1
|
Dabas R, Navaratnam N, Iino H, Saidjalolov S, Matile S, Carling D, Rueda DS, Kamaly N. Precise intracellular uptake and endosomal release of diverse functional mRNA payloads via glutathione-responsive nanogels. Mater Today Bio 2025; 30:101425. [PMID: 39839495 PMCID: PMC11745970 DOI: 10.1016/j.mtbio.2024.101425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/09/2024] [Accepted: 12/22/2024] [Indexed: 01/23/2025] Open
Abstract
We present a novel, highly customizable glutathione-responsive nanogel (NG) platform for efficient mRNA delivery with precise mRNA payload release control. Optimization of various cationic monomers, including newly synthesized cationic polyarginine, polyhistidine, and acrylated guanidine monomers, allowed fine-tuning of NG properties for mRNA binding. By incorporating a poly(ethylene) glycol-based disulphide crosslinker, we achieved glutathione-triggered mRNA release, enabling targeted intracellular delivery. Our NGs demonstrated superior encapsulation (up to 89.3 %) and loading (10.7 %) efficiencies, with controlled mRNA release kinetics at intracellular glutathione concentrations. NGs outperformed commercial transfection reagents across multiple cell lines, including traditionally difficult-to-transfect lines. We demonstrate the platform's versatility by successfully delivering GFP mRNA, Mango II RNA aptamers, and functionally relevant β2-AMPK mRNA. Furthermore, we used TIRF microscopy to measure exact RNA copy number within the NGs. Notably, mechanistic cellular uptake studies revealed that disulphide-containing NGs exhibit enhanced cellular uptake and endosomal escape, potentially due to interactions with cell surface thiols. This work represents a highly tuneable, efficient, and biocompatible platform for mRNA delivery with relevance for gene therapy and vaccine development.
Collapse
Affiliation(s)
- Rupali Dabas
- Cellular Stress Research Group, MRC Laboratory of Medical Sciences, Imperial College London, W12 0HS, London, UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, W12 0BZ, London, UK
| | - Naveenan Navaratnam
- Cellular Stress Research Group, MRC Laboratory of Medical Sciences, Imperial College London, W12 0HS, London, UK
| | - Haruki Iino
- Single Molecule Imaging Group, MRC Laboratory of Medical Sciences, Imperial College London, W12 0HS, London, UK
- Section of Virology, Department of Infectious Disease, Imperial College London, W12 0HS, London, UK
| | | | - Stefan Matile
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - David Carling
- Cellular Stress Research Group, MRC Laboratory of Medical Sciences, Imperial College London, W12 0HS, London, UK
| | - David S. Rueda
- Single Molecule Imaging Group, MRC Laboratory of Medical Sciences, Imperial College London, W12 0HS, London, UK
- Section of Virology, Department of Infectious Disease, Imperial College London, W12 0HS, London, UK
| | - Nazila Kamaly
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, W12 0BZ, London, UK
| |
Collapse
|
2
|
Dabas R, Koh A, Carling D, Kamaly N, Brown AEX. Redox-Responsive Polymeric Nanogels as Efficient mRNA Delivery Vehicles in Caenorhabditis elegans. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001428. [PMID: 39726755 PMCID: PMC11669991 DOI: 10.17912/micropub.biology.001428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024]
Abstract
Efficient delivery of sensitive nucleic acid payloads, including mRNA, in Caenorhabditis elegans remains challenging, especially with traditional, labor-intensive transgenesis methods. We addressed these challenges using polymeric nanogels (NGs) as an advanced platform for mRNA delivery in C. elegans . These polymeric delivery vehicles can be engineered to suit desired applications owing to their chemical versatility, resulting from the ability to conjugate multiple functional groups onto the same backbone. Here, we validate the in vivo RNA delivery potential of redox-responsive NGs. The NGs showed up to 72.4 % RNA encapsulation and 6.61 % loading efficiencies and facilitated the controlled release of the mRNA payloads at intracellular concentrations of the reducing agent glutathione, where most of the RNA was released within 24 hours. As a proof of concept, we successfully delivered green fluorescent protein (GFP)-expressing mRNA using NGs in C. elegans for the first time. Physicochemical characterization revealed uniform NG size and charge, and fluorescence microscopy confirmed GFP expression in the gut after 24 hours of treatment. Our findings show NGs' potential as an mRNA delivery system in C. elegans .
Collapse
Affiliation(s)
- Rupali Dabas
- MRC Laboratory of Medical Sciences, Institute of Clinical Sciences, London, England, United Kingdom
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, W12 0BZ London, United Kingdom
| | - Alan Koh
- MRC Laboratory of Medical Sciences, Institute of Clinical Sciences, London, England, United Kingdom
| | - David Carling
- MRC Laboratory of Medical Sciences, Institute of Clinical Sciences, London, England, United Kingdom
| | - Nazila Kamaly
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, W12 0BZ London, United Kingdom
| | - André E. X. Brown
- MRC Laboratory of Medical Sciences, Institute of Clinical Sciences, London, England, United Kingdom
| |
Collapse
|
3
|
Kachanov A, Kostyusheva A, Brezgin S, Karandashov I, Ponomareva N, Tikhonov A, Lukashev A, Pokrovsky V, Zamyatnin AA, Parodi A, Chulanov V, Kostyushev D. The menace of severe adverse events and deaths associated with viral gene therapy and its potential solution. Med Res Rev 2024; 44:2112-2193. [PMID: 38549260 DOI: 10.1002/med.22036] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 08/09/2024]
Abstract
Over the past decade, in vivo gene replacement therapy has significantly advanced, resulting in market approval of numerous therapeutics predominantly relying on adeno-associated viral vectors (AAV). While viral vectors have undeniably addressed several critical healthcare challenges, their clinical application has unveiled a range of limitations and safety concerns. This review highlights the emerging challenges in the field of gene therapy. At first, we discuss both the role of biological barriers in viral gene therapy with a focus on AAVs, and review current landscape of in vivo human gene therapy. We delineate advantages and disadvantages of AAVs as gene delivery vehicles, mostly from the safety perspective (hepatotoxicity, cardiotoxicity, neurotoxicity, inflammatory responses etc.), and outline the mechanisms of adverse events in response to AAV. Contribution of every aspect of AAV vectors (genomic structure, capsid proteins) and host responses to injected AAV is considered and substantiated by basic, translational and clinical studies. The updated evaluation of recent AAV clinical trials and current medical experience clearly shows the risks of AAVs that sometimes overshadow the hopes for curing a hereditary disease. At last, a set of established and new molecular and nanotechnology tools and approaches are provided as potential solutions for mitigating or eliminating side effects. The increasing number of severe adverse reactions and, sadly deaths, demands decisive actions to resolve the issue of immune responses and extremely high doses of viral vectors used for gene therapy. In response to these challenges, various strategies are under development, including approaches aimed at augmenting characteristics of viral vectors and others focused on creating secure and efficacious non-viral vectors. This comprehensive review offers an overarching perspective on the present state of gene therapy utilizing both viral and non-viral vectors.
Collapse
Affiliation(s)
- Artyom Kachanov
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Anastasiya Kostyusheva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Sergey Brezgin
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - Ivan Karandashov
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Natalia Ponomareva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - Andrey Tikhonov
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Alexander Lukashev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Vadim Pokrovsky
- Laboratory of Biochemical Fundamentals of Pharmacology and Cancer Models, Blokhin Cancer Research Center, Moscow, Russia
- Department of Biochemistry, People's Friendship University, Russia (RUDN University), Moscow, Russia
| | - Andrey A Zamyatnin
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- Belozersky Research, Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alessandro Parodi
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - Vladimir Chulanov
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
- Faculty of Infectious Diseases, Sechenov University, Moscow, Russia
| | - Dmitry Kostyushev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
4
|
Su C, Lin D, Huang X, Feng J, Jin A, Wang F, Lv Q, Lei L, Pan W. Developing hydrogels for gene therapy and tissue engineering. J Nanobiotechnology 2024; 22:182. [PMID: 38622684 PMCID: PMC11017488 DOI: 10.1186/s12951-024-02462-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/04/2024] [Indexed: 04/17/2024] Open
Abstract
Hydrogels are a class of highly absorbent and easily modified polymer materials suitable for use as slow-release carriers for drugs. Gene therapy is highly specific and can overcome the limitations of traditional tissue engineering techniques and has significant advantages in tissue repair. However, therapeutic genes are often affected by cellular barriers and enzyme sensitivity, and carrier loading of therapeutic genes is essential. Therapeutic gene hydrogels can well overcome these difficulties. Moreover, gene-therapeutic hydrogels have made considerable progress. This review summarizes the recent research on carrier gene hydrogels for the treatment of tissue damage through a summary of the most current research frontiers. We initially introduce the classification of hydrogels and their cross-linking methods, followed by a detailed overview of the types and modifications of therapeutic genes, a detailed discussion on the loading of therapeutic genes in hydrogels and their characterization features, a summary of the design of hydrogels for therapeutic gene release, and an overview of their applications in tissue engineering. Finally, we provide comments and look forward to the shortcomings and future directions of hydrogels for gene therapy. We hope that this article will provide researchers in related fields with more comprehensive and systematic strategies for tissue engineering repair and further promote the development of the field of hydrogels for gene therapy.
Collapse
Affiliation(s)
- Chunyu Su
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Dini Lin
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Xinyu Huang
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Jiayin Feng
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Anqi Jin
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Fangyan Wang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Qizhuang Lv
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China.
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China.
| | - Wenjie Pan
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China.
| |
Collapse
|
5
|
Yang C, Lin ZI, Zhang X, Xu Z, Xu G, Wang YM, Tsai TH, Cheng PW, Law WC, Yong KT, Chen CK. Recent Advances in Engineering Carriers for siRNA Delivery. Macromol Biosci 2024; 24:e2300362. [PMID: 38150293 DOI: 10.1002/mabi.202300362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/29/2023] [Indexed: 12/28/2023]
Abstract
RNA interference (RNAi) technology has been a promising treatment strategy for combating intractable diseases. However, the applications of RNAi in clinical are hampered by extracellular and intracellular barriers. To overcome these barriers, various siRNA delivery systems have been developed in the past two decades. The first approved RNAi therapeutic, Patisiran (ONPATTRO) using lipids as the carrier, for the treatment of amyloidosis is one of the most important milestones. This has greatly encouraged researchers to work on creating new functional siRNA carriers. In this review, the recent advances in siRNA carriers consisting of lipids, polymers, and polymer-modified inorganic particles for cancer therapy are summarized. Representative examples are presented to show the structural design of the carriers in order to overcome the delivery hurdles associated with RNAi therapies. Finally, the existing challenges and future perspective for developing RNAi as a clinical modality will be discussed and proposed. It is believed that the addressed contributions in this review will promote the development of siRNA delivery systems for future clinical applications.
