1
|
Ismail M, Liu J, Wang N, Zhang D, Qin C, Shi B, Zheng M. Advanced nanoparticle engineering for precision therapeutics of brain diseases. Biomaterials 2025; 318:123138. [PMID: 39914193 DOI: 10.1016/j.biomaterials.2025.123138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/31/2024] [Accepted: 01/23/2025] [Indexed: 03/05/2025]
Abstract
Despite the increasing global prevalence of neurological disorders, the development of nanoparticle (NP) technologies for brain-targeted therapies confronts considerable challenges. One of the key obstacles in treating brain diseases is the blood-brain barrier (BBB), which restricts the penetration of NP-based therapies into the brain. To address this issue, NPs can be installed with specific ligands or bioengineered to boost their precision and efficacy in targeting brain-diseased cells by navigating across the BBB, ultimately improving patient treatment outcomes. At the outset of this review, we highlighted the critical role of ligand-functionalized or bioengineered NPs in treating brain diseases from a clinical perspective. We then identified the key obstacles and challenges NPs encounter during brain delivery, including immune clearance, capture by the reticuloendothelial system (RES), the BBB, and the complex post-BBB microenvironment. Following this, we overviewed the recent progress in NPs engineering, focusing on ligand-functionalization or bionic designs to enable active BBB transcytosis and targeted delivery to brain-diseased cells. Lastly, we summarized the critical challenges hindering clinical translation, including scalability issues and off-target effects, while outlining future opportunities for designing cutting-edge brain delivery technologies.
Collapse
Affiliation(s)
- Muhammad Ismail
- Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Jiayi Liu
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Ningyang Wang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Dongya Zhang
- Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Changjiang Qin
- Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China.
| | - Bingyang Shi
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, 2109, Australia.
| | - Meng Zheng
- Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
2
|
Zhang X, Artz N, Steindler DA, Hingtgen S, Satterlee AB. Exosomes: Traversing the blood-brain barrier and their therapeutic potential in brain cancer. Biochim Biophys Acta Rev Cancer 2025; 1880:189300. [PMID: 40097050 PMCID: PMC12124962 DOI: 10.1016/j.bbcan.2025.189300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 03/07/2025] [Accepted: 03/09/2025] [Indexed: 03/19/2025]
Abstract
The blood-brain barrier (BBB) presents a major challenge for the effective delivery of therapeutic agents to the brain tumor cells from the peripheral blood circulation, making the treatment of central nervous system (CNS)-related cancers more difficult and resistant to both standard treatments and emerging therapies. Exosomes, which serve as messengers for intercellular communication throughout the body, can naturally or be modified to penetrate the BBB. Recently, exosomes have been increasingly explored as an invasive or non-invasive approach for delivering therapeutic agents to the CNS. With their low immunogenicity, ease of modification, excellent cargo protection, and inherent ability to cross the BBB, exosomes hold great promise for revolutionizing targeted therapy for CNS-related diseases, including brain cancer. In this review, we highlight recent discoveries and insights into the mechanisms exosomes use to penetrate the BBB, the methods they employ to payload diverse therapeutics, and their roles in transporting therapeutic compounds for brain cancer and other neurological disorders.
Collapse
Affiliation(s)
- Xiaopei Zhang
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Nichole Artz
- Department of Pediatric Hematology/Oncology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Dennis A Steindler
- Steindler Consulting, Boston, MA, USA; Eshelman Institute for Innovation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Shawn Hingtgen
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew Benson Satterlee
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Eshelman Institute for Innovation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
3
|
Cui K, Ren F, Yu J, Pan H. Bioinspired nanomedicines for the management of osteosarcoma: Recent progress and perspectives. Mater Today Bio 2025; 32:101607. [PMID: 40151805 PMCID: PMC11946877 DOI: 10.1016/j.mtbio.2025.101607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/14/2025] [Accepted: 02/21/2025] [Indexed: 03/29/2025] Open
Abstract
Osteosarcoma (OS) is the most prevalent malignant primary bone tumor, predominantly affecting children and young adults between the ages of 11 and 20. OS presents huge challenges in treatment because of its aggressive nature and high metastatic potential. Chemotherapeutic drugs have attracted considerable interest for the treatment of OS, but they suffer from poor targeting, low bioavailability, severe side effects, and the multi-drug resistance acquired by the tumor. Therefore, it is imperative to develop novel therapeutic tactics that can improve OS outcomes while minimizing toxicity. Bioinspired nanoparticles, designed through exploiting or simulating the biological structures and processes, provide promising strategies for the treatment of OS. In this review, we elaborate on the biological properties and biomedical applications of state-of-the-art bioinspired nanoparticles, including cell membrane-based nanoparticles, exosome-based nanoparticles, protein template-based nanoparticles, and peptide template-based nanoparticles for the management of OS.
Collapse
Affiliation(s)
- Kai Cui
- Department of Orthopaedics, The Fourth Affiliated Hospital of China Medical University, No.4 Chongshandong Road, Shenyang, 110032, China
| | - Fei Ren
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, No.155 North Nanjing Street, Shenyang, 110001, China
| | - Jian Yu
- Department of Neurosurgery, The Fourth Affiliated Hospital of China Medical University, No.4 Chongshandong Road, Shenyang, 110032, China
| | - Hong Pan
- Department of Radiation Oncology, The Fourth Affiliated Hospital of China Medical University, No.4 Chongshandong Road, Shenyang, 110032, China
| |
Collapse
|
4
|
Jain S, Murmu A, Chauhan A. Advancing Alzheimer's disease therapy through engineered exosomal Macromolecules. Brain Res 2025; 1855:149590. [PMID: 40120708 DOI: 10.1016/j.brainres.2025.149590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/03/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Exosomes are a subject of continuous investigation due to their function as extracellular vesicles (EVs) that significantly contribute to the pathophysiology of certain neurodegenerative disorders (NDD), including Alzheimer's disease (AD). Exosomes have shown the potential to carry both therapeutic and pathogenic materials; hence, researchers have used exosomes for medication delivery applications. Exosomes have reduced immunogenicity when used as natural drug delivery vehicles. This guarantees the efficient delivery of the medication without causing significant side reactions. Exosomes have lately enabled the potential for drug delivery in AD, along with promising future therapeutic uses for the detection of neurodegenerative disorders. Furthermore, exosomes have been examined for their prospective use in illness diagnosis and prediction before the manifestation of symptoms. This review will document prior studies and will concentrate on the rationale behind the substantial potential of exosomes in the treatment of AD and their prospective use as a diagnostic and predictive tool for this condition.
Collapse
Affiliation(s)
- Smita Jain
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Kishangarh, Rajasthan, India.
