn.16229] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/30/2023]
Abstract
Candidate drugs targeting the central nervous system (CNS) demonstrate extremely low clinical success rates, with more than 98% of potential treatments being discontinued due to poor blood-brain barrier (BBB) permeability. Neurological conditions were shown to be the second leading cause of death globally in 2016, with the number of people currently affected by neurological disorders increasing rapidly. This increasing trend, along with an inability to develop BBB permeating drugs, is presenting a major hurdle in the treatment of CNS-related disorders, like dementia. To overcome this, it is necessary to understand the structure and function of the BBB, including the transport of molecules across its interface in both healthy and pathological conditions. The use of CNS drug carriers is rapidly gaining popularity in CNS research due to their ability to target BBB transport systems. Further research and development of drug delivery vehicles could provide essential information that can be used to develop novel treatments for neurological conditions. This review discusses the BBB and its transport systems and evaluates the potential of using nanoparticle-based delivery systems as drug carriers for CNS disease with a focus on dementia.
Collapse
Affiliation(s)
| | | | - Adjanie Patabendige
- Department of Biology, Edge Hill University, Ormskirk, UK
- Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool, UK
| | - Aristides D Tagalakis
- Department of Biology, Edge Hill University, Ormskirk, UK
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
12
|
Jamshidnejad-Tosaramandani T, Kashanian S, Karimi I, Schiöth HB. Synthesis of a Rivastigmine and Insulin Combinational Mucoadhesive Nanoparticle for Intranasal Delivery. Polymers (Basel) 2024; 16:510. [PMID: 38399888 PMCID: PMC10891873 DOI: 10.3390/polym16040510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Efficient drug delivery remains a critical challenge for treating neurodegenerative diseases, such as Alzheimer's disease (AD). Using innovative nanomaterials, delivering current medications like acetylcholinesterase inhibitors to the brain through the intranasal route is a promising strategy for managing AD. Here, we developed a unique combinational drug delivery system based on N,N,N-trimethyl chitosan nanoparticles (NPs). These NPs encapsulate rivastigmine, the most potent acetylcholinesterase inhibitor, along with insulin, a complementary therapeutic agent. The spherical NPs exhibited a zeta potential of 17.6 mV, a size of 187.00 nm, and a polydispersity index (PDI) of 0.29. Our findings demonstrate significantly improved drug transport efficiency through sheep nasal mucosa using the NPs compared to drug solutions. The NPs exhibited transport efficiencies of 73.3% for rivastigmine and 96.9% for insulin, surpassing the efficiencies of the drug solutions, which showed transport efficiencies of 52% for rivastigmine and 21% for insulin ex vivo. These results highlight the potential of a new drug delivery system as a promising approach for enhancing nasal transport efficiency. These combinational mucoadhesive NPs offer a novel strategy for the simultaneous cerebral delivery of rivastigmine and insulin, which could prove helpful in developing effective treatments of AD and other neurodegenerative conditions.
Collapse
Affiliation(s)
- Tahereh Jamshidnejad-Tosaramandani
- Nanobiotechnology Department, Faculty of Innovative Science and Technology, Razi University, Kermanshah 6714414971, Iran;
- Laboratory for Computational Physiology, Department of Biology, Faculty of Science, Razi University, Kermanshah 6714414971, Iran;
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Uppsala University, 62167 Uppsala, Sweden
| | - Soheila Kashanian
- Nanobiotechnology Department, Faculty of Innovative Science and Technology, Razi University, Kermanshah 6714414971, Iran;
- Faculty of Chemistry, Sensor and Biosensor Research Center (SBRC), Razi University, Kermanshah 6714414971, Iran
| | - Isaac Karimi
- Laboratory for Computational Physiology, Department of Biology, Faculty of Science, Razi University, Kermanshah 6714414971, Iran;
| | - Helgi B. Schiöth
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Uppsala University, 62167 Uppsala, Sweden
| |
Collapse
|
13
|
Garg A, Shah K, Chauhan CS, Agrawal R. Ingenious nanoscale medication delivery system: Nanogel. J Drug Deliv Sci Technol 2024; 92:105289. [DOI: 10.1016/j.jddst.2023.105289] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
14
|
Chu J, Zhang W, Liu Y, Gong B, Ji W, Yin T, Gao C, Liangwen D, Hao M, Chen C, Zhuang J, Gao J, Yin Y. Biomaterials-based anti-inflammatory treatment strategies for Alzheimer's disease. Neural Regen Res 2024; 19:100-115. [PMID: 37488851 PMCID: PMC10479833 DOI: 10.4103/1673-5374.374137] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/28/2023] [Accepted: 03/28/2023] [Indexed: 07/26/2023] Open
Abstract
The current therapeutic drugs for Alzheimer's disease only improve symptoms, they do not delay disease progression. Therefore, there is an urgent need for new effective drugs. The underlying pathogenic factors of Alzheimer's disease are not clear, but neuroinflammation can link various hypotheses of Alzheimer's disease; hence, targeting neuroinflammation may be a new hope for Alzheimer's disease treatment. Inhibiting inflammation can restore neuronal function, promote neuroregeneration, reduce the pathological burden of Alzheimer's disease, and improve or even reverse symptoms of Alzheimer's disease. This review focuses on the relationship between inflammation and various pathological hypotheses of Alzheimer's disease; reports the mechanisms and characteristics of small-molecule drugs (e.g., nonsteroidal anti-inflammatory drugs, neurosteroids, and plant extracts); macromolecule drugs (e.g., peptides, proteins, and gene therapeutics); and nanocarriers (e.g., lipid-based nanoparticles, polymeric nanoparticles, nanoemulsions, and inorganic nanoparticles) in the treatment of Alzheimer's disease. The review also makes recommendations for the prospective development of anti-inflammatory strategies based on nanocarriers for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Jianjian Chu
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Weicong Zhang
- School of Pharmacy, University College London, London, UK
| | - Yan Liu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine; Clinical Pharmacy Innovation Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baofeng Gong
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Wenbo Ji
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Tong Yin
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Chao Gao
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Danqi Liangwen
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Mengqi Hao
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Cuimin Chen
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jianhua Zhuang
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - You Yin
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
| |
Collapse
|
15
|
Ghosh S, Ghosh S, Sharma H, Bhaskar R, Han SS, Sinha JK. Harnessing the power of biological macromolecules in hydrogels for controlled drug release in the central nervous system: A review. Int J Biol Macromol 2024; 254:127708. [PMID: 37923043 DOI: 10.1016/j.ijbiomac.2023.127708] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
Hydrogels have immense potential in revolutionizing central nervous system (CNS) drug delivery, improving outcomes for neurological disorders. They serve as promising tools for controlled drug delivery to the CNS. Available hydrogel types include natural macromolecules (e.g., chitosan, hyaluronic acid, alginate), as well as hybrid hydrogels combining natural and synthetic polymers. Each type offers distinct advantages in terms of biocompatibility, mechanical properties, and drug release kinetics. Design and engineering considerations encompass hydrogel composition, crosslinking density, porosity, and strategies for targeted drug delivery. The review emphasizes factors affecting drug release profiles, such as hydrogel properties and formulation parameters. CNS drug delivery applications of hydrogels span a wide range of therapeutics, including small molecules, proteins and peptides, and nucleic acids. However, challenges like limited biodegradability, clearance, and effective CNS delivery persist. Incorporating 3D bioprinting technology with hydrogel-based CNS drug delivery holds the promise of highly personalized and precisely controlled therapeutic interventions for neurological disorders. The review explores emerging technologies like 3D bioprinting and nanotechnology as opportunities for enhanced precision and effectiveness in hydrogel-based CNS drug delivery. Continued research, collaboration, and technological advancements are vital for translating hydrogel-based therapies into clinical practice, benefiting patients with CNS disorders. This comprehensive review article delves into hydrogels for CNS drug delivery, addressing their types, design principles, applications, challenges, and opportunities for clinical translation.
Collapse
Affiliation(s)
- Shampa Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida, Uttar Pradesh 201301, India; ICMR - National Institute of Nutrition, Tarnaka, Hyderabad, Telangana 500007, India
| | - Soumya Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida, Uttar Pradesh 201301, India
| | - Hitaishi Sharma
- GloNeuro, Sector 107, Vishwakarma Road, Noida, Uttar Pradesh 201301, India
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeonsang 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeonsang 38541, Republic of Korea.