Collapse
Affiliation(s)
- Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zheng-Ian Lin
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Xinmeng Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yu-Min Wang
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Tzu-Hsien Tsai
- Division of Cardiology and Department of Internal Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, 60002, Taiwan
| | - Pei-Wen Cheng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan
- Department of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Wing-Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 999077, P. R. China
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Chih-Kuang Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| |
Collapse
|
6
|
Ma Y, Li S, Lin X, Chen Y. Bioinspired Spatiotemporal Management toward RNA Therapies. ACS NANO 2023; 17:24539-24563. [PMID: 38091941 DOI: 10.1021/acsnano.3c08219] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Ribonucleic acid (RNA)-based therapies have become an attractive topic in disease intervention, especially with some that have been approved by the FDA such as the mRNA COVID-19 vaccine (Comirnaty, Pfizer-BioNTech, and Spikevax, Moderna) and Patisiran (siRNA-based drug for liver delivery). However, extensive applications are still facing challenges in delivering highly negatively charged RNA to the targeted site. Therapeutic delivery strategies including RNA modifications, RNA conjugates, and RNA polyplexes and delivery platforms such as viral vectors, nanoparticle-based delivery platforms, and hydrogel-based delivery platforms as potential nucleic acid-releasing depots have been developed to enhance their cellular uptake and protect nucleic acid from being degraded by immune systems. Here, we review the growing number of viral vectors, nanoparticles, and hydrogel-based RNA delivery systems; describe RNA loading/release mechanism induced by environmental stimulations including light, heat, pH, or enzyme; discuss their physical or chemical interactions; and summarize the RNA therapeutics release period (temporal) and their target cells/organs (spatial). Finally, we describe current concerns, highlight current challenges and future perspectives of RNA-based delivery systems, and provide some possible research areas that provide opportunities for clinical translation of RNA delivery carriers.
Collapse
Affiliation(s)
- Yutian Ma
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Shiyao Li
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Xin Lin
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27705, United States
| | - Yupeng Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Neumann-Tran TMP, López-Iglesias C, Navarro L, Quaas E, Achazi K, Biglione C, Klinger D. Poly( N-acryloylmorpholine) Nanogels as Promising Materials for Biomedical Applications: Low Protein Adhesion and High Colloidal Stability. ACS APPLIED POLYMER MATERIALS 2023; 5:7718-7732. [DOI: 10.1021/acsapm.3c00890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Thi Mai Phuong Neumann-Tran
- Institute of Pharmacy (Pharmaceutical Chemistry) Freie Universität Berlin, Königin-Luise -Str.2-4, Berlin 14195, Germany
| | - Clara López-Iglesias
- Institute of Pharmacy (Pharmaceutical Chemistry) Freie Universität Berlin, Königin-Luise -Str.2-4, Berlin 14195, Germany
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, I+D Farma Group (GI-1645), Faculty of Pharmacy, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Campus Vida s/n, 15782 Santiago de Compostela, Spain
| | - Lucila Navarro
- Institute of Pharmacy (Pharmaceutical Chemistry) Freie Universität Berlin, Königin-Luise -Str.2-4, Berlin 14195, Germany
| | - Elisa Quaas
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Altensteinstrasse 23a, Berlin 14195, Germany
| | - Katharina Achazi
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Altensteinstrasse 23a, Berlin 14195, Germany
| | - Catalina Biglione
- Institute of Pharmacy (Pharmaceutical Chemistry) Freie Universität Berlin, Königin-Luise -Str.2-4, Berlin 14195, Germany
- Advanced Porous Materials Unit (APMU), IMDEA Energy Institute, E-28935 Madrid, Spain
| | - Daniel Klinger
- Institute of Pharmacy (Pharmaceutical Chemistry) Freie Universität Berlin, Königin-Luise -Str.2-4, Berlin 14195, Germany
| |
Collapse
|
8
|
Chen J, Li J, Sun X, Lu H, Liu K, Li Z, Guan J, Song H, Wei W, Ge Y, Fan Q, Bao W, Ma B, Du Z. Precision Therapy of Recurrent Breast Cancer through Targeting Different Malignant Tumor Cells with a HER2/CD44-Targeted Hydrogel Nanobot. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301043. [PMID: 37154208 DOI: 10.1002/smll.202301043] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/20/2023] [Indexed: 05/10/2023]
Abstract
Heterogeneity and drug resistance of tumor cells are the leading causes of incurability and poor survival for patients with recurrent breast cancer. In order to accurately deliver the biological anticancer drugs to different subtypes of malignant tumor cells for omnidirectional targeted treatment of recurrent breast cancer, a distinct design is demonstrated by embedding liposome-based nanocomplexes containing pro-apoptotic peptide and survivin siRNA drugs (LPR) into Herceptin/hyaluronic acid cross-linked nanohydrogels (Herceptin-HA) to fabricate a HER2/CD44-targeted hydrogel nanobot (named as ALPR). ALPR delivered cargoes to the cells overexpressing CD44 and HER2, followed by Herceptin-HA biodegradation, subsequently, the exposed lipid component containing DOPE fused with the endosomal membrane and released peptide and siRNA into the cytoplasm. These experiments indicated that ALPR can specifically deliver Herceptin, peptide, and siRNA drugs to HER2-positive SKBR-3, triple-negative MDA-MB-231, and HER2-negative drug-resistant MCF-7 human breast cancer cells. ALPR completely inhibited the growth of heterogeneous breast tumors via multichannel synergistic effects: disrupting mitochondria, downregulating the survivin gene, and blocking HER2 receptors on the surface of HER2-positive cells. The present design overcomes the chemical drug resistance and opens a feasible route for the combinative treatment of recurrent breast cancer, even other solid tumors, utilizing different kinds of biological drugs.
Collapse
Affiliation(s)
- Juan Chen
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yi-Shan Road, Shanghai, 200233, China
| | - Jinjin Li
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiaolu Sun
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Huixia Lu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Kuai Liu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhenbo Li
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jianyue Guan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Huiling Song
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wei Wei
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yanhong Ge
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Qiong Fan
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910 Hengshan Road, Shanghai, 200030, China
| | - Wei Bao
- Department of Obstetrics and Gynecology, Shanghai General Hospital affiliated with Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China
| | - Buyong Ma
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zixiu Du
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
9
|
Ali AA, Al-Othman A, Al-Sayah MH. Multifunctional stimuli-responsive hybrid nanogels for cancer therapy: Current status and challenges. J Control Release 2022; 351:476-503. [PMID: 36170926 DOI: 10.1016/j.jconrel.2022.09.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/18/2022]
Abstract
With cancer research shifting focus to achieving multifunctionality in cancer treatment strategies, hybrid nanogels are making a rapid rise to the spotlight as novel, multifunctional, stimuli-responsive, and biocompatible cancer therapeutic strategies. They can possess cancer cell-specific cytotoxic effects themselves, carry drugs or enzymes that can produce cytotoxic effects, improve imaging modalities, and target tumor cells over normal cells. Hybrid nanogels bring together a wide range of desirable properties for cancer treatment such as stimuli-responsiveness, efficient loading and protection of molecules such as drugs or enzymes, and effective crossing of cellular barriers among other properties. Despite their promising abilities, hybrid nanogels are still far from being used in the clinic, and their available data remains relatively limited. However, many studies can be done to facilitate this clinical transition. This review is critically summarizing and analyzing the recent information and progress on the use of hybrid nanogels particularly inorganic nanoparticle-based and organic nanoparticle-based hybrid nanogels in the field of oncology and future directions to aid in transferring those results to the clinic. This work concludes that the future of hybrid nanogels is greatly impacted by therapeutic and non-therapeutic factors. Therapeutic factors include the lack of hemocompatibility studies, acute and chronic toxicological studies, and information on agglomeration capability and extent, tumor heterogeneity, interaction with proteins in physiological fluids, endocytosis-exocytosis, and toxicity of the nanogels' breakdown products. Non-therapeutic factors include the lack of clear regulatory guidelines and standardized assays, limitations of animal models, and difficulties associated with good manufacture practices (GMP).
Collapse
Affiliation(s)
- Amaal Abdulraqeb Ali
- Biomedical Engineering Graduate Program, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
| | - Amani Al-Othman
- Department of Chemical Engineering, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates.
| | - Mohammad H Al-Sayah
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
| |
Collapse
|
10
|
Pereira PA, Serra MES, Serra AC, Coelho JFJ. Application of vinyl polymer-based materials as nucleic acids carriers in cancer therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1820. [PMID: 35637638 DOI: 10.1002/wnan.1820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 04/13/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Nucleic acid-based therapies have changed the paradigm of cancer treatment, where conventional treatment modalities still have several limitations in terms of efficacy and severe side effects. However, these biomolecules have a short half-life in vivo, requiring multiple administrations, resulting in severe suffering, discomfort, and poor patient compliance. In the early days of (nano)biotechnology, these problems caused concern in the medical community, but recently it has been recognized that these challenges can be overcome by developing innovative formulations. This review focuses on the use of vinyl polymer-based materials for the protection and delivery of nucleic acids in cancer. First, an overview of the properties of nucleic acids and their versatility as drugs is provided. Then, key information on the achievements to date, the most effective delivery methods, and the evaluation of functionalization approaches (stimulatory strategies) are critically discussed to highlight the importance of vinyl polymers in the new cancer treatment approaches. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures.
Collapse
Affiliation(s)
- Patrícia Alexandra Pereira
- Department of Chemical Engineering, CEMMPRE, University of Coimbra, Rua Sílvio Lima-Pólo II, Coimbra, Portugal
- IPN, Instituto Pedro Nunes, Associação para a Inovação e Desenvolvimento em Ciência e Tecnologia, Rua Pedro Nunes, Coimbra, Portugal
| | | | - Arménio C Serra
- Department of Chemical Engineering, CEMMPRE, University of Coimbra, Rua Sílvio Lima-Pólo II, Coimbra, Portugal
| | - Jorge F J Coelho
- Department of Chemical Engineering, CEMMPRE, University of Coimbra, Rua Sílvio Lima-Pólo II, Coimbra, Portugal
| |
Collapse
|
11
|
Zhao R, Liu J, Li Z, Zhang W, Wang F, Zhang B. Recent Advances in CXCL12/CXCR4 Antagonists and Nano-Based Drug Delivery Systems for Cancer Therapy. Pharmaceutics 2022; 14:pharmaceutics14081541. [PMID: 35893797 PMCID: PMC9332179 DOI: 10.3390/pharmaceutics14081541] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/15/2022] [Accepted: 07/22/2022] [Indexed: 01/27/2023] Open
Abstract
Chemokines can induce chemotactic cell migration by interacting with G protein-coupled receptors to play a significant regulatory role in the development of cancer. CXC chemokine-12 (CXCL12) can specifically bind to CXC chemokine receptor 4 (CXCR4) and is closely associated with the progression of cancer via multiple signaling pathways. Over recent years, many CXCR4 antagonists have been tested in clinical trials; however, Plerixafor (AMD3100) is the only drug that has been approved for marketing thus far. In this review, we first summarize the mechanisms that mediate the physiological effects of the CXCL12/CXCR4 axis. Then, we describe the use of CXCL12/CXCR4 antagonists. Finally, we discuss the use of nano-based drug delivery systems that exert action on the CXCL12/CXCR4 biological axis.
