1
|
Bhuiyan MSA, Gupta SD, Silip JJ, Talukder S, Haque MH, Forwood JK, Sarker S. Current trends and future potential in the detection of avian coronaviruses: An emphasis on sensors-based technologies. Virology 2025; 604:110399. [PMID: 39884161 DOI: 10.1016/j.virol.2025.110399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/04/2024] [Accepted: 01/08/2025] [Indexed: 02/01/2025]
Abstract
Infectious bronchitis virus (IBV), an avian coronavirus, member of the genus Gammacoronavirus, poses significant threats to poultry health, causing severe respiratory, reproductive, and renal infections. The genetic diversity of IBV, driven by mutations, recombination and deletions, has led to the emergence of numerous serotypes and genotypes, complicating both diagnosis and control measures. Rapid and accurate diagnostic tools are essential for effective disease management and minimizing economic losses. Conventional diagnostic methods, such as PCR, virus isolation, and serological assays, are hindered by limitations in sensitivity, specificity, and turnaround time. In contrast, innovative biosensor platforms employing advanced detection mechanisms-including electrochemical, optical, and piezoelectric sensors-offer a transformative solution. These technologies provide portable, highly sensitive, and rapid diagnostic platforms for IBV detection. Beyond addressing the challenges of conventional methods, these biosensor-based approaches facilitate real-time monitoring and enhance disease surveillance. This review highlights the transformative potential of biosensors and their integration into diagnostic strategies for avian coronavirus infections, presenting them as a promising alternative for precise and efficient IBV detection.
Collapse
Affiliation(s)
- Md Safiul Alam Bhuiyan
- Faculty of Sustainable Agriculture, Livestock Production, University Malaysia Sabah, Sandakan, Sabah, Malaysia
| | - Suman Das Gupta
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health Charles Sturt University, Wagga Wagga, 2650, Australia; Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Juplikely James Silip
- Faculty of Sustainable Agriculture, Livestock Production, University Malaysia Sabah, Sandakan, Sabah, Malaysia
| | - Saranika Talukder
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, 4811, Australia
| | - Md Hakimul Haque
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, 4811, Australia; Rajshahi University, Faculty of Veterinary and Animal Sciences, Department of Veterinary and Animal Sciences, Rajshahi, 6205, Bangladesh
| | - Jade K Forwood
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Subir Sarker
- Biomedical Sciences and Molecular Biology, College of Medicine and Dentistry, James Cook University, Townsville, QLD, 4811, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, 4811, Australia.
| |
Collapse
|
2
|
Bai Z, Wan D, Lan T, Hong W, Dong H, Wei Y, Wei X. Nanoplatform Based Intranasal Vaccines: Current Progress and Clinical Challenges. ACS NANO 2024; 18:24650-24681. [PMID: 39185745 PMCID: PMC11394369 DOI: 10.1021/acsnano.3c10797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 08/27/2024]
Abstract
Multiple vaccine platforms have been employed to develop the nasal SARS-CoV-2 vaccines in preclinical studies, and the dominating pipelines are viral vectored as protein-based vaccines. Among them, several viral vectored-based vaccines have entered clinical development. Nevertheless, some unsatisfactory results were reported in these clinical studies. In the face of such urgent situations, it is imperative to rapidly develop the next-generation intranasal COVID-19 vaccine utilizing other technologies. Nanobased intranasal vaccines have emerged as an approach against respiratory infectious diseases. Harnessing the power of nanotechnology, these vaccines offer a noninvasive yet potent defense against pathogens, including the threat of COVID-19. The improvements made in vaccine mucosal delivery technologies based on nanoparticles, such as lipid nanoparticles, polymeric nanoparticles, inorganic nanoparticles etc., not only provide stability and controlled release but also enhance mucosal adhesion, effectively overcoming the limitations of conventional vaccines. Hence, in this review, we overview the evaluation of intranasal vaccine and highlight the current barriers. Next, the modern delivery systems based on nanoplatforms are summarized. The challenges in clinical application of nanoplatform based intranasal vaccine are finally discussed.
Collapse
Affiliation(s)
| | | | | | - Weiqi Hong
- Laboratory of Aging Research
and Cancer Drug Target, State Key Laboratory of Biotherapy, National
Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Haohao Dong
- Laboratory of Aging Research
and Cancer Drug Target, State Key Laboratory of Biotherapy, National
Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Yuquan Wei
- Laboratory of Aging Research
and Cancer Drug Target, State Key Laboratory of Biotherapy, National
Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Xiawei Wei
- Laboratory of Aging Research
and Cancer Drug Target, State Key Laboratory of Biotherapy, National
Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| |
Collapse
|
3
|
Handali S, Rezaei M. Aptamer-decorated nanocarriers for viral adsorption: A special look at COVID-19. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102310. [PMID: 39281706 PMCID: PMC11401170 DOI: 10.1016/j.omtn.2024.102310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Viral infections are one of the leading causes of death in the world. One main challenge in fighting against these diseases is the unavailability of effective eradicating drugs and specific treatments. Nanocarriers and aptamer-decorated nanocarriers are designed to attach to many targets, including viral particles. By lowering the viral infectivity and attachment capability, they add therapeutic values even without containing antiviral drugs. Nevertheless, the nanoparticles (NPs) with encapsulated antiviral drugs can display extra therapeutic effects. Furthermore, it has been shown that aptamers can bind to viral particles and nanocarriers, presenting promising approaches for the identification of viruses and treatment of viral infections. Although there is no satisfying literature revealing the strong therapeutic potential of nanotechnology against COVID-19, the following information can provide new perspectives for upcoming investigations pertaining to developing effective aptamer-nanocarrier agents against COVID-19.
Collapse
Affiliation(s)
- Somayeh Handali
- Medical Biomaterials Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Rezaei
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Institute for Natural Products and Medicinal Plants (INPMP), Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
4
|
Salazar VA, Comenge J, Suárez-López R, Burger JA, Sanders RW, Bastús NG, Jaime C, Joseph-Munne J, Puntes V. Gold Nanoparticle Virus-like Particles Presenting SARS-CoV-2 Spike Protein: Synthesis, Biophysical Properties and Immunogenicity in BALB/c Mice. Vaccines (Basel) 2024; 12:829. [PMID: 39203954 PMCID: PMC11359663 DOI: 10.3390/vaccines12080829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 09/03/2024] Open
Abstract
Gold nanoparticles (AuNPs) decorated with antigens have recently emerged as promising tools for vaccine development due to their innate ability to provide stability to antigens and modulate immune responses. In this study, we have engineered deactivated virus-like particles (VLPs) by precisely functionalizing gold cores with coronas comprising the full SARS-CoV-2 spike protein (S). Using BALB/c mice as a model, we investigated the immunogenicity of these S-AuNPs-VLPs. Our results demonstrate that S-AuNPs-VLPs consistently enhanced antigen-specific antibody responses compared to the S protein free in solution. This enhancement included higher binding antibody titers, higher neutralizing capacity of antibodies, and stronger T-cell responses. Compared to the mRNA COVID-19 vaccine, where the S protein is synthesized in situ, S-AuNPs-VLPs induced comparable binding and neutralizing antibody responses, but substantially superior T-cell responses. In conclusion, our study highlights the potential of conjugated AuNPs as an effective antigen-delivery system for protein-based vaccines targeting a broad spectrum of infectious diseases and other emergent viruses.
Collapse
Affiliation(s)
- Vivian A. Salazar
- Vall d’Hebron Institut de Recerca, 08035 Barcelona, Spain; (V.A.S.); (J.C.)
| | - Joan Comenge
- Vall d’Hebron Institut de Recerca, 08035 Barcelona, Spain; (V.A.S.); (J.C.)
- Networking Research Centre for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Rosa Suárez-López
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (R.S.-L.); (C.J.)
| | - Judith A. Burger
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, The Netherlands; (J.A.B.); (R.W.S.)
| | - Rogier W. Sanders
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, The Netherlands; (J.A.B.); (R.W.S.)
| | - Neus G. Bastús
- Networking Research Centre for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and BIST, Campus Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Carlos Jaime
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (R.S.-L.); (C.J.)
| | - Joan Joseph-Munne
- Vall d’Hebron Institut de Recerca, 08035 Barcelona, Spain; (V.A.S.); (J.C.)
- Department of Microbiology, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain
| | - Victor Puntes
- Vall d’Hebron Institut de Recerca, 08035 Barcelona, Spain; (V.A.S.); (J.C.)
- Networking Research Centre for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and BIST, Campus Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
5
|
Grundler J, Shin K, Suh HW, Whang CH, Fulgoni G, Pierce RW, Saltzman WM. Nanoscale Surface Topography of Polyethylene Glycol-Coated Nanoparticles Composed of Bottlebrush Block Copolymers Prolongs Systemic Circulation and Enhances Tumor Uptake. ACS NANO 2024; 18:2815-2827. [PMID: 38227820 DOI: 10.1021/acsnano.3c05921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Improving the performance of nanocarriers remains a major challenge in the clinical translation of nanomedicine. Efforts to optimize nanoparticle formulations typically rely on tuning the surface density and thickness of stealthy polymer coatings, such as poly(ethylene glycol) (PEG). Here, we show that modulating the surface topography of PEGylated nanoparticles using bottlebrush block copolymers (BBCPs) significantly enhances circulation and tumor accumulation, providing an alternative strategy to improve nanoparticle coatings. Specifically, nanoparticles with rough surface topography achieve high tumor cell uptake in vivo due to superior tumor extravasation and distribution compared to conventional smooth-surfaced nanoparticles based on linear block copolymers. Furthermore, surface topography profoundly impacts the interaction with serum proteins, resulting in the adsorption of fundamentally different proteins onto the surface of rough-surfaced nanoparticles formed from BBCPs. We envision that controlling the nanoparticle surface topography of PEGylated nanoparticles will enable the design of improved nanocarriers in various biomedical applications.
Collapse
Affiliation(s)
| | - Kwangsoo Shin
- Department of Polymer Science & Engineering and Program in Environmental and Polymer Engineering, Inha University, Incheon 22212, Republic of Korea
| | | | | | | | | | | |
Collapse
|
6
|
Gao X, Wang X, Li S, Saif Ur Rahman M, Xu S, Liu Y. Nanovaccines for Advancing Long-Lasting Immunity against Infectious Diseases. ACS NANO 2023; 17:24514-24538. [PMID: 38055649 DOI: 10.1021/acsnano.3c07741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Infectious diseases, particularly life-threatening pathogens such as small pox and influenza, have substantial implications on public health and global economies. Vaccination is a key approach to combat existing and emerging pathogens. Immunological memory is an essential characteristic used to evaluate vaccine efficacy and durability and the basis for the long-term effects of vaccines in protecting against future infections; however, optimizing the potency, improving the quality, and enhancing the durability of immune responses remains challenging and a focus for research involving investigation of nanovaccine technologies. In this review, we describe how nanovaccines can address the challenges for conventional vaccines in stimulating adaptive immune memory responses to protect against reinfection. We discuss protein and nonprotein nanoparticles as useful antigen platforms, including those with highly ordered and repetitive antigen array presentation to enhance immunogenicity through cross-linking with multiple B cell receptors, and with a focus on antigen properties. In addition, we describe how nanoadjuvants can improve immune responses by providing enhanced access to lymph nodes, lymphnode targeting, germinal center retention, and long-lasting immune response generation. Nanotechnology has the advantage to facilitate vaccine induction of long-lasting immunity against infectious diseases, now and in the future.
