1
|
Huang T, Linklater D, Li X, Gamage SSB, Alkazemi H, Farrugia B, Heath DE, O'Brien-Simpson NM, O'Connor AJ. One-Step Synthesis of Antimicrobial Polypeptide-Selenium Nanoparticles Exhibiting Broad-Spectrum Efficacy against Bacteria and Fungi with Superior Resistance Prevention. ACS APPLIED MATERIALS & INTERFACES 2024; 16:68996-69010. [PMID: 39636760 DOI: 10.1021/acsami.4c17157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The growing threat of antimicrobial resistance (AMR) necessitates innovative strategies beyond conventional antibiotics. In response, we developed a rapid one-step method to sythesize antimicrobial peptide (AMP) ε-poly-L-lysine stabilized selenium nanoparticles (ε-PL-Se NPs). These polycrystalline NPs with highly positive net surface charges, exhibited superior antimicrobial activity against a broad panel of pathogens, including the Gram-positive and -negative bacteria Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, and Pseudomonas aeruginosa and their drug-resistant counterparts, as well as the yeast Candida albicans. Notably, 10PL-Se NPs exhibited 6-log reduction of methicillin-resistant S. aureus (MRSA) at a concentration of 5 μg/mL within 90 min, with minimum bactericidal concentrations (MBCs) below 50 μg/mL for all tested bacterial strains. The minimum fungicidal concentration (MFC) of 10PL-Se NPs against C. albicans was 26 ± 10 μg/mL. Crucially, bacteria exposed to ε-PL-Se NPs exhibited significantly delayed resistance development compared to the conventional antibiotic kanamycin. S. aureus developed resistance to kanamycin after ∼72 generations, whereas resistance to 10PL-Se NPs emerged after ∼216 generations. Remarkably, E. coli showed resistance to kanamycin after ∼39 generations but failed to develop resistance to 10PL-Se NPs even after 300 generations. This work highlights the synergistic interactions between ε-PL and Se NPs, offering a robust and scalable strategy to combat AMR.
Collapse
Affiliation(s)
- Tao Huang
- Department of Biomedical Engineering, Graeme Clark Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Denver Linklater
- Department of Biomedical Engineering, Graeme Clark Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Xin Li
- Department of Biomedical Engineering, Graeme Clark Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Shaveen S B Gamage
- Department of Biomedical Engineering, Graeme Clark Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Hazem Alkazemi
- Department of Biomedical Engineering, Graeme Clark Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Brooke Farrugia
- Department of Biomedical Engineering, Graeme Clark Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Daniel E Heath
- Department of Biomedical Engineering, Graeme Clark Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Neil M O'Brien-Simpson
- ACTV Research Group, Melbourne Dental School and The Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Andrea J O'Connor
- Department of Biomedical Engineering, Graeme Clark Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
- Aikenhead Centre for Medical Discovery (ACMD), St Vincent's Hospital Melbourne Fitzroy, Melbourne, Victoria 3065, Australia
| |
Collapse
|
2
|
Bahrami M, Serati Shirazi P, Moradi F, Hadi N, Sabbaghi N, Eslaminezhad S. How nanomaterials act against bacterial structures? a narrative review focusing on nanoparticle molecular mechanisms. Microb Pathog 2024; 196:107002. [PMID: 39393474 DOI: 10.1016/j.micpath.2024.107002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/01/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024]
Abstract
OBJECTIVE In recent years, significant progress has been made in the field of nanotechnology for the treatment and prevention of biofilm formation and Multidrug-resistant bacteria (MDR). MDR bacteria challenges is hazardous when microorganisms induce the formation of biofilms, which amplify resistance to antibiotics and promote the development of multidrug-resistant conditions. The unique physicochemical properties of certain nanomaterials make nanotechnology a promising option for combating MDR infections. Several studies have introduced nanomaterials with different antibacterial mechanisms that can effectively destroy MDR bacteria and their biofilms. This study reviews the research results, focusing on the various nanoparticle mechanisms that target bacterial structures. METHOD To accomplish this study, we conducted investigations to gather articles and relevant studies from validated medical databases such as Scopus, PubMed, Google Scholar, and Web of Science. The selected publications from 2007 to 2023. In this review, we provide a brief overview of nanoparticles, their mechanisms, and how they function against the structure of bacteria. Furthermore, we discuss the recent advancements in using certain nanoparticles to combat infection-induced biofilms and complications caused by multidrug resistance. FINDING Our findings demonstrate that various nanoparticles have the potential to effectively overcome bacterial infectious diseases by targeting biofilms and antibiotic-resistant strains. Additionally, the development of a new drug delivery approach based on nanosystems shows promise in overcoming antibiotic resistance and biofilms.
Collapse
Affiliation(s)
- Maryam Bahrami
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parisa Serati Shirazi
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farhad Moradi
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Nahal Hadi
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Sabbaghi
- Department of Parasitology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sahba Eslaminezhad
- Department of Chemical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran; Pars Biotech Research & Development Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Guo X, Zhang B, Chen Y, Jia Z, Yuan X, Zhang L, Liu J, Liu Y. Multifunctional mesoporous nanoselenium delivery of metformin breaks the vicious cycle of neuroinflammation and ROS, promotes microglia regulation and alleviates Alzheimer's disease. Colloids Surf B Biointerfaces 2024; 245:114300. [PMID: 39447310 DOI: 10.1016/j.colsurfb.2024.114300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/30/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024]
Abstract
Clinical trials based on a single molecular target continue to fail, and the adverse effects of Aβ protein aggregation and neuroinflammation need to be solved and treatment of Alzheimer's disease. Herein, by designed a nano-sized flower mesoporous selenium transport carrier (Met@MSe@Tf) with high enzyme-like activity, metformin (Met) was loaded, and transferrin (Tf) was modified to bind to transferrin receptor to promote receptor-mediated transport across the BBB. In the AD lesion environment, with the acidic environment response dissociation, promote the release of metformin by nanoflower to achieve therapeutic effect in the brain lesion site. Metformin, a major anti-diabetic drug in diabetic metabolism, has been found to be a promising new therapeutic target in neurodegenerative diseases. Further studies showed that the metformin drug release from the designed and synthesized transport nanoparticles showed high intrinsic activity and the ability to degrade the substrate involved, especially the degradation of Aβ deposition in the cortex and hippocampus, increased the phagocytosis of microglia, thus relieving neuroinflammation simultaneously. Collectively, in vivo experiments demonstrated that Met@MSe@Tf significantly increased the number of NeuN-positive neurons in the hippocampus of AD mice, promoted neurovascular normalization in the brain, and improved cognitive dysfunction in AD transgenic AD mice. Thus, it provides a preclinical proof of concept for the construction of a highly modular accurate drug delivery platform for Alzheimer's disease.
Collapse
Affiliation(s)
- Xian Guo
- Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen 518110, China; College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Borui Zhang
- Key Laboratory of Central CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Yutong Chen
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Zhi Jia
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Xiaoyu Yuan
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Li Zhang
- Key Laboratory of Central CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China.
| | - Jie Liu
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.
| | - Yanan Liu
- Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen 518110, China.
| |
Collapse
|
4
|
Patel KD, Keskin-Erdogan Z, Sawadkar P, Nik Sharifulden NSA, Shannon MR, Patel M, Silva LB, Patel R, Chau DYS, Knowles JC, Perriman AW, Kim HW. Oxidative stress modulating nanomaterials and their biochemical roles in nanomedicine. NANOSCALE HORIZONS 2024; 9:1630-1682. [PMID: 39018043 DOI: 10.1039/d4nh00171k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Many pathological conditions are predominantly associated with oxidative stress, arising from reactive oxygen species (ROS); therefore, the modulation of redox activities has been a key strategy to restore normal tissue functions. Current approaches involve establishing a favorable cellular redox environment through the administration of therapeutic drugs and redox-active nanomaterials (RANs). In particular, RANs not only provide a stable and reliable means of therapeutic delivery but also possess the capacity to finely tune various interconnected components, including radicals, enzymes, proteins, transcription factors, and metabolites. Here, we discuss the roles that engineered RANs play in a spectrum of pathological conditions, such as cancer, neurodegenerative diseases, infections, and inflammation. We visualize the dual functions of RANs as both generator and scavenger of ROS, emphasizing their profound impact on diverse cellular functions. The focus of this review is solely on inorganic redox-active nanomaterials (inorganic RANs). Additionally, we deliberate on the challenges associated with current RANs-based approaches and propose potential research directions for their future clinical translation.
Collapse
Affiliation(s)
- Kapil D Patel
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, UK
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
| | - Zalike Keskin-Erdogan
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
- Department of Chemical Engineering, Imperial College London, Exhibition Rd, South Kensington, SW7 2BX, London, UK
| | - Prasad Sawadkar
- Division of Surgery and Interventional Science, UCL, London, UK
- The Griffin Institute, Northwick Park Institute for Medical Research, Northwick Park and St Mark's Hospitals, London, HA1 3UJ, UK
| | - Nik Syahirah Aliaa Nik Sharifulden
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Mark Robert Shannon
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, UK
| | - Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Women University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Lady Barrios Silva
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Rajkumar Patel
- Energy & Environment Sciences and Engineering (EESE), Integrated Sciences and Engineering Division (ISED), Underwood International College, Yonsei University, 85 Songdongwahak-ro, Yeonsungu, Incheon 21938, Republic of Korea
| | - David Y S Chau
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Jonathan C Knowles
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Adam W Perriman
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, UK
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
5
|
Wang J, Gong R, Yang M, Wu X, Li Z, Huang H, Yan X, Wang D. A ruthenium single atom nanozyme-based antibiotic for the treatment of otitis media caused by Staphylococcus aureus. Front Chem 2024; 12:1439039. [PMID: 39263587 PMCID: PMC11387182 DOI: 10.3389/fchem.2024.1439039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/14/2024] [Indexed: 09/13/2024] Open
Abstract
Staphylococcus aureus (S. aureus) infection is a primary cause of otitis media (OM), the most common disease for which children are prescribed antibiotics. However, the abuse of antibiotics has led to a global increase in antimicrobial resistance (AMR). Nanozymes, as promising alternatives to traditional antibiotics, are being extensively utilized to combat AMR. Here, we synthesize a series of single-atom nanozymes (metal-C3N4 SANzymes) by loading four metals (Ag, Fe, Cu, Ru) with antibacterial properties onto a crystalline g-C3N4. These metal-C3N4 display a rob-like morphology and well-dispersed metal atoms. Among them, Ru-C3N4 demonstrates the optimal peroxidase-like activity (285.3 U mg-1), comparable to that of horseradish peroxidase (267.7 U mg-1). In vitro antibacterial assays reveal that Ru-C3N4 significantly inhibits S. aureus growth compared with other metal-C3N4 even at a low concentration (0.06 mg mL-1). Notably, Ru-C3N4 acts as a narrow-spectrum nanoantibiotic with relative specificity against Gram-positive bacteria. Biofilms formed by S. aureus are easily degraded by Ru-C3N4 due to its high peroxidase-like activity. In vivo, Ru-C3N4 effectively eliminates S. aureus and relieves ear inflammation in OM mouse models. However, untreated OM mice eventually develop hearing impairment. Due to its low metal load, Ru-C3N4 does not exhibit significant toxicity to blood, liver, or kidney. In conclusion, this study presents a novel SANzyme-based antibiotic that can effectively eliminate S. aureus and treat S. aureus-induced OM.