Collapse
Affiliation(s)
| | | | | | | | - Feng Wang
- Correspondence: (F.W.); (B.Z.); Tel.: +86-536-8462490 (B.Z.)
| | - Bo Zhang
- Correspondence: (F.W.); (B.Z.); Tel.: +86-536-8462490 (B.Z.)
| |
Collapse
|
12
|
Wang M, Zhao J, Jiang H, Wang X. Tumor-targeted nano-delivery system of therapeutic RNA. MATERIALS HORIZONS 2022; 9:1111-1140. [PMID: 35134106 DOI: 10.1039/d1mh01969d] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The birth of RNAi technology has pioneered actionability at the molecular level. Compared to DNA, RNA is less stable and therefore requires more demanding delivery vehicles. With their flexible size, shape, structure, and accessible surface modification, non-viral vectors show great promise for application in RNA delivery. Different non-viral vectors have different ways of binding to RNA. Low immunotoxicity gives RNA significant advantages in tumor treatment. However, the delivery of RNA still has many limitations in vivo. This manuscript summarizes the size-targeting dependence of different organs, followed by a summary of nanovesicles currently in or undergoing clinical trials. It also reviews all RNA delivery systems involved in the current study, including natural, bionic, organic, and inorganic systems. It summarizes the advantages and disadvantages of different delivery methods, which will be helpful for future RNA vehicle design. It is hoped that this will be helpful for gene therapy of clinical tumors.
Collapse
Affiliation(s)
- Maonan Wang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Jingzhou Zhao
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Hui Jiang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
13
|
Guo Y, Cao X, Zheng X, Abbas SJ, Li J, Tan W. Construction of nanocarriers based on nucleic acids and their application in nanobiology delivery systems. Natl Sci Rev 2022; 9:nwac006. [PMID: 35668748 PMCID: PMC9162387 DOI: 10.1093/nsr/nwac006] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/23/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
Abstract
In recent years, nanocarriers based on nucleic acids (NCNAs) have emerged as powerful and novel nanocarriers that are able to meet the demand for cancer cell-specific targeting. Functional dynamics analysis revealed good biocompatibility, low toxicity, and programmable structures, and their advantages include controllable size and modifiability. The development of novel hybrids has focused on the distinct roles of biosensing, drug and gene delivery, vaccine transport, photosensitization, counteracting drug resistance and functioning as carriers and logic gates. This review is divided into three parts: (1) DNA nanocarriers, (2) RNA nanocarriers, and (3) DNA/RNA hybrid nanocarriers and their biological applications. We also provide perspectives on possible future directions for growth in this field.
Collapse
Affiliation(s)
- Yingshu Guo
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xiuping Cao
- School of Chemistry and Chemical Engineering, Linyi University, Linyi276005, China
| | - Xiaofei Zheng
- School of Chemistry and Chemical Engineering, Linyi University, Linyi276005, China
| | - Sk Jahir Abbas
- Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Juan Li
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou310022, China
| | - Weihong Tan
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou310022, China
| |
Collapse
|
14
|
Nabiyan A, Max JB, Schacher FH. Double hydrophilic copolymers - synthetic approaches, architectural variety, and current application fields. Chem Soc Rev 2022; 51:995-1044. [PMID: 35005750 DOI: 10.1039/d1cs00086a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Solubility and functionality of polymeric materials are essential properties determining their role in any application. In that regard, double hydrophilic copolymers (DHC) are typically constructed from two chemically dissimilar but water-soluble building blocks. During the past decades, these materials have been intensely developed and utilised as, e.g., matrices for the design of multifunctional hybrid materials, in drug carriers and gene delivery, as nanoreactors, or as sensors. This is predominantly due to almost unlimited possibilities to precisely tune DHC composition and topology, their solution behavior, e.g., stimuli-response, and potential interactions with small molecules, ions and (nanoparticle) surfaces. In this contribution we want to highlight that this class of polymers has experienced tremendous progress regarding synthesis, architectural variety, and the possibility to combine response to different stimuli within one material. Especially the implementation of DHCs as versatile building blocks in hybrid materials expanded the range of water-based applications during the last two decades, which now includes also photocatalysis, sensing, and 3D inkjet printing of hydrogels, definitely going beyond already well-established utilisation in biomedicine or as templates.
Collapse
Affiliation(s)
- Afshin Nabiyan
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller University Jena, Lessingstraße 8, D-07743 Jena, Germany. .,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany.,Center for Energy and Environmental Chemistry Jena (CEEC Jena), Philosophenweg 7a, 07743 Jena, Germany
| | - Johannes B Max
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller University Jena, Lessingstraße 8, D-07743 Jena, Germany. .,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany.,Center for Energy and Environmental Chemistry Jena (CEEC Jena), Philosophenweg 7a, 07743 Jena, Germany
| | - Felix H Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller University Jena, Lessingstraße 8, D-07743 Jena, Germany. .,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany.,Center for Energy and Environmental Chemistry Jena (CEEC Jena), Philosophenweg 7a, 07743 Jena, Germany
| |
Collapse
|
15
|
Sonker M, Bajpai S, Khan MA, Yu X, Tiwary SK, Shreyash N. Review of Recent Advances and Their Improvement in the Effectiveness of Hydrogel-Based Targeted Drug Delivery: A Hope for Treating Cancer. ACS APPLIED BIO MATERIALS 2021; 4:8080-8109. [PMID: 35005919 DOI: 10.1021/acsabm.1c00857] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Using hydrogels for delivering cancer therapeutics is advantageous in pharmaceutical usage as they have an edge over traditional delivery, which is tainted due to the risk of toxicity that it imbues. Hydrogel usage leads to the development of a more controlled drug release system owing to its amenability for structural metamorphosis, its higher porosity to seat the drug molecules, and its ability to shield the drug from denaturation. The thing that makes its utility even more enhanced is that they make themselves more recognizable to the body tissues and hence can stay inside the body for a longer time, enhancing the efficiency of the delivery, which otherwise is negatively affected since the drug is identified by the human immunity as a foreign substance, and thus, an attack of the immunity begins on the drug injected. A variety of hydrogels such as thermosensitive, pH-sensitive, and magnetism-responsive hydrogels have been included and their potential usage in drug delivery has been discussed in this review that aims to present recent studies on hydrogels that respond to alterations under a variety of circumstances in "reducing" situations that mimic the microenvironment of cancerous cells.
Collapse
Affiliation(s)
- Muskan Sonker
- Department of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30318, United States
| | - Sushant Bajpai
- Department of Petroleum Engineering, Rajiv Gandhi Institute of Petroleum Technology, Jais, Amethi 229304, India
| | - Mohd Ashhar Khan
- Department of Chemical Engineering, Rajiv Gandhi Institute of Petroleum Technology, Jais, Amethi 229304, India
| | - Xiaojun Yu
- Department of Biomedical Engineering Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Saurabh Kr Tiwary
- Department of Chemical Engineering, Rajiv Gandhi Institute of Petroleum Technology, Jais, Amethi 229304, India
| | - Nehil Shreyash
- Department of Chemical Engineering, Rajiv Gandhi Institute of Petroleum Technology, Jais, Amethi 229304, India
| |
Collapse
|
16
|
Wang H, Gao L, Fan T, Zhang C, Zhang B, Al-Hartomy OA, Al-Ghamdi A, Wageh S, Qiu M, Zhang H. Strategic Design of Intelligent-Responsive Nanogel Carriers for Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:54621-54647. [PMID: 34767342 DOI: 10.1021/acsami.1c13634] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Owing to the distinctive constituents of tumor tissue from those healthy organs, nanomedicine strategies show significant potentials in smart drug delivery. Nowadays, stimuli-responsive nanogels are playing increasingly important roles in the application of cancer therapy because of their sensitivity to various internal or external physicochemical stimuli, which exhibit site-specific and markedly enhanced drug release. Besides, nanogels are promising as drug carriers because of their porous structures, good biocompatibility, large surface area, and excellent capability with drugs. Taking advantage of multiresponsiveness, recent years have witnessed the rapid evolution of stimulus-responsive nanogels from monoresponsive to multiresponsive systems; however, there lacks a comprehensive review summarizing these reports. In this Review, we discuss the properties, synthesis, and characterization of nanogels. Moreover, tumor microenvironment and corresponding designing strategies for stimuli-response nanogels, both exogenous (temperature, magnetic field, light) and endogenous (pH, biomolecular, redox, ROS, pressure, hypoxia) are summarized on the basis of the recent advances in multistimuli-responsive nanogel systems. Nanogel and two-dimensional material composites show excellent performance in the field of constructing multistimulus-responsive nanoparticles and precise intelligent drug release integrated system for multimodal cancer diagnosis and therapy. Finally, potential progresses and suggestions are provided for the further design of hybrid nanogels based on emerging two-dimensional materials.
Collapse
Affiliation(s)
- Hao Wang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Institute of Microscale Optoelectronics, Shenzhen Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen 518060, China
| | - Lingfeng Gao
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318 Yuhangtang Rd., Cangqian, Yuhang District, Hangzhou 311121, China
| | - Taojian Fan
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Institute of Microscale Optoelectronics, Shenzhen Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen 518060, China
| | - Chen Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Institute of Microscale Optoelectronics, Shenzhen Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen 518060, China
| | - Bin Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Institute of Microscale Optoelectronics, Shenzhen Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen 518060, China
| | - Omar A Al-Hartomy
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ahmed Al-Ghamdi
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Swelm Wageh
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Meng Qiu
- Key Laboratory of Marine Chemistry Theory and Technology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Han Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Institute of Microscale Optoelectronics, Shenzhen Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
17
|
Arjama M, Mehnath S, Rajan M, Jeyaraj M. Engineered Hyaluronic Acid-Based Smart Nanoconjugates for Enhanced Intracellular Drug Delivery. J Pharm Sci 2021; 112:1603-1614. [PMID: 34678274 DOI: 10.1016/j.xphs.2021.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022]
Abstract
Bacterial polysaccharides can be easily modified to offer dual stimuli-responsive drug delivery systems with double targeting potential. In this research work, bacterial polysaccharides hyaluronic acid (HA) were functionalized with α-tocopherol polyethylene glycol succinate (TPGS) and cholic acid (CA) to form multifunctional polysaccharides nanoconjugates (TPGS-HA-CA). Smart nanoconjugates were synthesized by forming a redox-responsive disulfide bond, and it is composed of double targeting ligands. Doxorubicin (DOX) encapsulated smart nanoconjugates were exhibited an average size of 200 nm with a uniform core-shell structure. It serves the pH-responsive side chain modulation of TPGS-HA-CA, which affords a high degree of swelling at acidic pH. Under the pH 5.0 it shows 57% of release due to the side chain modulation of C-H/N-H. Polysaccharides nanoconjugates exhibited the double stimuli-responsive drug delivery by rapid disassembly of disulfide linkage, which exhibited 72% drug release (pH 5.0+GSH 10 mM). In cytotoxic studies, DOX@TPGS-HA-CA exhibited a higher cytotoxic effect compared to DOX. Hyaluronic acid functionalization with CA, TPGS increases cell internalization, and dual stimuli activity promotes more cell death. Overall, multifunctional polysaccharides hydrogel nanoconjugates is a prospective material that has great potential for targeting breast cancer therapy.