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeonsang 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeonsang 38541, Republic of Korea.
| | | |
Collapse
|
16
|
Dighe S, Jog S, Momin M, Sawarkar S, Omri A. Intranasal Drug Delivery by Nanotechnology: Advances in and Challenges for Alzheimer's Disease Management. Pharmaceutics 2023; 16:58. [PMID: 38258068 PMCID: PMC10820353 DOI: 10.3390/pharmaceutics16010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/11/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Alzheimer's disease, a progressive neurodegenerative condition, is characterized by a gradual decline in cognitive functions. Current treatment approaches primarily involve the administration of medications through oral, parenteral, and transdermal routes, aiming to improve cognitive function and alleviate symptoms. However, these treatments face limitations, such as low bioavailability and inadequate permeation. Alternative invasive methods, while explored, often entail discomfort and require specialized assistance. Therefore, the development of a non-invasive and efficient delivery system is crucial. Intranasal delivery has emerged as a potential solution, although it is constrained by the unique conditions of the nasal cavity. An innovative approach involves the use of nano-carriers based on nanotechnology for intranasal delivery. This strategy has the potential to overcome current limitations by providing enhanced bioavailability, improved permeation, effective traversal of the blood-brain barrier, extended retention within the body, and precise targeting of the brain. The comprehensive review focuses on the advancements in designing various types of nano-carriers, including polymeric nanoparticles, metal nanoparticles, lipid nanoparticles, liposomes, nanoemulsions, Quantum dots, and dendrimers. These nano-carriers are specifically tailored for the intranasal delivery of therapeutic agents aimed at combatting Alzheimer's disease. In summary, the development and utilization of intranasal delivery systems based on nanotechnology show significant potential in surmounting the constraints of current Alzheimer's disease treatment strategies. Nevertheless, it is essential to acknowledge regulatory as well as toxicity concerns associated with this route; meticulous consideration is required when engineering a carrier. This comprehensive review underscores the potential to revolutionize Alzheimer's disease management and highlights the importance of addressing regulatory considerations for safe and effective implementations. Embracing this strategy could lead to substantial advancements in the field of Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Sayali Dighe
- Department of Pharmaceutics, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai 400056, India
| | - Sunil Jog
- Department of Pharmaceutics, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai 400056, India
- Indoco Remedies Private Limited, Mumbai 400098, India
| | - Munira Momin
- Department of Pharmaceutics, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai 400056, India
| | - Sujata Sawarkar
- Department of Pharmaceutics, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai 400056, India
| | - Abdelwahab Omri
- The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
17
|
Zhang X, Wang M, Liu Z, Wang Y, Chen L, Guo J, Zhang W, Zhang Y, Yu C, Bie T, Yu Y, Guan B. Transnasal-brain delivery of nanomedicines for neurodegenerative diseases. FRONTIERS IN DRUG DELIVERY 2023; 3. [DOI: 10.3389/fddev.2023.1247162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
Neurodegenerative diseases (NDs) have become a serious global health problem as the population ages. Traditionally, treatment strategies for NDs have included oral and intravenous administration; however, the blood–brain barrier (BBB) can prevent drugs from reaching the brain, rendering the treatment incomplete and the effect unsatisfactory. Additionally, the prolonged or excessive use of drugs that can cross the BBB can damage liver and kidney function. Recent studies have shown that nose-to-brain drug delivery can noninvasively bypass the BBB, allowing drugs to enter the brain through the olfactory or trigeminal nerve pathways; additionally, nanoparticle carriers can enhance drug delivery. This review introduces drug carrier nanoparticles for nose-to-brain delivery systems, compares the advantages and disadvantages of different nanoparticles, and discusses the factors influencing nose-to-brain nanomedicine delivery and enhancement strategies. We also summarize nose-to-brain delivery and nanomedicines for treating NDs, the current challenges of this approach, and the future promise of nanomedicine-based ND treatment.
Collapse
|
18
|
Tamburini B, Badami GD, La Manna MP, Shekarkar Azgomi M, Caccamo N, Dieli F. Emerging Roles of Cells and Molecules of Innate Immunity in Alzheimer's Disease. Int J Mol Sci 2023; 24:11922. [PMID: 37569296 PMCID: PMC10418700 DOI: 10.3390/ijms241511922] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
The inflammatory response that marks Alzheimer's disease (neuroinflammation) is considered a double-edged sword. Microglia have been shown to play a protective role at the beginning of the disease. Still, persistent harmful stimuli further activate microglia, inducing an exacerbating inflammatory process which impairs β-amyloid peptide clearance capability and leads to neurotoxicity and neurodegeneration. Moreover, microglia also appear to be closely involved in the spread of tau pathology. Soluble TREM2 also represents a crucial player in the neuroinflammatory processes. Elevated levels of TREM2 in cerebrospinal fluid have been associated with increased amyloid plaque burden, neurodegeneration, and cognitive decline in individuals with Alzheimer's disease. Understanding the intricate relationship between innate immunity and Alzheimer's disease will be a promising strategy for future advancements in diagnosis and new therapeutic interventions targeting innate immunity, by modulating its activity. Still, additional and more robust studies are needed to translate these findings into effective treatments. In this review, we focus on the role of cells (microglia, astrocytes, and oligodendrocytes) and molecules (TREM2, tau, and β-amyloid) of the innate immune system in the pathogenesis of Alzheimer's disease and their possible exploitation as disease biomarkers and targets of therapeutical approaches.
Collapse
Affiliation(s)
- Bartolo Tamburini
- Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (G.D.B.); (M.P.L.M.); (M.S.A.); (F.D.)
| | - Giusto Davide Badami
- Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (G.D.B.); (M.P.L.M.); (M.S.A.); (F.D.)
| | - Marco Pio La Manna
- Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (G.D.B.); (M.P.L.M.); (M.S.A.); (F.D.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP Paolo Giaccone, 90127 Palermo, Italy
| | - Mojtaba Shekarkar Azgomi
- Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (G.D.B.); (M.P.L.M.); (M.S.A.); (F.D.)
| | - Nadia Caccamo
- Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (G.D.B.); (M.P.L.M.); (M.S.A.); (F.D.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP Paolo Giaccone, 90127 Palermo, Italy
| | - Francesco Dieli
- Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (G.D.B.); (M.P.L.M.); (M.S.A.); (F.D.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP Paolo Giaccone, 90127 Palermo, Italy
| |
Collapse
|
19
|
Vashist A, Manickam P, Raymond AD, Arias AY, Kolishetti N, Vashist A, Arias E, Nair M. Recent Advances in Nanotherapeutics for Neurological Disorders. ACS APPLIED BIO MATERIALS 2023. [PMID: 37368486 PMCID: PMC10354745 DOI: 10.1021/acsabm.3c00254] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Neurological disorders remain a significant health and economic burden worldwide. Addressing the challenges imposed by existing drugs, associated side- effects, and immune responses in neurodegenerative diseases is essential for developing better therapies. The immune activation in a diseased state has complex treatment protocols and results in hurdles for clinical translation. There is an immense need for the development of multifunctional nanotherapeutics with various properties to address the different limitations and immune interactions exhibited by the existing therapeutics. Nanotechnology has proven its potential to improve therapeutic delivery and enhance efficacy. Promising advancements have been made in developing nanotherapies that can be combined with CRISPR/Cas9 or siRNA for a targeted approach with unique potential for clinical translation. Engineering natural exosomes derived from mesenchymal stem cells (MSCs), dendritic cells (DCs), or macrophages to both deliver therapeutics and modulate the immune responses to tumors or in neurodegenerative disease (ND) can allow for targeted personalized therapeutic approaches. In the present review, we summarize and overview the recent advances in nanotherapeutics in addressing the existing treatment limitations and neuroimmune interactions for developing ND therapies and provide insights into the upcoming advancements in nanotechnology-based nanocarriers.
Collapse
Affiliation(s)
- Arti Vashist
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
| | - Pandiaraj Manickam
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), CSIR-CECRI Campus, Karaikudi, 630 003 Tamil Nadu, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002 Uttar Pradesh, India
| | - Andrea D Raymond
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
| | - Adriana Yndart Arias
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
| | - Nagesh Kolishetti
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
| | - Atul Vashist
- Department of Infection & Immunology, Translational Health Science and Technology, Faridabad, 121001 Haryana, India
| | - Emanuel Arias
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
| | - Madhavan Nair
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
20
|
Bagheri S, Haddadi R, Saki S, Kourosh-Arami M, Rashno M, Mojaver A, Komaki A. Neuroprotective effects of coenzyme Q10 on neurological diseases: a review article. Front Neurosci 2023; 17:1188839. [PMID: 37424991 PMCID: PMC10326389 DOI: 10.3389/fnins.2023.1188839] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/22/2023] [Indexed: 07/11/2023] Open
Abstract
Neurological disorders affect the nervous system. Biochemical, structural, or electrical abnormalities in the spinal cord, brain, or other nerves lead to different symptoms, including muscle weakness, paralysis, poor coordination, seizures, loss of sensation, and pain. There are many recognized neurological diseases, like epilepsy, Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), stroke, autosomal recessive cerebellar ataxia 2 (ARCA2), Leber's hereditary optic neuropathy (LHON), and spinocerebellar ataxia autosomal recessive 9 (SCAR9). Different agents, such as coenzyme Q10 (CoQ10), exert neuroprotective effects against neuronal damage. Online databases, such as Scopus, Google Scholar, Web of Science, and PubMed/MEDLINE were systematically searched until December 2020 using keywords, including review, neurological disorders, and CoQ10. CoQ10 is endogenously produced in the body and also can be found in supplements or foods. CoQ10 has antioxidant and anti-inflammatory effects and plays a role in energy production and mitochondria stabilization, which are mechanisms, by which CoQ10 exerts its neuroprotective effects. Thus, in this review, we discussed the association between CoQ10 and neurological diseases, including AD, depression, MS, epilepsy, PD, LHON, ARCA2, SCAR9, and stroke. In addition, new therapeutic targets were introduced for the next drug discoveries.