Collapse
Affiliation(s)
- Jie Wang
- Nanozyme Synthesis Center, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Rui Gong
- Nanozyme Synthesis Center, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ming Yang
- Department of Otolaryngology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Xi Wu
- Nanozyme Synthesis Center, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ziwei Li
- Department of Clinical Laboratory, Shenshan Central Hospital, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Shanwei, China
| | - Haibing Huang
- Nanozyme Synthesis Center, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiyun Yan
- Nanozyme Synthesis Center, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, China
| | - Daji Wang
- Nanozyme Synthesis Center, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
6
|
Wei C, Gao Y, Li P. Pt-Ru bimetallic nanoclusters with peroxidase-like activity for antibacterial therapy. PLoS One 2024; 19:e0301358. [PMID: 38771804 PMCID: PMC11108137 DOI: 10.1371/journal.pone.0301358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/14/2024] [Indexed: 05/23/2024] Open
Abstract
Drug-resistant bacteria arising from antibiotic abuse infections have always been a serious threat to human health. Killing bacteria with toxic reactive oxygen species (ROS) is an ideal antibacterial method for treating drug-resistant bacterial infections. Here, we prepared Pt-Ru bimetallic nanoclusters (Pt-Ru NCs) with higher peroxidase (POD)-like activity than Pt monometallic nanoclusters. Pt-Ru can easily catalyze the decomposition of H2O2 to produce ·OH, thereby catalyzing the transformation of 3,3',5,5'-tetramethylbiphenylamine (TMB) to blue oxidized TMB (oxTMB). We utilized the POD-like activity of the Pt-Ru NCs for antibacterial therapy. The results showed that at doses of 40 μg/mL and 16 μg/mL, the Pt-Ru NCs exhibited extraordinary antibacterial activity against E. coli and S. aureus, demonstrating the enormous potential of Pt-Ru NCs as antibacterial agents.
Collapse
Affiliation(s)
- Chuang Wei
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China
| | - Yijun Gao
- School of Medicine, Shanghai University, Shanghai, China
| | - Peifeng Li
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
7
|
Finina BF, Mersha AK. Nano-enabled antimicrobial thin films: design and mechanism of action. RSC Adv 2024; 14:5290-5308. [PMID: 38357038 PMCID: PMC10866018 DOI: 10.1039/d3ra07884a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/02/2024] [Indexed: 02/16/2024] Open
Abstract
Antimicrobial thin films are types of protective coatings that are applied to surfaces such as medical devices, food packaging materials, water-resistant coatings, and other systems. These films prevent and reduce the spread of microbial organisms, including bacteria, fungi, and viruses. Antimicrobial thin films can be prepared from a variety of nanostructured materials including metal nanoparticles, metal oxides, plant materials, enzymes, bacteriocins and polymers. Their antimicrobial mechanism varies mostly based on the types of active agents from which the film is made of. Antimicrobial thin films are becoming increasingly popular microbial treatment methods due to their advantages such as enhanced stability, reduced toxicity levels, extended effectiveness over time and broad spectrum antimicrobial action without side effects on human health or the environment. This popularity and enhanced performance is mainly due to the extended possibility of film designs. Thin films offer convenient formulation methods which makes them suitable for commercial practices aiming at high turnover rates along with residential applications requiring frequent application cycles. This review focuses on recent developments in the possible processing methods and design approaches for assembling the various types of antimicrobial materials into nanostructured thin film-based delivery systems, along with mechanisms of action against microbes.
Collapse
Affiliation(s)
- Bilisuma Fekadu Finina
- Department of Industrial Chemistry, Addis Ababa Science and Technology University Addis Ababa Ethiopia
- Department of Chemistry, Kotebe University of Education Addis Ababa Ethiopia
| | - Anteneh Kindu Mersha
- Department of Industrial Chemistry, Addis Ababa Science and Technology University Addis Ababa Ethiopia
- Nanotechnology Center of Excellence, Addis Ababa Science and Technology University Addis Ababa Ethiopia
| |
Collapse
|
8
|
Kim JE, Kang JH, Kwon WH, Lee I, Park SJ, Kim CH, Jeong WJ, Choi JS, Kim K. Self-assembling biomolecules for biosensor applications. Biomater Res 2023; 27:127. [PMID: 38053161 PMCID: PMC10696764 DOI: 10.1186/s40824-023-00466-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023] Open
Abstract
Molecular self-assembly has received considerable attention in biomedical fields as a simple and effective method for developing biomolecular nanostructures. Self-assembled nanostructures can exhibit high binding affinity and selectivity by displaying multiple ligands/receptors on their surface. In addition, the use of supramolecular structure change upon binding is an intriguing approach to generate binding signal. Therefore, many self-assembled nanostructure-based biosensors have been developed over the past decades, using various biomolecules (e.g., peptides, DNA, RNA, lipids) and their combinations with non-biological substances. In this review, we provide an overview of recent developments in the design and fabrication of self-assembling biomolecules for biosensing. Furthermore, we discuss representative electrochemical biosensing platforms which convert the biochemical reactions of those biomolecules into electrical signals (e.g., voltage, ampere, potential difference, impedance) to contribute to detect targets. This paper also highlights the successful outcomes of self-assembling biomolecules in biosensor applications and discusses the challenges that this promising technology needs to overcome for more widespread use.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Jeon Hyeong Kang
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | - Woo Hyun Kwon
- Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Republic of Korea
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Inseo Lee
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | - Sang Jun Park
- Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Republic of Korea
| | - Chun-Ho Kim
- Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Republic of Korea
| | - Woo-Jin Jeong
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea.
- Department of Biological Engineering, Inha University, Incheon, 22212, Republic of Korea.
| | - Jun Shik Choi
- Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Republic of Korea.
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea.
| |
Collapse
|
9
|
Lei C, Lei J, Zhang X, Wang H, He Y, Zhang W, Tong B, Yang C, Feng X. Heterostructured piezocatalytic nanoparticles with enhanced ultrasound response for efficient repair of infectious bone defects. Acta Biomater 2023; 172:343-354. [PMID: 37816416 DOI: 10.1016/j.actbio.2023.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/12/2023]
Abstract
Infection of bone defects remains a challenging issue in clinical practice, resulting in various complications. The current clinical treatments include antibiotic therapy and surgical debridement, which can cause drug-resistance and potential postoperative complications. Therefore, there is an urgent need for an efficient treatment to sterilize and promote bone repair in situ. In this work, an ultrasound responsive selenium modified barium titanate nanoparticle (Se@BTO NP) was fabricated, which exhibited significant antibacterial and bone regeneration effects. Selenium nanoparticle (Se NP) was modified on the surface of barium titanate nanoparticle (BTO NP) to form heterostructure, which facilitated the second distribution of piezo-induced carriers under ultrasound (US) irradiation and improved the separation of electron-hole pairs. The Se@BTO NPs exhibited remarkable antibacterial efficiency with an antibacterial rate of 99.23 % against Staphylococcus aureus (S.aureus) and significantly promoted the osteogenic differentiation under ultrasound irradiation. The in vivo experiments exhibited that Se@BTO NPs successfully repaired the femoral condylar bone defects of rats infected by S.aureus, resulting in significant promotion of bone regeneration. Overall, this work provided an innovative strategy for the utilization of US responsive nanomaterials in efficient bacteria elimination and bone regeneration. STATEMENT OF SIGNIFICANCE: Infectious bone defects remain a challenging issue in clinical practice. Current antibiotic therapy and surgical debridement has numerous limitations such as drug-resistance and potential complications. Herein, we designed an innovative ultrasound responsive selenium modified barium titanate nanoparticle (Se@BTO NP) to achieve efficient non-invasive bacteria elimination and bone regeneration. In this work, Se@BTO nanoparticles can enhance the separation of electrons and holes, facilitate the transfer of free carriers due to the cooperative effect of ultrasound induced piezoelectric field and heterojunction construction, and thus exhibit remarkable antibacterial and osteogenesis effect. Overall, our study provided a promising strategy for the utilization of piezocatalytic nanomaterials in efficient antibacterial and bone regeneration.
Collapse
Affiliation(s)
- Chunchi Lei
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Jie Lei
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Xiaoguang Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Hongchuan Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Yaqi He
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Weifeng Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Bide Tong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China.
| | - Xiaobo Feng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China.
| |
Collapse
|
10
|
Moradi F, Ghaedi A, Fooladfar Z, Bazrgar A. Recent advance on nanoparticles or nanomaterials with anti-multidrug resistant bacteria and anti-bacterial biofilm properties: A systematic review. Heliyon 2023; 9:e22105. [PMID: 38034786 PMCID: PMC10685370 DOI: 10.1016/j.heliyon.2023.e22105] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/05/2023] [Accepted: 11/04/2023] [Indexed: 12/02/2023] Open
Abstract
Objective With the wide spread of Multidrug-resistant bacteria (MDR) due to the transfer and acquisition of antibiotic resistance genes and the formation of microbial biofilm, various researchers around the world are looking for a solution to overcome these resistances. One potential strategy and the best candidate to overcome these infections is using an effective nanomaterial with antibacterial properties against them. Methods and analysis: In this study, we overview nanomaterials with anti-MDR bacteria and anti-biofilm properties. Hence, we systematically explored biomedical databases (Web of Sciences, Google Scholar, PubMed, and Scopus) to categorize related studies about nanomaterial with anti-MDR bacteria and anti-biofilm activities from 2007 to December 2022. Results In total, forty-one studies were investigated to find antibacterial and anti-biofilm information about the nanomaterial during 2007-2022. According to the collected documents, nineteen types of nanomaterial showed putative antibacterial effects such as Cu, Ag, Au, Au/Pt, TiO2, Al2O3, ZnO, Se, CuO, Cu/Ni, Cu/Zn, Fe3O4, Au/Fe3O4, Au/Ag, Au/Pt, Graphene O, and CuS. In addition, seven types of them considered as anti-biofilm agents such as Ag, ZnO, Au/Ag, Graphene O, Cu, Fe3O4, and Au/Ag. Conclusion According to the studies, each of nanomaterial has been designed with different methods and their effects against standard strains, clinical strains, MDR strains, and bacterial biofilms have been investigated in-vitro and in-vivo conditions. In addition, nanomaterials have different destructive mechanism on bacterial structures. Various nanoparticles (NP) introduced as the best candidate to designing new drug and medical equipment preventing infectious disease outbreaks by overcome antibiotic resistance and bacterial biofilm.
Collapse
Affiliation(s)
- Farhad Moradi
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arshin Ghaedi
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Fooladfar
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Bazrgar
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
11
|
Yao X, Zhao Y, Hou W, Huang K, Yan M, Tu R, Goto T, Dai H. Multifunctional magnetocaloric bone cement with a time-varying alkaline microenvironment for sequential bacterial inhibition, angiogenesis and osteogenesis. J Mater Chem B 2023; 11:9532-9544. [PMID: 37750817 DOI: 10.1039/d3tb01533e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Repairing infected bone defects remains a severe challenge due to antibiotic abuse and recurrence. Hence, we modified magnetocaloric Fe3O4 nanoparticles and added them to magnesium calcium phosphate bone cement (MCPC) to fabricate multifunctional magnetic composites for sequential bacterial inhibition, angiogenesis and osteogenesis. Nevertheless, high doses of Mg ions and Fe ions were released from MCPC, which adversely affected osteogenesis. Thus, Fe3O4 was modified using gelatin according to the emulsification crosslinking method, which exhibited a controllable magnetocaloric effect and degradation behavior, and favorable anti-bacterial ability under the action of an alternating magnetic field (AMF). In the early stage, the residual MgO created a local strong alkaline microenvironment by hydrolysis, which inhibited the function and activity of S. aureus and E. coli. At the later stage, the MCPC composites were controllably degraded under the function of gelatin and maintained a long-term local slight alkaline microenvironment that promoted the osteogenic differentiation and mineralization of BMSCs. In vivo subcutaneous implantation experiments further indicated that MCPC composites showed good biocompatibility and facilitated angiogenesis, presenting a promising future in magnetic materials design and infectious bone defect repair.