Collapse
Affiliation(s)
- Mukherjee Arjama
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai 25, Tamil Nadu, India
| | - Sivaraj Mehnath
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai 25, Tamil Nadu, India
| | - Mariappan Rajan
- Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 21, Tamil Nadu, India
| | - Murugaraj Jeyaraj
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai 25, Tamil Nadu, India.
| |
Collapse
|
18
|
Kharbikar BN, Zhong JX, Cuylear DL, Perez CA, Desai TA. Theranostic biomaterials for tissue engineering. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021; 19. [PMID: 35529078 PMCID: PMC9075690 DOI: 10.1016/j.cobme.2021.100299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tissue engineering strategies, notably biomaterials, can be modularly designed and tuned to match specific patient needs. Although many challenges within tissue engineering remain, the incorporation of diagnostic strategies to create theranostic (combined therapy and diagnostic) biomaterials presents a unique platform to provide dual monitoring and treatment capabilities and advance the field toward personalized technologies. In this review, we summarize recent developments in this young field of regenerative theranostics and discuss the clinical potential and outlook of these systems from a tissue engineering perspective. As the need for precision and personalized medicines continues to increase to address diseases in all tissues in a patient-specific manner, we envision that such theranostic platforms can serve these needs.
Collapse
|
19
|
Li P, Wang T, He J, Jiang J, Lei F. Diffusion of water and protein drug in 1,4-butanediol diglycidyl ether crosslinked galactomannan hydrogels and its correlation with the physicochemical properties. Int J Biol Macromol 2021; 183:1987-2000. [PMID: 34087302 DOI: 10.1016/j.ijbiomac.2021.05.195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022]
Abstract
The aim of the present study was to obtain a better and safer galactomannan-based material for drug release applications. A novel epoxy-crosslinked galactomannan hydrogel (EGH) was prepared from guar gum using 1,4-butanediol diglycidyl ether as a crosslinking agent. The diffusion rate constant of water molecules in freeze-dried EGH positively correlated with water uptake/equilibrium swelling rate (WU/ESR), and the water molecules participated in Fickian diffusion. The ESR, WU/ESR, and bovine serum albumin (BSA) loading capacity of a customized EGH with a crosslinking density of 48.9% were 48.7 ± 0.15 g/g, 95.3%, and 56.4 mg/g, respectively. The release of BSA from freeze-dried EGH was affected by the WU/ESR and the pH; the release equilibrium time was ~40 h at pH 1.2, decreasing to ~24 h at pH 7.4. Furthermore, the cumulative release rate increased from 63.5% to 80.7% and the t50 decreased from 59 to 41 min upon changing from the acidic to basic pH. The release process conformed to the Ritger-Peppas and Hixson-Crowell models, and represented Fickian diffusion and chain relaxation. The EGH showed no cytotoxicity toward HeLa cells. Together, these results demonstrate the properties of a novel galactomannan-based hydrogel that can potentially be employed as a vehicle for drug delivery.
Collapse
Affiliation(s)
- Pengfei Li
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Ting Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China
| | - Jing He
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Jianxin Jiang
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China.
| | - Fuhou Lei
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China.
| |
Collapse
|
20
|
P-selectin targeting polysaccharide-based nanogels for miRNA delivery. Int J Pharm 2021; 597:120302. [DOI: 10.1016/j.ijpharm.2021.120302] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/20/2022]
|
21
|
Zhao Q, Zhang S, Wu F, Li D, Zhang X, Chen W, Xing B. Rational Design of Nanogels for Overcoming the Biological Barriers in Various Administration Routes. Angew Chem Int Ed Engl 2021; 60:14760-14778. [PMID: 31591803 DOI: 10.1002/anie.201911048] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Qing Zhao
- Key Laboratory of Pollution Ecology and Environmental Engineering Institute of Applied Ecology Chinese Academy of Sciences Shenyang 110016 China
| | - Siyu Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering Institute of Applied Ecology Chinese Academy of Sciences Shenyang 110016 China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment Chinese Research Academy of Environmental Sciences Beijing 100012 China
| | - Dengyu Li
- Key Laboratory of Pollution Ecology and Environmental Engineering Institute of Applied Ecology Chinese Academy of Sciences Shenyang 110016 China
| | - Xuejiao Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering Institute of Applied Ecology Chinese Academy of Sciences Shenyang 110016 China
| | - Wei Chen
- Department of Pharmaceutical Engineering School of Engineering China Pharmaceutical University Nanjing 211198 P.R. China
| | - Baoshan Xing
- Stockbridge School of Agriculture University of Massachusetts Amherst MA 01003 USA
| |
Collapse
|
22
|
Wang C, Wang X, Du L, Dong Y, Hu B, Zhou J, Shi Y, Bai S, Huang Y, Cao H, Liang Z, Dong A. Harnessing pH-Sensitive Polycation Vehicles for the Efficient siRNA Delivery. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2218-2229. [PMID: 33406826 DOI: 10.1021/acsami.0c17866] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
pH-sensitive hydrophobic segments have been certificated to facilitate siRNA delivery efficiency of amphiphilic polycation vehicles. However, optimal design concepts for these vehicles remain unclear. Herein, by studying the library of amphiphilic polycations mPEG-PAMA50-P(DEAx-r-D5Ay) (EAE5x/y), we concluded a multifactor matching concept (pKa values, "proton buffering capacities" (BCs), and critical micelle concentrations (CMCs)) for polycation vehicles to improve siRNA delivery efficiency in vitro and in vivo. We identified that the stronger BCs in a pH 5.5-7.4 subset induced by EAE548/29 (pKa = 6.79) and EAE539/37 (pKa = 6.20) are effective for siRNA delivery in vitro. Further, the stronger BCs occurred in a narrow subset of pH 5.5-6.5 and the lower CMC attributed to higher siRNA delivery capacity of EAE539/37 in vivo than EAE548/29 after intravenous administration and subcutaneous injection. More importantly, 87.2% gene knockdown efficacy was achieved by EAE539/37 via subcutaneous injection, which might be useful for an mRNA vaccine adjuvant. Furthermore, EAE539/37 also successfully delivered siRRM2 to tumor via intravenous administration and received highly efficient antitumor activity. Taken together, the suitable pKa values, strong BCs occurred in pH 5.5-6.5, and low CMCs were probably the potential solution for designing efficient polycationic vehicles for siRNA delivery.
Collapse
Affiliation(s)
- Changrong Wang
- College of Pharmacy, Xinxiang Medical University, 453003 Xinxiang, P.R. China
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Xiaoxia Wang
- Laboratory of Nucleic Acid Technology, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Lili Du
- Laboratory of Nucleic Acid Technology, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Yanliang Dong
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Bo Hu
- School of Life Science, Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China
| | - Junhui Zhou
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Yongli Shi
- College of Pharmacy, Xinxiang Medical University, 453003 Xinxiang, P.R. China
| | - Suping Bai
- College of Pharmacy, Xinxiang Medical University, 453003 Xinxiang, P.R. China
| | - Yuanyu Huang
- School of Life Science, Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China
| | - Huiqing Cao
- Laboratory of Nucleic Acid Technology, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Zicai Liang
- Laboratory of Nucleic Acid Technology, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Anjie Dong
- College of Pharmacy, Xinxiang Medical University, 453003 Xinxiang, P.R. China
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
23
|
Sulaiman NS, Hamzah N, Zakaria SF, Che Othman SF, Mohamed Suffian IF. Hydrogel-nanoparticle hybrids for biomedical applications: principles and advantages. Nanomedicine (Lond) 2020; 16:81-84. [PMID: 33356530 DOI: 10.2217/nnm-2020-0420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Nur Shahirah Sulaiman
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
| | - Nurasyikin Hamzah
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
| | - Siti Fatimah Zakaria
- Department of Computational & Theoretical Sciences, Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
| | - Siti Fairuz Che Othman
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
| | - Izzat Fahimuddin Mohamed Suffian
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
| |
Collapse
|
24
|
Preman NK, Barki RR, Vijayan A, Sanjeeva SG, Johnson RP. Recent developments in stimuli-responsive polymer nanogels for drug delivery and diagnostics: A review. Eur J Pharm Biopharm 2020; 157:121-153. [PMID: 33091554 DOI: 10.1016/j.ejpb.2020.10.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/28/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
|
25
|
Fu X, Shi Y, Qi T, Qiu S, Huang Y, Zhao X, Sun Q, Lin G. Precise design strategies of nanomedicine for improving cancer therapeutic efficacy using subcellular targeting. Signal Transduct Target Ther 2020; 5:262. [PMID: 33154350 PMCID: PMC7644763 DOI: 10.1038/s41392-020-00342-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/26/2020] [Accepted: 09/14/2020] [Indexed: 01/10/2023] Open
Abstract
Therapeutic efficacy against cancer relies heavily on the ability of the therapeutic agents to reach their final targets. The optimal targets of most cancer therapeutic agents are usually biological macromolecules at the subcellular level, which play a key role in carcinogenesis. Therefore, to improve the therapeutic efficiency of drugs, researchers need to focus on delivering not only the therapeutic agents to the target tissues and cells but also the drugs to the relevant subcellular structures. In this review, we discuss the most recent construction strategies and release patterns of various cancer cell subcellular-targeting nanoformulations, aiming at providing guidance in the overall design of precise nanomedicine. Additionally, future challenges and potential perspectives are illustrated in the hope of enhancing anticancer efficacy and accelerating the translational progress of precise nanomedicine.