Collapse
Affiliation(s)
- Xinglong Gao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xinlian Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Shilin Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | | | - Shanshan Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, P.R. China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P.R. China
| |
Collapse
|
7
|
Andrzejewska W, Peplińska B, Litowczenko J, Obstarczyk P, Olesiak-Bańska J, Jurga S, Lewandowski M. SARS-CoV-2 Virus-like Particles with Plasmonic Au Cores and S1-Spike Protein Coronas. ACS Synth Biol 2023; 12:2320-2328. [PMID: 37449651 PMCID: PMC10443039 DOI: 10.1021/acssynbio.3c00133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Indexed: 07/18/2023]
Abstract
The COVID-19 pandemic has stimulated the scientific world to intensify virus-related studies aimed at the development of quick and safe ways of detecting viruses in the human body, studying the virus-antibody and virus-cell interactions, and designing nanocarriers for targeted antiviral therapies. However, research on dangerous viruses can only be performed in certified laboratories that follow strict safety procedures. Thus, developing deactivated virus constructs or safe-to-use virus-like objects, which imitate real viruses and allow performing virus-related studies in any research laboratory, constitutes an important scientific challenge. Such species, called virus-like particles (VLPs), contain instead of capsids with viral DNA/RNA empty or synthetic cores with real virus proteins attached to them. We have developed a method for the preparation of VLPs imitating the virus responsible for the COVID-19 disease: the SARS-CoV-2. The particles have Au cores surrounded by "coronas" of S1 domains of the virus's spike protein. Importantly, they are safe to use and specifically interact with SARS-CoV-2 antibodies. Moreover, Au cores exhibit localized surface plasmon resonance (LSPR), which makes the synthesized VLPs suitable for biosensing applications. During the studies, the effect allowed us to visualize the interaction between the VLPs and the antibodies and identify the characteristic vibrational signals. What is more, additional functionalization of the particles with a fluorescent label revealed their potential in studying specific virus-related interactions. Notably, the universal character of the developed synthesis method makes it potentially applicable for fabricating VLPs imitating other life-threatening viruses.
Collapse
Affiliation(s)
- Weronika Andrzejewska
- NanoBioMedical
Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland
| | - Barbara Peplińska
- NanoBioMedical
Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland
| | - Jagoda Litowczenko
- NanoBioMedical
Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland
| | - Patryk Obstarczyk
- Institute
of Advanced Materials, Wroclaw University
of Science and Technology, Wybrzeże Wyspiańskiego 2, 50-370 Wrocław, Poland
| | - Joanna Olesiak-Bańska
- Institute
of Advanced Materials, Wroclaw University
of Science and Technology, Wybrzeże Wyspiańskiego 2, 50-370 Wrocław, Poland
| | - Stefan Jurga
- NanoBioMedical
Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland
| | - Mikołaj Lewandowski
- NanoBioMedical
Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland
| |
Collapse
|
8
|
Chattopadhyay A, Jailani AAK, Mandal B. Exigency of Plant-Based Vaccine against COVID-19 Emergence as Pandemic Preparedness. Vaccines (Basel) 2023; 11:1347. [PMID: 37631915 PMCID: PMC10458178 DOI: 10.3390/vaccines11081347] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023] Open
Abstract
After two years since the declaration of COVID-19 as a pandemic by the World Health Organization (WHO), more than six million deaths have occurred due to SARS-CoV-2, leading to an unprecedented disruption of the global economy. Fortunately, within a year, a wide range of vaccines, including pathogen-based inactivated and live-attenuated vaccines, replicating and non-replicating vector-based vaccines, nucleic acid (DNA and mRNA)-based vaccines, and protein-based subunit and virus-like particle (VLP)-based vaccines, have been developed to mitigate the severe impacts of the COVID-19 pandemic. These vaccines have proven highly effective in reducing the severity of illness and preventing deaths. However, the availability and supply of COVID-19 vaccines have become an issue due to the prioritization of vaccine distribution in most countries. Additionally, as the virus continues to mutate and spread, questions have arisen regarding the effectiveness of vaccines against new strains of SARS-CoV-2 that can evade host immunity. The urgent need for booster doses to enhance immunity has been recognized. The scarcity of "safe and effective" vaccines has exacerbated global inequalities in terms of vaccine coverage. The development of COVID-19 vaccines has fallen short of the expectations set forth in 2020 and 2021. Furthermore, the equitable distribution of vaccines at the global and national levels remains a challenge, particularly in developing countries. In such circumstances, the exigency of plant virus-based vaccines has become apparent as a means to overcome supply shortages through fast manufacturing processes and to enable quick and convenient distribution to millions of people without the reliance on a cold chain system. Moreover, plant virus-based vaccines have demonstrated both safety and efficacy in eliciting robust cellular immunogenicity against COVID-19 pathogens. This review aims to shed light on the advantages and disadvantages of different types of vaccines developed against SARS-CoV-2 and provide an update on the current status of plant-based vaccines in the fight against the COVID-19 pandemic.
Collapse
Affiliation(s)
- Anirudha Chattopadhyay
- Pulses Research Station, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar 385506, India;
| | - A. Abdul Kader Jailani
- Department of Plant Pathology, North Florida Research and Education Center, University of Florida, Quincy, FL 32351, USA
| | - Bikash Mandal
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi 110012, India
| |
Collapse
|
9
|
Mellid-Carballal R, Gutierrez-Gutierrez S, Rivas C, Garcia-Fuentes M. Viral protein nanoparticles (Part 1): Pharmaceutical characteristics. Eur J Pharm Sci 2023; 187:106460. [PMID: 37156338 DOI: 10.1016/j.ejps.2023.106460] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/21/2023] [Accepted: 05/06/2023] [Indexed: 05/10/2023]
Abstract
Viral protein nanoparticles fill the gap between viruses and synthetic nanoparticles. Combining advantageous properties of both systems, they have revolutionized pharmaceutical research. Virus-like particles are characterized by a structure identical to viruses but lacking genetic material. Another type of viral protein nanoparticles, virosomes, are similar to liposomes but include viral spike proteins. Both systems are effective and safe vaccine candidates capable of overcoming the disadvantages of both traditional and subunit vaccines. Besides, their particulate structure, biocompatibility, and biodegradability make them good candidates as vectors for drug and gene delivery, and for diagnostic applications. In this review, we analyze viral protein nanoparticles from a pharmaceutical perspective and examine current research focused on their development process, from production to administration. Advances in synthesis, modification and formulation of viral protein nanoparticles are critical so that large-scale production of viral protein nanoparticle products becomes viable and affordable, which ultimately will increase their market penetration in the future. We will discuss their expression systems, modification strategies, formulation, biopharmaceutical properties, and biocompatibility.
Collapse
Affiliation(s)
- Rocio Mellid-Carballal
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidad de Santiago de Compostela, Spain
| | - Sara Gutierrez-Gutierrez
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidad de Santiago de Compostela, Spain
| | - Carmen Rivas
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Universidad de Santiago de Compostela, Spain; Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología (CNB)-CSIC, Spain
| | - Marcos Garcia-Fuentes
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidad de Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Universidad de Santiago de Compostela, Spain.
| |
Collapse
|
10
|
Bhattacharjee B, Ikbal AMA, Farooqui A, Sahu RK, Ruhi S, Syed A, Miatmoko A, Khan D, Khan J. Superior possibilities and upcoming horizons for nanoscience in COVID-19: noteworthy approach for effective diagnostics and management of SARS-CoV-2 outbreak. CHEMICKE ZVESTI 2023; 77:1-24. [PMID: 37362791 PMCID: PMC10072050 DOI: 10.1007/s11696-023-02795-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/18/2023] [Indexed: 04/07/2023]
Abstract
The outbreak of COVID-19 has caused great havoc and affected many parts of the world. It has imposed a great challenge to the medical and health fraternity with its ability to continue mutating and increasing the transmission rate. Some challenges include the availability of current knowledge of active drugs against the virus, mode of delivery of the medicaments, its diagnosis, which are relatively limited and do not suffice for further prognosis. One recently developed drug delivery system called nanoparticles is currently being utilized in combating COVID-19. This article highlights the existing methods for diagnosis of COVID-19 such as computed tomography scan, reverse transcription-polymerase chain reaction, nucleic acid sequencing, immunoassay, point-of-care test, detection from breath, nanotechnology-based bio-sensors, viral antigen detection, microfluidic device, magnetic nanosensor, magnetic resonance platform and internet-of-things biosensors. The latest detection strategy based on nanotechnology, biosensor, is said to produce satisfactory results in recognizing SARS-CoV-2 virus. It also highlights the successes in the research and development of COVID-19 treatments and vaccines that are already in use. In addition, there are a number of nanovaccines and nanomedicines currently in clinical trials that have the potential to target COVID-19.
Collapse
Affiliation(s)
- Bedanta Bhattacharjee
- Girijananda Chowdhury Institute of Pharmaceutical Science, Tezpur, Assam 784501 India
| | - Abu Md Ashif Ikbal
- Department of Pharmaceutical Sciences, Assam University (A Central University), Silchar, 788011 India
| | - Atika Farooqui
- The Deccan College of Medical Sciences, Kanchan Bagh, Hyderabad, Telangana 500058 India
| | - Ram Kumar Sahu
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Chauras Campus, Tehri Garhwal, Uttarakhand 249161 India
| | - Sakina Ruhi
- Department of Biochemistry, IMS, Management and Science University, University Drive, Off Persiaran Olahraga, 40100 Shah Alam, Selangor Malaysia
| | - Ayesha Syed
- International Medical School, Management and Science University, University Drive, Off Persiaran Olahraga, 40100 Shah Alam, Selangor Malaysia
| | - Andang Miatmoko
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, East Java 60115 Indonesia
| | - Danish Khan
- Panineeya Institute of Dental Science and Research Centre, Kalonji Narayana Rao University of Health Sciences, Warangal, Telangana 506007 India
| | - Jiyauddin Khan
- School of Pharmacy, Management and Science University, 40100 Shah Alam, Selangor Malaysia
| |
Collapse
|
11
|
Khatun S, Putta CL, Hak A, Rengan AK. Immunomodulatory nanosystems: An emerging strategy to combat viral infections. BIOMATERIALS AND BIOSYSTEMS 2023; 9:100073. [PMID: 36967725 PMCID: PMC10036237 DOI: 10.1016/j.bbiosy.2023.100073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/29/2022] [Accepted: 01/27/2023] [Indexed: 02/03/2023] Open
Abstract
The viral infection spreads with the assistance of a host. Traditional antiviral therapies cannot provide long-term immunity against emerging and drug-resistant viral infections. Immunotherapy has evolved as an efficient approach for disease prevention and treatment, which include cancer, infections, inflammatory, and immune disorders. Immunomodulatory nanosystems can dramatically enhance therapeutic outcomes by combating many therapeutic challenges, such as poor immune stimulation and off-target adverse effects. Recently, immunomodulatory nanosystems have emerged as a potent antiviral strategy to intercept viral infections effectively. This review introduces major viral infections with their primary symptoms, route of transmission & targeted organ, and different stages of the viral life cycle with respective traditional blockers. The IMNs have an exceptional capacity for precisely modulating the immune system for therapeutic applications. The nano sized immunomodulatory systems permit the immune cells to interact with infectious agents enhancing lymphatic drainage and endocytosis by the over-reactive immune cells in the infected areas. Immune cells that can be modulated upon viral infection via various immunomodulatory nanosystems have been discussed. Advancement in theranostics can yield an accurate diagnosis, adequate treatment, and real-time screening of viral infections. Nanosystem-based drug delivery can continue to thrive in diagnosing, treating, and preventing viral infections. The curative medicine for remerging and drug-resistant viruses remains challenging, though certain systems have expanded our perception and initiated a new research domain in antiviral treatments.