Collapse
Affiliation(s)
- Xiaokang Yao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
| | - Yanan Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
| | - Wen Hou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
| | - Kai Huang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
| | - Manqi Yan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
| | - Rong Tu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
| | - Takashi Goto
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
- New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579, Japan
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
- Shenzhen Research Institute of Wuhan University of Technology, Shenzhen 518000, China
| |
Collapse
|
12
|
Liu K, Niu J, Liu L, Tian F, Nie H, Liu X, Chen K, Zhao R, Sun S, Jiao M, Tian M, Sun X, Niu L, Sun X, Wang H, Long W, Feng L, Mu X, Zhang XD. LUMO-Mediated Se and HOMO-Mediated Te Nanozymes for Selective Redox Biocatalysis. NANO LETTERS 2023; 23:5131-5140. [PMID: 37191492 DOI: 10.1021/acs.nanolett.3c01068] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Selenium (Se) and tellurium (Te) nanomaterials with novel chain-like structures have attracted widespread interest owing to their intriguing properties. Unfortunately, the still-unclear catalytic mechanisms have severely limited the development of biocatalytic performance. In this work, we developed chitosan-coated Se nanozymes with a 23-fold higher antioxidative activity than Trolox and bovine serum albumin coated Te nanozymes with stronger prooxidative biocatalytic effects. Based on density functional theory calculations, we first propose that the Se nanozyme with Se/Se2- active centers favored reactive oxygen species (ROS) clearance via a LUMO-mediated mechanism, while the Te nanozyme with Te/Te4+ active centers promoted ROS production through a HOMO-mediated mechanism. Furthermore, biological experiments confirmed that the survival rate of γ-irritated mice treated with the Se nanozyme was maintained at 100% for 30 days by inhibiting oxidation. However, the Te nanozyme had the opposite biological effect via promoting radiation oxidation. The present work provides a new strategy for improving the catalytic activities of Se and Te nanozymes.
Collapse
Affiliation(s)
- Kaijin Liu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, People's Republic of China
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, People's Republic of China
| | - Jiaxue Niu
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, People's Republic of China
| | - Ling Liu
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, People's Republic of China
| | - Fangzhen Tian
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, People's Republic of China
| | - Hongmei Nie
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Xiaoyu Liu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, People's Republic of China
| | - Ke Chen
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, People's Republic of China
| | - Ruoli Zhao
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, People's Republic of China
| | - Si Sun
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, People's Republic of China
| | - Menglu Jiao
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, People's Republic of China
| | - Maoye Tian
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Xinyu Sun
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, People's Republic of China
| | - Lanfei Niu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, People's Republic of China
| | - Xinyi Sun
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, People's Republic of China
| | - Hao Wang
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, People's Republic of China
| | - Wei Long
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Liefeng Feng
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, People's Republic of China
| | - Xiaoyu Mu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, People's Republic of China
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, People's Republic of China
| | - Xiao-Dong Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, People's Republic of China
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
13
|
Bi J, Mo C, Li S, Huang M, Lin Y, Yuan P, Liu Z, Jia B, Xu S. Immunotoxicity of metal and metal oxide nanoparticles: from toxic mechanisms to metabolism and outcomes. Biomater Sci 2023. [PMID: 37161951 DOI: 10.1039/d3bm00271c] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The influence of metal and metal oxide nanomaterials on various fields since their discovery has been remarkable. They have unique properties, and therefore, have been employed in specific applications, including biomedicine. However, their potential health risks cannot be ignored. Several studies have shown that exposure to metal and metal oxide nanoparticles can lead to immunotoxicity. Different types of metals and metal oxide nanoparticles may have a negative impact on the immune system through various mechanisms, such as inflammation, oxidative stress, autophagy, and apoptosis. As an essential factor in determining the function and fate of immune cells, immunometabolism may also be an essential target for these nanoparticles to exert immunotoxic effects in vivo. In addition, the biodegradation and metabolic outcomes of metal and metal oxide nanoparticles are also important considerations in assessing their immunotoxic effects. Herein, we focus on the cellular mechanism of the immunotoxic effects and toxic effects of different types of metal and metal oxide nanoparticles, as well as the metabolism and outcomes of these nanoparticles in vivo. Also, we discuss the relationship between the possible regulatory effect of nanoparticles on immunometabolism and their immunotoxic effects. Finally, we present perspectives on the future research and development direction of metal and metal oxide nanomaterials to promote scientific research on the health risks of nanomaterials and reduce their adverse effects on human health.
Collapse
Affiliation(s)
- Jiaming Bi
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Chuzi Mo
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Siwei Li
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Mingshu Huang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Yunhe Lin
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Peiyan Yuan
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Zhongjun Liu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Bo Jia
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Shuaimei Xu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
14
|
Shi Q, Wang X, Liu H, Xie Z, Zheng M. Unadulterated BODIPY nanoparticles as light driven antibacterial agents for treating bacterial infections and promoting wound healing. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 241:112674. [PMID: 36867993 DOI: 10.1016/j.jphotobiol.2023.112674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/01/2023] [Accepted: 02/21/2023] [Indexed: 03/05/2023]
Abstract
Antimicrobial photodynamic therapy (aPDT) is an effective strategy to eliminate bacteria without inducing bacterial resistance. As typical aPDT photosensitizers, most of boron-dipyrromethene (BODIPY) are hydrophobic, and nanometerization is imperative to render them dispersible in physiological media. Recently, carrier-free nanoparticles (NPs) are formed via the self-assembly of BODIPYs without the help of any surfactants or auxiliaries, arousing people's interest. So as to fabricate carrier-free NPs, BODIPYs usually need to be derived into dimers, trimers, or amphiphiles through complex reactions. Few unadulterated NPs were obtained from BODIPYs with precise structures. Herein, BNP1-BNP3 were synthesized by the self-assembly of BODIPY, which showed excellent anti-Staphylococcus aureus ability. Among them, BNP2 could effectively fight bacterial infections and promote wound healing in vivo.
Collapse
Affiliation(s)
- Qiaoxia Shi
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun, Jilin 130012, PR China
| | - Xinyuan Wang
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun, Jilin 130012, PR China
| | - Hongxin Liu
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun, Jilin 130012, PR China
| | - Zhigang Xie
- State Key Laboratory of Polymer Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, PR China
| | - Min Zheng
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun, Jilin 130012, PR China.
| |
Collapse
|
15
|
Liu X, Xie H, Zhuo S, Zhou Y, Selim MS, Chen X, Hao Z. Ru(II) Complex Grafted Ti 3C 2T x MXene Nano Sheet with Photothermal/Photodynamic Synergistic Antibacterial Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:958. [PMID: 36985852 PMCID: PMC10051588 DOI: 10.3390/nano13060958] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/04/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
For a long time, the emergence of microbial drug resistance due to the abuse of antibiotics has greatly reduced the therapeutic effect of many existing antibiotics. This makes the development of new antimicrobial materials urgent. Light-assisted antimicrobial therapy is an alternative to antibiotic therapy due to its high antimicrobial efficiency and non-resistance. Here, we develop a nanocomposite material (Ru@MXene) which is based on Ru(bpy)(dcb)2+ connected to MXene nanosheets by ester bonding as a photothermal/photodynamic synergistic antibacterial material. The obtained Ru@MXene nanocomposites exhibit a strengthened antimicrobial capacity compared to Ru or MXene alone, which can be attributed to the higher reactive oxygen species (ROS) yield and the thermal effect. Once exposed to a xenon lamp, Ru@MXene promptly achieved almost 100% bactericidal activity against Escherichia coli (200 μg/mL) and Staphylococcus aureus (100 μg/mL). This is ascribed to its synergistic photothermal therapy (PTT) and photodynamic therapy (PDT) capabilities. Consequently, the innovative Ru@MXene can be a prospective non-drug antimicrobial therapy that avoids antibiotic resistance in practice. Notably, this high-efficiency PTT/PDT synergistic antimicrobial material by bonding Ru complexes to MXene is the first such reported model. However, the toxic effects of Ru@MXene materials need to be studied to evaluate them for further medical applications.
Collapse
Affiliation(s)
- Xiaofang Liu
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Hongchi Xie
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Shi Zhuo
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuanhong Zhou
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Mohamed S. Selim
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Egyptian Petroleum Research Institute, Petroleum Application Department, Cairo 11727, Egypt
| | - Xiang Chen
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhifeng Hao
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
16
|
Deng Y, Ren M, He P, Liu F, Wang X, Zhou C, Li Y, Yang S. Genetically engineered cell membrane-coated nanoparticles for antibacterial and immunoregulatory dual-function treatment of ligature-induced periodontitis. Front Bioeng Biotechnol 2023; 11:1113367. [PMID: 36761293 PMCID: PMC9905692 DOI: 10.3389/fbioe.2023.1113367] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023] Open
Abstract
Purpose: In order to overcome the problem that conventional pharmacological treatments of periodontitis cannot effectively synergizing antimicrobial and immunomodulation, inspired by the critical role of toll-like receptor 4 (TLR4) in bacterial recognition and immune activation, we demonstrated a combined antibacterial-immunoregulatory strategy based on biomimetic nanoparticles. Methods: Functioned cell membranes and silk fibroin nanoparticles (SNs) loaded with minocycline hydrochloride (Mino) were used to prepare a biomimetic nanoparticle (MSNCs). SNs and MSNCs were characterized by Scanning Electron Microscope, size, zeta potential, dispersion index. At the same time, SNs were characterized by cell counting kit-8 and real-time Polymerase Chain Reaction (RT-PCR). TLR4-expressing cell membranes were characterized by RT-PCR and western blot (WB). Cell membrane coating was characterized by Transmission Electron Microscope (TEM), the Bradford staining and WB. Then, Laser confocal, flow cytometry and agar plate coating were evaluated in vitro with antibacterial effects, RT-PCR was simultaneously evaluated with immunoregulatory effects. Finally, Anti-inflammatory treatment of MSNCs was evaluated in a ligature-induced periodontitis (LIP) mouse model. Results: Successfully prepared cell membranes overexpressing TLR4 and constructed MSNCs. In vitro studies had shown that MSNCs effectively targeted bacteria via TLR4 and acted as molecular decoys to competitively neutralize lipopolysaccharide (LPS) in the microenvironment as well as inhibit inflammatory activation of macrophages. In vivo, MSNCs effectively attenuated periodontal tissue inflammation and alveolar bone loss in a LIP mouse model. Conclusion: MSNCs have good targeted antibacterial and immunoregulatory effects, and provide a new and effective strategy for the treatment of periodontitis and have good potential for application in various types of pathogenic bacterial infections.
Collapse
Affiliation(s)
- Yangjia Deng
- College of Stomatology, Chongqing Medical University, Chongqing, China,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Mingxing Ren
- College of Stomatology, Chongqing Medical University, Chongqing, China,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Ping He
- College of Stomatology, Chongqing Medical University, Chongqing, China,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Fengyi Liu
- College of Stomatology, Chongqing Medical University, Chongqing, China,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xu Wang
- College of Stomatology, Chongqing Medical University, Chongqing, China,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Chongjing Zhou
- College of Stomatology, Chongqing Medical University, Chongqing, China,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yuzhou Li
- College of Stomatology, Chongqing Medical University, Chongqing, China,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Sheng Yang
- College of Stomatology, Chongqing Medical University, Chongqing, China,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China,*Correspondence: Sheng Yang,
| |
Collapse
|
17
|
Duszenko N, van Willigen DM, Bunschoten A, Velders AH, Roestenberg M, van Leeuwen FWB. Chemically Enhanced Immunogenicity of Bacteria by Supramolecular Functionalization with an Adjuvant. Chembiochem 2022; 23:e202200434. [PMID: 36177993 PMCID: PMC10098600 DOI: 10.1002/cbic.202200434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/29/2022] [Indexed: 01/25/2023]
Abstract
Many pathogens blunt immune responses because they lack immunogenic structural features, which typically results in disease. Here, we show evidence suggesting that pathogen immunogenicity can be chemically enhanced. Using supramolecular host-guest chemistry, we complexed onto the surface of a poorly immunogenic bacterium (Staphylococcus aureus) a TLR7 agonist-based adjuvant. "Adjuvanted" bacteria were readily recognized by macrophages and induced a more pro-inflammatory immunophenotype. Future applications of this concept could yield treatment modalities that bolster the immune system's response to pathogenic microbes.