Collapse
Affiliation(s)
- Shokufeh Bagheri
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rasool Haddadi
- Department of Pharmacology, School of Pharmacy, Hamadan University of Medical Science, Hamadan, Iran
| | - Sahar Saki
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoumeh Kourosh-Arami
- Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masome Rashno
- Asadabad School of Medical Sciences, Asadabad, Iran
- Student Research Committee, Asadabad School of Medical Sciences, Asadabad, Iran
| | - Ali Mojaver
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
21
|
Ashique S, Afzal O, Yasmin S, Hussain A, Altamimi MA, Webster TJ, Altamimi ASA. Strategic nanocarriers to control neurodegenerative disorders: Concept, challenges, and future perspective. Int J Pharm 2023; 633:122614. [PMID: 36646255 DOI: 10.1016/j.ijpharm.2023.122614] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Various neurodegenerative diseases (parkinson, huntington, alzheimer, and amyotrophic lateral sclerosis) are becoming serious global health challenges. Despite various treatment options, successful delivery and effective outcomes have been challenged with several physiological-anatomical barriers, formulation related issues, post-administration hurdles, regulatory constraints, physical hurdles, environmental issues, and safety concern. In the present review, we addressed a brief understanding of pathological and normal condition of blood brain barrier (BBB), rational for brain delivery using nanocarriers, major challenges, advantages of nanomedicine, critical aspects of nanomedicine to translate from bed to clinics, and strategic approaches for improved delivery across BBB. The review addressed various mechanistic perspective for delivery of drug loaded nanocarriers across BBB. Moreover, several reports have been published wherein phytomedicine, exosomes, magnetic nanopartilces, functionalized nanocarriers, cationic nanopartilces, and nano-phytomedicine were investigated for remarkable improvement in neurological disorders. These findings are informative for healthcare professionals, researchers, and scientists working in the domains. The successful application and convincing outcomes of nanomedicines were envisaged with clinical trials conducted on various drugs intended to control neurological disorders (NDs). Conclusively, the review addressed comprehensive findings on various aspects of drug loaded nanocarrier delivery across BBB, considerable risks, potential therapeutic benefits, clinical trial based outcomes, and recent advances followed by future perspectives.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutics, Bharat Institute of Technology (BIT), School of Pharmacy, Meerut-250103, UP, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, Prince Sattam bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Sabina Yasmin
- Department of Pharmaceutical Chemistry, King Khalid University, Abha 61441, Saudi Arabia
| | - Afzal Hussain
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Mohammad A Altamimi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Thomas J Webster
- School of Health Sciences and Biomedical Engineering, Engineering, Hebei University of Technology, Tianjin, China
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, Prince Sattam bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| |
Collapse
|
22
|
Shabani L, Abbasi M, Azarnew Z, Amani AM, Vaez A. Neuro-nanotechnology: diagnostic and therapeutic nano-based strategies in applied neuroscience. Biomed Eng Online 2023; 22:1. [PMID: 36593487 PMCID: PMC9809121 DOI: 10.1186/s12938-022-01062-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/23/2022] [Indexed: 01/03/2023] Open
Abstract
Artificial, de-novo manufactured materials (with controlled nano-sized characteristics) have been progressively used by neuroscientists during the last several decades. The introduction of novel implantable bioelectronics interfaces that are better suited to their biological targets is one example of an innovation that has emerged as a result of advanced nanostructures and implantable bioelectronics interfaces, which has increased the potential of prostheses and neural interfaces. The unique physical-chemical properties of nanoparticles have also facilitated the development of novel imaging instruments for advanced laboratory systems, as well as intelligently manufactured scaffolds and microelectrodes and other technologies designed to increase our understanding of neural tissue processes. The incorporation of nanotechnology into physiology and cell biology enables the tailoring of molecular interactions. This involves unique interactions with neurons and glial cells in neuroscience. Technology solutions intended to effectively interact with neuronal cells, improved molecular-based diagnostic techniques, biomaterials and hybridized compounds utilized for neural regeneration, neuroprotection, and targeted delivery of medicines as well as small chemicals across the blood-brain barrier are all purposes of the present article.
Collapse
Affiliation(s)
- Leili Shabani
- grid.412571.40000 0000 8819 4698Department of Emergency Medicine, School of Medicine, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Abbasi
- grid.412571.40000 0000 8819 4698Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeynab Azarnew
- grid.412571.40000 0000 8819 4698Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Amani
- grid.412571.40000 0000 8819 4698Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Vaez
- grid.412571.40000 0000 8819 4698Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
23
|
Narayanan KB, Bhaskar R, Han SS. Recent Advances in the Biomedical Applications of Functionalized Nanogels. Pharmaceutics 2022; 14:2832. [PMID: 36559325 PMCID: PMC9782855 DOI: 10.3390/pharmaceutics14122832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Nanomaterials have been extensively used in several applications in the past few decades related to biomedicine and healthcare. Among them, nanogels (NGs) have emerged as an important nanoplatform with the properties of both hydrogels and nanoparticles for the controlled/sustained delivery of chemo drugs, nucleic acids, or other bioactive molecules for therapeutic or diagnostic purposes. In the recent past, significant research efforts have been invested in synthesizing NGs through various synthetic methodologies such as free radical polymerization, reversible addition-fragmentation chain-transfer method (RAFT) and atom transfer radical polymerization (ATRP), as well as emulsion techniques. With further polymeric functionalizations using activated esters, thiol-ene/yne processes, imines/oximes formation, cycloadditions, nucleophilic addition reactions of isocyanates, ring-opening, and multicomponent reactions were used to obtain functionalized NGs for targeted delivery of drug and other compounds. NGs are particularly intriguing for use in the areas of diagnosis, analytics, and biomedicine due to their nanodimensionality, material characteristics, physiological stability, tunable multi-functionality, and biocompatibility. Numerous NGs with a wide range of functionalities and various external/internal stimuli-responsive modalities have been possible with novel synthetic reliable methodologies. Such continuous development of innovative, intelligent materials with novel characteristics is crucial for nanomedicine for next-generation biomedical applications. This paper reviews the synthesis and various functionalization strategies of NGs with a focus on the recent advances in different biomedical applications of these surface modified/functionalized single-/dual-/multi-responsive NGs, with various active targeting moieties, in the fields of cancer theranostics, immunotherapy, antimicrobial/antiviral, antigen presentation for the vaccine, sensing, wound healing, thrombolysis, tissue engineering, and regenerative medicine.
Collapse
Affiliation(s)
- Kannan Badri Narayanan
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
24
|
Chu JJ, Ji WB, Zhuang JH, Gong BF, Chen XH, Cheng WB, Liang WD, Li GR, Gao J, Yin Y. Nanoparticles-based anti-aging treatment of Alzheimer's disease. Drug Deliv 2022; 29:2100-2116. [PMID: 35850622 PMCID: PMC9302016 DOI: 10.1080/10717544.2022.2094501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Age is the strongest risk factor for Alzheimer's disease (AD). In recent years, the relationship between aging and AD has been widely studied, with anti-aging therapeutics as the treatment for AD being one of the mainstream research directions. Therapeutics targeting senescent cells have shown improvement in AD symptoms and cerebral pathological changes, suggesting that anti-aging strategies may be a promising alternative for AD treatment. Nanoparticles represent an excellent approach for efficiently crossing the blood-brain barrier (BBB) to achieve better curative function and fewer side effects. Thereby, nanoparticles-based anti-aging treatment may exert potent anti-AD therapeutic efficacy. This review discusses the relationship between aging and AD and the application and prospect of anti-aging strategies and nanoparticle-based therapeutics in treating AD.
Collapse
Affiliation(s)
- Jian-Jian Chu
- Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Shanghai, China.,Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wen-Bo Ji
- Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Shanghai, China.,Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jian-Hua Zhuang
- Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Bao-Feng Gong
- Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Xiao-Han Chen
- Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Wen-Bin Cheng
- Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Wen-Danqi Liang
- Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Gen-Ru Li
- Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - You Yin
- Second Affiliated Hospital (Changzheng Hospital) of Naval Medical University, Shanghai, China
| |
Collapse
|
25
|
Nanogels: Update on the methods of synthesis and applications for cardiovascular and neurological complications. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Picone P, Sanfilippo T, Vasto S, Baldassano S, Guggino R, Nuzzo D, Bulone D, San Biagio PL, Muscolino E, Monastero R, Dispenza C, Giacomazza D. From Small Peptides to Large Proteins against Alzheimer’sDisease. Biomolecules 2022; 12:biom12101344. [PMID: 36291553 PMCID: PMC9599460 DOI: 10.3390/biom12101344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder in the elderly. The two cardinal neuropathological hallmarks of AD are the senile plaques, which are extracellular deposits mainly constituted by beta-amyloids, and neurofibrillary tangles formed by abnormally phosphorylated Tau (p-Tau) located in the cytoplasm of neurons. Although the research has made relevant progress in the management of the disease, the treatment is still lacking. Only symptomatic medications exist for the disease, and, in the meantime, laboratories worldwide are investigating disease-modifying treatments for AD. In the present review, results centered on the use of peptides of different sizes involved in AD are presented.