Collapse
Affiliation(s)
- Xianglei Fu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yanbin Shi
- School of Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China
| | - Tongtong Qi
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Shengnan Qiu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yi Huang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Xiaogang Zhao
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, China
| | - Qifeng Sun
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, China
| | - Guimei Lin
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
26
|
Kong F, Tian D, Zhou J, Yue D, Bai Y, Yu Z, Duan J, Wang G, Pan J. Efficiently improving solid tumor therapy through shrinking the extracellular matrix and promoting drug transport in tumor tissue via simple and known functional materials. NANO SELECT 2020. [DOI: 10.1002/nano.202000064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Fei Kong
- Key Laboratory of Biorheological Science & Technology Ministry of Education State & Local Joint Engineering Laboratory for Vascular Implants College of Bioengineering Chongqing University Chongqing China
| | - Dawei Tian
- Key Laboratory of Biorheological Science & Technology Ministry of Education State & Local Joint Engineering Laboratory for Vascular Implants College of Bioengineering Chongqing University Chongqing China
| | - Jin Zhou
- Key Laboratory of Biorheological Science & Technology Ministry of Education State & Local Joint Engineering Laboratory for Vascular Implants College of Bioengineering Chongqing University Chongqing China
| | - Danyang Yue
- Key Laboratory of Biorheological Science & Technology Ministry of Education State & Local Joint Engineering Laboratory for Vascular Implants College of Bioengineering Chongqing University Chongqing China
| | - Yuying Bai
- Key Laboratory of Biorheological Science & Technology Ministry of Education State & Local Joint Engineering Laboratory for Vascular Implants College of Bioengineering Chongqing University Chongqing China
| | - Zhaojiang Yu
- Key Laboratory of Biorheological Science & Technology Ministry of Education State & Local Joint Engineering Laboratory for Vascular Implants College of Bioengineering Chongqing University Chongqing China
| | - Jiayi Duan
- Department of Biology Johns Hopkins University Baltimore Maryland USA
| | - Guixue Wang
- Key Laboratory of Biorheological Science & Technology Ministry of Education State & Local Joint Engineering Laboratory for Vascular Implants College of Bioengineering Chongqing University Chongqing China
| | - Jun Pan
- Key Laboratory of Biorheological Science & Technology Ministry of Education State & Local Joint Engineering Laboratory for Vascular Implants College of Bioengineering Chongqing University Chongqing China
| |
Collapse
|
27
|
Parodi A, Evangelopoulos M, Arrighetti N, Cevenini A, Livingston M, Khaled SZ, Brown BS, Yazdi IK, Paradiso F, Campa-Carranza JN, De Vita A, Taraballi F, Tasciotti E. Endosomal Escape of Polymer-Coated Silica Nanoparticles in Endothelial Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907693. [PMID: 32643290 DOI: 10.1002/smll.201907693] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 06/07/2020] [Indexed: 06/11/2023]
Abstract
Current investigations into hazardous nanoparticles (i.e., nanotoxicology) aim to understand the working mechanisms that drive toxicity. This understanding has been used to predict the biological impact of the nanocarriers as a function of their synthesis, material composition, and physicochemical characteristics. It is particularly critical to characterize the events that immediately follow cell stress resulting from nanoparticle internalization. While reactive oxygen species and activation of autophagy are universally recognized as mechanisms of nanotoxicity, the progression of these phenomena during cell recovery has yet to be comprehensively evaluated. Herein, primary human endothelial cells are exposed to controlled concentrations of polymer-functionalized silica nanoparticles to induce lysosomal damage and achieve cytosolic delivery. In this model, the recovery of cell functions lost following endosomal escape is primarily represented by changes in cell distribution and the subsequent partitioning of particles into dividing cells. Furthermore, multilamellar bodies are found to accumulate around the particles, demonstrating progressive endosomal escape. This work provides a set of biological parameters that can be used to assess cell stress related to nanoparticle exposure and the subsequent recovery of cell processes as a function of endosomal escape.
Collapse
Affiliation(s)
- Alessandro Parodi
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Michael Evangelopoulos
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Noemi Arrighetti
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale per lo Studio e la Cura dei Tumori, Milan, 20133, Italy
| | - Armando Cevenini
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, 80131, Italy
- CEINGE-Biotecnologie Avanzate S.C.R.L., Napoli, NA 80145, Italy
| | - Megan Livingston
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Sm Z Khaled
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Brandon S Brown
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Iman K Yazdi
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Francesca Paradiso
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Jocelyn N Campa-Carranza
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Alessandro De Vita
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, 47014, Italy
| | - Francesca Taraballi
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Ennio Tasciotti
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| |
Collapse
|
28
|
Biomimetic cellular vectors for enhancing drug delivery to the lungs. Sci Rep 2020; 10:172. [PMID: 31932600 PMCID: PMC6957529 DOI: 10.1038/s41598-019-55909-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 11/10/2019] [Indexed: 02/01/2023] Open
Abstract
Despite recent advances in drug delivery, the targeted treatment of unhealthy cells or tissues continues to remain a priority. In cancer (much like other pathologies), delivery vectors are designed to exploit physical and biological features of unhealthy tissues that are not always homogenous across the disease. In some cases, shifting the target from unhealthy tissues to the whole organ can represent an advantage. Specifically, the natural organ-specific retention of nanotherapeutics following intravenous administration as seen in the lung, liver, and spleen can be strategically exploited to enhance drug delivery. Herein, we outline the development of a cell-based delivery system using macrophages as a delivery vehicle. When loaded with a chemotherapeutic payload (i.e., doxorubicin), these cellular vectors (CELVEC) were shown to provide continued release within the lung. This study provides proof-of-concept evidence of an alternative class of biomimetic delivery vectors that capitalize on cell size to provide therapeutic advantages for pulmonary treatments.
Collapse
|
29
|
|
30
|
Arrighetti N, Corbo C, Evangelopoulos M, Pastò A, Zuco V, Tasciotti E. Exosome-like Nanovectors for Drug Delivery in Cancer. Curr Med Chem 2019; 26:6132-6148. [PMID: 30182846 DOI: 10.2174/0929867325666180831150259] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/20/2018] [Accepted: 07/04/2018] [Indexed: 02/07/2023]
Abstract
Cancer treatment still represents a formidable challenge, despite substantial advancements in available therapies being made over the past decade. One major issue is poor therapeutic efficacy due to lack of specificity and low bioavailability. The progress of nanotechnology and the development of a variety of nanoplatforms have had a significant impact in improving the therapeutic outcome of chemotherapeutics. Nanoparticles can overcome various biological barriers and localize at tumor site, while simultaneously protecting a therapeutic cargo and increasing its circulation time. Despite this, due to their synthetic origin, nanoparticles are often detected by the immune system and preferentially sequestered by filtering organs. Exosomes have recently been investigated as suitable substitutes for the shortcomings of nanoparticles due to their biological compatibility and particularly small size (i.e., 30-150 nm). In addition, exosomes have been found to play important roles in cell communication, acting as natural carriers of biological cargoes throughout the body. This review aims to highlight the use of exosomes as drug delivery vehicles for cancer and showcases the various attempts used to exploit exosomes with a focus on the delivery of chemotherapeutics and nucleic acids.
Collapse
Affiliation(s)
- Noemi Arrighetti
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - Claudia Corbo
- Center for Nanomedicine, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA, United States
| | - Michael Evangelopoulos
- Center for Biomimetic Medicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX, United States
| | - Anna Pastò
- Istituto Oncologico Veneto-IRCCS, Padova, Italy
| | - Valentina Zuco
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - Ennio Tasciotti
- Center for Biomimetic Medicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX, United States.,Houston Methodist Orthopedics & Sports Medicine, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX, United States
| |
Collapse
|
31
|
Ding F, Yang S, Gao Z, Guo J, Zhang P, Qiu X, Li Q, Dong M, Hao J, Yu Q, Cui J. Antifouling and pH-Responsive Poly(Carboxybetaine)-Based Nanoparticles for Tumor Cell Targeting. Front Chem 2019; 7:770. [PMID: 31824916 PMCID: PMC6883901 DOI: 10.3389/fchem.2019.00770] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/24/2019] [Indexed: 11/13/2022] Open
Abstract
Nanocarriers with responsibility and surface functionality of targeting molecules have been widely used to improve therapeutic efficiency. Hence, we report the assembly of pH-responsive and targeted polymer nanoparticles (NPs) composed of poly(2-(diisopropylamino)ethyl methacrylate) (PDPA) as the core and poly(carboxybetaine methacrylate) (PCBMA) as the shell, functionalized with cyclic peptides containing Arginine-Glycine-Aspartic acid-D-Phenylalanine-Lysine (RGD). The resulting polymer NPs (PDPA@PCBMA-RGD NPs) can maintain the pH-responsivity of PDPA (pKa ~6.5) and low-fouling property of PCBMA that significantly resist non-specific interactions with RAW 264.7 and HeLa cells. Meanwhile, PDPA@PCBMA-RGD NPs could specifically target αvβ3 integrin-expressed human glioblastoma (U87) cells. The pH-responsiveness and low-fouling properties of PDPA@PCBMA NPs are comparable to PDPA@poly(ethylene glycol) (PDPA@PEG) NPs, which indicates that PCBMA is an alternative to PEG for low-fouling coatings. The advantage of PDPA@PCBMA NPs lies in the presence of carboxyl groups on their surfaces for further modification (e.g., RGD functionalization for cell targeting). The reported polymer NPs represent a new carrier that have the potential for targeted therapeutic delivery.
Collapse
Affiliation(s)
- Feng Ding
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Shuang Yang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Zhiliang Gao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Jianman Guo
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Peiyu Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Xiaoyong Qiu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Qiang Li
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Mingdong Dong
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Qun Yu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
32
|
Imitation of nature: Bionic design in the study of particle adjuvants. J Control Release 2019; 303:101-108. [DOI: 10.1016/j.jconrel.2019.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/23/2019] [Accepted: 04/03/2019] [Indexed: 12/27/2022]
|
33
|
Hu SW, Wang J, Zhang TT, Li XL, Chen HY, Xu JJ. Targeted Transmembrane Delivery of Ca 2+ via FA-Nanogel for Synergistically Enhanced Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:16412-16420. [PMID: 30990307 DOI: 10.1021/acsami.9b04967] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Metal ion synergistically enhanced chemotherapy is a promising strategy for cancer treatment. However, targeting delivery of ions toward cancer cells remains challenging for decades. Herein, we developed a novel folic acid-nanogel (termed as FA-nanogel) with alkane chains as diffusion barriers for targeted transmembrane delivery of calcium ions into cancer cells. With the aid of hydrophobic diffusion barriers, the FA-nanogel showed a reduced and sustained speed for release of calcium ions, significantly prolonging the ion effect. Moreover, a pH-sensitive injectable hydrogel-loaded FA-nanogel and chemotherapeutic drug 5-fluorouracil (5-Fu) was synthesized for investigating the synergistic effect of nanogel on chemotherapy. Both in vitro and in vivo experiments confirmed that the intracellular calcium ions were continuously increased because of the targeted delivery ability and ion sustained release ability of the smart FA-nanogel, and the tumor growth was effectively inhibited by the ion synergistic chemotherapy. This study not only provides a powerful nanoplatform for sustained transmembrane delivery of ions into malignant cells but also creates better conditions for improving the therapeutic efficacy of chemotherapy.