Collapse
|
12
|
Yakoubi A, Dhafer CEB. Advanced Plasmonic Nanoparticle-Based Techniques for the Prevention, Detection, and Treatment of Current COVID-19. PLASMONICS (NORWELL, MASS.) 2022; 18:311-347. [PMID: 36588744 PMCID: PMC9786532 DOI: 10.1007/s11468-022-01754-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Coronavirus is an ongoing global pandemic caused by severe acute respiratory syndrome coronavirus 2. Coronavirus disease 2019 known as COVID-19 is the worst pandemic since World War II. The outbreak of COVID-19 had a significant repercussion on the health, economy, politics, and environment, making coronavirus-related issues more complicated and becoming one of the most challenging pandemics of the last century with deadly outcomes and a high rate of the reproduction number. There are thousands of different types - or variants - of COVID circulating across the world. Viruses mutate all the time; it emphasizes the critical need for the designing of efficient vaccines to prevent virus infection, early and fast diagnosis, and effective antiviral and protective therapeutics. In this regard, the use of nanotechnology offers new opportunities for the development of novel strategies in terms of prevention, diagnosis, and treatment of COVID-19. This review presents an outline of the platforms developed using plasmonic nanoparticles in the detection, treatment, and prevention of SARS-CoV-2. We select the best strategies in each of these approaches. The properties of metallic plasmon NPs and their relevance in the development of novel point-of-care diagnosis approaches for COVID-19 are highlighted. Also, we discuss the current challenges and the future perspectives looking towards the clinical translation and the commercial aspects of nanotechnology and plasmonic NP-based diagnostic tools and therapy to fight COVID-19 pandemic. The article could be of significance for researchers dedicated to developing suitable plasmonic detection tools and therapy approaches for COVID-19 viruses and future pandemics.
Collapse
Affiliation(s)
- Afef Yakoubi
- Laboratory of Hetero-organic Compounds and Nanostructured Materials, Chemistry Department, Faculty of Sciences Bizerte, University of Carthage, LR 18 ES11, 7021 Bizerte, Tunisia
| | - Cyrine El Baher Dhafer
- Chemistry Department College of Science, Jouf University, P.O Box: 2014, Sakaka, Saudi Arabia
| |
Collapse
|
13
|
Bhattacharjee R, Dubey AK, Ganguly A, Bhattacharya B, Mishra YK, Mostafavi E, Kaushik A. State-of-art high-performance Nano-systems for mutated coronavirus infection management: From Lab to Clinic. OPENNANO 2022. [PMCID: PMC9463543 DOI: 10.1016/j.onano.2022.100078] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants made emerging novel coronavirus diseases (COVID-19) pandemic/endemic/or both more severe and difficult to manage due to increased worry about the efficacy and efficiency of present preventative, therapeutic, and sensing measures. To deal with these unexpected circumstances, the development of novel nano-systems with tuneable optical, electrical, magnetic, and morphological properties can lead to novel research needed for (1) COVID-19 infection (anti-microbial systems against SARS-CoV-2), (2) early detection of mutated SARS-CoV-2, and (3) targeted delivery of therapeutics using nano-systems, i.e., nanomedicine. However, there is a knowledge gap in understanding all these nano-biotechnology potentials for managing mutated SARS-CoV-2 on a single platform. To bring up the aspects of nanotechnology to tackle SARS-CoV-2 variants related COVID-19 pandemic, this article emphasizes improvements in the high-performance of nano-systems to combat SARS-CoV-2 strains/variants with a goal of managing COVID-19 infection via trapping, eradication, detection/sensing, and treatment of virus. The potential of state-of-the-art nano-assisted approaches has been demonstrated as an efficient drug delivery systems, viral disinfectants, vaccine productive cargos, anti-viral activity, and biosensors suitable for point-of-care (POC) diagnostics. Furthermore, the process linked with the efficacy of nanosystems to neutralize and eliminate SARS-CoV-2 is extensively highligthed in this report. The challenges and opportunities associated with managing COVID-19 using nanotechnology as part of regulations are also well-covered. The outcomes of this review will help researchers to design, investigate, and develop an appropriate nano system to manage COVID-19 infection, with a focus on the detection and eradication of SARS-CoV-2 and its variants. This article is unique in that it discusses every aspect of high-performance nanotechnology for ideal COVID pandemic management.
Collapse
|
14
|
Sakthi Devi R, Girigoswami A, Siddharth M, Girigoswami K. Applications of Gold and Silver Nanoparticles in Theranostics. Appl Biochem Biotechnol 2022; 194:4187-4219. [PMID: 35551613 PMCID: PMC9099041 DOI: 10.1007/s12010-022-03963-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/02/2022] [Indexed: 02/07/2023]
Abstract
Nanotechnology sculptures the current scenario of science and technology. The word nano refers 'small' which ranges from 10 to 100 nm in size. Silver and gold nanoparticles can be synthesized at nanoscale and have unique biological properties like antibacterial, antifungal, antiviral, antiparasitic, antiplatelet, anti-inflammatory, and anti-tumor activity. In this mini review, we shall discuss the various applications of silver and gold nanoparticles (AuNPs) in the field of therapy, imaging, biomedical devices and in cancer diagnosis. The usage of silver nanoparticles(AgNPs) in dentistry and dental implants, therapeutic abilities like wound dressings, silver impregnated catheters, ventricular drainage catheters, combating orthopedic infections, and osteointegration will be elaborated. Gold nanoparticles in recent years have garnered large importance in bio medical applications. They are being used in diagnosis and have recently seen a surge in therapeutics. In this mini review, we shall see about the various applications of AuNP and AgNP, and highlight their evolution in theranostics.
Collapse
Affiliation(s)
- R Sakthi Devi
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Tamilnadu, 603103, India
| | - Agnishwar Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Tamilnadu, 603103, India
| | - M Siddharth
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Tamilnadu, 603103, India
| | - Koyeli Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Tamilnadu, 603103, India.
| |
Collapse
|
15
|
Abbas G, Yu J, Li G. Novel and Alternative Therapeutic Strategies for Controlling Avian Viral Infectious Diseases: Focus on Infectious Bronchitis and Avian Influenza. Front Vet Sci 2022; 9:933274. [PMID: 35937298 PMCID: PMC9353128 DOI: 10.3389/fvets.2022.933274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
The growth of poultry farming has enabled higher spread of infectious diseases and their pathogens among different kinds of birds, such as avian infectious bronchitis virus (IBV) and avian influenza virus (AIV). IBV and AIV are a potential source of poultry mortality and economic losses. Furthermore, some pathogens have the ability to cause zoonotic diseases and impart human health problems. Antiviral treatments that are used often lead to virus resistance along with the problems of side effects, recurrence, and latency of viruses. Though target hosts are being vaccinated, the constant emergence and re-emergence of strains of these viruses cause disease outbreaks. The pharmaceutical industry is gradually focusing on plant extracts to develop novel herbal drugs to have proper antiviral capabilities. Natural therapeutic agents developed from herbs, essential oils (EO), and distillation processes deliver a rich source of amalgams to discover and produce new antiviral drugs. The mechanisms involved have elaborated how these natural therapeutics agents play a major role during virus entry and replication in the host and cause inhibition of viral pathogenesis. Nanotechnology is one of the advanced techniques that can be very useful in diagnosing and controlling infectious diseases in poultry. In general, this review covers the issue of the poultry industry situation, current infectious diseases, mainly IB and AI control measures and, in addition, the setup of novel therapeutics using plant extracts and the use of nanotechnology information that may help to control these diseases.
Collapse
|
16
|
Wang Z, Cui K, Costabel U, Zhang X. Nanotechnology-facilitated vaccine development during the coronavirus disease 2019 (COVID-19) pandemic. EXPLORATION (BEIJING, CHINA) 2022; 2:20210082. [PMID: 35941992 PMCID: PMC9349967 DOI: 10.1002/exp.20210082] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 05/11/2022] [Indexed: 12/11/2022]
Abstract
Coronavirus disease 2019 (COVID-19) continually poses a significant threat to the human race, and prophylactic vaccination is the most potent approach to end this pandemic. Nanotechnology is widely adopted during COVID-19 vaccine development, and the engineering of nanostructured materials such as nanoparticles has opened new possibilities in innovative vaccine development by improving the design and accelerating the development process. This review aims to comprehensively understand the current situation and prospects of nanotechnology-enabled vaccine development against the COVID-19 pandemic, with an emphasis on the interplay between nanotechnology and the host immune system.
Collapse
Affiliation(s)
- Ziqi Wang
- Department of Respiratory and Critical Care MedicineZhengzhou University People's HospitalHenan Provincial People's HospitalZhengzhouHenanP. R. China
| | - Kai Cui
- Department of Respiratory and Critical Care MedicineZhengzhou University People's HospitalHenan Provincial People's HospitalZhengzhouHenanP. R. China
- Academy of Medical ScienceZhengzhou UniversityZhengzhouHenanP. R. China
| | - Ulrich Costabel
- Department of Respiratory and Critical Care MedicineZhengzhou University People's HospitalHenan Provincial People's HospitalZhengzhouHenanP. R. China
- Department of PneumologyRuhrlandklinikUniversity Medicine EssenEssenGermany
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care MedicineZhengzhou University People's HospitalHenan Provincial People's HospitalZhengzhouHenanP. R. China
| |
Collapse
|
17
|
Rama A, Pai A, Rosa Barreto D, Kumar Kannan S, Naha A. Virus-Like particles as a Novel Targeted Drug Delivery Platform for Biomedical Applications. RESEARCH JOURNAL OF PHARMACY AND TECHNOLOGY 2022:2801-2808. [DOI: 10.52711/0974-360x.2022.00468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Virus-Like Particles (VLP) mimics virions immunologically which induces high titers of neutralizing antibodies to conformational epitopes due to the high-density display of epitopes, present multiple proteins which are optimal for uptake by dendritic cells and are assembled in vivo. VLP triggers the immune response of the body against the diseases and is broadly two types like non enveloped VLP’s and Enveloped VLP’s. The present review discusses the production, analysis, and mechanism of action of virus-like particles. Various applications, the Indian Scenario of VLP, Limitations, and future scopes are briefly reviewed and discussed. VLPs imitate authentic viruses in antigenic morphology and offer a stable alternative to attenuated and inactivated viruses in the production of vaccines. It can effectively deliver foreign nucleic acids, proteins, or conjugated compounds to the system, or even to particular types of cells, due to their transducing properties. It retains the ability to infiltrate and render cells useful for a wide range of applications. Used as a tool to increase the immunogenicity of poorly immunogenic antigens, VLP therapeutics can be developed and manufactured in a way that would be sufficiently cheap to be seen globally in many countries. The ability to mass-produce them cost-effectively improves their possibility of being introduced to undeveloped countries.
Collapse
Affiliation(s)
- Annamalai Rama
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Anuja Pai
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Divya Rosa Barreto
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Siva Kumar Kannan
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Anup Naha
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
18
|
Mittal D, Ali SA. Use of Nanomaterials for Diagnosis and Treatment: The Advancement of Next-Generation Antiviral Therapy. Microb Drug Resist 2022; 28:670-697. [PMID: 35696335 DOI: 10.1089/mdr.2021.0281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Globally, viral illness propagation is the leading cause of morbidity and death, causing wreaking havoc on socioeconomic development and health care systems. The rise of infected individuals has outpaced the existing critical care facilities. Early and sophisticated methods are desperately required in this respect to halt the spread of the infection. Therefore, early detection of infectious agents and an early treatment approach may help minimize viral outbreaks. Conventional point-of-care diagnostic techniques such as computed tomography scan, quantitative real time polymerase chain reaction (qRT-PCR), X-ray, and immunoassay are still deemed valuable. However, the labor demanding, low sensitivity, and complex infrastructure needed for these methods preclude their use in distant areas. Nanotechnology has emerged as a potentially transformative technology due to its promise as an effective theranostic platform for diagnosing and treating viral infection, circumventing the limits of traditional techniques. Their unique physical and chemical characteristics make nanoparticles (NPs) advantageous for drug delivery platforms due to their size, encapsulation efficiency, improved bioavailability, effectiveness, immunogenicity, and antiviral response. This study discusses the recent research on nanotechnology-based treatments designed to combat new viruses.