Collapse
Affiliation(s)
- Pasquale Picone
- Istituto per la Ricerca e l’Innovazione Biomedica, Consiglio Nazionale delle Ricerche, Via U. La Malfa 153, 90146 Palermo, Italy
- Dipartmento of Scienze Biologiche, Chimiche, Farmaceutiche e Tecnologiche (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Tiziana Sanfilippo
- Ambulatorio di Nutrizione Clinica ASP Palermo, Via G. Cusmano 24, 90141 Palermo, Italy
- Anestesia e Rianimazione, Presidio Ospedaliero “S. Cimino”, 90141 Termini Imerese, Italy
| | - Sonya Vasto
- Dipartmento of Scienze Biologiche, Chimiche, Farmaceutiche e Tecnologiche (STEBICEF), University of Palermo, 90128 Palermo, Italy
- Istituti Euro-Mediterranei di Scienza e Tecnologia (IEMEST), Via M. Miraglia 20, 90139 Palermo, Italy
| | - Sara Baldassano
- Dipartmento of Scienze Biologiche, Chimiche, Farmaceutiche e Tecnologiche (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Rossella Guggino
- Ambulatorio di Nutrizione Clinica ASP Palermo, Via G. Cusmano 24, 90141 Palermo, Italy
- Anestesia e Rianimazione, Presidio Ospedaliero “S. Cimino”, 90141 Termini Imerese, Italy
| | - Domenico Nuzzo
- Istituto per la Ricerca e l’Innovazione Biomedica, Consiglio Nazionale delle Ricerche, Via U. La Malfa 153, 90146 Palermo, Italy
- Dipartmento of Scienze Biologiche, Chimiche, Farmaceutiche e Tecnologiche (STEBICEF), University of Palermo, 90128 Palermo, Italy
- Correspondence: (D.N.); (D.G.)
| | - Donatella Bulone
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via U. La Malfa 153, 90146 Palermo, Italy
| | - Pier Luigi San Biagio
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via U. La Malfa 153, 90146 Palermo, Italy
| | - Emanuela Muscolino
- Dipartimento di Ingegneria, Università degli Studi di Palermo, Viale delle Scienze, Bldg 6, 90128 Palermo, Italy
| | - Roberto Monastero
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università degli Studi di Palermo, Via del Vespro 129, 90127 Palermo, Italy
| | - Clelia Dispenza
- Dipartimento di Ingegneria, Università degli Studi di Palermo, Viale delle Scienze, Bldg 6, 90128 Palermo, Italy
| | - Daniela Giacomazza
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via U. La Malfa 153, 90146 Palermo, Italy
- Correspondence: (D.N.); (D.G.)
| |
Collapse
|
27
|
Nojoki F, Ebrahimi-Hosseinzadeh B, Hatamian-Zarmi A, Khodagholi F, Khezri K. Design and development of chitosan-insulin-transfersomes (Transfersulin) as effective intranasal nanovesicles for the treatment of Alzheimer’s disease: In vitro, in vivo, and ex vivo evaluations. Biomed Pharmacother 2022; 153:113450. [DOI: 10.1016/j.biopha.2022.113450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 11/02/2022] Open
|
28
|
La Barbera L, Mauri E, D’Amelio M, Gori M. Functionalization strategies of polymeric nanoparticles for drug delivery in Alzheimer's disease: Current trends and future perspectives. Front Neurosci 2022; 16:939855. [PMID: 35992936 PMCID: PMC9387393 DOI: 10.3389/fnins.2022.939855] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/11/2022] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD), the most common form of dementia, is a progressive and multifactorial neurodegenerative disorder whose primary causes are mostly unknown. Due to the increase in life expectancy of world population, including developing countries, AD, whose incidence rises dramatically with age, is at the forefront among neurodegenerative diseases. Moreover, a definitive cure is not yet within reach, imposing substantial medical and public health burdens at every latitude. Therefore, the effort to devise novel and effective therapeutic strategies is still of paramount importance. Genetic, functional, structural and biochemical studies all indicate that new and efficacious drug delivery strategies interfere at different levels with various cellular and molecular targets. Over the last few decades, therapeutic development of nanomedicine at preclinical stage has shown to progress at a fast pace, thus paving the way for its potential impact on human health in improving prevention, diagnosis, and treatment of age-related neurodegenerative disorders, including AD. Clinical translation of nano-based therapeutics, despite current limitations, may present important advantages and innovation to be exploited in the neuroscience field as well. In this state-of-the-art review article, we present the most promising applications of polymeric nanoparticle-mediated drug delivery for bypassing the blood-brain barrier of AD preclinical models and boost pharmacological safety and efficacy. In particular, novel strategic chemical functionalization of polymeric nanocarriers that could be successfully employed for treating AD are thoroughly described. Emphasis is also placed on nanotheranostics as both potential therapeutic and diagnostic tool for targeted treatments. Our review highlights the emerging role of nanomedicine in the management of AD, providing the readers with an overview of the nanostrategies currently available to develop future therapeutic applications against this chronic neurodegenerative disease.
Collapse
Affiliation(s)
- Livia La Barbera
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Santa Lucia Foundation, IRCSS, Rome, Italy
| | - Emanuele Mauri
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Marcello D’Amelio
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Santa Lucia Foundation, IRCSS, Rome, Italy
| | - Manuele Gori
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Institute of Biochemistry and Cell Biology (IBBC) - National Research Council (CNR), Rome, Italy
| |
Collapse
|
29
|
Li Z, Soroka IL, Tarakina NV, Sabatino MA, Muscolino E, Walo M, Jonsson M, Dispenza C. Inorganic/organic hybrid nanoparticles synthesized in a two-step radiation-driven process. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Fu S, Zhao S, Chen H, Yang W, Xia X, Xu X, Liang Z, Feng X, Wang Z, Ai P, Ding L, Cai Q, Wang Y, Zhang Y, Zhu J, Zhang B, Zheng JC. Insulin-incubated palladium clusters promote recovery after brain injury. J Nanobiotechnology 2022; 20:299. [PMID: 35752849 PMCID: PMC9233827 DOI: 10.1186/s12951-022-01495-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/04/2022] [Indexed: 11/10/2022] Open
Abstract
Traumatic brain injury (TBI) is a cause of disability and death worldwide, but there are currently no specific treatments for this condition. Release of excess reactive oxygen species (ROS) in the injured brain leads to a series of pathological changes; thus, eliminating ROS could be a potential therapeutic strategy. Herein, we synthesized insulin-incubated ultrasmall palladium (Pd@insulin) clusters via green biomimetic chemistry. The Pd@insulin clusters, which were 3.2 nm in diameter, exhibited marked multiple ROS-scavenging ability testified by the theoretical calculation. Pd@insulin could be rapidly excreted via kidney-urine metabolism and induce negligible adverse effects after a long-time treatment in vivo. In a TBI mouse model, intravenously injected Pd@insulin clusters aggregated in the injured cortex, effectively suppressed excessive ROS production, and significantly rescued motor function, cognition and spatial memory. We found that the positive therapeutic effects of the Pd@insulin clusters were mainly attributed to their ROS-scavenging ability, as they inhibited excessive neuroinflammation, reduced cell apoptosis, and prevented neuronal loss. Therefore, the ability of Pd@insulin clusters to effectively eliminate ROS, as well as their simple structure, easy synthesis, low toxicity, and rapid metabolism may facilitate their clinical translation for TBI treatment.