Collapse
Affiliation(s)
- Nikolas Duszenko
- Interventional Molecular Imaging (IMI) Laboratory, Departments of Radiology & Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 RC, Leiden (The, Netherlands
| | - Danny M van Willigen
- Interventional Molecular Imaging (IMI) Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 RC, Leiden (The, Netherlands
| | - Anton Bunschoten
- Laboratory of BioNanoTechnology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen (The, Netherlands
| | - Aldrik H Velders
- Laboratory of BioNanoTechnology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen (The, Netherlands
| | - Meta Roestenberg
- Departments of Parasitology & Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 RC, Leiden (The, Netherlands
| | - Fijs W B van Leeuwen
- Interventional Molecular Imaging (IMI) Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 RC, Leiden, The Netherlands
| |
Collapse
|
18
|
Li Y, Xiong J, Hu Y, Miao W, Huang H. Wrapping collagen-based nanoparticle with macrophage membrane for treating multidrug-resistant bacterial infection. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2022. [DOI: 10.1186/s42825-022-00106-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
AbstractNowadays, multidrug-resistant (MDR) bacterial infectious diseases has become a thorny issue in the healthcare field. Owning to its intrinsic merits, photodynamic therapy (PDT) shows tremendous strengths in fighting against MDR bacterial infections. However, most photodynamic nanoplatforms exhibit unsatisfactory targeting efficiency towards bacteria and infection site, which may compromise the bactericidal effect of PDT. Herein, we firstly reported a bacteria-targeted collagen-based nanoparticle, named Ce6/Col/MM, for treating methicillin-resistant Staphylococcus aureus (MRSA)-infected wound. Ce6/Col/MM was fabricated by wrapping chlorin e6 (Ce6)-loaded collagen-based nanoparticles with macrophage membrane (MM), showing excellent photodynamic activity and good biocompatibility. In vitro studies demonstrated that Ce6/Col/MM could target to bacteria and then exhibit prominent antibacterial capacity against planktonic MRSA under light irradiation. Furthermore, the treatment of MRSA-infected wound in mice with Ce6/Col/MM plus light illumination resulted in potent bacterial inactivation and accelerated wound healing, accompanied by favorable histological compatibility. Collectively, Ce6/Col/MM with superior targeting ability towards bacteria, effective photodynamic antibacterial potency and minimal safety concerns, might be a powerful bactericidal nanoagent for treating infections caused by MDR bacteria.
Graphical Abstract
Collapse
|
19
|
Lu Y, Zhu D, Le Q, Wang Y, Wang W. Ruthenium-based antitumor drugs and delivery systems from monotherapy to combination therapy. NANOSCALE 2022; 14:16339-16375. [PMID: 36341705 DOI: 10.1039/d2nr02994d] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ruthenium complex is an important compound group for antitumor drug research and development. NAMI-A, KP1019, TLD1433 and other ruthenium complexes have entered clinical research. In recent years, the research on ruthenium antitumor drugs has not been limited to single chemotherapy drugs; other applications of ruthenium complexes have emerged such as in combination therapy. During the development of ruthenium complexes, drug delivery forms of ruthenium antitumor drugs have also evolved from single-molecule drugs to nanodrug delivery systems. The review summarizes the following aspects: (1) ruthenium complexes from monotherapy to combination therapy, including the development of single-molecule compounds, carrier nanomedicine, and self-assembly of carrier-free nanomedicine; (2) ruthenium complexes in the process of ADME in terms of absorption, distribution, metabolism and excretion; (3) the applications of ruthenium complexes in combination therapy, including photodynamic therapy (PDT), photothermal therapy (PTT), photoactivated chemotherapy (PACT), immunotherapy, and their combined application; (4) the future prospects of ruthenium-based antitumor drugs.
Collapse
Affiliation(s)
- Yu Lu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, P. R. China.
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing Laboratory of Oral Health, Beijing 100069, P. R. China
- Department of Chemistry, University of Bergen, P. O. Box 7803, 5020 Bergen, Norway
| | - Di Zhu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, P. R. China.
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing Laboratory of Oral Health, Beijing 100069, P. R. China
| | - Quynh Le
- Center for Pharmacy, University of Bergen, P. O. Box 7803, 5020 Bergen, Norway.
| | - Yuji Wang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, P. R. China.
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing Laboratory of Oral Health, Beijing 100069, P. R. China
| | - Wei Wang
- Center for Pharmacy, University of Bergen, P. O. Box 7803, 5020 Bergen, Norway.
- Department of Chemistry, University of Bergen, P. O. Box 7803, 5020 Bergen, Norway
| |
Collapse
|
20
|
ChunYan Z, RuJian Y, LiQiang W, HaiYan H, JinTao W, XiangWen L, XueMin D, YanShi X. Design, synthesis, and evaluation of aryl-thioether ruthenium polypyridine complexes: A multi-target antimicrobial agents against gram-positive bacteria. Eur J Med Chem 2022; 240:114562. [DOI: 10.1016/j.ejmech.2022.114562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/28/2022] [Accepted: 06/20/2022] [Indexed: 11/15/2022]
|
21
|
Capping Agents for Selenium Nanoparticles in Biomedical Applications. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02341-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
22
|
Ma Y, Wei M, Wang X, Jiang L, Xiong Y, Cheng J, Tan Y, Liao X, Wang J. Synthesis and antibacterial against
S. aureus
of new ruthenium (II) polypyridine complexes containing pyrene groups. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yuanyuan Ma
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation School of Pharmacy, Jiangxi Science&Technology Normal University Nanchang People’s Republic of China
| | - Ming Wei
- Kangda College of Nanjing Medical University Lianyungang Jiangsu China
| | - Xuerong Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation School of Pharmacy, Jiangxi Science&Technology Normal University Nanchang People’s Republic of China
| | - Li Jiang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation School of Pharmacy, Jiangxi Science&Technology Normal University Nanchang People’s Republic of China
| | - Yanshi Xiong
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation School of Pharmacy, Jiangxi Science&Technology Normal University Nanchang People’s Republic of China
| | - Jianxin Cheng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation School of Pharmacy, Jiangxi Science&Technology Normal University Nanchang People’s Republic of China
| | - Yanhui Tan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences Guangxi Normal University Guilin People’s Republic of China
| | - Xiangwen Liao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation School of Pharmacy, Jiangxi Science&Technology Normal University Nanchang People’s Republic of China
| | - Jintao Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation School of Pharmacy, Jiangxi Science&Technology Normal University Nanchang People’s Republic of China
| |
Collapse
|
23
|
Tao R, Lu Y, Xia W, Zhang C, Wang C. Characterization and antibacterial activity of ruthenium-based shikimate cross-linked chitosan composites. Int J Biol Macromol 2022; 217:890-901. [PMID: 35907455 DOI: 10.1016/j.ijbiomac.2022.07.205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/25/2022]
Abstract
The unsustainable antibacterial activity of ruthenium antibacterial agents is an important factor limiting their applications. This present work attempts to prepare ruthenium (Ru) coordination polymer composites with chitosan quaternary ammonium polymers (CQ) and shikimic acid (SA) through the interaction of ionic bonds and covalent bonds by microwave-assisted high-pressure homogenization methods. The prepared CQ@Ru-SA was characterized by size distribution, zeta potential, TEM, UV-vis, FTIR, XPS and XRD analyses. The coordination structure and morphology of Bridge-CQ-NH-Ru-SA were verified. The CQ@Ru-SA was well-dispersed in both the aqueous or anhydrous states. MIC and MBC, time-killing curves, biofilm formation inhibition assay, mature biofilm disruption assay, SEM, Ca2+ mobilization assay and Ca2+-Mg2+-ATPase activity studies revealed that CQ@Ru-SA had a stronger inhibitory effect against S. aureus than CQ and showed sustained antibacterial properties in the dynamic time-killing curves. Meanwhile, CQ@Ru-SA had good antibacterial effects against S. aureus and inhibited their biofilm forming ability in a dose-dependent manner. Further studies on antibacterial mechanisms revealed that CQ@Ru-SA influenced cell membrane integrity, Ca2+-Mg2+-ATPase activity on the cell membrane and intracellular Ca2+ levels of S. aureus. This study will provide the necessary data for the further design and development of ruthenium-based photosensitive antibacterial agents.
Collapse
Affiliation(s)
- Ran Tao
- Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, Jiangsu Province, China; Research Institute of Forestry New Technology, CAF, Beijing 100091, China.
| | - Yin Lu
- General Hospital of Eastern Theater Command, Nanjing 210002, Jiangsu Province, China
| | - Wubing Xia
- Jiangsu Honghui Pharmaceutical Company Limited, China
| | - Changwei Zhang
- Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, Jiangsu Province, China; Research Institute of Forestry New Technology, CAF, Beijing 100091, China
| | - Chengzhang Wang
- Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, Jiangsu Province, China; Research Institute of Forestry New Technology, CAF, Beijing 100091, China.
| |
Collapse
|
24
|
Wang Z, Yin C, Gao Y, Liao Z, Li Y, Wang W, Sun D. Novel functionalized selenium nanowires as antibiotic adjuvants in multiple ways to overcome drug resistance of multidrug-resistant bacteria. BIOMATERIALS ADVANCES 2022; 137:212815. [PMID: 35929231 DOI: 10.1016/j.bioadv.2022.212815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/05/2022] [Accepted: 04/16/2022] [Indexed: 06/15/2023]
Abstract
Methicillin-resistant Staphylococcus (MRS) is a multi-drug resistant bacteria that pose a serious threat to human health. Antibacterial nanomaterials are becoming a promising antibiotic substitute or antibiotic adjuvants. In this work, selenium nanowires were modified with nano‑silver (Ag NPs) with antibacterial activity and [Ru(bpy)2dppz]2+ with fluorescent labeling of DNA (SRA), and the antibacterial activity, antibacterial mechanism and biological toxicity of SRA synergistic antibiotics were studied. In vitro, antibacterial results show that SRA (12 μg/mL) improves the antibacterial activity of various antibiotics against resistant bacteria and significantly slows the development of bacterial resistance to antibiotics. Studies on antibacterial mechanisms have shown that SRA synergistic antibiotics destroy drug-resistant bacteria through a combination of physical (physical damage) and chemical pathways (destruction of biofilm, membrane depolarization, cell membrane destruction, adenosine triphosphate consumption and reactive oxygen species production). Transcriptomics analysis found that SRA affects bacterial activity by affecting bacterial biosynthesis, ATP synthesis and biofilm formation. Furthermore, SRA synergistic antibiotics can accelerate wound healing of bacterial infection by reducing the inflammatory response. The toxicity evaluation results show that SRA has extremely low cellular and in vivo toxicity. SRA has the potential of clinical application as multiple antibiotic adjuvants to deal with resistant bacterial infections.
Collapse
Affiliation(s)
- Zekun Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Chenyang Yin
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Yin Gao
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Ziyu Liao
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Yuqing Li
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Weiyu Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Dongdong Sun
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
25
|
Huang D, Hu X, Wang C, Zhu D, Tang M. "One body and two wings" novel nanozyme combined with photothermal therapy for Combat Drug-Resistant Bacteria. J Biomater Appl 2022; 37:474-481. [PMID: 35469514 DOI: 10.1177/08853282221092222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bacterial resistance caused by antibiotic therapy is a serious problem. Therefore, there is an urgent need to find alternative methods to overcome bacterial resistance. Herein, we synthesized a new type of iridium oxide (IrOx) as an alternative to antibiotics. Iridium oxide not only has good catalytic properties, but also has photothermal properties, and then realizes the "one body and two wings" strategy to enhance the antibacterial effect. Research results show that near-infrared light can enhance the peroxidase catalytic activity of IrOx and generate highly toxic hydroxyl radicals (·OH) by catalyzing hydrogen peroxide (H2O2). Hydroxyl radicals have a high redox potential, which can overcome the drug resistance of gram-positive and negative bacteria. Importantly, IrOx has no obvious cellular and in vivo toxicity. Accordingly, the novel photothermal nanozyme is expected to be applied to bacterial infectious diseases, such as wound healing, sepsis, and implant-related infections.