Collapse
Affiliation(s)
- Deepti Mittal
- Nanosafety Lab, Division of Biochemistry, ICAR-NDRI, Karnal, Haryana, India
| | - Syed Azmal Ali
- Cell Biology and Proteomics Lab, Animal Biotechnology Center, ICAR-NDRI, Karnal, Haryana, India
| |
Collapse
|
19
|
Lahiri D, Nag M, Dey A, Sarkar T, Pati S, Ray RR. Nanoparticles Based Antibacterial Vaccines: Novel Strategy to Combat Antimicrobial Resistance. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Characterization of protein corona formation on nanoparticles via the analysis of dynamic interfacial properties: Bovine serum albumin - silica particle interaction. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Ghaznavi H, Shirvaliloo M, Sargazi S, Mohammadghasemipour Z, Shams Z, Hesari Z, Shahraki O, Nazarlou Z, Sheervalilou R, Shirvalilou S. SARS-CoV-2 and Influenza Viruses: Strategies to Cope with Co-infection and Bioinformatics Perspective. Cell Biol Int 2022; 46:1009-1020. [PMID: 35322909 PMCID: PMC9083817 DOI: 10.1002/cbin.11800] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 12/15/2022]
Abstract
Almost a century after the devastating pandemic of the Spanish flu, humankind is facing the relatively comparable global outbreak of COVID‐19. COVID‐19 is an infectious disease caused by SARS‐CoV‐2 with an unprecedented transmission pattern. In the face of the recent repercussions of COVID‐19, many have argued that the clinical experience with influenza through the last century may have tremendous implications in the containment of this newly emerged viral disease. During the last 2 years, from the emergence of COVID‐19, tremendous advances have been made in diagnosing and treating coinfections. Several approved vaccines are available now for the primary prevention of COVID‐19 and specific treatments exist to alleviate symptoms. The present review article aims to discuss the pathophysiology, diagnosis, and treatment of SARS‐CoV‐2 and influenza A virus coinfection while delivering a bioinformatics‐based insight into this subject matter.
Collapse
Affiliation(s)
- Habib Ghaznavi
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Milad Shirvaliloo
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Zahra Mohammadghasemipour
- Department of Infectious Disease, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Zinat Shams
- Department of Biological Science, Kharazmi University, Tehran, Iran
| | - Zahra Hesari
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Omolbanin Shahraki
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.,Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ziba Nazarlou
- Material Engineering Department, College of Science Koç University, Istanbul, 34450, Turkey
| | - Roghayeh Sheervalilou
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.,Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Sakine Shirvalilou
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Efficacy and Immune Response Elicited by Gold Nanoparticle- Based Nanovaccines against Infectious Diseases. Vaccines (Basel) 2022; 10:vaccines10040505. [PMID: 35455254 PMCID: PMC9030786 DOI: 10.3390/vaccines10040505] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/04/2022] [Accepted: 03/17/2022] [Indexed: 12/31/2022] Open
Abstract
The use of nanoparticles for developing vaccines has become a routine process for researchers and pharmaceutical companies. Gold nanoparticles (GNPs) are chemical inert, have low toxicity, and are easy to modify and functionalize, making them an attractive choice for nanovaccine development. GNPs are modified for diagnostics and detection of many pathogens. The biocompatibility and biodistribution properties of GNPs render them ideal for use in clinical settings. They have excellent immune modulatory and adjuvant properties. They have been used as the antigen carrier for the delivery system to a targeted site. Tagging them with antibodies can direct the drug or antigen-carrying GNPs to specific tissues or cells. The physicochemical properties of the GNP, together with its dynamic immune response based on its size, shape, surface charge, and optical properties, make it a suitable candidate for vaccine development. The clear outcome of modulating dendritic cells, T and B lymphocytes, which trigger cytokine release in the host, indicates GNPs' efficiency in combating pathogens. The high titer of IgG and IgA antibody subtypes and their enhanced capacity to neutralize pathogens are reported in multiple studies on GNP-based vaccine development. The major focus of this review is to illustrate the role of GNPs in developing nanovaccines against multiple infectious agents, ranging from viruses to bacteria and parasites. Although the use of GNPs has its shortcomings and a low but detectable level of toxicity, their benefits warrant investing more thought and energy into the development of novel vaccine strategies.
Collapse
|
23
|
Tariq H, Batool S, Asif S, Ali M, Abbasi BH. Virus-Like Particles: Revolutionary Platforms for Developing Vaccines Against Emerging Infectious Diseases. Front Microbiol 2022; 12:790121. [PMID: 35046918 PMCID: PMC8761975 DOI: 10.3389/fmicb.2021.790121] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023] Open
Abstract
Virus-like particles (VLPs) are nanostructures that possess diverse applications in therapeutics, immunization, and diagnostics. With the recent advancements in biomedical engineering technologies, commercially available VLP-based vaccines are being extensively used to combat infectious diseases, whereas many more are in different stages of development in clinical studies. Because of their desired characteristics in terms of efficacy, safety, and diversity, VLP-based approaches might become more recurrent in the years to come. However, some production and fabrication challenges must be addressed before VLP-based approaches can be widely used in therapeutics. This review offers insight into the recent VLP-based vaccines development, with an emphasis on their characteristics, expression systems, and potential applicability as ideal candidates to combat emerging virulent pathogens. Finally, the potential of VLP-based vaccine as viable and efficient immunizing agents to induce immunity against virulent infectious agents, including, SARS-CoV-2 and protein nanoparticle-based vaccines has been elaborated. Thus, VLP vaccines may serve as an effective alternative to conventional vaccine strategies in combating emerging infectious diseases.
Collapse
Affiliation(s)
- Hasnat Tariq
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sannia Batool
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Saaim Asif
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Mohammad Ali
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | | |
Collapse
|
24
|
Tiwari AK, Mishra A, Pandey G, Gupta MK, Pandey PC. Nanotechnology: A Potential Weapon to Fight against COVID-19. PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION : MEASUREMENT AND DESCRIPTION OF PARTICLE PROPERTIES AND BEHAVIOR IN POWDERS AND OTHER DISPERSE SYSTEMS 2022; 39:2100159. [PMID: 35440846 PMCID: PMC9011707 DOI: 10.1002/ppsc.202100159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/28/2021] [Indexed: 05/13/2023]
Abstract
The COVID-19 infections have posed an unprecedented global health emergency, with nearly three million deaths to date, and have caused substantial economic loss globally. Hence, an urgent exploration of effective and safe diagnostic/therapeutic approaches for minimizing the threat of this highly pathogenic coronavirus infection is needed. As an alternative to conventional diagnosis and antiviral agents, nanomaterials have a great potential to cope with the current or even future health emergency situation with a wide range of applications. Fundamentally, nanomaterials are physically and chemically tunable and can be employed for the next generation nanomaterial-based detection of viral antigens and host antibodies in body fluids as antiviral agents, nanovaccine, suppressant of cytokine storm, nanocarrier for efficient delivery of antiviral drugs at infection site or inside the host cells, and can also be a significant tool for better understanding of the gut microbiome and SARS-CoV-2 interaction. The applicability of nanomaterial-based therapeutic options to cope with the current and possible future pandemic is discussed here.
Collapse
Affiliation(s)
- Atul K. Tiwari
- Department of ChemistryIndian Institute of Technology (BHU)VaranasiUttar Pradesh221005India
| | - Anupa Mishra
- Department of MicrobiologyDr. R.M.L. Awadh UniversityAyodhyaUttar Pradesh224001India
- Department of MicrobiologySri Raghukul Mahila Vidya PeethCivil Line GondaUttar Pradesh271001India
| | - Govind Pandey
- Department of PaediatricsKing George Medical UniversityLucknowUttar Pradesh226003India
| | - Munesh K. Gupta
- Department of MicrobiologyInstitute of Medical SciencesBanaras Hindu UniversityVaranasiUttar Pradesh221005India
| | - Prem C. Pandey
- Department of ChemistryIndian Institute of Technology (BHU)VaranasiUttar Pradesh221005India
| |
Collapse
|
25
|
Ranjbar S, Fatahi Y, Atyabi F. The quest for a better fight: How can nanomaterials address the current therapeutic and diagnostic obstacles in the fight against COVID-19? J Drug Deliv Sci Technol 2022; 67:102899. [PMID: 34630635 PMCID: PMC8489264 DOI: 10.1016/j.jddst.2021.102899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/19/2021] [Accepted: 10/01/2021] [Indexed: 01/18/2023]
Abstract
The inexorable coronavirus disease 2019 (COVID-19) pandemic with around 226 million people diagnosed and approximately 4.6 million deaths, is still moving toward more frightening statistics, calling for the urgent need to explore solutions for the current challenges in therapeutic and diagnostic approaches. The challenges associated with existing therapeutics in COVID-19 include lack of in vivo stability, efficacy, and safety. Nanoparticles (NPs) can offer a handful of tools to tackle these problems by enabling efficacious and safe delivery of both virus- and host-directed therapeutics. Furthermore, they can enable maximized clinical outcome while eliminating the chance of resistance to therapy by tissue-targeting and concomitant delivery of multiple therapeutics. The promising application of NPs as vaccine platforms is reflected by the major advances in developing novel COVID-19 vaccines. Two of the most critical COVID-19 vaccines are mRNA-based vaccines delivered via NPs, making them the first FDA-approved mRNA vaccines. Besides, NPs have been deployed as simple, rapid, and precise tools for point of care disease diagnosis. Not enough said NPs can also be exploited in novel ways to expedite the drug discovery process. In light of the above, this review discusses how NPs can overcome the hurdles associated with therapeutic and diagnostic approaches against COVID-19.
Collapse
Affiliation(s)
- Sheyda Ranjbar
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran,Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Yousef Fatahi
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Fatemeh Atyabi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran,Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran,Corresponding author. Faculty of Pharmacy, Tehran University of Medical Sciences Tehran, PO Box 14155-6451, 1417614411, Iran
| |
Collapse
|
26
|
Mohamed N, Hamad MA, Ghaleb AH, Esmat G, Elsabahy M. Applications of nanoengineered therapeutics and vaccines: special emphasis on COVID-19. IMMUNOMODULATORY EFFECTS OF NANOMATERIALS 2022. [PMCID: PMC9212255 DOI: 10.1016/b978-0-323-90604-3.00003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nanomedicine provides innovative strategies that had significantly improved drug and gene delivery and allowed control over the engineering of therapeutics, diagnostics, vaccines, and other medical devices, for a diversity of medical applications. This review focuses on the current attempts to develop potent nanoengineered vaccines and therapeutics against coronaviruses, and the recent fabrication strategies and design principles to control acute infections from the escalating SARS-CoV-2 pandemic. Nanomedical approaches provide versatile platforms that can be utilized to enhance the overall potency, safety, and stability of vaccines, thus augmenting the desired immune response. Their modulable conformational features of size, shape, surface charge, antigen display, and composition allow for precise tuning and optimization of the nanoconstructs for the management of a variety of diseases and pathological conditions. The ability to control the release of their encapsulated cargoes and the possibility of surface decoration with various moieties support the construction of multifunctional nanomaterials that ultimately boost and prolong the immune response elicited and/or therapeutic effects, selectively at the diseased tissues and target sites.
Collapse
|
27
|
Hashemi B, Akram FA, Amirazad H, Dadashpour M, Sheervalilou M, Nasrabadi D, Ahmadi M, Sheervalilou R, Ameri Shah Reza M, Ghazi F, Roshangar L. Emerging importance of nanotechnology-based approaches to control the COVID-19 pandemic; focus on nanomedicine iterance in diagnosis and treatment of COVID-19 patients. J Drug Deliv Sci Technol 2022; 67:102967. [PMID: 34777586 PMCID: PMC8576597 DOI: 10.1016/j.jddst.2021.102967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 02/06/2023]
Abstract
The ongoing outbreak of the newly emerged coronavirus disease 2019, which has tremendously concerned global health safety, is the result of infection with severe acute respiratory syndrome of coronavirus 2 with high morbidity and mortality. Because of the coronavirus has no specific treatment, so it is necessary to early detection and produce antiviral agents and efficacious vaccines in order to prevent the contagion of coronavirus. Due to the unique properties of nanomaterials, nanotechnology appears to be a highly relevant discipline in this global emergency, providing expansive chemical functionalization to develop advanced biomedical tools. Fascinatingly, nanomedicine as a hopeful approach for the treatment and diagnosis of diseases, could efficiently help success the fight among coronavirus and host cells. In this review, we will critically discuss how nanomedicine can play an indispensable role in creating useful treatments and diagnostics for coronavirus.