Collapse
Affiliation(s)
- Shengyang Fu
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Shu Zhao
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Huili Chen
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Weitao Yang
- The Institute for Translational Nanomedicine, Shanghai East Hospital, Shanghai, 200120, China.,The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China.,Shanghai Frontiers Science Center of Nanocatalytic Medicine, Tongji University School of Medicine, Shanghai, 200331, China
| | - Xiaohuan Xia
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China. .,Shanghai Frontiers Science Center of Nanocatalytic Medicine, Tongji University School of Medicine, Shanghai, 200331, China. .,Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, 200434, China. .,Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, 200065, China.
| | - Xiaonan Xu
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Zhanping Liang
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Xuanran Feng
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Zhuo Wang
- The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Pu Ai
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.,Wuxi Clinical College of Anhui Medical University, Hefei, 230022, China
| | - Lu Ding
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Qingyuan Cai
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.,Franklin & Marshall College, Lancaster, PA, 17603, United States
| | - Yi Wang
- Center for Translational Neurodegeneration and Regenerative Therapy, Yangzhi Rehabilitation Hospital affiliated to Tongji University, Shanghai, 200065, China
| | - Yanyan Zhang
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jie Zhu
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Bingbo Zhang
- The Institute for Translational Nanomedicine, Shanghai East Hospital, Shanghai, 200120, China. .,The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China. .,Shanghai Frontiers Science Center of Nanocatalytic Medicine, Tongji University School of Medicine, Shanghai, 200331, China.
| | - Jialin C Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China. .,Shanghai Frontiers Science Center of Nanocatalytic Medicine, Tongji University School of Medicine, Shanghai, 200331, China. .,Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, 200434, China. .,Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, 200065, China.
| |
Collapse
|
31
|
Insulin and Its Key Role for Mitochondrial Function/Dysfunction and Quality Control: A Shared Link between Dysmetabolism and Neurodegeneration. BIOLOGY 2022; 11:biology11060943. [PMID: 35741464 PMCID: PMC9220302 DOI: 10.3390/biology11060943] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/01/2022] [Accepted: 06/17/2022] [Indexed: 02/07/2023]
Abstract
Insulin was discovered and isolated from the beta cells of pancreatic islets of dogs and is associated with the regulation of peripheral glucose homeostasis. Insulin produced in the brain is related to synaptic plasticity and memory. Defective insulin signaling plays a role in brain dysfunction, such as neurodegenerative disease. Growing evidence suggests a link between metabolic disorders, such as diabetes and obesity, and neurodegenerative diseases, especially Alzheimer's disease (AD). This association is due to a common state of insulin resistance (IR) and mitochondrial dysfunction. This review takes a journey into the past to summarize what was known about the physiological and pathological role of insulin in peripheral tissues and the brain. Then, it will land in the present to analyze the insulin role on mitochondrial health and the effects on insulin resistance and neurodegenerative diseases that are IR-dependent. Specifically, we will focus our attention on the quality control of mitochondria (MQC), such as mitochondrial dynamics, mitochondrial biogenesis, and selective autophagy (mitophagy), in healthy and altered cases. Finally, this review will be projected toward the future by examining the most promising treatments that target the mitochondria to cure neurodegenerative diseases associated with metabolic disorders.
Collapse
|
32
|
Future of Alzheimer’s Disease: Nanotechnology-Based Diagnostics and Therapeutic Approach. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-00998-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
IAEA Contribution to Nanosized Targeted Radiopharmaceuticals for Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14051060. [PMID: 35631646 PMCID: PMC9146346 DOI: 10.3390/pharmaceutics14051060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/23/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022] Open
Abstract
The rapidly growing interest in the application of nanoscience in the future design of radiopharmaceuticals and the development of nanosized radiopharmaceuticals in the late 2000′s, resulted in the creation of a Coordinated Research Project (CRP) by the International Atomic Energy Agency (IAEA) in 2014. This CRP entitled ‘Nanosized delivery systems for radiopharmaceuticals’ involved a team of expert scientist from various member states. This team of scientists worked on a number of cutting-edge areas of nanoscience with a focus on developing well-defined, highly effective and site-specific delivery systems of radiopharmaceuticals. Specifically, focus areas of various teams of scientists comprised of the development of nanoparticles (NPs) based on metals, polymers, and gels, and their conjugation/encapsulation or decoration with various tumor avid ligands such as peptides, folates, and small molecule phytochemicals. The research and development efforts also comprised of developing optimum radiolabeling methods of various nano vectors using diagnostic and therapeutic radionuclides including Tc-99m, Ga-68, Lu-177 and Au-198. Concerted efforts of teams of scientists within this CRP has resulted in the development of various protocols and guidelines on delivery systems of nanoradiopharmaceuticals, training of numerous graduate students/post-doctoral fellows and publications in peer reviewed journals while establishing numerous productive scientific networks in various participating member states. Some of the innovative nanoconstructs were chosen for further preclinical applications—all aimed at ultimate clinical translation for treating human cancer patients. This review article summarizes outcomes of this major international scientific endeavor.
Collapse
|
34
|
Poudel P, Park S. Recent Advances in the Treatment of Alzheimer's Disease Using Nanoparticle-Based Drug Delivery Systems. Pharmaceutics 2022; 14:835. [PMID: 35456671 PMCID: PMC9026997 DOI: 10.3390/pharmaceutics14040835] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/29/2022] [Accepted: 04/08/2022] [Indexed: 01/05/2023] Open
Abstract
Alzheimer's disease (AD) is an irreversible and progressive neurodegenerative disorder. Most existing treatments only provide symptomatic solutions. Here, we introduce currently available commercial drugs and new therapeutics, including repositioned drugs, to treat AD. Despite tremendous efforts, treatments targeting the hallmarks of AD show limited efficacy. Challenges in treating AD are partly caused by difficulties in penetrating the blood-brain barrier (BBB). Recently, nanoparticle (NP)-based systems have shown promising potential as precision medicines that can effectively penetrate the BBB and enhance the targeting ability of numerous drugs. Here, we describe how NPs enter the brain by crossing, avoiding, or disrupting the BBB. In addition, we provide an overview of the action of NPs in the microenvironment of the brain for the treatment of AD. Diverse systems, including liposomes, micelles, polymeric NPs, solid-lipid NPs, and inorganic NPs, have been investigated for NP drug loading to relieve AD symptoms, target AD hallmarks, and target moieties to diagnose AD. We also highlight NP-based immunotherapy, which has recently gained special attention as a potential treatment option to disrupt AD progression. Overall, this review focuses on recently investigated NP systems that represent innovative strategies to understand AD pathogenesis and suggests treatment and diagnostic modalities to cure AD.
Collapse
|
35
|
Contardi M, Summa M, Picone P, Brancato OR, Di Carlo M, Bertorelli R, Athanassiou A. Evaluation of a Multifunctional Polyvinylpyrrolidone/Hyaluronic Acid-Based Bilayer Film Patch with Anti-Inflammatory Properties as an Enhancer of the Wound Healing Process. Pharmaceutics 2022; 14:483. [PMID: 35335861 PMCID: PMC8955039 DOI: 10.3390/pharmaceutics14030483] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 02/05/2023] Open
Abstract
The management of acute and chronic wounds is still a socioeconomic burden for society due to the lack of suitable tools capable of supporting all the healing phases. The exponential spread of diabetes worldwide and the consequent increase of complicated diabetic ulcers require further efforts to develop scalable, low-cost, and easy-to-use treatments for tackling this emergency. Recently, we explored the fabrication of a polyvinylpyrrolidone/hyaluronic acid-based bilayer wound dressing, characterizing its physicochemical features and detailing its excellent antimicrobial activity. Here, we further demonstrate its biocompatibility on fibroblasts, keratinocytes, and red blood cells. The bilayer shows anti-inflammatory properties, statistically reducing the level of IL-6, IL-1β, and TNF-α, and a capacity to accelerate wound healing in vitro and in healthy and diabetic mice models compared to untreated mice. The outcomes suggest that this bilayer material can be an effective tool for managing different skin injuries.
Collapse
Affiliation(s)
- Marco Contardi
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Maria Summa
- Translational Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (M.S.); (R.B.)
| | - Pasquale Picone
- Istituto per la Ricerca e l’Innovazione Biomedica (IRIB), CNR, Via Ugo la Malfa 153, 90146 Palermo, Italy; (P.P.); (O.R.B.); (M.D.C.)
| | - Ornella Roberta Brancato
- Istituto per la Ricerca e l’Innovazione Biomedica (IRIB), CNR, Via Ugo la Malfa 153, 90146 Palermo, Italy; (P.P.); (O.R.B.); (M.D.C.)
| | - Marta Di Carlo
- Istituto per la Ricerca e l’Innovazione Biomedica (IRIB), CNR, Via Ugo la Malfa 153, 90146 Palermo, Italy; (P.P.); (O.R.B.); (M.D.C.)
| | - Rosalia Bertorelli
- Translational Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; (M.S.); (R.B.)
| | | |
Collapse
|
36
|
Sen S, Ali R, Onkar A, Ganesh S, Verma S. Strategies for interference of insulin fibrillogenesis: challenges and advances. Chembiochem 2022; 23:e202100678. [PMID: 35025120 DOI: 10.1002/cbic.202100678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/11/2022] [Indexed: 11/10/2022]
Abstract
The discovery of insulin came up with very high hopes for diabetic patients. In the year 2021, the world celebrated the 100 th anniversary of the discovery of this vital hormone. However, external use of insulin is highly affected by its aggregating tendency that occurs during its manufacturing, transportation, and improper handling which ultimately leads its pharmaceutically and biologically ineffective form. In this review, we aim to discuss the various approaches used for decelerating insulin aggregation which results in the enhancement of its overall structural stability and usage. The approaches that are discussed are broadly classified as either a measure through excipient additions or by intrinsic modifications in the insulin native structure.