Collapse
Affiliation(s)
- Dongwei Huang
- College of Pharmaceutics, 196523Jinhua Polytechnic, Jinhua, China
| | - Xianyue Hu
- College of Pharmaceutics, 196523Jinhua Polytechnic, Jinhua, China
| | - Chenxia Wang
- College of Pharmaceutics, 196523Jinhua Polytechnic, Jinhua, China
| | - Dan Zhu
- Fuzhou Inspection, Examination & Certification Centre, Fuzhou, China
| | - Min Tang
- Fuzhou Inspection, Examination & Certification Centre, Fuzhou, China
| |
Collapse
|
26
|
Xie Y, Chen S, Peng X, Wang X, Wei Z, Richardson JJ, Liang K, Ejima H, Guo J, Zhao C. Alloyed nanostructures integrated metal-phenolic nanoplatform for synergistic wound disinfection and revascularization. Bioact Mater 2022; 16:95-106. [PMID: 35386317 PMCID: PMC8958420 DOI: 10.1016/j.bioactmat.2022.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 12/17/2022] Open
Abstract
New materials for combating bacteria-caused infection and promoting the formation of microvascular networks during wound healing are of vital importance. Although antibiotics can be used to prevent infection, treatments that can disinfect and accelerate wound healing are scarce. Herein, we engineer a coating that is both highly compatible with current wound dressing substrates and capable of simultaneously disinfecting and revascularizing wounds using a metal-phenolic nanoplatform containing an alloyed nanostructured architecture (Ag@Cu-MPNNC). The alloyed nanostructure is formed by the spontaneous co-reduction and catalytic disproportionation reaction of multiple metal ions on a foundation metal-phenolic supramolecular layer. This synergistic presence of metals greatly improves the antibacterial activity against both Gram-negative and Gram-positive pathogenic bacteria, while demonstrating negligible cytotoxicity to normal tissue. In infected rat models, the Ag@Cu-MPNNC could kill bacteria efficiently, promoting revascularization and accelerate wound closure with no adverse side effects in infected in vivo models. In other words, this material acts as a combination therapy by inhibiting bacterial invasion and modulating bio-nano interactions in the wound.
Collapse
Affiliation(s)
- Yi Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Shengqiu Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Xu Peng
- Laboratory Animal Center, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Xiaoling Wang
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan Univerisity, Chengdu, Sichuan, 610065, China
| | - Zhiwei Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Joseph J Richardson
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kang Liang
- School of Chemical Engineering, Graduate School of Biomedical Engineering, and Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Hirotaka Ejima
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Junling Guo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China.,BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan Univerisity, Chengdu, Sichuan, 610065, China.,Bioproducts Institute, Departments of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China.,School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| |
Collapse
|
27
|
Guan T, Li J, Chen C, Liu Y. Self-Assembling Peptide-Based Hydrogels for Wound Tissue Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104165. [PMID: 35142093 PMCID: PMC8981472 DOI: 10.1002/advs.202104165] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/23/2021] [Indexed: 05/02/2023]
Abstract
Wound healing is a long-term, multistage biological process that includes hemostasis, inflammation, proliferation, and tissue remodeling and requires intelligent designs to provide comprehensive and convenient treatment. The complexity of wounds has led to a lack of adequate wound treatment materials, which must systematically regulate unique wound microenvironments. Hydrogels have significant advantages in wound treatment due to their ability to provide spatiotemporal control over the wound healing process. Self-assembling peptide-based hydrogels are particularly attractive due to their innate biocompatibility and biodegradability along with additional advantages including ligand-receptor recognition, stimulus-responsive self-assembly, and the ability to mimic the extracellular matrix. The ability of peptide-based materials to self-assemble in response to the physiological environment, resulting in functionalized microscopic structures, makes them conducive to wound treatment. This review introduces several self-assembling peptide-based systems with various advantages and emphasizes recent advances in self-assembling peptide-based hydrogels that allow for precise control during different stages of wound healing. Moreover, the development of multifunctional self-assembling peptide-based hydrogels that can regulate and remodel the wound immune microenvironment in wound therapy with spatiotemporal control has also been summarized. Overall, this review sheds light on the future clinical and practical applications of self-assembling peptide-based hydrogels.
Collapse
Affiliation(s)
- Tong Guan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology of ChinaBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Jiayang Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology of ChinaBeijing100190P. R. China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology of ChinaBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
- GBA National Institute for Nanotechnology InnovationGuangdong510700P. R. China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology of ChinaBeijing100190P. R. China
- GBA National Institute for Nanotechnology InnovationGuangdong510700P. R. China
| |
Collapse
|
28
|
Nie B, Huo S, Qu X, Guo J, Liu X, Hong Q, Wang Y, Yang J, Yue B. Bone infection site targeting nanoparticle-antibiotics delivery vehicle to enhance treatment efficacy of orthopedic implant related infection. Bioact Mater 2022; 16:134-148. [PMID: 35386313 PMCID: PMC8958424 DOI: 10.1016/j.bioactmat.2022.02.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 11/30/2022] Open
Abstract
Orthopedic implants account for 99% of orthopedic surgeries, however, orthopedic implant-related infection is one of the most serious complications owing to the potential for limb-threatening sequelae and mortality. Current antibiotic treatments still lack the capacity to target bone infection sites, thereby resulting in unsatisfactory therapeutic effects. Here, the bone infection site targeting efficacy of D6 and UBI29-41 peptides was investigated, and bone-and-bacteria dual-targeted nanoparticles (NPs) with D6 and UBI29-41 peptides were first fabricated to target bone infection site and control the release of vancomycin in bone infection site. The results of this study demonstrated that the bone-and-bacteria dual-targeted mesoporous silica NPs exhibit excellent bone and bacteria targeting efficacy, excellent biocompatibility and effective antibacterial properties in vitro. Furthermore, in a rat model of orthopedic implant-related infection with methicillin-resistant Staphylococcus aureus, the growth of bacteria was evidently inhibited without cytotoxicity, thus realizing the early treatment of implant-related infection. Hence, the bone-and-bacteria dual-targeted molecule-modified NPs may target bacteria-infected bone sites and act as ideal candidates for the therapy of orthopedic implant-related infections. A novel treatment of OII by nanoparticles targeting bone infection site was proposed. Dual-targeted MSNs with D6 and UBI peptides could target the bone infection site. Dual-targeted MSNs were fabricated to release vancomycin in bone infection site. Dual-targeted MSNs could be used for the therapy of OII.
Collapse
|
29
|
Antibacterial, antibiofilm, anti-inflammatory, and wound healing effects of nanoscale multifunctional cationic alternating copolymers. Bioorg Chem 2021; 119:105550. [PMID: 34920337 DOI: 10.1016/j.bioorg.2021.105550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022]
Abstract
Infectious diseases caused by new or unknown bacteria and viruses, such as anthrax, cholera, tuberculosis and even COVID-19, are a major threat to humanity. Thus, the development of new synthetic compounds with efficient antimicrobial activity is a necessity. Herein, rationally designed novel multifunctional cationic alternating copolymers were directly synthesized through a step-growth polymerization reaction using a bivalent electrophilic cross-linker containing disulfide bonds and a diamine heterocyclic ring. To optimize the activity of these alternating copolymers, several different diamines and cross-linkers were explored to find the highest antibacterial effects. The synthesized nanopolymers not only displayed good to excellent antibacterial activity as judged by minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa, and Escherichia coli, but also reduced the number of biofilm cells even at low concentrations, without killing mammalian cells. Furthermore, in vivo experiments using infected burn wounds in mice demonstrated good antibacterial activity and stimulated wound healing, without causing systemic inflammation. These findings suggest that the multifunctional cationic nanopolymers have potential as a novel antibacterial agent for eradication of multidrug resistant bacterial infections.
Collapse
|
30
|
Li L, Gu P, Hao M, Xiang X, Feng Y, Zhu X, Song Y, Song E. Bacteria-Targeted MRI Probe-Based Imaging Bacterial Infection and Monitoring Antimicrobial Therapy In Vivo. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103627. [PMID: 34554653 DOI: 10.1002/smll.202103627] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/24/2021] [Indexed: 06/13/2023]
Abstract
Despite the significant advances of imaging techniques nowadays, accurate diagnosis of bacterial infections and real-time monitoring the efficacy of antibiotic therapy in vivo still remain huge challenges. Herein, a self-assembling peptide (FFYEGK) and vancomycin (Van) antibiotic molecule co-modified gadolinium (Gd) MRI nanoaggregate probe (GFV) for detecting Staphylococcus aureus (S. aureus) infection in vivo and monitoring the treatment of S. aureus-infected myositis by using daptomycin (Dap) antibiotic as model are designed and fabricated. The as-prepared GFV probe bears Van molecules, making itself good bacteria-specific targeting, and the peptide in the probe can enhance the longitudinal relaxivity rate (r1 ) after self-assembly due to the π-π stacking. The study showed that, based on the GFV probe, bacterial infections and sterile inflammation can be discriminated, and as few as 105 cfu S. aureus can be detected in vivo with high specificity and accurately. Moreover, the T1 signal of GFV probe at the S. aureus-infected site in mice correlates with the increasing time of Dap treating, indicating the possibility of monitoring the efficacy of antibacterial agents for infected mice based on the as proposed GFV probe. This study shows the potential of GFV probe for diagnosis, evaluation, and prognosis of infectious diseases in clinics.
Collapse
Affiliation(s)
- Linyao Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Peilin Gu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Mengqi Hao
- Key Laboratory of Luminescence Analysis and Molecular Sensing, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Xiaoli Xiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Yuting Feng
- Key Laboratory of Luminescence Analysis and Molecular Sensing, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Xiaokang Zhu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, CAS, Beijing, 100085, China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| |
Collapse
|
31
|
Song X, Liu P, Liu X, Wang Y, Wei H, Zhang J, Yu L, Yan X, He Z. Dealing with MDR bacteria and biofilm in the post-antibiotic era: Application of antimicrobial peptides-based nano-formulation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112318. [PMID: 34474869 DOI: 10.1016/j.msec.2021.112318] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023]
Abstract
The rapid development of multidrug-resistant (MDR) bacteria due to the improper and overuse of antibiotics and the ineffective performance of antibiotics against the difficult-to-treat biofilm-related infections (BRIs) have urgently called for alternative antimicrobial agents and strategies in combating bacterial infections. Antimicrobial peptides (AMPs), owing to their compelling antimicrobial activity against MDR bacteria and BRIs without causing bacteria resistance, have attracted extensive attention in the research field. With the development of nanomaterial-based drug delivery strategies, AMPs-based nano-formulations have significantly improved the therapeutic effects of AMPs by ameliorating their hydrolytic stability, half-life in vivo, and solubility as well as reducing the cytotoxicity and hemolysis, etc. This review has comprehensively summarized the application AMPs-based nano-formulation in various bacterial infections models, including bloodstream infections (specifically sepsis), pulmonary infections, chronic wound infections, gastrointestinal infections, among others. The design of the nanomaterial-based drug delivery systems and the therapeutic effects of the AMPs-based nano-formulations in literature have been categorized and in details discussed. Overall, this review provides insights into the advantages and disadvantages of the current developed AMPs-based nano-formulations in literature for the treatment of bacterial infections, bringing inspirations and suggestions for their future design in the way towards clinical translation.