Collapse
Affiliation(s)
- Behnam Hashemi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Firouzi-Amandi Akram
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Halimeh Amirazad
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Dadashpour
- Department of Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Biotechnology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Milad Sheervalilou
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davood Nasrabadi
- Department of Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Biotechnology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Farhood Ghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
28
|
Chue-Gonçalves M, Pereira GN, Faccin-Galhardi LC, Kobayashi RKT, Nakazato G. Metal Nanoparticles against Viruses: Possibilities to Fight SARS-CoV-2. NANOMATERIALS 2021; 11:nano11113118. [PMID: 34835882 PMCID: PMC8618109 DOI: 10.3390/nano11113118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 12/23/2022]
Abstract
In view of the current Coronavirus Disease 2019 (COVID-19) pandemic outbreak, the research community is focusing on development of diagnostics, treatment, and vaccines to halt or reverse this scenario. Although there are already various vaccines available, adaptive mutations in the SARS-CoV-2 genome can alter its pathogenic potential and, at the same time, increase the difficulty of developing drugs or immunization by vaccines. Nanotechnology carries a potential to act in all stages in fighting this viral disease, with several possibilities of strategies such as applying nanoparticles directly as antivirals in delivery systems against these viruses or incorporating them in materials, with power of achievement in therapeutics, vaccines and prevention. In this paper, we review and bring insights of recent studies using metal nanocomposites as antivirals against coronavirus and structurally similar viruses.
Collapse
Affiliation(s)
- Marcelly Chue-Gonçalves
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Biological Sciences Center, Londrina State University, Londrina 86057-970, Brazil; (M.C.-G.); (G.N.P.); (R.K.T.K.)
| | - Giovana N. Pereira
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Biological Sciences Center, Londrina State University, Londrina 86057-970, Brazil; (M.C.-G.); (G.N.P.); (R.K.T.K.)
| | - Lígia C. Faccin-Galhardi
- Laboratory of Virology, Department of Microbiology, Biological Sciences Center, Londrina State University, Londrina 86057-970, Brazil;
| | - Renata K. T. Kobayashi
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Biological Sciences Center, Londrina State University, Londrina 86057-970, Brazil; (M.C.-G.); (G.N.P.); (R.K.T.K.)
| | - Gerson Nakazato
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Biological Sciences Center, Londrina State University, Londrina 86057-970, Brazil; (M.C.-G.); (G.N.P.); (R.K.T.K.)
- Correspondence:
| |
Collapse
|
29
|
Kim E, Lim EK, Park G, Park C, Lim JW, Lee H, Na W, Yeom M, Kim J, Song D, Haam S. Advanced Nanomaterials for Preparedness Against (Re-)Emerging Viral Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005927. [PMID: 33586180 DOI: 10.1002/adma.202005927] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/08/2020] [Indexed: 05/24/2023]
Abstract
While the coronavirus disease (COVID-19) accounts for the current global pandemic, the emergence of other unknown pathogens, named "Disease X," remains a serious concern in the future. Emerging or re-emerging pathogens continue to pose significant challenges to global public health. In response, the scientific community has been urged to create advanced platform technologies to meet the ever-increasing needs presented by these devastating diseases with pandemic potential. This review aims to bring new insights to allow for the application of advanced nanomaterials in future diagnostics, vaccines, and antiviral therapies, thereby addressing the challenges associated with the current preparedness strategies in clinical settings against viruses. The application of nanomaterials has advanced medicine and provided cutting-edge solutions for unmet needs. Herein, an overview of the currently available nanotechnologies is presented, highlighting the significant features that enable them to control infectious diseases, and identifying the challenges that remain to be addressed for the commercial production of nano-based products is presented. Finally, to conclude, the development of a nanomaterial-based system using a "One Health" approach is suggested. This strategy would require a transdisciplinary collaboration and communication between all stakeholders throughout the entire process spanning across research and development, as well as the preclinical, clinical, and manufacturing phases.
Collapse
Affiliation(s)
- Eunjung Kim
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Eun-Kyung Lim
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, Daejeon, 34113, Republic of Korea
| | - Geunseon Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Chaewon Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Jong-Woo Lim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Hyo Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Woonsung Na
- College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Minjoo Yeom
- College of Pharmacy, Korea University, Sejong-ro, Sejong, 30019, Republic of Korea
| | - Jinyoung Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Daesub Song
- College of Pharmacy, Korea University, Sejong-ro, Sejong, 30019, Republic of Korea
| | - Seungjoo Haam
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| |
Collapse
|
30
|
Ghaemi F, Amiri A, Bajuri MY, Yuhana NY, Ferrara M. Role of different types of nanomaterials against diagnosis, prevention and therapy of COVID-19. SUSTAINABLE CITIES AND SOCIETY 2021; 72:103046. [PMID: 34055576 PMCID: PMC8146202 DOI: 10.1016/j.scs.2021.103046] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 05/24/2023]
Abstract
In 2019, a novel type of coronavirus emerged in China called SARS-COV-2, known COVID-19, threatens global health and possesses negative impact on people's quality of life, leading to an urgent need for its diagnosis and remedy. On the other hand, the presence of hazardous infectious waste led to the increase of the risk of transmitting the virus by individuals and by hospitals during the COVID-19 pandemic. Hence, in this review, we survey previous researches on nanomaterials that can be effective for guiding strategies to deal with the current COVID-19 pandemic and also decrease the hazardous infectious waste in the environment. We highlight the contribution of nanomaterials that possess potential to therapy, prevention, detect targeted virus proteins and also can be useful for large population screening, for the development of environmental sensors and filters. Besides, we investigate the possibilities of employing the nanomaterials in antiviral research and treatment development, examining the role of nanomaterials in antiviral- drug design, including the importance of nanomaterials in drug delivery and vaccination, and for the production of medical equipment. Nanomaterials-based technologies not only contribute to the ongoing SARS- CoV-2 research efforts but can also provide platforms and tools for the understanding, protection, detection and treatment of future viral diseases.
Collapse
Affiliation(s)
- Ferial Ghaemi
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
| | - Amirhassan Amiri
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Mohd Yazid Bajuri
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia(UKM), Kuala Lumpur, Malaysia
| | - Nor Yuliana Yuhana
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
| | - Massimiliano Ferrara
- ICRIOS - The Invernizzi Centre for Research in Innovation, Organization, Strategy and Entrepreneurship, Bocconi University, Department of Management and Technology Via Sarfatti, 25 20136, Milano (MI), Italy
| |
Collapse
|
31
|
Gunathilake TMSU, Ching YC, Uyama H, Chuah CH. Nanotherapeutics for treating coronavirus diseases. J Drug Deliv Sci Technol 2021; 64:102634. [PMID: 34127930 PMCID: PMC8190278 DOI: 10.1016/j.jddst.2021.102634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 12/16/2022]
Abstract
Viral diseases have recently become a threat to human health and rapidly become a significant cause of mortality with a continually exacerbated unfavorable socio-economic impact. Coronaviruses, including severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome (MERS-CoV), and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), have threatened human life, with immense accompanying morbidity rates; the COVID-19 (caused by SARS-CoV-2) epidemic has become a severe threat to global public health. In addition, the design process of antiviral medications usually takes years before the treatments can be made readily available. Hence, it is necessary to invest scientifically and financially in a technology platform that can then be quickly repurposed on demand to be adequately positioned for this kind of pandemic situation through lessons learned from the previous pandemics. Nanomaterials/nanoformulations provide such platform technologies, and a proper investigation into their basic science and biological interactions would be of great benefit for potential vaccine and therapeutic development. In this respect, intelligent and advanced nano-based technologies provide specific physico-chemical properties, which can help fix the key issues related to the treatments of viral infections. This review aims to provide an overview of the latest research on the effective use of nanomaterials in the treatment of coronaviruses. Also raised are the problems, perspectives of antiviral nanoformulations, and the possibility of using nanomaterials effectively against current pandemic situations.
Collapse
Affiliation(s)
- Thennakoon M Sampath U Gunathilake
- Centre of Advanced Materials (CAM), Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yern Chee Ching
- Centre of Advanced Materials (CAM), Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Cheng Hock Chuah
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
32
|
Lombardo R, Musumeci T, Carbone C, Pignatello R. Nanotechnologies for intranasal drug delivery: an update of literature. Pharm Dev Technol 2021; 26:824-845. [PMID: 34218736 DOI: 10.1080/10837450.2021.1950186] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Scientific research has focused its attention on finding an alternative route to systemic oral and parenteral administration, to overcome their usual drawbacks, such as hepatic first-pass which decreases drug bioavailability after oral administration, off-target effects, low patient compliance and low speed of onset of the pharmacological action in first-aid cases. Innovative drug delivery systems (DDS), mainly based on polymer and lipid biocompatible materials, have given a great prompt in this direction in the last years. The intranasal (IN) route of administration is a valid non-invasive alternative. It is highly suitable for self-administration, the drug quickly reaches the bloodstream, largely avoiding the first pass effect, and can also reach directly the brain bypassing BBB. Association of IN route with DDS can thus become a winning strategy for the controlled delivery of drugs, especially when a very quick effect is desired or needed. This review aims at analyzing the scientific literature regarding IN-DDS and their different ways of administration (systemic, topical, pulmonary, nose-to-brain). In particular, attention was devoted to polymer- and lipid-based micro- and nanocarriers, being the topic of most published articles in the last decade, but the whole plethora of colloidal DDS investigated in recent years for IN administration was presented.
Collapse
Affiliation(s)
- Rosamaria Lombardo
- Department of Drug Sciences, University of Catania, Catania, Italy.,Neurosciences, University of Catania, Catania, Italy
| | - Teresa Musumeci
- Department of Drug Sciences, University of Catania, Catania, Italy.,NANO-i - Research Center for Ocular Nanotechnology, University of Catania, Catania, Italy
| | - Claudia Carbone
- Department of Drug Sciences, University of Catania, Catania, Italy.,NANO-i - Research Center for Ocular Nanotechnology, University of Catania, Catania, Italy
| | - Rosario Pignatello
- Department of Drug Sciences, University of Catania, Catania, Italy.,NANO-i - Research Center for Ocular Nanotechnology, University of Catania, Catania, Italy
| |
Collapse
|
33
|
Sadiq IZ, Abubakar FS, Dan-Iya BI. Role of nanoparticles in tackling COVID-19 pandemic: a bio-nanomedical approach. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2021. [DOI: 10.1080/16583655.2021.1944488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Idris Zubairu Sadiq
- Department of Biochemistry, Faculty of life sciences, Ahmadu Bello University, Zaria, Nigeria
- African Center of Excellence in Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria
| | - Fatima Sadiq Abubakar
- Department of Biochemistry, Faculty of life sciences, Ahmadu Bello University, Zaria, Nigeria
- African Center of Excellence in Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria
- National Agricultural Extension and Liaison Services, Ahmadu Bello University, Zaria, Nigeria
| | - Bilal Ibrahim Dan-Iya
- Pharmacy Technician Departments, College of Health Sciences and Technology, Kano, Nigeria
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Darul Ehsan, Malaysia
| |
Collapse
|
34
|
Ho TT, Pham VT, Nguyen TT, Trinh VT, Vi T, Lin HH, Nguyen PMT, Bui HT, Pham NB, Le TBT, Phan CV, Chang HC, Hsiao WWW, Chu HH, Pham MD. Effects of Size and Surface Properties of Nanodiamonds on the Immunogenicity of Plant-Based H5 Protein of A/H5N1 Virus in Mice. NANOMATERIALS 2021; 11:nano11061597. [PMID: 34204514 PMCID: PMC8234943 DOI: 10.3390/nano11061597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/04/2021] [Accepted: 06/15/2021] [Indexed: 12/18/2022]
Abstract
Nanodiamond (ND) has recently emerged as a potential nanomaterial for nanovaccine development. Here, a plant-based haemagglutinin protein (H5.c2) of A/H5N1 virus was conjugated with detonation NDs (DND) of 3.7 nm in diameter (ND4), and high-pressure and high-temperature (HPHT) oxidative NDs of ~40-70 nm (ND40) and ~100-250 nm (ND100) in diameter. Our results revealed that the surface charge, but not the size of NDs, is crucial to the protein conjugation, as well as the in vitro and in vivo behaviors of H5.c2:ND conjugates. Positively charged ND4 does not effectively form stable conjugates with H5.c2, and has no impact on the immunogenicity of the protein both in vitro and in vivo. In contrast, the negatively oxidized NDs (ND40 and ND100) are excellent protein antigen carriers. When compared to free H5.c2, H5.c2:ND40, and H5.c2:ND100 conjugates are highly immunogenic with hemagglutination titers that are both 16 times higher than that of the free H5.c2 protein. Notably, H5.c2:ND40 and H5.c2:ND100 conjugates induce over 3-folds stronger production of both H5.c2-specific-IgG and neutralizing antibodies against A/H5N1 than free H5.c2 in mice. These findings support the innovative strategy of using negatively oxidized ND particles as novel antigen carriers for vaccine development, while also highlighting the importance of particle characterization before use.