| | - Ankita Murmu
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Kishangarh, Rajasthan, India
| | - Aparna Chauhan
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Kishangarh, Rajasthan, India
| |
Collapse
|
5
|
Wang G, Wang Y, Sheng K, Wang Y. Effect of probiotic extracellular vesicles and their applications on health and disease. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:3539-3549. [PMID: 39806860 DOI: 10.1002/jsfa.14123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/25/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025]
Abstract
Probiotics have been established to exert a positive impact on the treatment of various diseases. Indeed, these active microorganisms have garnered significant attention in recent years for their potential to prevent and treat illnesses. Their beneficial effects have been hypothesized to be linked to their released extracellular vesicles. These nanoscale structures, secreted during the growth and metabolism of probiotics, possess favorable biocompatibility and targeting properties, thereby promoting intercellular material transport and signaling. This article aimed to review the bioactive components and functions of these probiotics vesicles, highlighting their role in the treatment of various diseases and discussing their potential future applications. By exploring the mechanisms of probiotic extracellular vesicles in disease development, this review aimed to provide a theoretical reference for further research on their therapeutic potential. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guangzhao Wang
- School of Life Sciences, Anhui University, Hefei, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
| | - Yang Wang
- School of Life Sciences, Anhui University, Hefei, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
| | - Kangliang Sheng
- School of Life Sciences, Anhui University, Hefei, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
| |
Collapse
|
6
|
Luo H, Wang J, Lin F, Liu Y, Wu X, Li G, Su C, Chen J, Xiong F, Mo J, Zheng Z, Zheng X, Li Q, Zha L. Macrophage exosomes mediate palmitic acid-induced metainflammation by transferring miR-3064-5p to target IκBα and activate NF-κB signaling. J Adv Res 2025; 71:501-519. [PMID: 38960278 DOI: 10.1016/j.jare.2024.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024] Open
Abstract
INTRODUCTION High palmitic acid (PA) levels trigger metainflammation, facilitating the onset and progression of chronic metabolic diseases. Recently, exosomes were identified as new inflammation mediators. However, the mechanism by which macrophage exosomes mediate PA-induced inflammation remains unclear. OBJECTIVES To explore how PA induces metainflammation through macrophage exosomes. METHODS Exosomes secreted by RAW264.7 mouse macrophages stimulated with PA (ExosPA) or not (Exos) were prepared by ultracentrifugation. The differential miRNAs between ExosPA and Exos were identified by high-throughput sequencing, and their targeted mRNAs and proteins were bioinformatically analyzed and verified by qPCR and western blot. Mouse macrophages and metabolic cells (AML-12 hepatocytes, C2C12 myocytes or 3T3-L1 adipocytes) were treated with ExosPA or Exos. The verified miRNAs and its targeted molecules related to inflammation were analyzed in recipient cells. Furthers, exosomes were prepared from primary peritoneal macrophages isolated from AIN93G diet-fed (Control PM-Exos) or HPD-fed (PA PM-Exos) mice. Control or PA PM-Exos were then tail vein injected (30 μg) into mice (n = 10), once a week for 2 weeks. The verified miRNA and its targets in blood, blood exosomes, and metabolic tissues were detected. Finally, measured the levels of miRNA, inflammatory factors, and fatty acids in the blood of 20 obese/overweight individuals and 20 healthy individuals. RESULTS ExoPA activate NF-κB signaling and enhance inflammatory enzyme/cytokine production in macrophages and metabolic cells. ExoPA enrich miR-3064-5p and target to inhibit IκBα as verified by exosome inhibitors and miR-3064-5p mimics and inhibitors. HPD elevates exosomal miR-3064-5p, macrophage exosomal miR-3064-5p, and inflammatory cytokine levels in mice circulation. PA PM-Exos from HPD-fed mice triggered inflammation in the circulation and metabolic tissues/organs of chow diet-fed mice. Overweight/obese individuals exhibit increased levels of circulating palmitoleic acid, exosomal miR-3064-5p, and high-sensitivity C-reactive proteins. CONCLUSIONS Macrophage exosomes transferring miR-3064-5p to target IκBα and activate NF-κB signaling in metabolic cells is a mechanism of PA-induced metainflammation.
Collapse
Affiliation(s)
- Huiyu Luo
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Jiexian Wang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Fengjuan Lin
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Yuguo Liu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Xinglong Wu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Gan Li
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, PR China; Department of Clinical Nutrition, The First People's Hospital of Chenzhou, Hengyang Medical School, University of South China, 423000 Chenzhou, PR China
| | - Chuhong Su
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Junbin Chen
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Fei Xiong
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, PR China; Department of Clinical Nutrition, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Jiaqi Mo
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Zhongdaixi Zheng
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Xiangyi Zheng
- Department of Health Management Medicine, Guangzhou Panyu District Health Management Center (Guangzhou Panyu District Rehabilitation Hospital), Guangzhou 511450, Guangdong, PR China
| | - Qing Li
- Department of Clinical Nutrition, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, PR China
| | - Longying Zha
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, PR China.
| |
Collapse
|
7
|
Liu L, Zhang S, Ren Y, Wang R, Zhang Y, Weng S, Zhou Z, Luo P, Cheng Q, Xu H, Ba Y, Zuo A, Liu S, Liu Z, Han X. Macrophage-derived exosomes in cancer: a double-edged sword with therapeutic potential. J Nanobiotechnology 2025; 23:319. [PMID: 40287762 PMCID: PMC12034189 DOI: 10.1186/s12951-025-03321-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 03/11/2025] [Indexed: 04/29/2025] Open
Abstract
Solid cancer contains a complicated communication network between cancer cells and components in the tumor microenvironment (TME), significantly influencing the progression of cancer. Exosomes function as key carriers of signaling molecules in these communications, including the intricate signalings of tumor-associated macrophages (TAMs) on cancer cells and the TME. With their natural lipid bilayer structures and biological activity that relates to their original cell, exosomes have emerged as efficient carriers in studies on cancer therapy. Intrigued by the heterogeneity and plasticity of both macrophages and exosomes, we regard macrophage-derived exosomes in cancer as a double-edged sword. For instance, TAM-derived exosomes, educated by the TME, can promote resistance to cancer therapies, while macrophage-derived exosomes generated in vitro have shown favorable potential in cancer therapy. Here, we depict the reasons for the heterogeneity of TAM-derived exosomes, as well as the manifold roles of TAM-derived exosomes in cancer progression, metastasis, and resistance to cancer therapy. In particular, we emphasize the recent advancements of modified macrophage-derived exosomes in diverse cancer therapies, arguing that these modified exosomes are endowed with unique advantages by their macrophage origin. We outline the challenges in translating these scientific discoveries into clinical cancer therapy, aiming to provide patients with safe and effective treatments.
Collapse
Affiliation(s)
- Long Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Siying Zhang
- Medical School of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Ruizhi Wang
- Medical School of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhaokai Zhou
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Peng Luo
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yuhao Ba
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Anning Zuo
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Shutong Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052, Henan, China.
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
8
|
Wang H, Xu Y, Zhang Z, Luo B, Hou D, Lu Y, Xie M, Guan W, Peng J, Wang H, Tao W. Exosome-Functionalized Self-Carrier Enzyme-Like/Drug With Triple Amplified Anti-Oxidative Stress for Synergistic Depression Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2411030. [PMID: 40259849 DOI: 10.1002/smll.202411030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 04/10/2025] [Indexed: 04/23/2025]
Abstract
Depression, a severe disorder affecting both physical and mental health, is commonly treated with first-line antidepressants, which often exhibit limited efficacy due to poor penetration of the blood-brain barrier (BBB) and significant side effects, thus requiring the exploitation of biocompatible and effective treatments. Recent studies suggest that depression is closely linked to an imbalance in oxidative stress and subsequent inflammatory responses. Antioxidant therapies and targeting oxidative stress in inflammatory depression are therefore emerging as promising strategies. In this study, an exosome-functionalized and geniposide (GEN) self-carried Prussian blue (PB) nanotherapeutic approach is fabricated to realize efficient BBB penetration for synergistic depression therapy. The porous PB carrier possesses multi-enzyme capabilities, which can effectively scavenge the accumulated ROS, protecting the slightly inflammatory acidic environment released GEN from oxidation, and the GEN subsequently works simultaneously with PB to activate the Nrf2-ARE pathway, enhancing the body's oxidative stress defense mechanisms synergistically. The triple-amplified anti-oxidant strategy of this nanomaterial is shown to mitigate microglial activation and the reduction in neuroplasticity, ultimately alleviating the pathological markers of inflammatory depression. Overall, the constructed nanomaterials underscore the therapeutic potential of anti-oxidative stress for synergistic removal of ROS and activation of the Nrf2-ARE pathway in the treatment of inflammatory depression.