Collapse
Affiliation(s)
- Xinyu Song
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Pengyan Liu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiaohu Liu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Yanan Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Huichao Wei
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Jingwen Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Liangmin Yu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| | - Xuefeng Yan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Zhiyu He
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
32
|
Yang Z, He S, Wu H, Yin T, Wang L, Shan A. Nanostructured Antimicrobial Peptides: Crucial Steps of Overcoming the Bottleneck for Clinics. Front Microbiol 2021; 12:710199. [PMID: 34475862 PMCID: PMC8406695 DOI: 10.3389/fmicb.2021.710199] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
The security issue of human health is faced with dispiriting threats from multidrug-resistant bacteria infections induced by the abuse and misuse of antibiotics. Over decades, the antimicrobial peptides (AMPs) hold great promise as a viable alternative to treatment with antibiotics due to their peculiar antimicrobial mechanisms of action, broad-spectrum antimicrobial activity, lower drug residue, and ease of synthesis and modification. However, they universally express a series of disadvantages that hinder their potential application in the biomedical field (e.g., low bioavailability, poor protease resistance, and high cytotoxicity) and extremely waste the abundant resources of AMP database discovered over the decades. For all these reasons, the nanostructured antimicrobial peptides (Ns-AMPs), based on a variety of nanosystem modification, have made up for the deficiencies and pushed the development of novel AMP-based antimicrobial therapies. In this review, we provide an overview of the advantages of Ns-AMPs in improving therapeutic efficacy and biological stability, reducing side effects, and gaining the effect of organic targeting and drug controlled release. Then the different material categories of Ns-AMPs are described, including inorganic material nanosystems containing AMPs, organic material nanosystems containing AMPs, and self-assembled AMPs. Additionally, this review focuses on the Ns-AMPs for the effect of biological activities, with emphasis on antimicrobial activity, biosecurity, and biological stability. The "state-of-the-art" antimicrobial modes of Ns-AMPs, including controlled release of AMPs under a specific environment or intrinsic antimicrobial properties of Ns-AMPs, are also explicated. Finally, the perspectives and conclusions of the current research in this field are also summarized.
Collapse
Affiliation(s)
| | | | | | | | | | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| |
Collapse
|
33
|
Lin W, Zhang J, Xu JF, Pi J. The Advancing of Selenium Nanoparticles Against Infectious Diseases. Front Pharmacol 2021; 12:682284. [PMID: 34393776 PMCID: PMC8361478 DOI: 10.3389/fphar.2021.682284] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/19/2021] [Indexed: 12/17/2022] Open
Abstract
Infectious diseases, caused by the direct exposure of cellular or acellular pathogens, are found to be closely associated with multiple inflammation and immune responses, keeping one of the top threats to human health. As an indispensable trace element, Selenium (Se) plays important roles in antioxidant defence and redox state regulation along with a variety of specific metabolic pathways. In recent decades, with the development of novel nanotechnology, Selenium nanoparticles (Se NPs) emerged as a promising agent for biomedical uses due to their low toxicity, degradability and high bioavailability. Taking the advantages of the strong ability to trigger apoptosis or autophagy by regulating reactive oxygen species (ROS), Se NPs have been widely used for direct anticancer treatments and pathogen killing/clearance in host cells. With excellent stability and drug encapsulation capacity, Se NPs are now serving as a kind of powerful nano-carriers for anti-cancer, anti-inflammation and anti-infection treatments. Notably, Se NPs are also found to play critical roles in immunity regulations, such as macrophage and T effector cell activation, which thus provides new possibilities to achieve novel nano-immune synergetic strategy for anti-cancer and anti-infection therapies. In this review, we summarized the progress of preparation methods for Se NPs, followed by the advances of their biological functions and mechanisms for biomedical uses, especially in the field of anti-infection treatments. Moreover, we further provide some prospects of Se NPs in anti-infectious diseases, which would be helpful for facilitating their future research progress for anti-infection therapy.
Collapse
Affiliation(s)
- Wensen Lin
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Junai Zhang
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Jun-Fa Xu
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Jiang Pi
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| |
Collapse
|
34
|
Zheng C, Wu A, Zhai X, Ji H, Chen Z, Chen X, Yu X. The cellular immunotherapy of integrated photothermal anti-oxidation Pd-Se nanoparticles in inhibition of the macrophage inflammatory response in rheumatoid arthritis. Acta Pharm Sin B 2021; 11:1993-2003. [PMID: 34386333 PMCID: PMC8343190 DOI: 10.1016/j.apsb.2021.02.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/25/2021] [Accepted: 02/02/2021] [Indexed: 12/17/2022] Open
Abstract
Reducing the inflammatory response is a major goal in the therapy of rheumatoid arthritis (RA). Herein, we integrated palladium nanoparticles (Pd NPs) with selenium nanoparticles (Se NPs) and obtained a multiple nanosystem (Pd@Se-HA NPs) that could simultaneously scavenge hydroxyl radicals (⋅OH) and provide a photothermal effect. The Pd@Se-HA NPs were constructed by a simple self-assembly method in which Se NPs were electrostatically bonded to Pd NPs; hyaluronic acid (HA) was linked to the NPs by ester bonding to provide macrophage targeting ability. The experiments show that the combined therapy of eliminating ⋅OH with Se NPs and utilizing PTT with Pd NPs could effectively reduce the inflammatory response in macrophages more effectively than either individual NP treatment. In addition, the outer layer of HA could specifically target the CD44 receptor to enhance the accumulation of Pd@Se NPs at the lesion, further enhancing the therapeutic effect. After treatment for 15 days, the Pd@Se-HA NPs nearly eliminated the inflammatory response in the joints of mice in an induced RA model, and prevented joint damage and degradation.
Collapse
|
35
|
Pachaiappan R, Rajendran S, Show PL, Manavalan K, Naushad M. Metal/metal oxide nanocomposites for bactericidal effect: A review. CHEMOSPHERE 2021; 272:128607. [PMID: 33097236 DOI: 10.1016/j.chemosphere.2020.128607] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/13/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Many microbial species causing infectious disease all over the world became a social burden and creating threat among community. These microbes possess long lifetime, enhancing mortality and morbidity rate in affected organisms. In this condition, the treatment was ineffective and more chances of spreading of infection into other organisms. Hence, it is necessary to initiate infection control efforts and prevention activities against multidrug resistant microbes, to reduce the death rate of people. Seriously concerning towards this problem progress was shown in developing significant drugs with least side effects. Emergence of nanoparticles and its novelty showed effective role in targeting and destructing microbes well. Further, many research works have shown nanocomposites developed from nanoparticles coupled with other nanoparticles, polymers, carbon material acted as an exotic substance against microbes causing severe loss. However, metal and metal oxide nanocomposites have gained interest due to its small size and enhancing the surface contact with bacteria, producing damage to it. The bactericidal mechanism of metal and metal oxide nanocomposites involve in the production of reactive oxygen species which includes superoxide radical anions, hydrogen peroxide anions and hydrogen peroxide which interact with the cell wall of bacteria causing damage to the cell membrane in turn inhibiting the further growth of cell with leakage of internal cellular components, leading to death of bacteria. This review provides the detailed view on antibacterial activity of metal and metal oxide nanocomposite which possessed novelty due to its physiochemical changes.
Collapse
Affiliation(s)
- Rekha Pachaiappan
- Department of Sustainable Energy Management, Stella Maris College, Chennai, 600086, Tamilnadu, India.
| | - Saravanan Rajendran
- Laboratorio de Investigaciones Ambientales Zonas Áridas, Departamento de Ingeniería Mecánica, Facultad deIngeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile.
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, 43500, Selangor Darul Ehsan, Malaysia.
| | - Kovendhan Manavalan
- Department of Nuclear Physics, University of Madras, Gunidy Campus, Chennai, 600 025, Tamilnadu, India
| | - Mu Naushad
- Advanced Materials Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; Yonsei Frontier Lab, Yonsei University, Seoul, Korea
| |
Collapse
|
36
|
Yang B, Fang D, Lv Q, Wang Z, Liu Y. Targeted Therapeutic Strategies in the Battle Against Pathogenic Bacteria. Front Pharmacol 2021; 12:673239. [PMID: 34054548 PMCID: PMC8149751 DOI: 10.3389/fphar.2021.673239] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022] Open
Abstract
The emergence and rapid spread of antibiotic resistance in pathogenic bacteria constitute a global threat for public health. Despite ongoing efforts to confront this crisis, the pace of finding new potent antimicrobials is far slower than the evolution of drug resistance. The abuse of broad-spectrum antibiotics not only accelerates the formation of resistance but also imposes a burden on the intestinal microbiota, which acts a critical role in human homeostasis. As such, innovative therapeutic strategies with precision are pressingly warranted and highly anticipated. Recently, target therapies have achieved some breakthroughs by the aid of modern technology. In this review, we provide an insightful illustration of current and future medical targeted strategies, including narrow-spectrum agents, engineered probiotics, nanotechnology, phage therapy, and CRISPR-Cas9 technology. We discuss the recent advances and potential hurdles of these strategies. Meanwhile, the possibilities to mitigate the spread of resistance in these approaches are also mentioned. Altogether, a better understanding of the advantages, disadvantages, and mechanisms of action of these targeted therapies will be conducive to broadening our horizons and optimizing the existing antibacterial approaches.
Collapse
Affiliation(s)
- Bingqing Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Dan Fang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Qingyan Lv
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
37
|
Jain A, Garrett NT, Malone ZP. Ruthenium-based Photoactive Metalloantibiotics †. Photochem Photobiol 2021; 98:6-16. [PMID: 33882620 DOI: 10.1111/php.13435] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/14/2021] [Indexed: 12/15/2022]
Abstract
Antibiotic resistance is one of the world's most urgent public health problems. Antimicrobial photodynamic therapy (aPDT) is a promising therapy to combat the growing threat of antibiotic resistance. The aPDT combines a photosensitizer and light to generate reactive oxygen species to induce bacterial inactivation. Ruthenium polypyridyl complexes are significant because they possess unique photophysical properties that allow them to produce reactive oxygen species upon photoirradiation, which leads to cytotoxicity. These antimicrobial agents cause bacterial cell death by DNA and cytoplasmic membrane damage. This article presents a comprehensive review of photoactive antimicrobial properties of kinetically inert and labile ruthenium complexes, nanoparticles coupled photoactive ruthenium complexes, and photoactive ruthenium nanoparticles. Additionally, limitations of current ruthenium-based photoactive antimicrobial agents and future directions for the development of antibiotic-resistant photoactive antimicrobial agents are discussed. It is important to raise awareness for the ruthenium-based aPDT agents in order to develop a new class of photoactive metalloantibiotics capable of combating antibiotic resistance.
Collapse
Affiliation(s)
- Avijita Jain
- Madia Department of Chemistry, Indiana University of Pennsylvania, Indiana, PA
| | - Noah T Garrett
- Madia Department of Chemistry, Indiana University of Pennsylvania, Indiana, PA
| | - Zachary P Malone
- Madia Department of Chemistry, Indiana University of Pennsylvania, Indiana, PA
| |
Collapse
|
38
|
Chen X, Guo R, Wang C, Li K, Jiang X, He H, Hong W. On-demand pH-sensitive surface charge-switchable polymeric micelles for targeting Pseudomonas aeruginosa biofilms development. J Nanobiotechnology 2021; 19:99. [PMID: 33836750 PMCID: PMC8034112 DOI: 10.1186/s12951-021-00845-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/26/2021] [Indexed: 12/16/2022] Open
Abstract
Bacterial biofilm is the complicated clinical issues, which usually results in bacterial resistance and reduce the therapeutic efficacy of antibiotics. Although micelles have been drawn attention in treatment of the biofilms, the micelles effectively permeate and retain in biofilms still facing a big challenge. In this study, we fabricated on-demand pH-sensitive surface charge-switchable azithromycin (AZM)-encapsulated micelles (denoted as AZM-SCSMs), aiming to act as therapeutic agent for treating Pseudomonas aeruginosa (P. aeruginosa) biofilms. The AZM-SCSMs was composed of poly(l-lactide)-polyetherimide-hyd-methoxy polyethylene glycol (PLA-PEI-hyd-mPEG). It was noteworthy that the pH-sensitive acylhydrazone bond could be cleaved in acidic biofilm microenvironment, releasing the secondary AZM-loaded cationic micelles based on PLA-PEI (AZM-SCMs) without destroying the micellar integrity, which could tailor drug-bacterium interaction using micelles through electrostatic attraction. The results proved that positively charged AZM-SCMs could facilitate the enhanced penetration and retention inside biofilms, improved binding affinity with bacterial membrane, and added drug internalization, thus characterized as potential anti-biofilm agent. The excellent in vivo therapeutic performance of AZM-SCSMs was confirmed by the targeting delivery to the infected tissue and reduced bacterial burden in the abscess-bearing mice model. This study not only developed a novel method for construction non-depolymerized pH-sensitive SCSMs, but also provided an effective means for the treatment of biofilm-related infections. ![]()
Collapse
Affiliation(s)
- Xiangjun Chen
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, People's Republic of China
| | - Rong Guo
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, People's Republic of China
| | - Changrong Wang
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, People's Republic of China
| | - Keke Li
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, People's Republic of China
| | - Xinyu Jiang
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, People's Republic of China
| | - Huayu He
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, People's Republic of China
| | - Wei Hong
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, People's Republic of China.