Collapse
Affiliation(s)
- Thuong Thi Ho
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam; (T.T.H.); (V.T.P.); (T.T.N.); (V.T.T.); (T.V.); (P.M.T.N.); (H.T.B.); (N.B.P.); (T.B.T.L.); (C.V.P.)
- Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam
| | - Van Thi Pham
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam; (T.T.H.); (V.T.P.); (T.T.N.); (V.T.T.); (T.V.); (P.M.T.N.); (H.T.B.); (N.B.P.); (T.B.T.L.); (C.V.P.)
- Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam
| | - Tra Thi Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam; (T.T.H.); (V.T.P.); (T.T.N.); (V.T.T.); (T.V.); (P.M.T.N.); (H.T.B.); (N.B.P.); (T.B.T.L.); (C.V.P.)
- Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam
| | - Vy Thai Trinh
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam; (T.T.H.); (V.T.P.); (T.T.N.); (V.T.T.); (T.V.); (P.M.T.N.); (H.T.B.); (N.B.P.); (T.B.T.L.); (C.V.P.)
- Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam
| | - Tram Vi
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam; (T.T.H.); (V.T.P.); (T.T.N.); (V.T.T.); (T.V.); (P.M.T.N.); (H.T.B.); (N.B.P.); (T.B.T.L.); (C.V.P.)
- Faculty of Medical Biotechnology—Plant Biotechnology—Pharmacology, University of Science and Technology of Hanoi (USTH), 18-Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam
| | - Hsin-Hung Lin
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan; (H.-H.L.); (H.-C.C.)
| | - Phuong Minh Thi Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam; (T.T.H.); (V.T.P.); (T.T.N.); (V.T.T.); (T.V.); (P.M.T.N.); (H.T.B.); (N.B.P.); (T.B.T.L.); (C.V.P.)
| | - Huyen Thi Bui
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam; (T.T.H.); (V.T.P.); (T.T.N.); (V.T.T.); (T.V.); (P.M.T.N.); (H.T.B.); (N.B.P.); (T.B.T.L.); (C.V.P.)
| | - Ngoc Bich Pham
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam; (T.T.H.); (V.T.P.); (T.T.N.); (V.T.T.); (T.V.); (P.M.T.N.); (H.T.B.); (N.B.P.); (T.B.T.L.); (C.V.P.)
- Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam
| | - Thao Bich Thi Le
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam; (T.T.H.); (V.T.P.); (T.T.N.); (V.T.T.); (T.V.); (P.M.T.N.); (H.T.B.); (N.B.P.); (T.B.T.L.); (C.V.P.)
| | - Chi Van Phan
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam; (T.T.H.); (V.T.P.); (T.T.N.); (V.T.T.); (T.V.); (P.M.T.N.); (H.T.B.); (N.B.P.); (T.B.T.L.); (C.V.P.)
| | - Huan-Cheng Chang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan; (H.-H.L.); (H.-C.C.)
| | - Wesley Wei-Wen Hsiao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan;
| | - Ha Hoang Chu
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam; (T.T.H.); (V.T.P.); (T.T.N.); (V.T.T.); (T.V.); (P.M.T.N.); (H.T.B.); (N.B.P.); (T.B.T.L.); (C.V.P.)
- Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam
- Correspondence: (H.H.C.); (M.D.P.)
| | - Minh Dinh Pham
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam; (T.T.H.); (V.T.P.); (T.T.N.); (V.T.T.); (T.V.); (P.M.T.N.); (H.T.B.); (N.B.P.); (T.B.T.L.); (C.V.P.)
- Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam
- Correspondence: (H.H.C.); (M.D.P.)
| |
Collapse
|
35
|
Raja RK, Nguyen-Tri P, Balasubramani G, Alagarsamy A, Hazir S, Ladhari S, Saidi A, Pugazhendhi A, Samy AA. SARS-CoV-2 and its new variants: a comprehensive review on nanotechnological application insights into potential approaches. APPLIED NANOSCIENCE 2021; 13:65-93. [PMID: 34131555 PMCID: PMC8190993 DOI: 10.1007/s13204-021-01900-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/24/2021] [Indexed: 02/02/2023]
Abstract
SARS-CoV-2 (COVID-19) spreads and develops quickly worldwide as a new global crisis which has left deep socio-economic damage and massive human mortality. This virus accounts for the ongoing outbreak and forces an urgent need to improve antiviral therapeutics and targeted diagnosing tools. Researchers have been working to find a new drug to combat the virus since the outbreak started in late 2019, but there are currently no successful drugs to control the SARS-CoV-2, which makes the situation riskier. Very recently, new variant of SARS-CoV-2 is identified in many countries which make the situation very critical. No successful treatment has yet been shown although enormous international commitment to combat this pandemic and the start of different clinical trials. Nanomedicine has outstanding potential to solve several specific health issues, like viruses, which are regarded a significant medical issue. In this review, we presented an up-to-date drug design strategy against SARS-CoV-2, including the development of novel drugs and repurposed product potentials were useful, and successful drugs discovery is a constant requirement. The use of nanomaterials in treatment against SARS-CoV-2 and their use as carriers for the transport of the most frequently used antiviral therapeutics are discussed systematically here. We also addressed the possibilities of practical applications of nanoparticles to give the status of COVID-19 antiviral systems.
Collapse
Affiliation(s)
| | - Phuong Nguyen-Tri
- Department of Chemistry, Biochemistry and Physics, University du Québec àTrois-Rivieres, Trois-Rivieres, Canada
| | - Govindasamy Balasubramani
- Aquatic Animal Health and Environmental Division, ICAR-Central Institute of Brackishwater Aquaculture, Chennai, 600028 India
| | - Arun Alagarsamy
- Department of Microbiology, Alagappa University, Karaikudi, Tamil Nadu 630003 India
| | - Selcuk Hazir
- Department of Biology, Faculty of Science and Arts, Adnan Menderes University, Aydin, Turkey
| | - Safa Ladhari
- Department of Chemistry, Biochemistry and Physics, University du Québec àTrois-Rivieres, Trois-Rivieres, Canada
| | - Alireza Saidi
- Institut de Recherche Robert-Sauvé en Santé et en Sécurité du Travail (IRSST), 505 Boulevard de Maisonneuve O, Montréal, QC H3A 3C2 Canada
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | | |
Collapse
|
36
|
Carvalho APA, Conte‐Junior CA. Recent Advances on Nanomaterials to COVID-19 Management: A Systematic Review on Antiviral/Virucidal Agents and Mechanisms of SARS-CoV-2 Inhibition/Inactivation. GLOBAL CHALLENGES (HOBOKEN, NJ) 2021; 5:2000115. [PMID: 33786199 PMCID: PMC7994982 DOI: 10.1002/gch2.202000115] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/01/2021] [Indexed: 05/05/2023]
Abstract
The current pandemic of coronavirus disease 2019 (COVID-19) is recognized as a public health emergency of worldwide concern. Nanomaterials can be effectively used to detect, capture/inactivate or inhibit coronavirus cell entry/replication in the human host cell, preventing infection. Their potential for nanovaccines, immunoengineering, diagnosis, repurposing medication, and disinfectant surfaces targeting the novel coronavirus (SARS-CoV-2) is highlighted. In this systematic review the aim is to present an unbiased view of which and how nanomaterials can reduce the spread of COVID-19. Herein, the focus is on SARS-CoV-2, analyzing 46 articles retrieved before December 31, 2020. The interface between nanomaterials is described, and the main mechanisms to inhibit SARS-CoV-2 pathogenesis and viral inactivation are also discussed. Nanocarbons, biopolymeric, copper, and silver nanoparticles are potential antiviral and virucidal agents toward self-cleaning and reusable filter media and surfaces (e.g., facial masks), drug administration, vaccines, and immunodiagnostic assays. Trends in toxicology research and safety tests can help fill the main gaps in the literature and overcome health surveillance's challenges. Phytochemicals delivery by nanocarriers also stand out as candidates to target and bio-friendly therapy. Nanocellulose might fill in the gaps. Future research using nanomaterials targeting novel therapies/prophylaxis measures to COVID-19 and future outbreaks is discussed.
Collapse
Affiliation(s)
- Anna Paula A. Carvalho
- COVID‐19 Research GroupTechnological Development Support Laboratory (LADETEC)Department of BiochemistryFederal University of Rio de Janeiro (UFRJ)UFRJRio de Janeiro21941‐909Brazil
- COVID‐19 Research GroupLaboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM)Institute of Chemistry (IQ)Federal University of Rio de Janeiro (UFRJ)UFRJRio de Janeiro21941‐909Brazil
- Graduate Program in Chemistry (PGQu)Institute of Chemistry (IQ)Federal University of Rio de Janeiro (UFRJ)Rio de Janeiro21941‐909Brazil
- Graduate Program in Food Science (PPGCAL)Institute of Chemistry (IQ)Federal University of Rio de Janeiro (UFRJ)Rio de Janeiro21941‐909Brazil
- Nanotechnology NetworkCarlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ)Rio de Janeiro20020‐000Brazil
| | - Carlos A. Conte‐Junior
- COVID‐19 Research GroupTechnological Development Support Laboratory (LADETEC)Department of BiochemistryFederal University of Rio de Janeiro (UFRJ)UFRJRio de Janeiro21941‐909Brazil
- COVID‐19 Research GroupLaboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM)Institute of Chemistry (IQ)Federal University of Rio de Janeiro (UFRJ)UFRJRio de Janeiro21941‐909Brazil
- Graduate Program in Chemistry (PGQu)Institute of Chemistry (IQ)Federal University of Rio de Janeiro (UFRJ)Rio de Janeiro21941‐909Brazil
- Graduate Program in Food Science (PPGCAL)Institute of Chemistry (IQ)Federal University of Rio de Janeiro (UFRJ)Rio de Janeiro21941‐909Brazil
- Nanotechnology NetworkCarlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ)Rio de Janeiro20020‐000Brazil
- Graduate Program in Veterinary Hygiene (PPGHV)Faculty of Veterinary MedicineFluminense Federal University (UFF)Niterói24230‐340Brazil
- Graduate Program in Sanitary Surveillance (PPGVS)National Institute of Health Quality Control (INCQS)Oswaldo Cruz Foundation (FIOCRUZ)Rio de Janeiro21040‐900Brazil
| |
Collapse
|
37
|
Derakhshan MA, Amani A, Faridi-Majidi R. State-of-the-Art of Nanodiagnostics and Nanotherapeutics against SARS-CoV-2. ACS APPLIED MATERIALS & INTERFACES 2021; 13:14816-14843. [PMID: 33779135 PMCID: PMC8028022 DOI: 10.1021/acsami.0c22381] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/17/2021] [Indexed: 05/02/2023]
Abstract
The pandemic outbreak of SARS-CoV-2, with millions of infected patients worldwide, has severely challenged all aspects of public health. In this regard, early and rapid detection of infected cases and providing effective therapeutics against the virus are in urgent demand. Along with conventional clinical protocols, nanomaterial-based diagnostics and therapeutics hold a great potential against coronavirus disease 2019 (COVID-19). Indeed, nanoparticles with their outstanding characteristics would render additional advantages to the current approaches for rapid and accurate diagnosis and also developing prophylactic vaccines or antiviral therapeutics. In this review, besides presenting an overview of the coronaviruses and SARS-CoV-2, we discuss the introduced nanomaterial-based detection assays and devices and also antiviral formulations and vaccines for coronaviruses.