Collapse
Affiliation(s)
- Shan-Wen Hu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering , Linyi University , Linyi 276005 , China
| | - Jin Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Ting-Ting Zhang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Xiang-Ling Li
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| |
Collapse
|
34
|
Zhang Y, Zhang H, Mao Z, Gao C. ROS-Responsive Nanoparticles for Suppressing the Cytotoxicity and Immunogenicity Caused by PM2.5 Particulates. Biomacromolecules 2019; 20:1777-1788. [DOI: 10.1021/acs.biomac.9b00174] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yixian Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Haolan Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
35
|
Pasto A, Giordano F, Evangelopoulos M, Amadori A, Tasciotti E. Cell membrane protein functionalization of nanoparticles as a new tumor-targeting strategy. Clin Transl Med 2019; 8:8. [PMID: 30877412 PMCID: PMC6420595 DOI: 10.1186/s40169-019-0224-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/08/2019] [Indexed: 02/06/2023] Open
Abstract
Nanoparticles have seen considerable popularity as effective tools for drug delivery. However, non-specific targeting continues to remain a challenge. Recently, biomimetic nanoparticles have emerged as an innovative solution that exploits biologically-derived components to improve therapeutic potential. Specifically, cell membrane proteins extracted from various cells (i.e., leukocytes, erythrocytes, platelets, mesenchymal stem cells, cancer) have shown considerable promise in bestowing nanoparticles with increased circulation and targeting efficacy. Traditional nanoparticles can be detected and removed by the immune system which significantly hinders their clinical success. Biomimicry has been proposed as a promising approach to overcome these limitations. In this review, we highlight the current trends in biomimetic nanoparticles and describe how they are being used to increase their chemotherapeutic effect in cancer treatment.
Collapse
Affiliation(s)
- Anna Pasto
- Veneto Institute of Oncology-IRCCS, Padua, Italy.,Center for Biomimetic Medicine, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Federica Giordano
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Center for Biomimetic Medicine, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Michael Evangelopoulos
- Center for Biomimetic Medicine, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Alberto Amadori
- Veneto Institute of Oncology-IRCCS, Padua, Italy.,Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Ennio Tasciotti
- Center for Biomimetic Medicine, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA. .,Houston Methodist Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, USA.
| |
Collapse
|
36
|
Pasto A, Giordano F, Evangelopoulos M, Amadori A, Tasciotti E. Cell membrane protein functionalization of nanoparticles as a new tumor-targeting strategy. Clin Transl Med 2019. [PMID: 30877412 DOI: 10.1186/s40169019-0224-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023] Open
Abstract
Nanoparticles have seen considerable popularity as effective tools for drug delivery. However, non-specific targeting continues to remain a challenge. Recently, biomimetic nanoparticles have emerged as an innovative solution that exploits biologically-derived components to improve therapeutic potential. Specifically, cell membrane proteins extracted from various cells (i.e., leukocytes, erythrocytes, platelets, mesenchymal stem cells, cancer) have shown considerable promise in bestowing nanoparticles with increased circulation and targeting efficacy. Traditional nanoparticles can be detected and removed by the immune system which significantly hinders their clinical success. Biomimicry has been proposed as a promising approach to overcome these limitations. In this review, we highlight the current trends in biomimetic nanoparticles and describe how they are being used to increase their chemotherapeutic effect in cancer treatment.
Collapse
Affiliation(s)
- Anna Pasto
- Veneto Institute of Oncology-IRCCS, Padua, Italy
- Center for Biomimetic Medicine, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Federica Giordano
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Center for Biomimetic Medicine, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Michael Evangelopoulos
- Center for Biomimetic Medicine, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Alberto Amadori
- Veneto Institute of Oncology-IRCCS, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Ennio Tasciotti
- Center for Biomimetic Medicine, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA.
- Houston Methodist Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, USA.
| |
Collapse
|
37
|
Costanzo M, Cevenini A, Marchese E, Imperlini E, Raia M, Del Vecchio L, Caterino M, Ruoppolo M. Label-Free Quantitative Proteomics in a Methylmalonyl-CoA Mutase-Silenced Neuroblastoma Cell Line. Int J Mol Sci 2018; 19:ijms19113580. [PMID: 30428564 PMCID: PMC6275031 DOI: 10.3390/ijms19113580] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 11/09/2018] [Indexed: 02/06/2023] Open
Abstract
Methylmalonic acidemias (MMAs) are inborn errors of metabolism due to the deficient activity of methylmalonyl-CoA mutase (MUT). MUT catalyzes the formation of succinyl-CoA from methylmalonyl-CoA, produced from propionyl-CoA catabolism and derived from odd chain fatty acids β-oxidation, cholesterol, and branched-chain amino acids degradation. Increased methylmalonyl-CoA levels allow for the presymptomatic diagnosis of the disease, even though no approved therapies exist. MMA patients show hyperammonemia, ketoacidosis, lethargy, respiratory distress, cognitive impairment, and hepatomegaly. The long-term consequences concern neurologic damage and terminal kidney failure, with little chance of survival. The cellular pathways affected by MUT deficiency were investigated using a quantitative proteomics approach on a cellular model of MUT knockdown. Currently, a consistent reduction of the MUT protein expression was obtained in the neuroblastoma cell line (SH-SY5Y) by using small-interfering RNA (siRNA) directed against an MUT transcript (MUT siRNA). The MUT absence did not affect the cell viability and apoptotic process in SH-SY5Y. In the present study, we evaluate and quantify the alterations in the protein expression profile as a consequence of MUT-silencing by a mass spectrometry-based label-free quantitative analysis, using two different quantitative strategies. Both quantitative methods allowed us to observe that the expression of the proteins involved in mitochondrial oxido-reductive homeostasis balance was affected by MUT deficiency. The alterated functional mitochondrial activity was observed in siRNA_MUT cells cultured with a propionate-supplemented medium. Finally, alterations in the levels of proteins involved in the metabolic pathways, like carbohydrate metabolism and lipid metabolism, were found.
Collapse
Affiliation(s)
- Michele Costanzo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131 Naples, Italy.
- CEINGE-Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy.
- Associazione Culturale DiSciMuS RFC, Casoria, 80026 Naples, Italy.
| | - Armando Cevenini
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131 Naples, Italy.
- CEINGE-Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy.
| | - Emanuela Marchese
- CEINGE-Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy.
- Dipartimento di Salute Mentale e Fisica e Medicina Preventiva, Università degli Studi della Campania "L. Vanvitelli", 80138 Naples, Italy.
| | | | - Maddalena Raia
- CEINGE-Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy.
| | | | - Marianna Caterino
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131 Naples, Italy.
- CEINGE-Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy.
- Associazione Culturale DiSciMuS RFC, Casoria, 80026 Naples, Italy.
| | - Margherita Ruoppolo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131 Naples, Italy.
- CEINGE-Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy.
- Associazione Culturale DiSciMuS RFC, Casoria, 80026 Naples, Italy.
| |
Collapse
|
38
|
Evangelopoulos M, Parodi A, Martinez JO, Tasciotti E. Trends towards Biomimicry in Theranostics. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E637. [PMID: 30134564 PMCID: PMC6164646 DOI: 10.3390/nano8090637] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/27/2018] [Accepted: 08/20/2018] [Indexed: 12/20/2022]
Abstract
Over the years, imaging and therapeutic modalities have seen considerable progress as a result of advances in nanotechnology. Theranostics, or the marrying of diagnostics and therapy, has increasingly been employing nano-based approaches to treat cancer. While first-generation nanoparticles offered considerable promise in the imaging and treatment of cancer, toxicity and non-specific distribution hindered their true potential. More recently, multistage nanovectors have been strategically designed to shield and carry a payload to its intended site. However, detection by the immune system and sequestration by filtration organs (i.e., liver and spleen) remains a major obstacle. In an effort to circumvent these biological barriers, recent trends have taken inspiration from biology. These bioinspired approaches often involve the use of biologically-derived cellular components in the design and fabrication of biomimetic nanoparticles. In this review, we provide insight into early nanoparticles and how they have steadily evolved to include bioinspired approaches to increase their theranostic potential.
Collapse
Affiliation(s)
- Michael Evangelopoulos
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX 77030, USA.
| | - Alessandro Parodi
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Jonathan O Martinez
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX 77030, USA.
| | - Ennio Tasciotti
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX 77030, USA.
- Department of Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX 77030, USA.
| |
Collapse
|
39
|
Huang D, Qian H, Qiao H, Chen W, Feijen J, Zhong Z. Bioresponsive functional nanogels as an emerging platform for cancer therapy. Expert Opin Drug Deliv 2018; 15:703-716. [PMID: 29976103 DOI: 10.1080/17425247.2018.1497607] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Bioresponsive nanogels with a crosslinked three-dimensional structure and an aqueous environment that undergo physical or chemical changes including swelling and dissociation in response to biological signals such as mild acidity, hyperthermia, enzymes, reducing agents, reactive oxygen species (ROS), and adenosine-5'-triphosphate (ATP) present in tumor microenvironments or inside cancer cells have emerged as an appealing platform for targeted drug delivery and cancer therapy. AREAS COVERED This review highlights recent designs and development of bioresponsive nanogels for facile loading and triggered release of chemotherapeutics and biotherapeutics. The in vitro and in vivo antitumor performances of drug-loaded nanogels are discussed. EXPERT OPINION Bioresponsive nanogels with an excellent stability and safety profile as well as fast response to biological signals are unique systems that mediate efficient and site-specific delivery of anticancer drugs, in particular macromolecular drugs like proteins, siRNA and DNA, leading to significantly enhanced tumor therapy compared with the non-responsive counterparts. Future research has to be directed to the development of simple, tumor-targeted and bioresponsive multifunctional nanogels, which can be either constructed from natural polymers with intrinsic targeting ability or functionalized with targeting ligands. We anticipate that rationally designed nanotherapeutics based on bioresponsive nanogels will become available for future clinical cancer treatment. ABBREVIATIONS AIE, aggregation-induced emission; ATP, adenosine-5'-triphosphate; ATRP, atom transfer radical polymerization; BSA, bovine serum albumin; CBA, cystamine bisacrylamide; CC, Cytochrome C; CDDP, cisplatin; CT, computed tomography; DC, dendritic cell; DiI, 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate; DOX, doxorubicin; dPG, dendritic polyglycerol; DTT, dithiothreitol; EAMA, 2-(N,N-diethylamino)ethyl methacrylate; EPR, enhanced permeability and retention; GrB, granzyme B; GSH, glutathione tripeptide; HA, hyaluronic acid; HAase, hyaluronidases; HCPT, 10-Hydroxycamptothecin; HEP, heparin; HPMC, hydroxypropylmethylcellulose; LBL, layer-by-layer; MTX, methotrexate; NCA, N-carboxyanhydride; OVA, ovalbumin; PAH, poly(allyl amine hydrochloride); PBA, phenylboronic acid; PCL, polycaprolactone; PDEAEMA, poly(2-diethylaminoethyl methacrylate); PDGF, platelet derived growth factor; PDPA, poly(2-(diisopropylamino)ethyl methacrylate); PDS, pyridyldisulfide; PEG, poly(ethylene glycol); PEGMA, polyethyleneglycol methacrylate; PEI, polyethyleneimine; PHEA, poly(hydroxyethyl acrylate); PHEMA, poly(2-(hydroxyethyl) methacrylate; PNIPAM, poly(N-isopropylacrylamide); PMAA, poly(methacrylic acid); PPDSMA, poly(2-(pyridyldisulfide)ethyl methacrylate); PTX, paclitaxel; PVA, poly(vinyl alcohol); QD, quantum dot; RAFT, reversible addition-fragmentation chain transfer; RGD, Arg-Gly-Asp peptide; ROP, ring-opening polymerization; ROS, reactive oxygen species; TMZ, temozolomide; TRAIL, tumor necrosis factor-related apoptosis inducing ligand; VEGF, vascular endothelial growth factor.