| |
Collapse
|
39
|
Li W, Song P, Xin Y, Kuang Z, Liu Q, Ge F, Zhu L, Zhang X, Tao Y, Zhang W. The Effects of Luminescent CdSe Quantum Dot-Functionalized Antimicrobial Peptides Nanoparticles on Antibacterial Activity and Molecular Mechanism. Int J Nanomedicine 2021; 16:1849-1867. [PMID: 33707943 PMCID: PMC7943780 DOI: 10.2147/ijn.s295928] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/15/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND With the development of bacterial resistance, the range of effective antibiotics is increasingly becoming more limited. The effective use of nanoscale antimicrobial peptides (AP) in therapeutic and diagnostic methods is a strategy for new antibiotics. METHODS Combining both AP and cadmium selenide (CdSe) into a composite material may result in a reagent with novel properties, such as enhanced antibacterial activity, fluorescence and favorable stability in aqueous solution. RESULTS AP-loaded CdSe NPs (AP-CdSe NPs) showed strong antibacterial activity against multidrug-resistant (MDR) Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) in vitro and in vivo. Colony-forming unit (CFU) and minimum inhibitory concentration (MIC) assays showed that AP-CdSe NPs have highly effective antibacterial activity. The quantitative analysis of apoptosis by flow cytometry analysis further confirmed that MDR E. coli and S. aureus treated with AP-CdSe NPs had death rates of 98.76% and 99.13%, respectively. Also, AP-CdSe NPs was found to inhibit bacterial activity in an in vivo bacteremia model in mice infected with S. aureus. In addition, the antibacterial mechanism of AP-CdSe NPs was determined by RNA sequencing analysis. Gene ontology (GO) analysis and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis revealed the molecular mechanism of the antibacterial effect of AP-CdSe NPs. Importantly, histopathology analysis, and hematological toxicity analysis indicated that AP-CdSe NPs had few side effects. CONCLUSION These results demonstrate that AP loaded on CdSe NPs had a higher water solubility, bioavailability and antibacterial effect compared with raw AP. This study reports findings that are helpful for the design and development of antibacterial treatment strategies based on AP.
Collapse
Affiliation(s)
- Wanzhen Li
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China
| | - Ping Song
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China
| | - Ying Xin
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China
| | - Zhao Kuang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China
| | - Qin Liu
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China
| | - Fei Ge
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China
| | - Longbao Zhu
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China
| | - Xuguang Zhang
- Bankpeptide Biological Technology Company, Hefei, Anhui, 230031, People's Republic of China
| | - Yugui Tao
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China
| | - Weiwei Zhang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China
- Bankpeptide Biological Technology Company, Hefei, Anhui, 230031, People's Republic of China
| |
Collapse
|
40
|
Research progress in nanozyme-based composite materials for fighting against bacteria and biofilms. Colloids Surf B Biointerfaces 2021; 198:111465. [DOI: 10.1016/j.colsurfb.2020.111465] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 12/23/2022]
|
41
|
Abdillah A, Sonawane PM, Kim D, Mametov D, Shimodaira S, Park Y, Churchill DG. Discussions of Fluorescence in Selenium Chemistry: Recently Reported Probes, Particles, and a Clearer Biological Knowledge. Molecules 2021; 26:692. [PMID: 33525729 PMCID: PMC7866183 DOI: 10.3390/molecules26030692] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/15/2022] Open
Abstract
In this review from literature appearing over about the past 5 years, we focus on selected selenide reports and related chemistry; we aimed for a digestible, relevant, review intended to be usefully interconnected within the realm of fluorescence and selenium chemistry. Tellurium is mentioned where relevant. Topics include selenium in physics and surfaces, nanoscience, sensing and fluorescence, quantum dots and nanoparticles, Au and oxide nanoparticles quantum dot based, coatings and catalyst poisons, thin film, and aspects of solar energy conversion. Chemosensing is covered, whether small molecule or nanoparticle based, relating to metal ion analytes, H2S, as well as analyte sulfane (biothiols-including glutathione). We cover recent reports of probing and fluorescence when they deal with redox biology aspects. Selenium in therapeutics, medicinal chemistry and skeleton cores is covered. Selenium serves as a constituent for some small molecule sensors and probes. Typically, the selenium is part of the reactive, or active site of the probe; in other cases, it is featured as the analyte, either as a reduced or oxidized form of selenium. Free radicals and ROS are also mentioned; aggregation strategies are treated in some places. Also, the relationship between reduced selenium and oxidized selenium is developed.
Collapse
Affiliation(s)
- Ariq Abdillah
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (A.A.); (P.M.S.); (D.K.); (D.M.); (S.S.); (Y.P.)
| | - Prasad M. Sonawane
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (A.A.); (P.M.S.); (D.K.); (D.M.); (S.S.); (Y.P.)
| | - Donghyeon Kim
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (A.A.); (P.M.S.); (D.K.); (D.M.); (S.S.); (Y.P.)
| | - Dooronbek Mametov
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (A.A.); (P.M.S.); (D.K.); (D.M.); (S.S.); (Y.P.)
| | - Shingo Shimodaira
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (A.A.); (P.M.S.); (D.K.); (D.M.); (S.S.); (Y.P.)
| | - Yunseon Park
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (A.A.); (P.M.S.); (D.K.); (D.M.); (S.S.); (Y.P.)
| | - David G. Churchill
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (A.A.); (P.M.S.); (D.K.); (D.M.); (S.S.); (Y.P.)
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
- KAIST Institute for Health Science and Technology (KIHST) (Therapeutic Bioengineering), Daejeon 34141, Korea
| |
Collapse
|
42
|
Structure-activity relationship of diameter controlled Ag@Cu nanoparticles in broad-spectrum antibacterial mechanism. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111501. [PMID: 33321601 DOI: 10.1016/j.msec.2020.111501] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 01/27/2023]
Abstract
Current outbreaks associated with drug-resistant clinical strains are demanding for the development of broad-spectrum antibacterial agents. The bactericidal materials should be eco-friendly, economical and effective to suppress bacterial growth. Thus, in this work, diameter controlled spherical Cucore-Agshell nanoparticles (Ag@CuNPs) with diameter ranging from 70 to 100 nm by one-step co-reduction approach were designed and synthesized. The Ag@CuNPs were homogenous, stable, and positively charged. The 70 nm Ag@CuNPs showed a consistent and regular Ag shielding. We observed the 100 nm Ag@CuNPs achieved symmetrical doped Ag clusters on the Cu core surface. We used Gram-positive and Gram-negative models strains to test the wide-spectrum antibacterial activity. The Ag@CuNPs showed detrimental microbial viability in a dose-dependent manner; however, 70 nm Ag@CuNPs were superior to those of 100 nm Ag@CuNPs. Initially, Ag@CuNPs attached and translocated the membrane surface resulting in bacterial eradication. Our analyses exhibited that antibacterial mechanism was not governed by the bacterial genre, nonetheless, by cell type, morphology, growing ability and the NPs uptake capability. The Ag@CuNPs were highly tolerated by human fibroblasts, mainly by the use of starch as glucosidic capper and stabilizer, suggesting optimal biocompatibility and activity. The Ag@CuNPs open up a novel platform to study the potential action of bimetallic nanoparticles and their molecular role for biomedical, clinical, hospital and industrial-chemical applications.
Collapse
|
43
|
Wet-adhesive, haemostatic and antimicrobial bilayered composite nanosheets for sealing and healing soft-tissue bleeding wounds. Biomaterials 2020; 252:120018. [DOI: 10.1016/j.biomaterials.2020.120018] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 12/21/2022]
|
44
|
Li W, Wei W, Wu X, Zhao Y, Dai H. The antibacterial and antibiofilm activities of mesoporous hollow Fe 3O 4 nanoparticles in an alternating magnetic field. Biomater Sci 2020; 8:4492-4507. [PMID: 32617549 DOI: 10.1039/d0bm00673d] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Unrestricted usage of antibiotics has accelerated the emergence of new strains of microorganisms with antimicrobial resistance (AMR) and the development of therapeutic technologies that do not rely only on antibiotics. Herein, mesoporous hollow Fe3O4 nanoparticles (MHFPs) were synthesized by a one-pot hydrothermal method, and the feasibility and possible mechanism of using alternating magnetic field (AMF) with MHFPs to kill Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were explored. The presence of the AMF (2.5 kW, 210 kHz) combined with the MHFPs resulted in a dramatic decrease in colony forming units (CFU) for E. coli and S. aureus in 25 min compared with the pure MHFPs at concentrations of 500, 800 and 1000 μg mL-1. Macroscopic hyperthermia was proved not to be the sole reason for the phenomenon. Visible membrane damage was demonstrated by live/dead staining, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) assays. Besides, the permeability and integrity changes of the cell membrane were then quantitatively confirmed by measuring the relative electrical conductivity. In addition, bacterial biofilms were significantly dispersed in the presence of MHFPs and AMF. These results suggested that under the mediation of AMF, MHFPs can potentially serve as an efficient nonantibiotic therapeutic platform to disperse bacterial biofilms and inactivate bacteria by damaging the cell membrane of the bacteria.
Collapse
Affiliation(s)
- Wenqin Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China.
| | | | | | | | | |
Collapse
|
45
|
Ghosh R, Malhotra M, Sathe RR, Jayakannan M. Biodegradable Polymer Theranostic Fluorescent Nanoprobe for Direct Visualization and Quantitative Determination of Antimicrobial Activity. Biomacromolecules 2020; 21:2896-2912. [PMID: 32539360 DOI: 10.1021/acs.biomac.0c00653] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We report a biodegradable fluorescent theranostic nanoprobe design strategy for simultaneous visualization and quantitative determination of antibacterial activity for the treatment of bacterial infections. Cationic-charged polycaprolactone (PCL) was tailor-made through ring-opening polymerization methodology, and it was self-assembled into well-defined tiny 5.0 ± 0.1 nm aqueous nanoparticles (NPs) having a zeta potential of +45 mV. Excellent bactericidal activity at 10.0 ng/mL concentration was accomplished in Gram-negative bacterium Escherichia coli (E. coli) while maintaining their nonhemolytic nature in mice red blood cells (RBC) and their nontoxic trend in wild-type mouse embryonic fibroblast cells with a selectivity index of >104. Electron microscopic studies are evident of the E. coli membrane disruption mechanism by the cationic NP with respect to their high selectivity for antibacterial activity. Anionic biomarker 8-hydroxy-pyrene-1,3,6-trisulfonic acid (HPTS) was loaded in the cationic PCL NP via electrostatic interaction to yield a new fluorescent theranostic nanoprobe to accomplish both therapeutics and diagnostics together in a single nanosystem. The theranostic NP was readily degradable by a bacteria-secreted lipase enzyme as well as by lysosomal esterase enzymes at the intracellular compartments in <12 h and support their suitability for biomedical application. In the absence of bactericidal activity, the theranostic nanoprobe functions exclusively as a biomarker to exhibit strong green-fluorescent signals in live E. coli. Once it became active, the theranostic probe induces membrane disruption on E. coli, which enabled the costaining of nuclei by red fluorescent propidium iodide. As a result, live and dead bacteria could be visualized via green and orange signals (merging of red+green), respectively, during the course of the antibacterial activity by the theranostic probe. This has enabled the development of a new image-based fluorescence assay to directly visualize and quantitatively estimate the real-time antibacterial activity. Time-dependent bactericidal activity was coupled with selective photoexcitation in a confocal microscope to demonstrate the proof-of-concept of the working principle of a theranostic probe in E. coli. This new theranostic nanoprobe creates a new platform for the simultaneous probing and treating of bacterial infections in a single nanodesign, which is very useful for a long-term impact in healthcare applications.