Collapse
Affiliation(s)
- Mohammad Ali Derakhshan
- Department
of Medical Nanotechnology, School of Advanced Medical Sciences and
Technologies, Shiraz University of Medical
Sciences, Shiraz, Iran
- Nanomedicine
and Nanobiology Research Center, Shiraz
University of Medical Sciences, Shiraz Iran
| | - Amir Amani
- Natural
Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Reza Faridi-Majidi
- Department
of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Kim D, Wu Y, Kim YB, Oh YK. Advances in vaccine delivery systems against viral infectious diseases. Drug Deliv Transl Res 2021; 11:1401-1419. [PMID: 33694083 PMCID: PMC7945613 DOI: 10.1007/s13346-021-00945-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2021] [Indexed: 12/15/2022]
Abstract
Although vaccines are available for many infectious diseases, there are still unresolved infectious diseases that threaten global public health. In particular, the rapid spread of unpredictable, highly contagious viruses has recorded numerous infection cases and deaths, and has changed our lives socially or economically through social distancing and wearing masks. The pandemics of unpredictable, highly contagious viruses increase the ever-high social need for rapid vaccine development. Nanotechnologies may hold promise and expedite the development of vaccines against newly emerging infectious viruses. As potential nanoplatforms for delivering antigens to immune cells, delivery systems based on lipids, polymers, proteins, and inorganic nanomaterials have been studied. These nanoplatforms have been tested as a means to deliver vaccines not as a whole, but in the form of protein subunits or as DNA or mRNA sequences encoding the antigen proteins of viruses. This review covers the current status of nanomaterial-based delivery systems for viral antigens, with highlights on nanovaccines against recently emerging infectious viruses, such as severe acute respiratory syndrome coronavirus-2, Middle East respiratory syndrome coronavirus, and Zika virus.
Collapse
Affiliation(s)
- Dongyoon Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yina Wu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Bong Kim
- Department of Bio-Medical Science and Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
39
|
Lutz H, Popowski KD, Dinh PUC, Cheng K. Advanced Nanobiomedical Approaches to Combat Coronavirus Disease of 2019. ADVANCED NANOBIOMED RESEARCH 2021; 1:2000063. [PMID: 33681865 PMCID: PMC7917381 DOI: 10.1002/anbr.202000063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/17/2020] [Indexed: 12/14/2022] Open
Abstract
New infectious diseases are making themselves known as the human population grows, expands into new regions, and becomes more dense, increasing contact with each other and animal populations. Ease of travel has also increased infectious disease transmission and has now culminated into a global pandemic. The emergence of the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in December 2019 has already infected over 83.7 million people and caused over 1.8 million deaths. While there have been vaccine candidates produced and supportive care implemented, the world is impatiently waiting for a commercially approved vaccine and treatment for the coronavirus disease of 2019 (COVID-19). The different vaccine types investigated for the prevention of COVID-19 all have great promise but face safety obstacles that must be first addressed. Some vaccine candidates of key interest are whole inactivated viruses, adeno-associated viruses, virus-like particles, and lipid nanoparticles. This review examines nanobiomedical techniques for combatting COVID-19 in terms of vaccines and therapeutics.
Collapse
Affiliation(s)
- Halle Lutz
- Department of Molecular Biomedical SciencesNorth Carolina State UniversityRaleighNC27607USA
- Comparative Medicine InstituteNorth Carolina State UniversityRaleighNC27607USA
| | - Kristen D. Popowski
- Department of Molecular Biomedical SciencesNorth Carolina State UniversityRaleighNC27607USA
- Comparative Medicine InstituteNorth Carolina State UniversityRaleighNC27607USA
| | - Phuong-Uyen C. Dinh
- Department of Molecular Biomedical SciencesNorth Carolina State UniversityRaleighNC27607USA
- Comparative Medicine InstituteNorth Carolina State UniversityRaleighNC27607USA
| | - Ke Cheng
- Department of Molecular Biomedical SciencesNorth Carolina State UniversityRaleighNC27607USA
- Comparative Medicine InstituteNorth Carolina State UniversityRaleighNC27607USA
- Joint Department of Biomedical EngineeringUniversity of North Carolina at Chapel Hill/North Carolina State UniversityRaleigh/Chapel HillNC27607/27599USA
- Division of Pharmacoengineering and Molecular PharmaceuticsUniversity of North Carolina at Chapel HillChapel HillNC27599USA
| |
Collapse
|
40
|
Kumar S, Paul A, Chatterjee S, Pütz S, Nehra N, Wang DS, Nisar A, M. Jennings C, Parekh SH. Effect of ambient temperature on respiratory tract cells exposed to SARS-CoV-2 viral mimicking nanospheres-An experimental study. Biointerphases 2021; 16:011006. [PMID: 33706521 PMCID: PMC8043160 DOI: 10.1116/6.0000743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/14/2020] [Accepted: 01/05/2021] [Indexed: 12/23/2022] Open
Abstract
The novel coronavirus caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has reached more than 160 countries and has been declared a pandemic. SARS-CoV-2 infects host cells by binding to the angiotensin-converting enzyme 2 (ACE-2) surface receptor via the spike (S) receptor-binding protein (RBD) on the virus envelope. Global data on a similar infectious disease spread by SARS-CoV-1 in 2002 indicated improved stability of the virus at lower temperatures facilitating its high transmission in the community during colder months (December-February). Seasonal viral transmissions are strongly modulated by temperatures, which can impact viral trafficking into host cells; however, an experimental study of temperature-dependent activity of SARS-CoV-2 is still lacking. We mimicked SARS-CoV-2 with polymer beads coated with the SARS-CoV-2 S protein to study the effect of seasonal temperatures on the binding of virus-mimicking nanospheres to lung epithelia. The presence of the S protein RBD on nanosphere surfaces led to binding by Calu-3 airway epithelial cells via the ACE-2 receptor. Calu-3 and control fibroblast cells with S-RBD-coated nanospheres were incubated at 33 and 37 °C to mimic temperature fluctuations in the host respiratory tract, and we found no temperature dependence in contrast to nonspecific binding of bovine serum ablumin-coated nanospheres. Moreover, the ambient temperature changes from 4 to 40 °C had no effect on S-RBD-ACE-2 ligand-receptor binding and minimal effect on the S-RBD protein structure (up to 40 °C), though protein denaturing occurred at 51 °C. Our results suggest that ambient temperatures from 4 to 40 °C have little effect on the SARS-CoV-2-ACE-2 interaction in agreement with the infection data currently reported.
Collapse
Affiliation(s)
- Sachin Kumar
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712
| | - Alexandra Paul
- Authors to whom correspondence should be addressed:, , and
| | - Sayantan Chatterjee
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Mainz 55128, Germany
| | - Sabine Pütz
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Mainz 55128, Germany
| | - Natasha Nehra
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712
| | - Daniel S. Wang
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712
| | - Arsalan Nisar
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712
| | - Christian M. Jennings
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712
| | | |
Collapse
|
41
|
Sarkar PK, Das Mukhopadhyay C. Ayurvedic metal nanoparticles could be novel antiviral agents against SARS-CoV-2. INTERNATIONAL NANO LETTERS 2021; 11:197-203. [PMID: 33425283 PMCID: PMC7786161 DOI: 10.1007/s40089-020-00323-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/21/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW The pandemic COVID-19 has affected more than seventy million people globally. The whole world is eagerly waiting for an effective antiviral therapy to combat COVID-19, but it is yet to get. The emergence of COVID-19 makes imperative the need for safe and potent antiviral drugs. Many metal nanoparticles exhibit significant antiviral potential against many viral diseases. The Ayurvedic system of medicine is the treasure of many metal nanoparticulate drugs termed as Bhasma. RECENT FINDINGS Gold, silver, copper, zinc and iron oxide nanoparticles are effective against coronavirus. A possible mechanism of action of the metal nanoparticles against coronavirus is a disruption of outer layers of coronavirus. Swarna Bhasma, Rajata Bhasma, Tamra Bhasma and Yashada Bhasma are recommended for COVID-19 treatment due to the ability to reduce the plasma interleukins, interferons and TNFα levels. SUMMARY The Ayurvedic Bhasma preparations are unique metal nanoparticles. These metal nanoparticles are safe, stable in solid state and are having excellent biological activities. Ayurvedic metal nanoparticles, Swarna Bhasma, Rajata Bhasma, Tamra Bhasma and Yashada Bhasma could be proved as novel antiviral agents against SARS-CoV-2 for their anti-inflammatory, immunomodulatory, antiviral and adjuvant activities.
Collapse
Affiliation(s)
- Prasanta Kumar Sarkar
- Department of Rasashastra, J. B. Roy State Ayurvedic Medical College and Hospital West Bengal University of Health Sciences, Kolkata, 700004 West Bengal India
| | - Chitrangada Das Mukhopadhyay
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science Technology, Shibpur, Howrah, 711103 West Bengal India
| |
Collapse
|
42
|
Chen X, Han W, Wang G, Zhao X. Application prospect of polysaccharides in the development of anti-novel coronavirus drugs and vaccines. Int J Biol Macromol 2020; 164:331-343. [PMID: 32679328 PMCID: PMC7358770 DOI: 10.1016/j.ijbiomac.2020.07.106] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022]
Abstract
Since the outbreak of the novel coronavirus disease COVID-19, caused by the SARS-CoV-2 virus, it has spread rapidly worldwide and poses a great threat to public health. This is the third serious coronavirus outbreak in <20 years, following SARS in 2002-2003 and MERS in 2012. So far, there are almost no specific clinically effective drugs and vaccines available for COVID-19. Polysaccharides with good safety, immune regulation and antiviral activity have broad application prospects in anti-virus, especially in anti-coronavirus applications. Here, we reviewed the antiviral mechanisms of some polysaccharides, such as glycosaminoglycans, marine polysaccharides, traditional Chinese medicine polysaccharides, and their application progress in anti-coronavirus. In particular, the application prospects of polysaccharide-based vaccine adjuvants, nanomaterials and drug delivery systems in the fight against novel coronavirus were also analyzed and summarized. Additionally, we speculate the possible mechanisms of polysaccharides anti-SARS-CoV-2, and propose the strategy of loading S or N protein from coronavirus onto polysaccharide capped gold nanoparticles vaccine for COVID-19 treatment. This review may provide a new approach for the development of COVID-19 therapeutic agents and vaccines.