Collapse
Affiliation(s)
- Dechun Huang
- a Department of Pharmaceutical Engineering, School of Engineering , China Pharmaceutical University , Nanjing , P. R. China
| | - Hongliang Qian
- a Department of Pharmaceutical Engineering, School of Engineering , China Pharmaceutical University , Nanjing , P. R. China
| | - Haishi Qiao
- a Department of Pharmaceutical Engineering, School of Engineering , China Pharmaceutical University , Nanjing , P. R. China
| | - Wei Chen
- a Department of Pharmaceutical Engineering, School of Engineering , China Pharmaceutical University , Nanjing , P. R. China
| | - Jan Feijen
- b Biomedical Polymers Laboratory, Jiangsu Key Laboratory of Advanced Functional Polymer Design and ApplicationCollege of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou , P. R. China.,c Department of Polymer Chemistry and Biomaterials, Faculty of Science and Technology MIRA Institute for Biomedical Technology and Technical Medicine , University of Twente , Enschede , Netherlands
| | - Zhiyuan Zhong
- b Biomedical Polymers Laboratory, Jiangsu Key Laboratory of Advanced Functional Polymer Design and ApplicationCollege of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou , P. R. China
| |
Collapse
|
40
|
Wang D, Wu H, Zhou J, Xu P, Wang C, Shi R, Wang H, Wang H, Guo Z, Chen Q. In Situ One-Pot Synthesis of MOF-Polydopamine Hybrid Nanogels with Enhanced Photothermal Effect for Targeted Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800287. [PMID: 29938191 PMCID: PMC6010715 DOI: 10.1002/advs.201800287] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Indexed: 05/19/2023]
Abstract
Herein, a simple one-pot way is designed to prepare a type of multifunctional metal-organic framework (MOF)-based hybrid nanogels by in situ hybridization of dopamine monomer in the skeleton of MnCo. The resultant hybrid nanoparticles (named as MCP) show enhanced photothermal conversion efficiency in comparison with pure polydopamine or MnCo nanoparticles (NPs) synthesized under a similar method and, therefore, show great potential for photothermal therapy (PTT) in vivo. The MCP NPs are expected to possess T1 positive magnetic resonance imaging ability due to the high-spin Mn-N6 (S = 5/2) in the skeleton of MnCo. To improve the therapy efficiency as a PTT agent, the MCP NPs are further modified with functional polyethylene glycol (PEG) and thiol terminal cyclic arginine-glycine-aspartic acid peptide, respectively: the first one is to increase the stability, biocompatibility, and blood circulation time of MCP NPs in vivo; the second one is to increase the tumor accumulation of MCP-PEG NPs and improve their therapeutic efficiency as photothermal agent.
Collapse
Affiliation(s)
- Dongdong Wang
- Hefei National Laboratory for Physical Sciences at MicroscaleDepartment of Materials Science and EngineeringUniversity of Science and Technology of ChinaHefeiAH 230026P. R. China
| | - Huihui Wu
- School of Life SciencesUniversity of Science and Technology of ChinaHefeiAH 230026P. R. China
| | - Jiajia Zhou
- School of Life SciencesUniversity of Science and Technology of ChinaHefeiAH 230026P. R. China
| | - Pengping Xu
- Hefei National Laboratory for Physical Sciences at MicroscaleDepartment of Materials Science and EngineeringUniversity of Science and Technology of ChinaHefeiAH 230026P. R. China
| | - Changlai Wang
- Hefei National Laboratory for Physical Sciences at MicroscaleDepartment of Materials Science and EngineeringUniversity of Science and Technology of ChinaHefeiAH 230026P. R. China
| | - Ruohong Shi
- Hefei National Laboratory for Physical Sciences at MicroscaleDepartment of Materials Science and EngineeringUniversity of Science and Technology of ChinaHefeiAH 230026P. R. China
| | - Haibao Wang
- High Magnetic Field LaboratoryHefei Institutes of Physical ScienceChinese Academy of SciencesThe Anhui Key Laboratory of Condensed Matter Physics at Extreme ConditionsHefeiAH 230031P. R. China
| | - Hui Wang
- Department of RadiologyFirst Affiliated Hospital of Anhui Medical UniversityHefeiAH 230022P. R. China
| | - Zhen Guo
- School of Life SciencesUniversity of Science and Technology of ChinaHefeiAH 230026P. R. China
| | - Qianwang Chen
- Hefei National Laboratory for Physical Sciences at MicroscaleDepartment of Materials Science and EngineeringUniversity of Science and Technology of ChinaHefeiAH 230026P. R. China
- High Magnetic Field LaboratoryHefei Institutes of Physical ScienceChinese Academy of SciencesThe Anhui Key Laboratory of Condensed Matter Physics at Extreme ConditionsHefeiAH 230031P. R. China
| |
Collapse
|
41
|
Macchione MA, Biglione C, Strumia M. Design, Synthesis and Architectures of Hybrid Nanomaterials for Therapy and Diagnosis Applications. Polymers (Basel) 2018; 10:E527. [PMID: 30966561 PMCID: PMC6415435 DOI: 10.3390/polym10050527] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 12/25/2022] Open
Abstract
Hybrid nanomaterials based on inorganic nanoparticles and polymers are highly interesting structures since they combine synergistically the advantageous physical-chemical properties of both inorganic and polymeric components, providing superior functionality to the final material. These unique properties motivate the intensive study of these materials from a multidisciplinary view with the aim of finding novel applications in technological and biomedical fields. Choosing a specific synthetic methodology that allows for control over the surface composition and its architecture, enables not only the examination of the structure/property relationships, but, more importantly, the design of more efficient nanodevices for therapy and diagnosis in nanomedicine. The current review categorizes hybrid nanomaterials into three types of architectures: core-brush, hybrid nanogels, and core-shell. We focus on the analysis of the synthetic approaches that lead to the formation of each type of architecture. Furthermore, most recent advances in therapy and diagnosis applications and some inherent challenges of these materials are herein reviewed.
Collapse
Affiliation(s)
- Micaela A Macchione
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Av. Haya de la Torre esq. Av. Medina Allende, Córdoba X5000HUA, Argentina.
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA), CONICET. Av. Velez Sárfield 1611, Córdoba X5000HUA, Argentina.
| | - Catalina Biglione
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany.
| | - Miriam Strumia
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Av. Haya de la Torre esq. Av. Medina Allende, Córdoba X5000HUA, Argentina.
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA), CONICET. Av. Velez Sárfield 1611, Córdoba X5000HUA, Argentina.
| |
Collapse
|
42
|
Dilnawaz F, Acharya S, Sahoo SK. Recent trends of nanomedicinal approaches in clinics. Int J Pharm 2018; 538:263-278. [PMID: 29339248 DOI: 10.1016/j.ijpharm.2018.01.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/05/2018] [Accepted: 01/05/2018] [Indexed: 12/20/2022]
Abstract
Nanotechnology has become the indispensable cutting edge science providing solutions to many problems associated with human being. The application of nanotechnology associated to human health "nanomedicine" has revolutionized the drug delivery system by providing improved pharmacological and therapeutic properties of drugs. These advantageous effects of drug loaded nanocarrier systems are embraced by the pharmaceutical industries for the development of different effective nanocarriers. Currently, several drug loaded nanoformulations are approved by the Food and Drug Administration (FDA), and some of them are undergoing clinical trials for the human use. In this review, we have discussed the progress achieved so far for various drug loaded nanoformulations along with few emerging nanoformulations that are about to enter into clinical trials.
Collapse
Affiliation(s)
- Fahima Dilnawaz
- Laboratory of Nanomedicine, Institute of Life Sciences, Bhubaneswar 751023, Odisha, India
| | - Sarbari Acharya
- Laboratory of Nanomedicine, Institute of Life Sciences, Bhubaneswar 751023, Odisha, India
| | - Sanjeeb Kumar Sahoo
- Laboratory of Nanomedicine, Institute of Life Sciences, Bhubaneswar 751023, Odisha, India.
| |
Collapse
|
43
|
Molinaro R, Corbo C, Livingston M, Evangelopoulos M, Parodi A, Boada C, Agostini M, Tasciotti E. Inflammation and Cancer: In Medio Stat Nano. Curr Med Chem 2018; 25:4208-4223. [PMID: 28933296 PMCID: PMC5860929 DOI: 10.2174/0929867324666170920160030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 06/06/2017] [Accepted: 07/02/2017] [Indexed: 12/21/2022]
Abstract
Cancer treatment still remains a challenge due to the several limitations of currently used chemotherapeutics, such as their poor pharmacokinetics, unfavorable chemical properties, as well as inability to discriminate between healthy and diseased tissue. Nanotechnology offered potent tools to overcome these limitations. Drug encapsulation within a delivery system permitted i) to protect the payload from enzymatic degradation/ inactivation in the blood stream, ii) to improve the physicochemical properties of poorly water-soluble drugs, like paclitaxel, and iii) to selectively deliver chemotherapeutics to the cancer lesions, thus reducing the off-target toxicity, and promoting the intracellular internalization. To accomplish this purpose, several strategies have been developed, based on biological and physical changes happening locally and systemically as a consequence of tumorigenesis. Here, we will discuss the role of inflammation in the different steps of tumor development and the strategies based on the use of nanoparticles that exploit the inflammatory pathways in order to selectively target the tumor-associated microenvironment for therapeutic and diagnostic purposes.