Collapse
Affiliation(s)
- Hanqing Wang
- College of Pharmacy & Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ningxia Medical University, Yinchuan, 750004, China
| | - Yunzhu Xu
- School of Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zicheng Zhang
- School of Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Banxin Luo
- School of Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Department of General Surgery, Nanjing Drum Tower Hospital, Nanjing, 210023, China
| | - Dahai Hou
- School of Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Youyuan Lu
- College of Pharmacy & Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ningxia Medical University, Yinchuan, 750004, China
| | - Mingxia Xie
- College of Pharmacy & Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ningxia Medical University, Yinchuan, 750004, China
| | - Wenxian Guan
- School of Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Department of General Surgery, Nanjing Drum Tower Hospital, Nanjing, 210023, China
| | - Jinlei Peng
- School of Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hui Wang
- School of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weiwei Tao
- School of Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| |
Collapse
|
9
|
Lai S, Tang N, Guo J, Deng L, Yuan L, Zeng L, Yang L, Mu Y. Immunomodulatory peptide DP7-C mediates macrophage-derived exosomal miR-21b to promote bone regeneration via the SOCS1/JAK2/STAT3 axis. Colloids Surf B Biointerfaces 2025; 253:114709. [PMID: 40286607 DOI: 10.1016/j.colsurfb.2025.114709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 03/18/2025] [Accepted: 04/13/2025] [Indexed: 04/29/2025]
Abstract
Periodontitis, the most prevalent chronic inflammatory disease leading to bone resorption, presents significant challenges for achieving optimal periodontal bone regeneration and repair despite efforts to reduce inflammation and stimulate osteogenesis. Macrophage-derived exosomes have emerged as promising therapeutic agents due to their osteogenic and immunomodulatory potential. Specific stimulation of macrophages can alter the exosomal composition, particularly microRNAs (miRNAs), thereby altering their functions. DP7-C, a cationic immunomodulatory peptide, is known to regulate immune responses and cellular processes by interacting with cell membranes and signaling pathways. However, its effects on macrophage exosomal miRNA profiles remain poorly understood. In this study, we identified differential miRNA expression in macrophage-derived exosomes following DP7-C stimulation, with a notable upregulation of miR-21b. To investigate the osteogenic role of exosomal miR-21b, DP7-C was utilized to facilitate the transfection of miR-21b into macrophages, leading to the secretion of exosomes enriched with miR-21b. These exosomes enhanced osteogenic differentiation in vitro and alleviated periodontal tissue damage in an experimental periodontitis model in vivo. Mechanistically, exosomal miR-21b promotes osteogenesis by directly targeting the suppressor of cytokine signaling (SOCS1), thereby activating the JAK2/STAT3 signaling pathway. This study establishes macrophage-derived exosomal miR-21b as a potent catalyst for bone regeneration, highlighting a promising acellular therapeutic strategy for periodontitis.
Collapse
Affiliation(s)
- Shuang Lai
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610054, China; School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Na Tang
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610054, China; School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Jun Guo
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610054, China; School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Li Deng
- Centerfor Medicine Research and Translation, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, Sichuan 611135, China
| | - Lun Yuan
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Linya Zeng
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610054, China; School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Lu Yang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Yandong Mu
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610054, China; School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China.
| |
Collapse
|
10
|
Wang Y, Yuan S, Zhou L, Yang K, Jin Z, Lin A, Yang C, Tian W. Cutting-Edge Progress in the Acquisition, Modification and Therapeutic Applications of Exosomes for Drug Delivery. Int J Nanomedicine 2025; 20:5059-5080. [PMID: 40271148 PMCID: PMC12015628 DOI: 10.2147/ijn.s516840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 04/08/2025] [Indexed: 04/25/2025] Open
Abstract
Exosomes are vesicles secreted by cells, typically ranging from 30 to 150 nm in diameter, and serve as crucial mediators of intercellular communication. Exosomes are capable of loading various therapeutic substances, such as small molecule compounds, proteins, and oligonucleotides, thereby making them an ideal vehicle for drug delivery. The distinctive biocompatibility, high stability, and targeting properties of exosomes render them highly valuable for future treatments of diseases like cancer and cardiovascular diseases. Despite the potential advantage of exosomes in delivering biologically active molecules, the techniques for the preparation, purification, preservation, and other aspects of stem cell exosomes are not yet mature enough. In this paper, we briefly introduce the composition, biogenesis, and benefits of exosomes, and primarily focus on summarizing the isolation and purification methods of exosomes, the preparation of engineered exosomes, and their clinical applications, to better provide new ideas for the development of exosome drug delivery systems.
Collapse
Affiliation(s)
- Yuhao Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Shengmeng Yuan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Lihua Zhou
- National Institute of Measurement and Testing Technology, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Kexin Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Zhaorui Jin
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - An Lin
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Chao Yang
- Chengdu Shiliankangjian Biotechnology Co., Ltd., Chengdu, Sichuan, 610041, People’s Republic of China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| |
Collapse
|
11
|
Said N, Venketaraman V. Neuroinflammation, Blood-Brain Barrier, and HIV Reservoirs in the CNS: An In-Depth Exploration of Latency Mechanisms and Emerging Therapeutic Strategies. Viruses 2025; 17:572. [PMID: 40285014 PMCID: PMC12030944 DOI: 10.3390/v17040572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/12/2025] [Accepted: 04/12/2025] [Indexed: 04/29/2025] Open
Abstract
Despite the success of antiretroviral therapy (ART) in suppressing viral replication in the blood, HIV persists in the central nervous system (CNS) and causes chronic neurocognitive impairment, a hallmark of HIV-associated neurocognitive disorders (HAND). This review looks at the complex interactions among HIV, the blood-brain barrier (BBB), neuroinflammation, and the roles of viral proteins, immune cell trafficking, and pro-inflammatory mediators in establishing and maintaining latent viral reservoirs in the CNS, particularly microglia and astrocytes. Key findings show disruption of the BBB, monocyte infiltration, and activation of CNS-resident cells by HIV proteins like Tat and gp120, contributing to the neuroinflammatory environment and neuronal damage. Advances in epigenetic regulation of latency have identified targets like histone modifications and DNA methylation, and new therapeutic strategies like latency-reversing agents (LRAs), gene editing (CRISPR/Cas9), and nanoparticle-based drug delivery also offer hope. While we have made significant progress in understanding the molecular basis of HIV persistence in the CNS, overcoming the challenges of BBB penetration and neuroinflammation is key to developing effective therapies. Further research into combination therapies and novel drug delivery systems will help improve outcomes for HAND patients and bring us closer to a functional cure for HIV.
Collapse
Affiliation(s)
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA;
| |
Collapse
|
12
|
Williams A, Branscome H, Kashanchi F, Batrakova EV. Targeting of Extracellular Vesicle-Based Therapeutics to the Brain. Cells 2025; 14:548. [PMID: 40214500 PMCID: PMC11989082 DOI: 10.3390/cells14070548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/28/2025] [Accepted: 04/03/2025] [Indexed: 04/14/2025] Open
Abstract
Extracellular vesicles (EVs) have been explored as promising vehicles for drug delivery. One of the most valuable features of EVs is their ability to cross physiological barriers, particularly the blood-brain barrier (BBB). This significantly enhances the development of EV-based drug delivery systems for the treatment of CNS disorders. The present review focuses on the factors and techniques that contribute to the successful delivery of EV-based therapeutics to the brain. Here, we discuss the major methods of brain targeting which includes the utilization of different administration routes, capitalizing on the biological origins of EVs, and the modification of EVs through the addition of specific ligands on to the surface of EVs. Finally, we discuss the current challenges in large-scale EV production and drug loading while highlighting future perspectives regarding the application of EV-based therapeutics for brain delivery.
Collapse
Affiliation(s)
- Anastasia Williams
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Discovery Hall Room 248, 10900 University Blvd, Manassas, VA 20110, USA; (A.W.); (H.B.); (F.K.)
| | - Heather Branscome
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Discovery Hall Room 248, 10900 University Blvd, Manassas, VA 20110, USA; (A.W.); (H.B.); (F.K.)