Collapse
Affiliation(s)
- Xiangyan Chen
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Wenwei Han
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Guixiang Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xia Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
43
|
Cardoso VMDO, Moreira BJ, Comparetti EJ, Sampaio I, Ferreira LMB, Lins PMP, Zucolotto V. Is Nanotechnology Helping in the Fight Against COVID-19? FRONTIERS IN NANOTECHNOLOGY 2020. [DOI: 10.3389/fnano.2020.588915] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
44
|
Kusumoputro S, Tseng S, Tse J, Au C, Lau C, Wang X, Xia T. Potential nanoparticle applications for prevention, diagnosis, and treatment of COVID‐19. VIEW 2020. [DOI: 10.1002/viw.20200105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Sydney Kusumoputro
- Department of Ecology and Evolutionary Biology University of California Los Angeles California USA
| | - Shannon Tseng
- Department of Ecology and Evolutionary Biology University of California Los Angeles California USA
| | - Jonathan Tse
- Department of Integrative Biology and Physiology University of California Los Angeles California USA
| | - Christian Au
- Department of Bioengineering University of California Los Angeles California USA
| | - Candice Lau
- Department of Molecular, Cell and Developmental Biology University of California Los Angeles California USA
| | - Xiang Wang
- Division of NanoMedicine Department of Medicine University of California Los Angeles California USA
| | - Tian Xia
- Division of NanoMedicine Department of Medicine University of California Los Angeles California USA
| |
Collapse
|
45
|
Medhi R, Srinoi P, Ngo N, Tran HV, Lee TR. Nanoparticle-Based Strategies to Combat COVID-19. ACS APPLIED NANO MATERIALS 2020; 3:8557-8580. [PMID: 37556239 PMCID: PMC7482545 DOI: 10.1021/acsanm.0c01978] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/26/2020] [Indexed: 05/05/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is the worst pandemic disease of the current millennium. This disease is caused by the highly contagious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which first exhibited human-to-human transmission in December 2019 and has infected millions of people within months across 213 different countries. Its ability to be transmitted by asymptomatic carriers has put a massive strain on the currently available testing resources. Currently, there are no clinically proven therapeutic methods that clearly inhibit the effects of this virus, and COVID-19 vaccines are still in the development phase. Strategies need to be explored to expand testing capacities, to develop effective therapeutics, and to develop safe vaccines that provide lasting immunity. Nanoparticles (NPs) have been widely used in many medical applications, such as biosensing, drug delivery, imaging, and antimicrobial treatment. SARS-CoV-2 is an enveloped virus with particle-like characteristics and a diameter of 60-140 nm. Synthetic NPs can closely mimic the virus and interact strongly with its proteins due to their morphological similarities. Hence, NP-based strategies for tackling this virus have immense potential. NPs have been previously found to be effective tools against many viruses, especially against those from the Coronaviridae family. This Review outlines the role of NPs in diagnostics, therapeutics, and vaccination for the other two epidemic coronaviruses, the 2003 severe acute respiratory syndrome (SARS) virus and the 2012 Middle East respiratory syndrome (MERS) virus. We also highlight nanomaterial-based approaches to address other coronaviruses, such as human coronaviruses (HCoVs); feline coronavirus (FCoV); avian coronavirus infectious bronchitis virus (IBV); coronavirus models, such as porcine epidemic diarrhea virus (PEDV), porcine reproductive and respiratory syndrome virus (PRRSV), and transmissible gastroenteritis virus (TGEV); and other viruses that share similarities with SARS-CoV-2. This Review combines the salient principles from previous antiviral studies with recent research conducted on SARS-CoV-2 to outline NP-based strategies that can be used to combat COVID-19 and similar pandemics in the future.
Collapse
Affiliation(s)
- Riddhiman Medhi
- Department of Chemistry and the Texas Center for
Superconductivity, University of Houston, 4800 Calhoun Road,
Houston, Texas 77204-5003, United States
| | - Pannaree Srinoi
- Department of Chemistry and the Texas Center for
Superconductivity, University of Houston, 4800 Calhoun Road,
Houston, Texas 77204-5003, United States
| | - Nhat Ngo
- Department of Chemistry and the Texas Center for
Superconductivity, University of Houston, 4800 Calhoun Road,
Houston, Texas 77204-5003, United States
| | - Hung-Vu Tran
- Department of Chemistry and the Texas Center for
Superconductivity, University of Houston, 4800 Calhoun Road,
Houston, Texas 77204-5003, United States
| | - T. Randall Lee
- Department of Chemistry and the Texas Center for
Superconductivity, University of Houston, 4800 Calhoun Road,
Houston, Texas 77204-5003, United States
| |
Collapse
|
46
|
Abd Ellah NH, Gad SF, Muhammad K, E Batiha G, Hetta HF. Nanomedicine as a promising approach for diagnosis, treatment and prophylaxis against COVID-19. Nanomedicine (Lond) 2020; 15:2085-2102. [PMID: 32723142 PMCID: PMC7388682 DOI: 10.2217/nnm-2020-0247] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/08/2020] [Indexed: 12/13/2022] Open
Abstract
The COVID-19 pandemic caused by the newly emerged severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) puts the world in an unprecedented crisis, leaving behind huge human losses and deep socioeconomic damages. Due to the lack of specific treatment against SARS-CoV-2, effective vaccines and antiviral agents are urgently needed to properly restrain the COVID-19 pandemic. Repositioned drugs such as remdesivir have revealed a promising clinical efficacy against COVID-19. Interestingly, nanomedicine as a promising therapeutic approach could effectively help win the battle between coronaviruses (CoVs) and host cells. This review discusses the potential therapeutic approaches, in addition to the contribution of nanomedicine against CoVs in the fields of vaccination, diagnosis and therapy.
Collapse
Affiliation(s)
- Noura H Abd Ellah
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Sheryhan F Gad
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
- Department of Industrial & Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Khalid Muhammad
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Gaber E Batiha
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture & Veterinary Medicine, Nishi 2-13, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
- Department of Pharmacology & Therapeutics, Faculty of Veterinary Medicines, Damanhour University, Damanhour, 22511, Egypt
| | - Helal F Hetta
- Department of Medical Microbiology & Immunology, Faculty of Medicine, Assiut University, Assiut, 71526, Egypt
- Department of Internal Medicine, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0595, USA
| |
Collapse
|
47
|
Gurunathan S, Qasim M, Choi Y, Do JT, Park C, Hong K, Kim JH, Song H. Antiviral Potential of Nanoparticles-Can Nanoparticles Fight Against Coronaviruses? NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1645. [PMID: 32825737 PMCID: PMC7557932 DOI: 10.3390/nano10091645] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/08/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022]
Abstract
Infectious diseases account for more than 20% of global mortality and viruses are responsible for about one-third of these deaths. Highly infectious viral diseases such as severe acute respiratory (SARS), Middle East respiratory syndrome (MERS) and coronavirus disease (COVID-19) are emerging more frequently and their worldwide spread poses a serious threat to human health and the global economy. The current COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As of 27 July 2020, SARS-CoV-2 has infected over 16 million people and led to the death of more than 652,434 individuals as on 27 July 2020 while also causing significant economic losses. To date, there are no vaccines or specific antiviral drugs to prevent or treat COVID-19. Hence, it is necessary to accelerate the development of antiviral drugs and vaccines to help mitigate this pandemic. Non-Conventional antiviral agents must also be considered and exploited. In this regard, nanoparticles can be used as antiviral agents for the treatment of various viral infections. The use of nanoparticles provides an interesting opportunity for the development of novel antiviral therapies with a low probability of developing drug resistance compared to conventional chemical-based antiviral therapies. In this review, we first discuss viral mechanisms of entry into host cells and then we detail the major and important types of nanomaterials that could be used as antiviral agents. These nanomaterials include silver, gold, quantum dots, organic nanoparticles, liposomes, dendrimers and polymers. Further, we consider antiviral mechanisms, the effects of nanoparticles on coronaviruses and therapeutic approaches of nanoparticles. Finally, we provide our perspective on the future of nanoparticles in the fight against viral infections.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea; (S.G.); (Y.C.); (J.T.D.); (C.P.); (K.H.); (J.-H.K.)
| | - Muhammad Qasim
- Center of Bioengineering and Nanomedicine, Department of Food Science, University of Otago, Dunedin 9054, New Zealand;
| | - Youngsok Choi
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea; (S.G.); (Y.C.); (J.T.D.); (C.P.); (K.H.); (J.-H.K.)
| | - Jeong Tae Do
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea; (S.G.); (Y.C.); (J.T.D.); (C.P.); (K.H.); (J.-H.K.)
| | - Chankyu Park
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea; (S.G.); (Y.C.); (J.T.D.); (C.P.); (K.H.); (J.-H.K.)
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea; (S.G.); (Y.C.); (J.T.D.); (C.P.); (K.H.); (J.-H.K.)
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea; (S.G.); (Y.C.); (J.T.D.); (C.P.); (K.H.); (J.-H.K.)
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea; (S.G.); (Y.C.); (J.T.D.); (C.P.); (K.H.); (J.-H.K.)
| |
Collapse
|
48
|
Vaccines based on virus-like nano-particles for use against Middle East Respiratory Syndrome (MERS) coronavirus. Vaccine 2020; 38:5742-5746. [PMID: 32684497 PMCID: PMC7837099 DOI: 10.1016/j.vaccine.2020.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/11/2022]
Abstract
Recent advances in virus-like nanoparticles against Middle East respiratory syndrome-related coronavirus (MERS-CoV) can initiate vaccine production faster for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), while ensuring the safety, easy administration, and long-term effects. Patients with this viral pathogen suffer from excess mortality. MERS-CoV can spread through bioaerosol transmission from animal or human sources. The appearance of an outbreak in South Korea sparked off a strong urge to design strategies for developing an effective vaccine since the emergence of MERS-CoV in 2012. Well unfortunately, this is an important fact in virus risk management. The studies showed that virus-like nanoparticles (VLPs) could be effective in its goal of stopping the symptoms of MERS-CoV infection. Besides, due to the genetic similarities in the DNA sequencing of SARS-CoV-2 with MERS-CoV and the first identified severe acute respiratory syndrome (SARS-CoV) in China since 2002/2003, strategic approaches could be used to manage SARS-CoV 2. Gathering the vital piece of information obtained so far could lead to a breakthrough in the development of an effective vaccine against SARS-CoV-2, which is prioritized and focussed by the World Health Organization (WHO). This review focuses on the virus-like nanoparticle that got successful results in animal models of MERS-CoV.
Collapse
|
49
|
Uskoković V. Why have nanotechnologies been underutilized in the global uprising against the coronavirus pandemic? Nanomedicine (Lond) 2020; 15:1719-1734. [PMID: 32462968 PMCID: PMC7265684 DOI: 10.2217/nnm-2020-0163] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/07/2020] [Indexed: 12/11/2022] Open
Abstract
Prior research on nanotechnologies in diagnostics, prevention and treatment of coronavirus infections is reviewed. Gold nanoparticles and semiconductor quantum dots in colorimetric and immunochromatographic assays, silica nanoparticles in the polymerase chain reaction and spike protein nanospheres as antigen carriers and adjuvants in vaccine formulations present notable examples in diagnostics and prevention, while uses of nanoparticles in coronavirus infection treatments have been merely sporadic. The current absence of antiviral therapeutics that specifically target human coronaviruses, including SARS-CoV-2, might be largely due to the underuse of nanotechnologies. Elucidating the interface between nanoparticles and coronaviruses is timely, but presents the only route to the rational design of precisely targeted therapeutics for coronavirus infections. Such a fundamental approach is also a viable prophylaxis against future pandemics of this type.
Collapse
Affiliation(s)
- Vuk Uskoković
- Department of Mechanical & Aerospace Engineering, University of California Irvine, Engineering Gateway 4200, Irvine, CA 92697, USA
| |
Collapse
|
50
|
Alizadeh F, Khodavandi A. Systematic Review and Meta-Analysis of the Efficacy of Nanoscale Materials Against Coronaviruses—Possible Potential Antiviral Agents for SARS-CoV-2. IEEE Trans Nanobioscience 2020; 19:485-497. [DOI: 10.1109/tnb.2020.2997257] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|