Collapse
Affiliation(s)
- Shantanu Sen
- Indian Institute of Technology Kanpur, Chemistry, INDIA
| | - Rafat Ali
- Indian Institute of Technology Kanpur, Chemistry, Room No 131 Lab No2, CESE department IIT Kanpur, 208016, Kanpur, INDIA
| | - Akanksha Onkar
- Indian Institute of Technology Kanpur, Biological Sciences and Bioengineering, INDIA
| | - Subramaniam Ganesh
- Indian Institute of Technology Kanpur, Biological Sciences and Bioengineering, INDIA
| | - Sandeep Verma
- Indian Institute of Technology-Kanpur, Department of Chemistry, IIT-Kanpur, 208016, Kanpur, INDIA
| |
Collapse
|
37
|
Using the Intranasal Route to Administer Drugs to Treat Neurological and Psychiatric Illnesses: Rationale, Successes, and Future Needs. CNS Drugs 2022; 36:739-770. [PMID: 35759210 PMCID: PMC9243954 DOI: 10.1007/s40263-022-00930-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2022] [Indexed: 11/17/2022]
Abstract
While the intranasal administration of drugs to the brain has been gaining both research attention and regulatory success over the past several years, key fundamental and translational challenges remain to fully leveraging the promise of this drug delivery pathway for improving the treatment of various neurological and psychiatric illnesses. In response, this review highlights the current state of understanding of the nose-to-brain drug delivery pathway and how both biological and clinical barriers to drug transport using the pathway can been addressed, as illustrated by demonstrations of how currently approved intranasal sprays leverage these pathways to enable the design of successful therapies. Moving forward, aiming to better exploit the understanding of this fundamental pathway, we also outline the development of nanoparticle systems that show improvement in delivering approved drugs to the brain and how engineered nanoparticle formulations could aid in breakthroughs in terms of delivering emerging drugs and therapeutics while avoiding systemic adverse effects.
Collapse
|
38
|
Garg Y, Kapoor DN, Sharma AK, Bhatia A. Drug Delivery Systems and Strategies to Overcome the Barriers of Brain. Curr Pharm Des 2021; 28:619-641. [PMID: 34951356 DOI: 10.2174/1381612828666211222163025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 11/27/2021] [Indexed: 11/22/2022]
Abstract
The transport of drugs to the central nervous system is the most challenging task for conventional drug delivery systems. Reduced permeability of drugs through the blood-brain barrier is a major hurdle in delivering drugs to the brain. Hence, various strategies for improving drug delivery through the blood-brain barrier are currently being explored. Novel drug delivery systems (NDDS) offer several advantages, including high chemical and biological stability, suitability for both hydrophobic and hydrophilic drugs, and can be administered through different routes. Furthermore, the conjugation of suitable ligands with these carriers tend to potentiate targeting to the endothelium of the brain and could facilitate the internalization of drugs through endocytosis. Further, the intranasal route has also shown potential, as a promising alternate route, for the delivery of drugs to the brain. This can deliver the drugs directly to the brain through the olfactory pathway. In recent years, several advancements have been made to target and overcome the barriers of the brain. This article deals with a detailed overview of the diverse strategies and delivery systems to overcome the barriers of the brain for effective delivery of drugs.
Collapse
Affiliation(s)
- Yogesh Garg
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, Pin. 151001. India
| | - Deepak N Kapoor
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, Pin. 173229. India
| | - Abhishek Kumar Sharma
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, Pin. 173229. India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, Pin. 151001. India
| |
Collapse
|
39
|
Som Chaudhury S, Sinha K, Das Mukhopadhyay C. Intranasal route: The green corridor for Alzheimer's disease therapeutics. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Picone P, Palumbo FS, Federico S, Pitarresi G, Adamo G, Bongiovanni A, Chaves A, Cancemi P, Muccilli V, Giglio V, Vetri V, Anselmo S, Sancataldo G, Di Liberto V, Nuzzo D. Nano-structured myelin: new nanovesicles for targeted delivery to white matter and microglia, from brain-to-brain. Mater Today Bio 2021; 12:100146. [PMID: 34761196 PMCID: PMC8567303 DOI: 10.1016/j.mtbio.2021.100146] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 01/04/2023] Open
Abstract
Neurodegenerative diseases affect millions of people worldwide and the presence of various physiological barriers limits the accessibility to the brain and reduces the efficacy of various therapies. Moreover, new carriers having targeting properties to specific brain regions and cells are needed in order to improve therapies for the brain disorder treatment. In this study, for the first time, Myelin nanoVesicles (hereafter defined MyVes) from brain-extracted myelin were produced. The MyVes have an average diameter of 100–150 nm, negative zeta potential, spheroidal morphology, and contain lipids and the key proteins of the myelin sheath. Furthermore, they exhibit good cytocompatibility. The MyVes were able to target the white matter and interact mainly with the microglia cells. The preliminary results here presented allow us to suppose the employment of MyVes as potential carrier to target the white matter and microglia in order to counteract white matter microglia-related diseases. Bio-fabrication of brain tissue derived nanovesicles: myelin nanovesicles. Myelin nanovesicles contain the main proteins of the myelin sheath (myelin basic protein and myelin proteolipid protein). Myelin nanovesicles can lade a drug/molecule and cross a blood–brain barrier model. Myelin nanovesicles target white matter and microglia cells.
Collapse
Affiliation(s)
- Pasquale Picone
- Istituto per la Ricerca e l’Innovazione Biomedica, CNR, via U. La Malfa 153, 90146, Palermo, Italy
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Viale delle Scienze, 90128, Palermo, Italy
- Corresponding author.
| | - Fabio Salvatore Palumbo
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Viale delle Scienze, 90128, Palermo, Italy
| | - Salvatore Federico
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Viale delle Scienze, 90128, Palermo, Italy
| | - Giovanna Pitarresi
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Viale delle Scienze, 90128, Palermo, Italy
| | - Giorgia Adamo
- Istituto per la Ricerca e l’Innovazione Biomedica, CNR, via U. La Malfa 153, 90146, Palermo, Italy
| | - Antonella Bongiovanni
- Istituto per la Ricerca e l’Innovazione Biomedica, CNR, via U. La Malfa 153, 90146, Palermo, Italy
| | - Antonio Chaves
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Festa del Perdono 7, 20122, Milano, Italy
| | - Patrizia Cancemi
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Viale delle Scienze, 90128, Palermo, Italy
| | - Vera Muccilli
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria, 6, I-95125, Catania, Italy
| | - Valentina Giglio
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria, 6, I-95125, Catania, Italy
| | - Valeria Vetri
- Dipartimento di Fisica e Chimica-Emilio Segrè, Università degli studi di Palermo, Viale delle Scienze edificio 18, 90128, Palermo, Italy
| | - Sara Anselmo
- Dipartimento di Fisica e Chimica-Emilio Segrè, Università degli studi di Palermo, Viale delle Scienze edificio 18, 90128, Palermo, Italy
| | - Giuseppe Sancataldo
- Dipartimento di Fisica e Chimica-Emilio Segrè, Università degli studi di Palermo, Viale delle Scienze edificio 18, 90128, Palermo, Italy
| | - Valentina Di Liberto
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 129, 90134, Palermo, Italy
| | - Domenico Nuzzo
- Istituto per la Ricerca e l’Innovazione Biomedica, CNR, via U. La Malfa 153, 90146, Palermo, Italy
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Viale delle Scienze, 90128, Palermo, Italy
- Corresponding author.
| |
Collapse
|
41
|
Ashfaq A, An JC, Ulański P, Al-Sheikhly M. On the Mechanism and Kinetics of Synthesizing Polymer Nanogels by Ionizing Radiation-Induced Intramolecular Crosslinking of Macromolecules. Pharmaceutics 2021; 13:1765. [PMID: 34834180 PMCID: PMC8622303 DOI: 10.3390/pharmaceutics13111765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
Nanogels-internally crosslinked macromolecules-have a growing palette of potential applications, including as drug, gene or radioisotope nanocarriers and as in vivo signaling molecules in modern diagnostics and therapy. This has triggered considerable interest in developing new methods for their synthesis. The procedure based on intramolecular crosslinking of polymer radicals generated by pulses of ionizing radiation has many advantages. The substrates needed are usually simple biocompatible polymers and water. This eliminates the use of monomers, chemical crosslinking agents, initiators, surfactants, etc., thus limiting potential problems with the biocompatibility of products. This review summarizes the basics of this method, providing background information on relevant aspects of polymer solution thermodynamics, radiolysis of aqueous solutions, generation and reactions of polymer radicals, and the non-trivial kinetics and mechanism of crosslinking, focusing on the main factors influencing the outcomes of the radiation synthesis of nanogels: molecular weight of the starting polymer, its concentration, irradiation mode, absorbed dose of ionizing radiation and temperature. The most important techniques used to perform the synthesis, to study the kinetics and mechanism of the involved reactions, and to assess the physicochemical properties of the formed nanogels are presented. Two select important cases, the synthesis of nanogels based on polyvinylpyrrolidone (PVP) and/or poly(acrylic acid) (PAA), are discussed in more detail. Examples of recent application studies on radiation-synthesized PVP and PAA nanogels in transporting drugs across the blood-brain barrier and as targeted radioisotope carriers in nanoradiotherapy are briefly described.