- American Type Culture Collection (ATCC), Manassas, VA 20110, USA
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Discovery Hall Room 248, 10900 University Blvd, Manassas, VA 20110, USA; (A.W.); (H.B.); (F.K.)
| | - Elena V. Batrakova
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Discovery Hall Room 248, 10900 University Blvd, Manassas, VA 20110, USA; (A.W.); (H.B.); (F.K.)
| |
Collapse
|
13
|
Han Y, Zheng W, Zhang Y, Tong C, Song P, Qi Z, Zhang S. Oxaliplatin-loaded natural killer cell-derived exosomes for a safe and efficient chemoimmunotherapy of colorectal cancer. J Pharm Sci 2025; 114:103783. [PMID: 40189205 DOI: 10.1016/j.xphs.2025.103783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 04/02/2025] [Accepted: 04/02/2025] [Indexed: 04/19/2025]
Abstract
In recent years, the limited biocompatibility and serious side effects of oxaliplatin (L-OHP) have restricted its clinical application. Exosomes are biologically active vesicles with a double membrane structure secreted by almost all living cells. They transport biomolecules (e.g., cytokines, proteins, neurotransmitters, and lipids) used for inter-cellular regulation and communication to target cells. Because of their excellent bio-compatibility, highly permeable and low-toxicity properties, exosomes are receiving widespread attention and importance as a drug delivery platform. In this study, we demonstrated the successful isolation of saucer-like Natural Killer cell exosomes (NK-Exosomes, NK-Exos) from NK cell cultures by density gradient centrifugation. The nano-drug delivery system (L-OHP-Exos) was successfully prepared using sonication. This nanomedicine delivery system based on exosomes effectively delivers chemotherapy drugs into tumor cells, inhibiting their growth. Moreover, it enhances the generation of reactive oxygen species (ROS) within tumor cells through the synergistic action of its Fas ligand (FasL) and oxaliplatin, subsequently inducing apoptosis. Following a series of rigorous in vivo experimental validations, we further confirmed the dual benefits of NK-Exos: their inherent growth inhibitory effects on tumors and their ability to markedly potentiate the antineoplastic activity of L-OHP in colorectal cancer therapy. Due to the limited solubility of oxaliplatin in phospholipid bilayers, encapsulation of oxaliplatin within L-OHP-Exos minimizes its binding to plasma proteins post-intravenous administration, thereby augmenting the sustained release and bioavailability of the drug. This nano-drug delivery system offers a novel approach for the treatment of colorectal cancer and holds promising potential for clinical application.
Collapse
Affiliation(s)
- Yu Han
- Medical College, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - WeiCheng Zheng
- Medical College, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - YuYi Zhang
- Medical College, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - CaiLing Tong
- Medical College, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - PengBo Song
- Medical College, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - ZhongQuan Qi
- Fujian Maternity and Child Health Hospital,18 Daoshan Road, Fuzhou City, Fujian Province. 350001, PR China.
| | - ShiFeng Zhang
- Medical College, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, PR China; Department of Gastrointestinal Surgery, Zhongshan Hospital, Xiamen University, No.201-209, Hubin South Road, Xiamen 361004, Fujian, PR China; Institute of Gastrointestinal Oncology, Medical College of Xiamen University, No. 201-209, Hubin South Road, Xiamen 361004, Fujian, PR China.
| |
Collapse
|
14
|
Wang X, Zhou H, Li D, Zhao Z, Peng K, Xu X, Wang JJ, Wang Y, Wang J, Zhang JJ, Wan SS, Shi MQ, Chen J, Ding XG, Ji FH. Molecular Targeting of Intracellular Bacteria by Homotypic Recognizing Nanovesicles for Infected Pneumonia Treatment. Biomater Res 2025; 29:0172. [PMID: 40177029 PMCID: PMC11964281 DOI: 10.34133/bmr.0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/21/2025] [Accepted: 03/06/2025] [Indexed: 04/05/2025] Open
Abstract
Although extensive antibiotic regimens have been implemented to address pathogen-infected pneumonia, existing strategies are constrained in their efficacy against intracellular bacteria, a prominent contributor to antibiotic resistance. In addition, the concurrent occurrence of a cytokine storm during antibiotic therapy presents a formidable obstacle in the management of pneumonia caused by pathogens. In the present study, an infection-targeting system that leverages M2-macrophage-derived vesicles [exosomes (Exos)] as vehicles to convey antibiotics (antibiotics@Exos) was developed for effective pneumonia management. The proposed system can enable antibiotics to be specifically delivered to infected macrophages in pneumonia through homotypic recognition and was found to exhibit an exceptional intracellular bactericidal effect. Moreover, M2-type vesicles exhibit a high degree of efficiency in reprogramming inflammatory macrophages toward an anti-inflammatory phenotype. As a result, the administration of antibiotics@Exos was found to substantical decrease the level of the infiltrated inflammatory cells and alleviate the inflammatory factor storm in the lungs of acute lung injury mice. This intervention resulted in the alleviation of reactive-oxygen-species-induced damage, reduction of pulmonary edema, and successful pneumonia treatment. This bioactive vesicle delivery system effectively compensates for the limitations of traditional antibiotic therapy regimens with pluralism effects, paving a new strategy for serious infectious diseases, especially acute pneumonia treatment.
Collapse
Affiliation(s)
- Xu Wang
- Department of Anesthesiology,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hao Zhou
- Department of General Surgery,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu , China
| | - Dan Li
- Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Zhe Zhao
- Suzhou Institute of Nano-Tech and Nano-Bionics, CAS Key Laboratory of Nano-Bio Interface Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Ke Peng
- Department of Anesthesiology & Institute of Anesthesiology,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiang Xu
- Department of Neurosurgery & Brain and Nerve Research Laboratory,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jia-Jia Wang
- Department of Pulmonary and Critical Care Medicine,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yang Wang
- Department of Anesthesiology,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jun Wang
- Department of Intensive Care Medicine,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jing-Jing Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors,
Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
| | - Shuang-Shuang Wan
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors,
Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
| | - Mai-Qing Shi
- Department of Anesthesiology,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jun Chen
- Department of Anesthesiology,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xian-Guang Ding
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors,
Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
| | - Fu-Hai Ji
- Department of Anesthesiology & Institute of Anesthesiology,
The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
15
|
Li Q, Park J, Kim JS, Le Q, Lee J, Oh Y. Anti-Inflammatory Macrophage-Derived Exosomes Modified With Self-Antigen Peptides for Treatment of Experimental Autoimmune Encephalomyelitis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415265. [PMID: 39937659 PMCID: PMC11967809 DOI: 10.1002/advs.202415265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/12/2025] [Indexed: 02/14/2025]
Abstract
Current treatments for autoimmune diseases often involve broad-acting immunosuppressants, which carry risks such as infections and malignancies. This study investigates whether exosomes derived from anti-inflammatory macrophages (AE) and decorated with myelin oligodendrocyte glycoprotein (MOG) peptide (AE/M) can induce immune tolerance in autoimmune diseases. Experimental autoimmune encephalomyelitis (EAE), a mouse model for multiple sclerosis, serves as the autoimmune disease model. Exosomes derived from myoblasts or fibroblasts are also modified with MOG peptides for comparison. Unlike their myoblast or fibroblast counterparts, exosomes from anti-inflammatory macrophages demonstrate a targeted capacity toward antigen-presenting cells. Moreover, AE/M uniquely promotes the differentiation of dendritic cells (DC) into a tolerogenic phenotype. When splenocytes are treated with AE/M, an increased population of tolerogenic DC (tolDC) is observed, even under proinflammatory stimuli. Subcutaneous administration of AE/M in the EAE mouse model results in MOG peptide-specific immune tolerance and preserves motor coordination. In contrast to treatments with fibroblast- or myoblast-derived exosomes modified with MOG peptides, AE/M treatment provides complete protection from EAE in mice. These findings highlight the potential of self-antigen modified AE as a versatile and adaptable nanoplatform for the treatment of various autoimmune diseases.