Collapse
Affiliation(s)
- Roberto Molinaro
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, 77030, United States
| | - Claudia Corbo
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, 77030, United States
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, United States
| | - Megan Livingston
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, 77030, United States
| | - Michael Evangelopoulos
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, 77030, United States
| | - Alessandro Parodi
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, 77030, United States
| | - Christian Boada
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, 77030, United States
- Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, Nuevo León, 64710, Mexico
| | - Marco Agostini
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, 35124, Italy
- Nanoinspired Biomedicine Laboratory, Institute of Pediatric Research, Fondazione Citta della Speranza, 35129, Padua, Italy
| | - Ennio Tasciotti
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, 77030, United States
- Houston Methodist Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, 77030, United States
| |
Collapse
|
44
|
Kamiya Y, Yamada Y, Muro T, Matsuura K, Asanuma H. DNA Microcapsule for Photo-Triggered Drug Release Systems. ChemMedChem 2017; 12:2016-2021. [DOI: 10.1002/cmdc.201700512] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 09/21/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Yukiko Kamiya
- Department of Biomolecular Engineering; Graduate School of Engineering; Nagoya University; Furo-cho Chikusa-ku Nagoya 464-8603 Japan
- Institute of Materials and Systems for Sustainability; Nagoya University; Furo-cho Chikusa-ku Nagoya 464-8603 Japan
| | - Yoshinobu Yamada
- Department of Biomolecular Engineering; Graduate School of Engineering; Nagoya University; Furo-cho Chikusa-ku Nagoya 464-8603 Japan
| | - Takahiro Muro
- Department of Biomolecular Engineering; Graduate School of Engineering; Nagoya University; Furo-cho Chikusa-ku Nagoya 464-8603 Japan
| | - Kazunori Matsuura
- Department of Chemistry and Biotechnology; Graduate School of Engineering; Tottori University; Koyama-Minami 4-101 Tottori 680-8552 Japan
| | - Hiroyuki Asanuma
- Department of Biomolecular Engineering; Graduate School of Engineering; Nagoya University; Furo-cho Chikusa-ku Nagoya 464-8603 Japan
| |
Collapse
|
45
|
Parodi A, Molinaro R, Sushnitha M, Evangelopoulos M, Martinez JO, Arrighetti N, Corbo C, Tasciotti E. Bio-inspired engineering of cell- and virus-like nanoparticles for drug delivery. Biomaterials 2017; 147:155-168. [PMID: 28946131 DOI: 10.1016/j.biomaterials.2017.09.020] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/13/2017] [Accepted: 09/17/2017] [Indexed: 12/25/2022]
Abstract
The engineering of future generations of nanodelivery systems aims at the creation of multifunctional vectors endowed with improved circulation, enhanced targeting and responsiveness to the biological environment. Moving past purely bio-inert systems, researchers have begun to create nanoparticles capable of proactively interacting with the biology of the body. Nature offers a wide-range of sources of inspiration for the synthesis of more effective drug delivery platforms. Because the nano-bio-interface is the key driver of nanoparticle behavior and function, the modification of nanoparticles' surfaces allows the transfer of biological properties to synthetic carriers by imparting them with a biological identity. Modulation of these surface characteristics governs nanoparticle interactions with the biological barriers they encounter. Building off these observations, we provide here an overview of virus- and cell-derived biomimetic delivery systems that combine the intrinsic hallmarks of biological membranes with the delivery capabilities of synthetic carriers. We describe the features and properties of biomimetic delivery systems, recapitulating the distinctive traits and functions of viruses, exosomes, platelets, red and white blood cells. By mimicking these biological entities, we will learn how to more efficiently interact with the human body and refine our ability to negotiate with the biological barriers that impair the therapeutic efficacy of nanoparticles.
Collapse
Affiliation(s)
- Alessandro Parodi
- Department of Pharmacology, University of Illinois, Chicago College of Medicine, Chicago, IL, USA
| | - Roberto Molinaro
- Department of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Manuela Sushnitha
- Center for Biomimetic Medicine, Houston Methodist Research Institute (HMRI), Houston, TX, USA; Department of Bioengineering, Rice University, Houston, TX, USA
| | - Michael Evangelopoulos
- Center for Biomimetic Medicine, Houston Methodist Research Institute (HMRI), Houston, TX, USA
| | - Jonathan O Martinez
- Center for Biomimetic Medicine, Houston Methodist Research Institute (HMRI), Houston, TX, USA
| | - Noemi Arrighetti
- Center for Biomimetic Medicine, Houston Methodist Research Institute (HMRI), Houston, TX, USA; Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale per Lo Studio e La Cura Dei Tumori, Milan, Italy
| | - Claudia Corbo
- Center for Nanomedicine, Brigham and Women's Hospital, Harvard Medical School, MA, USA
| | - Ennio Tasciotti
- Center for Biomimetic Medicine, Houston Methodist Research Institute (HMRI), Houston, TX, USA; Department of Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, USA.
| |
Collapse
|
46
|
Li D, van Nostrum CF, Mastrobattista E, Vermonden T, Hennink WE. Nanogels for intracellular delivery of biotherapeutics. J Control Release 2017; 259:16-28. [PMID: 28017888 DOI: 10.1016/j.jconrel.2016.12.020] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/19/2016] [Indexed: 12/18/2022]
|
47
|
Xu L, Cooper RC, Wang J, Yeudall WA, Yang H. Synthesis and Application of Injectable Bioorthogonal Dendrimer Hydrogels for Local Drug Delivery. ACS Biomater Sci Eng 2017; 3:1641-1653. [PMID: 29147682 DOI: 10.1021/acsbiomaterials.7b00166] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We developed novel dendrimer hydrogels (DH)s on the basis of bioorthogonal chemistry, in which polyamidoamine (PAMAM) dendrimer generation 4.0 (G4) functionalized with strained alkyne dibenzocyclooctyne (DBCO) via PEG spacer (Mn = 2,000 g/mol) underwent strain-promoted azide-alkyne cycloaddition (SPAAC) with polyethylene glycol bisazide (PEG-BA) (Mn= 20,000 g/mol) to generate a dendrimer-PEG cross-linked network. This platform offers a high degree of functionality and modularity. A wide range of structural parameters including dendrimer generation, degree of PEGylation, loading density of clickable DBCO groups, PEG-BA chain length as well as the ratio of clickable dendrimer to PEG-BA and their concentrations can be readily manipulated to tune chemical and physical properties of DHs. We used this platform to prepare an injectable liquid DH. This bioorthogonal DH exhibited high cytocompatibility and enabled sustained release of the anticancer drug 5-fluorouracil (5-FU). Following intratumoral injection, the DH/5-FU formulation significantly suppressed tumor growth and improved survival of HN12 tumor-bearing mice by promoting tumor cell death as well as by reducing tumor cell proliferation and angiogenesis.
Collapse
Affiliation(s)
- Leyuan Xu
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 737 North 5 Street, Richmond, Virginia 23219, United States
| | - Remy C Cooper
- Department of Biomedical Engineering, 601 West Main Street, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Juan Wang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 737 North 5 Street, Richmond, Virginia 23219, United States
| | - W Andrew Yeudall
- Department of Oral Biology, Augusta University, 1120 15 Street, Augusta, Georgia 30912, United States.,Molecular Oncology and Biomarkers Program, Georgia Cancer Center, 1410 Laney Walker Blvd, Augusta University, Augusta, Georgia 30912, United States
| | - Hu Yang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 737 North 5 Street, Richmond, Virginia 23219, United States.,Department of Pharmaceutics, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States.,Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, Virginia 23298, United States
| |
Collapse
|
48
|
Mohammadi MR, Nojoomi A, Mozafari M, Dubnika A, Inayathullah M, Rajadas J. Nanomaterials engineering for drug delivery: a hybridization approach. J Mater Chem B 2017; 5:3995-4018. [PMID: 32264132 DOI: 10.1039/c6tb03247h] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The last twenty years have witnessed great advances in biology, medicine, and materials science, leading to the development of various nanoparticle (NP)-mediated drug delivery systems. Innovation in materials science has led the generation of biodegradable, biocompatible, stimuli-responsive, and targeted delivery systems. However, currently available nanotherapeutic technologies are not efficient, which has culminated in the failure of their clinical trials. Despite huge efforts devoted to drug delivery nanotherapeutics, only a small amount of the injected material could reach the desired target. One promising strategy to enhance the efficiency of NP drug delivery is to hybridize multiple materials, where each component could play a critical role in an efficient multipurpose delivery system. This review aims to comprehensively cover different techniques, materials, advantages, and drawbacks of various systems to develop hybrid nano-vesicles for drug delivery. Attention is finally given to the hybridization benefits in overcoming the biological barriers for drug delivery. It is believed that the advent of modern nano-formulations for multifunctional hybrid carriers paves the way for future advances to achieve more efficient drug delivery systems.
Collapse
Affiliation(s)
- M Rezaa Mohammadi
- Biomaterials and Advanced Drug Delivery Laboratory, Stanford University School of Medicine, 1050 Arastradero Road, Palo Alto, CA 94304, USA
| | | | | | | | | | | |
Collapse
|
49
|
Fernandez-Moure JS, Evangelopoulos M, Colvill K, Van Eps JL, Tasciotti E. Nanoantibiotics: a new paradigm for the treatment of surgical infection. Nanomedicine (Lond) 2017; 12:1319-1334. [PMID: 28520517 DOI: 10.2217/nnm-2017-0401] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Infections following orthopedic device implantations often impose a substantial health burden and result in high medical costs. Currently, preventative methods are often employed following an orthopedic implant to reduce risk of infection; however, contamination of the surgical site can still occur. Although antibiotics have demonstrated a substantial reduction in bacterial growth and maintenance, biofilm formation around the implant can often minimize efficacy of the antibiotic. Recently, nanotechnology has garnered significant interest, resulting in the development of several antibiotic delivery strategies that exhibit extended release and increased efficacy. In this review, treatment methods of orthopedic-device-related infections will be discussed and an overview of antimicrobial-based nanotechnologies will be provided. Specifically, nonmetal-, metal- and oxide-based nanotechnologies, incorporating antibacterial strategies, will be discussed.
Collapse
Affiliation(s)
- Joseph S Fernandez-Moure
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, USA.,Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
| | | | - Kayla Colvill
- University of Texas McGovern Medical School, Houston, TX, USA
| | - Jeffrey L Van Eps
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, USA.,Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
| | - Ennio Tasciotti
- Department of Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
50
|
Bottai G, Truffi M, Corsi F, Santarpia L. Progress in nonviral gene therapy for breast cancer and what comes next? Expert Opin Biol Ther 2017; 17:595-611. [DOI: 10.1080/14712598.2017.1305351] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Giulia Bottai
- Oncology Experimental Therapeutics, IRCCS Clinical and Research Institute Humanitas, Rozzano (Milan), Italy
| | - Marta Truffi
- Laboratory of Nanomedicine, Department of Biomedical and Clinical Sciences University of Milan, “Luigi Sacco” Hospital, Milano, Italy
| | - Fabio Corsi
- Laboratory of Nanomedicine, Surgery Division, Department of Biomedical and Clinical Sciences University of Milan, “Luigi Sacco” Hospital, Milan, Italy
| | - Libero Santarpia
- Oncology Experimental Therapeutics, IRCCS Clinical and Research Institute Humanitas, Rozzano (Milan), Italy
| |
Collapse
|