Collapse
Affiliation(s)
- Aiysha Ashfaq
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA;
| | - Jung-Chul An
- Anode Materials Research Group, Research Institute of Industrial Science & Technology (RIST), Pohang 37673, Korea;
| | - Piotr Ulański
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland
| | - Mohamad Al-Sheikhly
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
42
|
Synthesis and Properties of Targeted Radioisotope Carriers Based on Poly(Acrylic Acid) Nanogels. Pharmaceutics 2021; 13:pharmaceutics13081240. [PMID: 34452201 PMCID: PMC8400054 DOI: 10.3390/pharmaceutics13081240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/01/2022] Open
Abstract
Radiation crosslinking was employed to obtain nanocarriers based on poly(acrylic acid)—PAA—for targeted delivery of radioactive isotopes. These nanocarriers are internally crosslinked hydrophilic macromolecules—nanogels—bearing carboxylic groups to facilitate functionalization. PAA nanogels were conjugated with an engineered bombesin-derivative—oligopeptide combined with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate chelating moiety, aimed to provide selective radioligand transport. 4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium (DMTMM) toluene-4-sulfonate was used as the coupling agent. After tests on a model amine—p-toluidine—both commercial and home-synthesized DOTA-bombesin were successfully coupled to the nanogels and the obtained products were characterized. The radiolabeling efficiency of nanocarriers with 177Lu, was chromatographically tested. The results provide a proof of concept for the synthesis of radiation-synthesized nanogel-based radioisotope nanocarriers for theranostic applications.
Collapse
|
43
|
Ultra-small size gelatin nanogel as a blood brain barrier impermeable contrast agent for magnetic resonance imaging. Acta Biomater 2021; 125:290-299. [PMID: 33601066 DOI: 10.1016/j.actbio.2021.02.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/25/2021] [Accepted: 02/09/2021] [Indexed: 01/08/2023]
Abstract
Magnetic Resonance Imaging (MRI) contrast agents with rapid renal excretion that do not penetrate the blood brain barrier (BBB) and blood cerebrospinal fluid barrier (BCFB) are preferred for safer and low-risk diagnosis. Gadolinium (Gd)-conjugated nanoparticles have been proposed for use as contrast agents; however, the particle size must range between 1 to 7 nm to ensure rapid renal excretion. In this study, three types of gelatin, dissolved in water at varying concentrations of 0.1-2 wt.%, were irradiated with 5 kGy γ-rays at 25°C under aerated conditions to produce ultra-small gelatin nanogels having an average particle size ranging between 6 ± 2 to 21 ± 4 nm. Ultra-small Gd-coordinated gelatin nanogels (GdGN) suitable for use as MRI contrast agents were produced using 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid mono-N-hydroxysuccinimide ester (DOTA-NHS) and DOTA-butylamine as Gd ligand derivatives. Non-cytotoxicity and effective relaxivity of GdGN as a positive MRI contrast agent were verified using in vivo experiments. Rapid renal excretion of GdGN was observed in mice within 1 h with no accumulation in the liver. GdGN did not migrate across the BCFB in normal mice, thus emphasizing its safety as an MRI contrast agent. STATEMENT OF SIGNIFICANCE: The authors developed ultra-small sized gelatin nanogels as blood-brain-barrier impermeable contrast agents for magnetic resonance imaging (MRI). The authors used radiation crosslinking technique to ensure better integrity of the amino acids present in the gelatin nanogels while conjugating with gadolinium (Gd) to form gadolinium-coordinated gelatin nanogels (GdGN). The safety and efficacy of GdGN, as MRI contrast agents, were verified by in vivo studies. GdGN exhibited rapid renal excretion within 90 minutes and no passage across the barriers in the brain.
Collapse
|
44
|
Application of radiation crosslinking technique to development of gelatin scaffold for tissue engineering. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2020.109287] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
45
|
Picone P, Porcelli G, Bavisotto CC, Nuzzo D, Galizzi G, Biagio PLS, Bulone D, Di Carlo M. Synaptosomes: new vesicles for neuronal mitochondrial transplantation. J Nanobiotechnology 2021; 19:6. [PMID: 33407593 PMCID: PMC7789323 DOI: 10.1186/s12951-020-00748-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/05/2020] [Indexed: 12/19/2022] Open
Abstract
Background Mitochondrial dysfunction is a critical factor in the onset and progression of neurodegenerative diseases. Recently, mitochondrial transplantation has been advised as an innovative and attractive strategy to transfer and replace damaged mitochondria. Here we propose, for the first time, to use rat brain extracted synaptosomes, a subcellular fraction of isolated synaptic terminal that contains mitochondria, as mitochondrial delivery systems. Results Synaptosome preparation was validated by the presence of Synaptophysin and PSD95. Synaptosomes were characterized in terms of dimension, zeta potential, polydispersity index and number of particles/ml. Nile Red or CTX-FITCH labeled synaptosomes were internalized in LAN5 recipient cells by a mechanism involving specific protein–protein interaction, as demonstrated by loss of fusion ability after trypsin treatment and using different cell lines. The loading and release ability of the synaptosomes was proved by the presence of curcumin both into synaptosomes and LAN5 cells. The vitality of mitochondria transferred by Synaptosomes was demonstrated by the presence of Opa1, Fis1 and TOM40 mitochondrial proteins and JC-1 measurements. Further, synaptosomes deliver vital mitochondria into the cytoplasm of neuronal cells as demonstrated by microscopic images, increase of TOM 40, cytochrome c, Hexokinase II mitochondrial proteins, and presence of rat mitochondrial DNA. Finally, by using synaptosomes as a vehicle, healthy mitochondria restored mitochondrial function in cells containing rotenone or CCCp damaged mitochondria. Conclusions Taken together these results suggest that synaptosomes can be a natural vehicle for the delivery of molecules and organelles to neuronal cells. Further, the replacement of affected mitochondria with healthy ones could be a potential therapy for treating neuronal mitochondrial dysfunction-related diseases.![]()
Collapse
Affiliation(s)
- Pasquale Picone
- Istituto per la Ricerca e l' Innovazione Biomedica (IRIB) CNR, via U. La Malfa 153, 90146, Palermo, Italy
| | - Gaetana Porcelli
- Istituto per la Ricerca e l' Innovazione Biomedica (IRIB) CNR, via U. La Malfa 153, 90146, Palermo, Italy
| | - Celeste Caruso Bavisotto
- Istituto di Biofisica (IBF) (sez. Palermo) CNR, via U. La Malfa, 153, 90146, Palermo, Italy.,Dipartimento di Biomedicina, Neuroscienze, e Diagnostica Avanzata (BIND) (Sez. Anatomia Umana), Università di Palermo, via del Vespro 129, 90127, Palermo, Italy.,Istituto Euro-Mediterraneo di Scienze e Tecnologie (IEMEST), via M. Miraglia, 20, 90139, Palermo, Italy
| | - Domenico Nuzzo
- Istituto per la Ricerca e l' Innovazione Biomedica (IRIB) CNR, via U. La Malfa 153, 90146, Palermo, Italy
| | - Giacoma Galizzi
- Istituto per la Ricerca e l' Innovazione Biomedica (IRIB) CNR, via U. La Malfa 153, 90146, Palermo, Italy
| | - Pier Luigi San Biagio
- Istituto di Biofisica (IBF) (sez. Palermo) CNR, via U. La Malfa, 153, 90146, Palermo, Italy
| | - Donatella Bulone
- Istituto di Biofisica (IBF) (sez. Palermo) CNR, via U. La Malfa, 153, 90146, Palermo, Italy
| | - Marta Di Carlo
- Istituto per la Ricerca e l' Innovazione Biomedica (IRIB) CNR, via U. La Malfa 153, 90146, Palermo, Italy.
| |
Collapse
|
46
|
Kumar R, Gulati M, Singh SK, Sharma D, Porwal O. Road From Nose to Brain for Treatment of Alzheimer: The Bumps and Humps. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 19:663-675. [PMID: 32640969 DOI: 10.2174/1871527319666200708124726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/15/2020] [Accepted: 04/27/2020] [Indexed: 11/22/2022]
Abstract
Vulnerability of the brain milieu to even the subtle changes in its normal physiology is guarded by a highly efficient blood brain barrier. A number of factors i.e. molecular weight of the drug, its route of administration, lipophilic character, etc. play a significant role in its sojourn through the Blood Brain Barrier (BBB) and limit the movement of drug into brain tissue through BBB. To overcome these problems, alternative routes of drug administration have been explored to target the drugs to brain tissue. Nasal route has been widely reported for the administration of drugs for treatment of Alzheimer. In this innovative approach, the challenge of BBB is bypassed. Through this route, both the larger as well as polar molecules can be made to reach the brain tissues. Generally, these systems are either pH dependent or temperature dependent. The present review highlights the anatomy of nose, mechanisms of drug delivery from nose to brain, critical factors in the formulation of nasal drug delivery system, nasal formulations of various drugs that have been tried for their nasal delivery for treatment of Alzheimer. It also dives deep to understand the factors that contribute to the success of such formulations to carve out a direction for this niche area to be explored further.