Collapse
Grants
- KEIT 20018560 Alchemist Project of the Korea Evaluation Institute of Industrial Technology (KEIT), Ministry of Trade, Industry and Energy, Republic of Korea
- NTIS 2410005252 Alchemist Project of the Korea Evaluation Institute of Industrial Technology (KEIT), Ministry of Trade, Industry and Energy, Republic of Korea
- NRF-2018R1A5A2024425 National Research Foundation (NRF), Ministry of Science and ICT, Republic of Korea
- RS-2024-00350161 National Research Foundation (NRF), Ministry of Science and ICT, Republic of Korea
Collapse
Affiliation(s)
- Qiaoyun Li
- College of Pharmacy and Research Institute of Pharmaceutical SciencesSeoul National UniversitySeoul08826Republic of Korea
| | - Jinwon Park
- College of Pharmacy and Research Institute of Pharmaceutical SciencesSeoul National UniversitySeoul08826Republic of Korea
| | - Jung Suk Kim
- College of Pharmacy and Research Institute of Pharmaceutical SciencesSeoul National UniversitySeoul08826Republic of Korea
| | - Quoc‐Viet Le
- Faculty of PharmacyTon Duc Thang UniversityHo Chi Minh City700000Vietnam
| | - Jaiwoo Lee
- College of PharmacyKorea UniversitySejong30019Republic of Korea
| | - Yu‐Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical SciencesSeoul National UniversitySeoul08826Republic of Korea
| |
Collapse
|
16
|
Yadav K, Sahu KK, Sucheta, Minz S, Pradhan M. Unlocking exosome therapeutics: The critical role of pharmacokinetics in clinical applications. Tissue Cell 2025; 93:102749. [PMID: 39904192 DOI: 10.1016/j.tice.2025.102749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 02/06/2025]
Abstract
Exosomes are microscopic vesicles released by cells that transport various biological materials and play a vital role in intercellular communication. When they are engineered, they serve as efficient delivery systems for therapeutic agents, making it possible to precisely deliver active pharmaceutical ingredients to organs, tissues, and cells. Exosomes' pharmacokinetics, or how they are transported and metabolized inside the body, is affected by several factors, including their source of origination and the proteins in their cell membranes. The pharmacokinetics and mobility of both native and modified exosomes are being observed in living organisms using advanced imaging modalities such as in vitro-in vivo simulation, magnetic resonance imaging, and positron emission tomography. Establishing comprehensive criteria for the investigation of exosomal pharmacokinetic is essential, given its increasing significance in both therapy and diagnostics. To obtain a thorough understanding of exosome intake, distribution, metabolism, and excretion, molecular imaging methods are crucial. The development of industrial processes and therapeutic applications depends on the precise measurement of exosome concentration in biological samples. To ensure a seamless incorporation of exosomes into clinical practice, as their role in therapeutics grows, it is imperative to conduct a complete assessment of their pharmacokinetics. This review provides a brief on how exosome-based research is evolving and the need for pharmacokinetic consideration to realize the full potential of these promising new therapeutic approaches.
Collapse
Affiliation(s)
- Krishna Yadav
- Rungta College of Pharmaceutical Sciences and Research, Kohka Road, Kurud, Bhilai, Chhattisgarh 491024, India
| | - Kantrol Kumar Sahu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Sucheta
- School of Medical and Allied Sciences, K. R. Mangalam University, Gurugram, Haryana 11 122103, India
| | - Sunita Minz
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, India
| | | |
Collapse
|
17
|
Yao TT, Chen L, Du Y, Jiang ZY, Cheng Y. MicroRNAs as Regulators, Biomarkers, and Therapeutic Targets in Autism Spectrum Disorder. Mol Neurobiol 2025; 62:5039-5056. [PMID: 39503812 DOI: 10.1007/s12035-024-04582-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/22/2024] [Indexed: 03/05/2025]
Abstract
The pathogenesis of autism spectrum disorder (ASD) is complex and is mainly influenced by genetic and environmental factors. Some research has indicated that environmental aspects may interplay with genetic aspects to enhance the risk, and microRNAs (miRNAs) are probably factors in explaining this link between heredity and the environment. MiRNAs are single-stranded noncoding RNAs that can regulate gene expression at the posttranscriptional level. Some research has indicated that miRNAs are closely linked to neurological diseases. Many aberrantly expressed miRNAs have been observed in autism, and these dysregulated miRNAs are expected to be potential biomarkers and provide new strategies for the treatment of this disease. This article reviews the research progress of miRNAs in autism, including their biosynthesis and function. It is found that some miRNAs show aberrant expression patterns in brain tissue and peripheral blood of autistic patients, which may serve as biomarkers of the disease. In addition, the article explores the novel role of exosomes as carriers of miRNAs with the ability to cross the blood-brain barrier and unique expression profiles, offering new possibilities for diagnostic and therapeutic interventions in ASD. The potential of miRNAs in exosomes as diagnostic markers for ASD is specifically highlighted, as well as the prospect of using engineered exosome-encapsulated miRNAs for targeted therapies.
Collapse
Affiliation(s)
- Tong-Tong Yao
- Center On Translational Neuroscience, Institute of National Security, Minzu University of China, 27th South Zhongguancun Avenue, Beijing, 100081, China
- School of Ethnology and Sociology, Minzu University of China, Beijing, China
| | - Lei Chen
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China
| | - Yang Du
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China
| | - Zhong-Yong Jiang
- Department of Medical Laboratory, Affiliated Cancer Hospital of Chengdu Medical College, Chengdu Seventh People's Hospital, Chengdu, China.
| | - Yong Cheng
- Center On Translational Neuroscience, Institute of National Security, Minzu University of China, 27th South Zhongguancun Avenue, Beijing, 100081, China.
- Center On Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China.
| |
Collapse
|
18
|
Wu J, Lu J, Pan MZ, Gu XC, Dai L, Wang Y, Shen B, Zhang XB. Update on the roles and applications of extracellular vesicles in depression. World J Psychiatry 2025; 15:102643. [PMID: 40110012 PMCID: PMC11886331 DOI: 10.5498/wjp.v15.i3.102643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/23/2024] [Accepted: 01/22/2025] [Indexed: 02/26/2025] Open
Abstract
Depression is a prevalent mental disorder that affects numerous individuals, manifesting as persistent anhedonia, sadness, and hopelessness. Despite extensive research, the exact causes and optimal treatment approaches for depression remain unclear. Extracellular vesicles (EVs), which carry biological molecules such as proteins, lipids, nucleic acids, and metabolites, have emerged as crucial players in both pathological and physiological processes. EVs derived from various sources exert distinct effects on depression. Specifically, EVs released by neurons, astrocytes, microglia, oligodendrocytes, immune cells, stem cells, and even bacteria contribute to the pathogenesis of depression. Moreover, there is growing interest in potential of EVs as diagnostic and therapeutic tools for depression. This review provides a comprehensive overview of recent research on EVs from different sources, their roles in depression, and their potential clinical applications.