Collapse
|
46
|
Guo R, Li K, Qin J, Niu S, Hong W. Development of polycationic micelles as an efficient delivery system of antibiotics for overcoming the biological barriers to reverse multidrug resistance in Escherichia coli. NANOSCALE 2020; 12:11251-11266. [PMID: 32412567 DOI: 10.1039/d0nr01366h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Highly pathogenic Gram-negative bacteria (G-) are tenacious and pose a serious threat to public health, mainly because of three biological barriers: cell envelope blockages, biofilm protection, and macrophages shelter. One strategy to bypass the biological barriers and consequently achieve a satisfying G- bactericidal effect is to utilize polymeric micelles with superior bacterial recognition and binding capabilities. In the current study, we explored the biological barriers penetration ability of a traditional polycationic micellar system (PP-PEI) based on a copolymer of polylactide-poly (ethylene glycol)-polyethylenimine (PLA5K-PEG2K-PEI2K). Subsequently, tetracycline (TC) with good fluorescence property was encapsulated into the PLA core of the micelle (PP-PEI/TC) through hydrophobic interaction. The combination of a PEI shell and loaded antibiotic drug endowed the polycationic micelles with a greater capacity for killing drug-resistant bacteria, destructing biofilms, and eradicating intracellular bacteria, compared with free TC and micelles without the inoculation of a PEI moiety. Confocal laser scanning microscopy (CLSM) and flow cytometry illustrated that PP-PEI/TC could completely penetrate and accumulate in drug-resistant E. coli, biofilms, and infected macrophages. The efficient biological barrier penetration was elucidated as due to the strong electrostatic interactions between the polycationic PEI block and the anionic composition of the bacterial outer membrane (e.g., LPS), macrophage cell membrane (e.g., phospholipid), and extracellular polymeric substances (e.g., eDNA), which was confirmed by biolayer interferometry (BLI). Once the micellar system was bound to a negatively-charged surface, bacterial and cellular enzymes could degrade the PP-PEI core to release its antibacterial content and finally kill planktonic bacteria, bacteria over the depth of a biofilm, and/or intracellular bacteria. In vivo imaging indicated that fluorescent polycationic micelles accumulated in bacterial infection sites with strong fluorescence. In vivo antibacterial experiments showed that PP-PEI/TC could dramatically reduce the number of drug-resistant E. coli EB1-1 in the peritoneal cavity of acute peritonitis BALB/c mice compared with its counterparts. In conclusion, our study demonstrated that polycationic micelles with a PEI shell could penetrate into drug-resistant bacteria, the biofilm matrix, and infected macrophages and lead to the spatiotemporal release of antibacterial agents for the comprehensive treatment of drug-resistant relevant infections.
Collapse
Affiliation(s)
- Rong Guo
- School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Guanhai Road 346, Yantai, 264003, P. R. China.
| | - Keke Li
- School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Guanhai Road 346, Yantai, 264003, P. R. China.
| | - Jing Qin
- Department of Pharmaceutics, School of Pharmacy, Institute of Integrative Medicine, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Zhangheng Road 826, Shanghai, 200433, P. R. China
| | - Shengli Niu
- Key laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Dongling Road 120, Shenyang, 110866, P.R. China
| | - Wei Hong
- School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Guanhai Road 346, Yantai, 264003, P. R. China.
| |
Collapse
|
47
|
Huang Q, Zhang J, Zhang Y, Timashev P, Ma X, Liang XJ. Adaptive changes induced by noble-metal nanostructures in vitro and in vivo. Theranostics 2020; 10:5649-5670. [PMID: 32483410 PMCID: PMC7254997 DOI: 10.7150/thno.42569] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/01/2020] [Indexed: 12/26/2022] Open
Abstract
The unique features of noble-metal nanostructures (NMNs) are leading to unprecedented expansion of research and exploration of their application in therapeutics, diagnostics and bioimaging fields. With the ever-growing applications of NMNs, both therapeutic and environmental NMNs are likely to be exposed to tissues and organs, requiring careful studies towards their biological effects in vitro and in vivo. Upon NMNs exposure, tissues and cells may undergo a series of adaptive changes both in morphology and function. At the cellular level, the accumulation of NMNs in various subcellular organelles including lysosomes, endoplasmic reticulum, Golgi apparatus, mitochondria, and nucleus may interfere with their functions, causing changes in a variety of cellular functions, such as digestion, protein synthesis and secretion, energy metabolism, mitochondrial respiration, and proliferation. In animals, retention of NMNs in metabolic-, respiratory-, immune-related, and other organs can trigger significant physiological and pathological changes to these organs and influence their functions. Exploring how NMNs interact with tissues and cells and the underlying mechanisms are of vital importance for their future applications. Here, we illustrate the characteristics of NMNs-induced adaptive changes both in vitro and in vivo. Potential strategies in the design of NMNs are also discussed to take advantage of beneficial adaptive changes and avoid unfavorable changes for the proper implementation of these nanoplatforms.
Collapse
Affiliation(s)
- Qianqian Huang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Danish Center for Education and Research, Sino-Danish College of University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinchao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Xiaowei Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Danish Center for Education and Research, Sino-Danish College of University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
48
|
Wong XY, Sena-Torralba A, Álvarez-Diduk R, Muthoosamy K, Merkoçi A. Nanomaterials for Nanotheranostics: Tuning Their Properties According to Disease Needs. ACS NANO 2020; 14:2585-2627. [PMID: 32031781 DOI: 10.1021/acsnano.9b08133] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nanotheranostics is one of the biggest scientific breakthroughs in nanomedicine. Most of the currently available diagnosis and therapies are invasive, time-consuming, and associated with severe toxic side effects. Nanotheranostics, on the other hand, has the potential to bridge this gap by harnessing the capabilities of nanotechnology and nanomaterials for combined therapeutics and diagnostics with markedly enhanced efficacy. However, nanomaterial applications in nanotheranostics are still in its infancy. This is due to the fact that each disease has a particular microenvironment with well-defined characteristics, which promotes deeper selection criteria of nanomaterials to meet the disease needs. In this review, we have outlined how nanomaterials are designed and tailored for nanotheranostics of cancer and other diseases such as neurodegenerative, autoimmune (particularly on rheumatoid arthritis), and cardiovascular diseases. The penetrability and retention of a nanomaterial in the biological system, the therapeutic strategy used, and the imaging mode selected are some of the aspects discussed for each disease. The specific properties of the nanomaterials in terms of feasibility, physicochemical challenges, progress in clinical trials, its toxicity, and their future application on translational medicine are addressed. Our review meticulously and critically examines the applications of nanotheranostics with various nanomaterials, including graphene, across several diseases, offering a broader perspective of this emerging field.
Collapse
Affiliation(s)
- Xin Yi Wong
- Nanobioelectronics and Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor Malaysia
| | - Amadeo Sena-Torralba
- Nanobioelectronics and Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Ruslan Álvarez-Diduk
- Nanobioelectronics and Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Kasturi Muthoosamy
- Nanotechnology Research Group, Centre of Nanotechnology and Advanced Materials, University of Nottingham Malaysia, 43500 Semenyih, Selangor Malaysia
| | - Arben Merkoçi
- Nanobioelectronics and Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain
- ICREA, Institució Catalana de Recerca i Estudis Avançats, Pg. Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
49
|
Lin A, Liu Y, Zhu X, Chen X, Liu J, Zhou Y, Qin X, Liu J. Bacteria-Responsive Biomimetic Selenium Nanosystem for Multidrug-Resistant Bacterial Infection Detection and Inhibition. ACS NANO 2019; 13:13965-13984. [PMID: 31730327 DOI: 10.1021/acsnano.9b05766] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Multidrug-resistant (MDR) bacterial infections are a severe threat to public health owing to their high risk of fatality. Noticeably, the premature degradation and undeveloped imaging ability of antibiotics still remain challenging. Herein, a selenium nanosystem in response to a bacteria-infected microenvironment is proposed as an antibiotic substitute to detect and inhibit methicillin-resistant Staphylococcus aureus (MRSA) with a combined strategy. Using natural red blood cell membrane (RBCM) and bacteria-responsive gelatin nanoparticles (GNPs), the Ru-Se@GNP-RBCM nanosystem was constructed for effective delivery of Ru-complex-modified selenium nanoparticles (Ru-Se NPs). Taking advantage of natural RBCM, the immune system clearance was reduced and exotoxins were neutralized efficiently. GNPs could be degraded by gelatinase in pathogen-infected areas in situ; therefore, Ru-Se NPs were released to destroy the bacteria cells. Ru-Se NPs with intense fluorescence imaging capability could accurately monitor the infection treatment process. Moreover, excellent in vivo bacteria elimination and a facilitated wound healing process were confirmed by two kinds of MRSA-infected mice models. Overall, the above advantages proved that the prepared nanosystem is a promising antibiotic alternative to combat the ever-threatening multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Ange Lin
- Department of Chemistry , Jinan University , Guangzhou 510632 , China
| | - Yanan Liu
- Department of Chemistry , Jinan University , Guangzhou 510632 , China
- College of Life Sciences , Shenzhen University , Shenzhen , Guangdong 518060 , China
| | - Xufeng Zhu
- Department of Chemistry , Jinan University , Guangzhou 510632 , China
| | - Xu Chen
- Department of Chemistry , Jinan University , Guangzhou 510632 , China
| | - Jiawei Liu
- Department of Chemistry , Jinan University , Guangzhou 510632 , China
| | - Yanhui Zhou
- Department of Chemistry , Jinan University , Guangzhou 510632 , China
| | - Xiuying Qin
- Department of Chemistry , Jinan University , Guangzhou 510632 , China
| | - Jie Liu
- Department of Chemistry , Jinan University , Guangzhou 510632 , China
| |
Collapse
|
50
|
Xiong X, Huang Y, Lin C, Liu XY, Lin Y. Recent advances in nanoparticulate biomimetic catalysts for combating bacteria and biofilms. NANOSCALE 2019; 11:22206-22215. [PMID: 31482920 DOI: 10.1039/c9nr05054j] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Due to the abuse of antibiotics and the tendency of bacteria to form protective biofilms, the design and development of new efficient agents that can eliminate bacteria and biofilms are still highly desired but remain a great challenge; on the other hand, natural enzymes with unique catalytic characteristics can cause an irreversible damage to the bacteria without inducing drug-resistance in the bacteria. However, the intrinsic drawbacks, such as insufficient stability and high purification cost, of enzymes significantly limit their antimicrobial applications. Therefore, significant research efforts have been devoted towards the development of quality-equivalent or even superior enzyme substitutes with low cost and high stability. In this regard, nanomaterials with extraordinary enzyme-mimetic catalytic activities (termed as nanozymes) are considered as suitable candidates. To date, nanozymes have been proved to be promising materials for combating bacteria and biofilms under mild conditions. In this review, we have summarized the recent progress of nanozymes in this highly active field. The antibacterial mechanisms of nanozymes and the roles of their sizes, morphologies, compositions, surface modifications and microenvironment on their overall performance have been discussed. Moreover, the current challenges and prospects in this research area have been discussed. We believe that nanozymes with unique features and functions can provide a wealth of opportunities via their clinical and industrial applications.
Collapse
Affiliation(s)
- Xueqing Xiong
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Jiujiang Research Institute, Xiamen University, Xiamen 361005, China.
| | | | | | | | | |
Collapse
|