Collapse
Affiliation(s)
- Rajesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara - 144411, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara - 144411, Punjab, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara - 144411, Punjab, India
| | - Deepika Sharma
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara - 144411, Punjab, India
| | - Omji Porwal
- Faculty of Pharmacy, Ishik University, Erbil, Iraq
| |
Collapse
|
47
|
Micro- to Nanoscale Bio-Hybrid Hydrogels Engineered by Ionizing Radiation. Biomolecules 2020; 11:biom11010047. [PMID: 33396401 PMCID: PMC7824687 DOI: 10.3390/biom11010047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 02/06/2023] Open
Abstract
Bio-hybrid hydrogels consist of a water-swollen hydrophilic polymer network encapsulating or conjugating single biomolecules, or larger and more complex biological constructs like whole cells. By modulating at least one dimension of the hydrogel system at the micro- or nanoscale, the activity of the biological component can be extremely upgraded with clear advantages for the development of therapeutic or diagnostic micro- and nano-devices. Gamma or e-beam irradiation of polymers allow a good control of the chemistry at the micro-/nanoscale with minimal recourse to toxic reactants and solvents. Another potential advantage is to obtain simultaneous sterilization when the absorbed doses are within the sterilization dose range. This short review will highlight opportunities and challenges of the radiation technologies to produce bio-hybrid nanogels as delivery devices of therapeutic biomolecules to the target cells, tissues, and organs, and to create hydrogel patterns at the nano-length and micro-length scales on surfaces.
Collapse
|
48
|
Ashfaq A, Clochard MC, Coqueret X, Dispenza C, Driscoll MS, Ulański P, Al-Sheikhly M. Polymerization Reactions and Modifications of Polymers by Ionizing Radiation. Polymers (Basel) 2020; 12:E2877. [PMID: 33266261 PMCID: PMC7760743 DOI: 10.3390/polym12122877] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 01/30/2023] Open
Abstract
Ionizing radiation has become the most effective way to modify natural and synthetic polymers through crosslinking, degradation, and graft polymerization. This review will include an in-depth analysis of radiation chemistry mechanisms and the kinetics of the radiation-induced C-centered free radical, anion, and cation polymerization, and grafting. It also presents sections on radiation modifications of synthetic and natural polymers. For decades, low linear energy transfer (LLET) ionizing radiation, such as gamma rays, X-rays, and up to 10 MeV electron beams, has been the primary tool to produce many products through polymerization reactions. Photons and electrons interaction with polymers display various mechanisms. While the interactions of gamma ray and X-ray photons are mainly through the photoelectric effect, Compton scattering, and pair-production, the interactions of the high-energy electrons take place through coulombic interactions. Despite the type of radiation used on materials, photons or high energy electrons, in both cases ions and electrons are produced. The interactions between electrons and monomers takes place within less than a nanosecond. Depending on the dose rate (dose is defined as the absorbed radiation energy per unit mass), the kinetic chain length of the propagation can be controlled, hence allowing for some control over the degree of polymerization. When polymers are submitted to high-energy radiation in the bulk, contrasting behaviors are observed with a dominant effect of cross-linking or chain scission, depending on the chemical nature and physical characteristics of the material. Polymers in solution are subject to indirect effects resulting from the radiolysis of the medium. Likewise, for radiation-induced polymerization, depending on the dose rate, the free radicals generated on polymer chains can undergo various reactions, such as inter/intramolecular combination or inter/intramolecular disproportionation, b-scission. These reactions lead to structural or functional polymer modifications. In the presence of oxygen, playing on irradiation dose-rates, one can favor crosslinking reactions or promotes degradations through oxidations. The competition between the crosslinking reactions of C-centered free radicals and their reactions with oxygen is described through fundamental mechanism formalisms. The fundamentals of polymerization reactions are herein presented to meet industrial needs for various polymer materials produced or degraded by irradiation. Notably, the medical and industrial applications of polymers are endless and thus it is vital to investigate the effects of sterilization dose and dose rate on various polymers and copolymers with different molecular structures and morphologies. The presence or absence of various functional groups, degree of crystallinity, irradiation temperature, etc. all greatly affect the radiation chemistry of the irradiated polymers. Over the past decade, grafting new chemical functionalities on solid polymers by radiation-induced polymerization (also called RIG for Radiation-Induced Grafting) has been widely exploited to develop innovative materials in coherence with actual societal expectations. These novel materials respond not only to health emergencies but also to carbon-free energy needs (e.g., hydrogen fuel cells, piezoelectricity, etc.) and environmental concerns with the development of numerous specific adsorbents of chemical hazards and pollutants. The modification of polymers through RIG is durable as it covalently bonds the functional monomers. As radiation penetration depths can be varied, this technique can be used to modify polymer surface or bulk. The many parameters influencing RIG that control the yield of the grafting process are discussed in this review. These include monomer reactivity, irradiation dose, solvent, presence of inhibitor of homopolymerization, grafting temperature, etc. Today, the general knowledge of RIG can be applied to any solid polymer and may predict, to some extent, the grafting location. A special focus is on how ionizing radiation sources (ion and electron beams, UVs) may be chosen or mixed to combine both solid polymer nanostructuration and RIG. LLET ionizing radiation has also been extensively used to synthesize hydrogel and nanogel for drug delivery systems and other advanced applications. In particular, nanogels can either be produced by radiation-induced polymerization and simultaneous crosslinking of hydrophilic monomers in "nanocompartments", i.e., within the aqueous phase of inverse micelles, or by intramolecular crosslinking of suitable water-soluble polymers. The radiolytically produced oxidizing species from water, •OH radicals, can easily abstract H-atoms from the backbone of the dissolved polymers (or can add to the unsaturated bonds) leading to the formation of C-centered radicals. These C-centered free radicals can undergo two main competitive reactions; intramolecular and intermolecular crosslinking. When produced by electron beam irradiation, higher temperatures, dose rates within the pulse, and pulse repetition rates favour intramolecular crosslinking over intermolecular crosslinking, thus enabling a better control of particle size and size distribution. For other water-soluble biopolymers such as polysaccharides, proteins, DNA and RNA, the abstraction of H atoms or the addition to the unsaturation by •OH can lead to the direct scission of the backbone, double, or single strand breaks of these polymers.
Collapse
Affiliation(s)
- Aiysha Ashfaq
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA;
| | - Marie-Claude Clochard
- Laboratoire des Solides Irradiés, CEA/DRF/IRAMIS-CNRS- Ecole Polytechnique UMR 7642, Institut Polytechnique de Paris, 91128 Palaiseau, France;
| | - Xavier Coqueret
- Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims CEDEX 2, France;
| | - Clelia Dispenza
- Dipartimento di Ingegneria, Università degli Studi di Palermo, Viale delle Scienze 6, 90128 Palermo, Italy;
- Istituto di BioFisica, Consiglio Nazionale delle Ricerche, Via U. La Malfa 153, 90146 Palermo, Italy
| | - Mark S. Driscoll
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210, USA;
- UV/EB Technology Center, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Piotr Ulański
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland;
| | - Mohamad Al-Sheikhly
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
49
|
Pinelli F, Ortolà ÓF, Makvandi P, Perale G, Rossi F. In vivo drug delivery applications of nanogels: a review. Nanomedicine (Lond) 2020; 15:2707-2727. [PMID: 33103960 DOI: 10.2217/nnm-2020-0274] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In recent years, nanogels have emerged as promising drug delivery vehicles; their ability in holding active molecules, macromolecules and drugs, together with the capability to respond to external stimuli, makes them a suitable tool for a wide range of applications. These features allow nanogels to be exploited against many challenges of nanomedicine associated with different kinds of pathologies which require the use of specific drug delivery systems. In this review our aim is to give the reader an overview of the diseases that can be treated with nanogels as drug delivery systems, such as cancer, CNS disorders, cardiovascular diseases, wound healing and other diseases of human body. For all of these pathologies, biological in vivo assays can be found in the literature and in this work. We focus on the peculiarities of these nanogels, highlighting their features and their advantages in respect to conventional treatments.
Collapse
Affiliation(s)
- Filippo Pinelli
- Department of Chemistry, Materials & Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, 20131, Milan, Italy
| | - Óscar Fullana Ortolà
- Department of Chemistry, Materials & Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, 20131, Milan, Italy
| | - Pooyan Makvandi
- Institute for Polymers, Composites & Biomaterials, National Research Council, Via Campi Flegrei, 34 - 80078 Pozzuoli (NA), Italy.,Istituto Italiano di Tecnologia, Centre for Micro-BioRobotics, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy.,Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Giuseppe Perale
- Faculty of Biomedical Sciences, University of Southern Switzerland (USI), Via Buffi 13, 6900 Lugano, Switzerland
| | - Filippo Rossi
- Department of Chemistry, Materials & Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, 20131, Milan, Italy
| |
Collapse
|
50
|
Dispenza C, Sabatino MA, Grimaldi N, Dahlgren B, Al-Sheikhly M, Wishart JF, Tsinas Z, Poster DL, Jonsson M. On the nature of macroradicals formed upon radiolysis of aqueous poly(N-vinylpyrrolidone) solutions. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2020.108900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|