Collapse
Affiliation(s)
- Jing Wu
- Laboratory Medicine, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu Province, China
| | - Jian Lu
- Laboratory Medicine, The Second Affiliated Hospital of Soochow University, Suzhou 215000, Jiangsu Province, China
| | - Ming-Zhi Pan
- Laboratory Medicine, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu Province, China
| | - Xiao-Chu Gu
- Laboratory Medicine, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu Province, China
| | - Lu Dai
- Laboratory Medicine, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu Province, China
| | - Yun Wang
- Laboratory Medicine, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu Province, China
| | - Bin Shen
- Laboratory Medicine, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu Province, China
| | - Xiao-Bin Zhang
- Department of Psychiatry, Suzhou Psychiatric Hospital, Institute of Mental Health, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu Province, China
| |
Collapse
|
19
|
Carbajal C, Rodriguez M, Owens F, Stone N, Veeragoni D, Fan RZ, Tieu K, El-Hage N. Therapeutic Efficacy of Small Extracellular Vesicles Loaded with ROCK Inhibitor in Parkinson's Disease. Pharmaceutics 2025; 17:365. [PMID: 40143028 PMCID: PMC11944340 DOI: 10.3390/pharmaceutics17030365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 02/28/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: Parkinson's disease (PD) is a rapidly growing neurological disorder in the developed world, affecting millions over the age of 60. The decline in motor functions occurs due to a progressive loss of midbrain dopaminergic neurons, resulting in lowered dopamine levels and impaired muscle function. Studies show defective mitochondrial autophagy (or "mitophagy") links to PD. Rho-associated coiled-coil containing protein kinases (ROCK) 1 and ROCK2 are serine/threonine kinases, and their inhibition can enhance neuroprotection in PD by promoting mitophagy. Methods: We examine the effects of ROCK inhibitor SR3677, delivered via macrophage-derived small extracellular vesicles (sEVs) to Parkin Q311X(A) PD mouse models. sEVs with SR3677, administered intranasally, increased mitophagy gene expression, reduced inflammatory factors, and elevated dopamine levels in brain tissues. Results: ROCK2 expression decreased, showing the drug's inhibitory effect. sEV-SR3677 treatment was more effective than treatment with the drug alone, although sham EVs showed lower effects. This suggests that EV-SR3677 not only activates mitochondrial processes but also promotes the degradation of damaged mitochondria through autophagy. Mitochondrial functional assays and oxygen consumption in ex vivo glial cultures revealed that sEV-SR3677 significantly improved mitochondrial respiration compared to that in untreated or SR3677-only treated cells. Conclusion: We demonstrated the efficacy of ROCK2 inhibition on mitochondrial function via sEV-SR3677 in the PD mouse model, necessitating further studies to explore design challenges and mechanisms of sEV-SR3677 as mitochondria-targeted therapy for PD.
Collapse
Affiliation(s)
- Candy Carbajal
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (C.C.); (M.R.); (F.O.); (N.S.); (D.V.)
| | - Myosotys Rodriguez
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (C.C.); (M.R.); (F.O.); (N.S.); (D.V.)
| | - Florida Owens
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (C.C.); (M.R.); (F.O.); (N.S.); (D.V.)
| | - Nicole Stone
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (C.C.); (M.R.); (F.O.); (N.S.); (D.V.)
| | - Dileepkumar Veeragoni
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (C.C.); (M.R.); (F.O.); (N.S.); (D.V.)
| | - Rebecca Z. Fan
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL 33199, USA; (R.Z.F.); (K.T.)
| | - Kim Tieu
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL 33199, USA; (R.Z.F.); (K.T.)
| | - Nazira El-Hage
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (C.C.); (M.R.); (F.O.); (N.S.); (D.V.)
| |
Collapse
|
20
|
Yang Y, Deng C, Aldali F, Huang Y, Luo H, Liu Y, Huang D, Cao X, Zhou Q, Xu J, Li Y, Chen H. Therapeutic Approaches and Potential Mechanisms of Small Extracellular Vesicles in Treating Vascular Dementia. Cells 2025; 14:409. [PMID: 40136659 PMCID: PMC11941715 DOI: 10.3390/cells14060409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/26/2025] [Accepted: 03/10/2025] [Indexed: 03/27/2025] Open
Abstract
Small extracellular vesicles (sEVs), including exosomes as a subtype, with a diameter typically less than 200 nm and originating from the endosomal system, are capable of transporting a diverse array of bioactive molecules, including proteins, nucleic acids, and lipids, thereby facilitating intercellular communication and modulating cellular functions. Vascular dementia (VaD) represents a form of cognitive impairment attributed to cerebrovascular disease, characterized by a complex and multifaceted pathophysiological mechanism. Currently, the therapeutic approach to VaD predominantly emphasizes symptom management, as no specific pharmacological treatment exists to cure the condition. Recent investigations have illuminated the significant role of sEVs in the pathogenesis of vascular dementia. This review seeks to provide a comprehensive analysis of the characteristics and functions of sEVs, with a particular focus on their involvement in vascular dementia and its underlying mechanisms. The objective is to advance the understanding of the interplays between sEVs and vascular dementia, thereby offering novel insights for future research and therapeutic strategies.
Collapse
Affiliation(s)
- Yujie Yang
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Y.); (C.D.); (F.A.); (Y.H.); (H.L.); (Y.L.); (D.H.); (X.C.); (Q.Z.); (J.X.); (Y.L.)
| | - Chunchu Deng
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Y.); (C.D.); (F.A.); (Y.H.); (H.L.); (Y.L.); (D.H.); (X.C.); (Q.Z.); (J.X.); (Y.L.)
| | - Fatima Aldali
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Y.); (C.D.); (F.A.); (Y.H.); (H.L.); (Y.L.); (D.H.); (X.C.); (Q.Z.); (J.X.); (Y.L.)
| | - Yunjie Huang
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Y.); (C.D.); (F.A.); (Y.H.); (H.L.); (Y.L.); (D.H.); (X.C.); (Q.Z.); (J.X.); (Y.L.)
| | - Hongmei Luo
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Y.); (C.D.); (F.A.); (Y.H.); (H.L.); (Y.L.); (D.H.); (X.C.); (Q.Z.); (J.X.); (Y.L.)
| | - Yizhou Liu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Y.); (C.D.); (F.A.); (Y.H.); (H.L.); (Y.L.); (D.H.); (X.C.); (Q.Z.); (J.X.); (Y.L.)
| | - Danxia Huang
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Y.); (C.D.); (F.A.); (Y.H.); (H.L.); (Y.L.); (D.H.); (X.C.); (Q.Z.); (J.X.); (Y.L.)
| | - Xiaojian Cao
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Y.); (C.D.); (F.A.); (Y.H.); (H.L.); (Y.L.); (D.H.); (X.C.); (Q.Z.); (J.X.); (Y.L.)
| | - Qiuzhi Zhou
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Y.); (C.D.); (F.A.); (Y.H.); (H.L.); (Y.L.); (D.H.); (X.C.); (Q.Z.); (J.X.); (Y.L.)
| | - Jia Xu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Y.); (C.D.); (F.A.); (Y.H.); (H.L.); (Y.L.); (D.H.); (X.C.); (Q.Z.); (J.X.); (Y.L.)
- Stem Cell Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yajie Li
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Y.); (C.D.); (F.A.); (Y.H.); (H.L.); (Y.L.); (D.H.); (X.C.); (Q.Z.); (J.X.); (Y.L.)
| | - Hong Chen
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Y.); (C.D.); (F.A.); (Y.H.); (H.L.); (Y.L.); (D.H.); (X.C.); (Q.Z.); (J.X.); (Y.L.)
- Stem Cell Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
21
|
Liu M, Wang Y, Zhang Y, Hu D, Tang L, Zhou B, Yang L. Landscape of small nucleic acid therapeutics: moving from the bench to the clinic as next-generation medicines. Signal Transduct Target Ther 2025; 10:73. [PMID: 40059188 PMCID: PMC11891339 DOI: 10.1038/s41392-024-02112-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/23/2024] [Accepted: 12/13/2024] [Indexed: 03/17/2025] Open
Abstract
The ability of small nucleic acids to modulate gene expression via a range of processes has been widely explored. Compared with conventional treatments, small nucleic acid therapeutics have the potential to achieve long-lasting or even curative effects via gene editing. As a result of recent technological advances, efficient small nucleic acid delivery for therapeutic and biomedical applications has been achieved, accelerating their clinical translation. Here, we review the increasing number of small nucleic acid therapeutic classes and the most common chemical modifications and delivery platforms. We also discuss the key advances in the design, development and therapeutic application of each delivery platform. Furthermore, this review presents comprehensive profiles of currently approved small nucleic acid drugs, including 11 antisense oligonucleotides (ASOs), 2 aptamers and 6 siRNA drugs, summarizing their modifications, disease-specific mechanisms of action and delivery strategies. Other candidates whose clinical trial status has been recorded and updated are also discussed. We also consider strategic issues such as important safety considerations, novel vectors and hurdles for translating academic breakthroughs to the clinic. Small nucleic acid therapeutics have produced favorable results in clinical trials and have the potential to address previously "undruggable" targets, suggesting that they could be useful for guiding the development of additional clinical candidates.
Collapse
Affiliation(s)
- Mohan Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yusi Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yibing Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Die Hu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lin Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bailing Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
22
|
Yang C, Song Y, Luo M, Wang Q, Zhang Y, Cen J, Du G, Shi J. Exosomes-encapsulated biomimetic polydopamine carbon dots with dual-targeting effect alleviate motor and non-motor symptoms of Parkinson's disease via anti-neuroinflammation. Int J Biol Macromol 2025; 296:139724. [PMID: 39809402 DOI: 10.1016/j.ijbiomac.2025.139724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/22/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
Currently, the clinical drugs for Parkinson's disease (PD) only focus on motor symptoms, while non-motor symptoms like depression are usually neglected. Even though, the efficacy of existing neurotherapeutic drugs is extremely poor which is due to the blood brain barrier (BBB). Therefore, a biomimetic polydopamine carbon dots (PDA C-dots) at 2-4 nm was synthesized, while exosomes from macrophages were applied to encapsulate PDA C-dots for improving their BBB-crossing ability and inflammation-targeting effect. Importantly, the prepared PDA C-dots@Exosomes (PEs) significantly alleviated both motor and non-motor symptoms of PD mice. Further mechanism research revealed that PEs eliminated oxidant stress and alleviated neuroinflammation to restore the injured neurons. The content of α-syn was markedly reduced, and the neural viability was dramatically improved on the areas of substantia nigra, striata, and prefrontal cortex. In summary, this work reported a mild synthetic approach to produce a kind of PDA C-dots, which had a fantastic neuroprotective effect. After being encapsulated with exosomes of macrophages, the obtained PEs could be utilized as a neuroprotective drug with great penetration ability of BBB and targeting ability into inflammatory zone. The great therapeutic effect on both motor and non-motor symptoms of PD indicates that PEs could become a promising drug for PD treatment.
Collapse
Affiliation(s)
- Chen Yang
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan 475004, China; State Key Laboratory of Antiviral Drugs Henan University, Henan University, Kaifeng, Henan 475004, China
| | - Yanhao Song
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan 475004, China; State Key Laboratory of Antiviral Drugs Henan University, Henan University, Kaifeng, Henan 475004, China
| | - Mingkai Luo
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan 475004, China; State Key Laboratory of Antiviral Drugs Henan University, Henan University, Kaifeng, Henan 475004, China
| | - Qiuli Wang
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan 475004, China; State Key Laboratory of Antiviral Drugs Henan University, Henan University, Kaifeng, Henan 475004, China
| | - Yumei Zhang
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan 475004, China; State Key Laboratory of Antiviral Drugs Henan University, Henan University, Kaifeng, Henan 475004, China
| | - Juan Cen
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan 475004, China; State Key Laboratory of Antiviral Drugs Henan University, Henan University, Kaifeng, Henan 475004, China.
| | - Guanhua Du
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan 475004, China; State Key Laboratory of Antiviral Drugs Henan University, Henan University, Kaifeng, Henan 475004, China.
| | - Jiahua Shi
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan 475004, China; State Key Laboratory of Antiviral Drugs Henan University, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
23
|
Kostyusheva A, Romano E, Yan N, Lopus M, Zamyatnin AA, Parodi A. Breaking barriers in targeted Therapy: Advancing exosome Isolation, Engineering, and imaging. Adv Drug Deliv Rev 2025; 218:115522. [PMID: 39855273 DOI: 10.1016/j.addr.2025.115522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/23/2024] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
Exosomes have emerged as promising tools for targeted drug delivery in biomedical applications and medicine. This review delves into the scientific advancements, challenges, and future prospects specifically associated with these technologies. In this work, we trace the research milestones that led to the discovery and characterization of exosomes and extracellular vesicles, and discuss strategies for optimizing the synthetic yield and the loading of these particles with various therapeutics. In addition, we report the current major issues affecting the field and hampering the clinical translation of these technologies. Highlighting the pivotal role of imaging techniques, we explore how they drive exosome therapy and development by offering insights into biodistribution and cellular trafficking dynamics. Methodologies for vesicle isolation, characterization, loading, and delivery mechanisms are thoroughly examined, alongside strategies aimed at enhancing their therapeutic efficacy. Special emphasis was dedicated to their therapeutic properties, particularly to their ability to deliver biologics into the cytoplasm. Furthermore, we delve into the intricate balance between surface modifications and targeting properties including also transgenic methods aimed at their functionalization and visualization within biological systems. This review underscores the transformative potential of these carriers in targeted drug delivery and identifies crucial areas for further research and clinical translation.
Collapse
Affiliation(s)
- Anastasiya Kostyusheva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia
| | | | - Neng Yan
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Manu Lopus
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai Kalina Campus, Vidyanagari, Mumbai 400098, India
| | - Andrey A Zamyatnin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; Department of Biological Chemistry, Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991 Moscow, Russia
| | - Alessandro Parodi
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia; Scientific Center for Translational Medicine, Sirius University of Science and Technology, 354340, Sirius, Krasnodar Region, Russia.
| |
Collapse
|
24
|
Ge K, Bai Z, Wang J, Li Z, Gao F, Liu S, Zhang L, Gao F, Xie C. Engineering EVs-Mediated mRNA Delivery Regulates Microglia Function and Alleviates Depressive-Like Behaviors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2418872. [PMID: 39838773 DOI: 10.1002/adma.202418872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/13/2025] [Indexed: 01/23/2025]
Abstract
The development of new non-neurotransmitter drugs is an important supplement to the clinical treatment of major depressive disorder. The latest development of mRNA therapy provides the possibility for the treatment of some major diseases. The endoplasmic reticulum (ER) and mitochondria constitute a highly interconnected set of fundamental organelles within cells. The interconnection between them forms specific microdomains that play pivotal roles in calcium signaling, mitochondrial dynamics, inflammation, and autophagy. Perturbations in ER-mitochondrial connections may contribute to the progression of neurological disorders and other diseases. Herein, an extracellular vesicles-based delivery system, grounded in mRNA gene therapy and integrated with nanomedicine technology is devised. This system is engineered to traverse the blood-brain barrier and specifically target the central nervous system (CNS), facilitating the simultaneous delivery of mRNA drugs and metallic nanozymes into the brain. This dual-pronged approach, targeting ER and mitochondrial crosstalk, inhibits microglial overactivation, promotes M2 polarization of microglia, and suppresses the NF-κB signaling pathway. Consequently, it significantly alleviates Lipopolysaccharides-induced neuroinflammatory responses and ameliorates anxiety- and depression-like behaviors. This study demonstrates a novel antidepressant therapeutic strategy and establishes a new paradigm for mRNA gene therapy in CNS diseases.
Collapse
Affiliation(s)
- Kezhen Ge
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Jiangsu, 210009, P. R. China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, P. R. China
| | - Zetai Bai
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, P. R. China
| | - Jiwei Wang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Jiangsu, 210009, P. R. China
| | - Zheng Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, P. R. China
| | - Fenfang Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, P. R. China
| | - Sangni Liu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Jiangsu, 210009, P. R. China
| | - Ling Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Jiangsu, 210009, P. R. China
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, P. R. China
| | - Chunming Xie
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Jiangsu, 210009, P. R. China
| |
Collapse
|
25
|
Qian L, Chen P, Zhang S, Wang Z, Guo Y, Koutouratsas V, Fleishman JS, Huang C, Zhang S. The uptake of extracellular vesicles: Research progress in cancer drug resistance and beyond. Drug Resist Updat 2025; 79:101209. [PMID: 39893749 DOI: 10.1016/j.drup.2025.101209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/22/2025] [Accepted: 01/26/2025] [Indexed: 02/04/2025]
Abstract
Extracellular vesicles (EVs) are heterogeneous vesicles released by donor cells that can be taken up by recipient cells, thus inducing cellular phenotype changes. Since their discovery decades ago, roles of EVs in modulating initiation, growth, survival and metastasis of cancer have been revealed. Recent studies from multifaceted perspectives have further detailed the contribution of EVs to cancer drug resistance; however, the role of EV uptake in conferring drug resistance seems to be overlooked. In this comprehensive review, we update the EV subtypes and approaches for determining EV uptake. The biological basis of EV uptake is systematically summarized. Moreover, we focus on the diverse uptake mechanisms by which EVs carry out the intracellular delivery of functional molecules and drug resistance signaling. Furthermore, we highlight how EV uptake confers drug resistance and identify potential strategies for targeting EV uptake to overcome drug resistance. Finally, we discuss the research gap on the role of EV uptake in promoting drug resistance. This updated knowledge provides a new avenue to overcome cancer drug resistance by targeting EV uptake.
Collapse
Affiliation(s)
- Luomeng Qian
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Pangzhou Chen
- Department of Breast Surgery, Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan 528200, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China
| | - Zhenglu Wang
- Department of Pathology, Tianjin Key Laboratory for Organ Transplantation, Tianjin First Centre Hospital, Tianjin 300192, China
| | - Yuan Guo
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Vasili Koutouratsas
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Chuanqiang Huang
- Department of Breast Surgery, Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan 528200, China
| | - Sihe Zhang
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
26
|
Shi X, He W, Gupta A, To K, Clark L, Mirle N, Wynn T, Wang D, Ganesh A, Zeng HM, Wang H. Extracellular vesicles as drug and gene delivery vehicles in central nervous system diseases. Biomater Sci 2025; 13:1161-1178. [PMID: 39871579 PMCID: PMC11773327 DOI: 10.1039/d4bm01394h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 01/08/2025] [Indexed: 01/29/2025]
Abstract
Extracellular vesicles (EVs) are secreted by almost all cell types and contain DNA, RNA, proteins, lipids and other metabolites. EVs were initially believed to be cellular waste but now recognized for their role in cell-to-cell communication. Later, EVs from immune cells were discovered to function similarly to their parent cells, paving the way for their use as gene and drug carriers. EVs from different cell types or biological fluids carry distinct cargo depending on their origin, and they perform diverse functions. For instance, EVs derived from stem cells possess pluripotent properties, reflecting the cargo from their parent cells. Over the past two decades, substantial preclinical and clinical research has explored EVs-mediated drug and gene delivery to various organs, including the brain. Natural or intrinsic EVs may be effective for certain applications, but as drug or gene carriers, they demonstrate broader and more efficient potential across various diseases. Here, we review research on using EVs to treat central nervous system (CNS) diseases, such as Alzheimer's Disease, Parkinson diseases, depression, anxiety, dementia, and acute ischemic strokes. We first reviewed the naïve EVs, especially mesenchymal stem cell (MSC) derived EVs in CNS diseases and summarized the clinical trials of EVs in treating CNS diseases and highlighted the reports of two complete trials. Then, we overviewed the preclinical research of EVs as drug and gene delivery vehicles in CNS disease models, including the most recent two years' progress and discussed the mechanisms and new methods of engineered EVs for targeting CNS. Finally, we discussed challenges and future directions and of EVs as personalized medicine for CNS diseases.
Collapse
Affiliation(s)
- Xi Shi
- Department of Molecular Bioscience, The University of Texas at Austin, Austin, Texas 78712, USA.
| | - Weilong He
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Ashwin Gupta
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Kyran To
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Leonardo Clark
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Nitya Mirle
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Thomas Wynn
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Daniel Wang
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Akash Ganesh
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Helena M Zeng
- Department of Neuroscience, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Huiliang Wang
- Department of Molecular Bioscience, The University of Texas at Austin, Austin, Texas 78712, USA.
- Biomedical Engineering Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
27
|
Zhu L, Ahn BC. Natural Killer Cell-Derived Exosome Mimetics as Natural Nanocarriers for In Vitro Delivery of Chemotherapeutics to Thyroid Cancer Cells. Exp Oncol 2025; 46:358-367. [PMID: 39985349 DOI: 10.15407/exp-oncology.2024.04.358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Indexed: 02/24/2025]
Abstract
BACKGROUND Exosomes have become a potential field of nanotechnology for the treatment and identification of many disorders. However, the generation of exosomes is a difficult, time-consuming, and low-yielding procedure. At the same time, exosome mimetics (EM) resemble exosomes in their characteristics but have higher production yields. The aim of this study was to produce natural killer (NK) cell-derived EM (NKEM) loaded with sorafenib and test their killing ability against thyroid cancer cell lines. MATERIALS AND METHODS Sorafenib was loaded into NKEM by mixing sorafenib with NK cells during NKEM production (NKEM-S). Then, these two types of nanoparticles were characterized with nanoparticle tracking analysis (NTA) to measure their sizes. In addition, the cellular uptake and in vitro killing effect of NKEM-S on thyroid cancer cell lines were investigated using confocal laser microscopy and bioluminescence imaging (BLI) techniques. RESULTS The uptake of NKEM and NKEM-S by the thyroid cancer cells was observed. Moreover, BLI confirmed the killing and anti-proliferation effect of NKEM-S on two thyroid cancer cell lines. Especially important, the NKEM-S demonstrated a desirable killing effect even for anaplastic thyroid cancer (ATC) cells. CONCLUSION Sorafenib-loaded NKEM showed the ability to kill thyroid cancer cells in vitro, even against ATC. This provides a new opportunity for drug delivery systems and thyroid cancer treatment.
Collapse
Affiliation(s)
- L Zhu
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, South Korea
| | - B-C Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, South Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, South Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
28
|
Henke L, Ghorbani A, Mole SE. The use of nanocarriers in treating Batten disease: A systematic review. Int J Pharm 2025; 670:125094. [PMID: 39694161 DOI: 10.1016/j.ijpharm.2024.125094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/09/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
The neuronal ceroid lipofuscinoses, commonly known as Batten disease, are a group of lysosomal storage disorders affecting children. There is extensive central nervous system and retinal degeneration, resulting in seizures, vision loss and a progressive cognitive and motor decline. Enzyme replacement and gene therapies are being developed, and mRNA and oligonucleotide therapies are more recently being considered. Overcoming the challenges of the blood-brain barrier and blood-ocular barrier is crucial for effectively targeting the brain and eye, whatever the therapeutic approach. Nanoparticles and extracellular vesicles are small carriers that can encapsulate a cargo and pass through these cell barriers. They have been investigated as drug carriers for other pathologies and could be a promising treatment strategy for Batten disease. Their use in gene, enzyme, or mRNA replacement therapy of all lysosomal storage disorders, including Mucopolysaccharidoses, Niemann-Pick diseases, and Fabry disease, is investigated in this systematic review. Different nanocarriers can efficiently target the lysosome and cross the barriers into the brain and eyes. This supports continued exploration of nanocarriers as potential future treatment options for Batten disease.
Collapse
Affiliation(s)
- Larissa Henke
- Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Ali Ghorbani
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Sara E Mole
- Great Ormond Street Institute of Child Health, University College London, London WC1E 6BT, UK.
| |
Collapse
|
29
|
Ghoshal B, Jhunjhunwala S. A game of hide-and-seek: how extracellular vesicles evade the immune system. Drug Deliv Transl Res 2025:10.1007/s13346-025-01789-w. [PMID: 39843837 DOI: 10.1007/s13346-025-01789-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2024] [Indexed: 01/24/2025]
Abstract
Extracellular vesicles (EVs) are heterogeneously sized, cell-derived nanoparticles operating as proficient mediators of intercellular communication. They are produced by normal as well as diseased cells and carry a variety of cargo. While the molecular details of EV biology have been worked out over the past two decades, one question that continues to intrigue many is how are EVs able to evade the phagocytic immune cells while also being effectively internalized by the target cell or tissue. While some of the components that facilitate this process have started to be identified, many mechanisms are yet to be dissected. This review summarises some of the key mechanisms that cancer cell-derived and viral infected cell-derived EVs utilize to evade the immune system. It will discuss the diverse cloaking mechanisms, in the form of membrane proteins and cargo content that these EVs utilize to enhance pathogenesis. Further, it will highlight the different strategies that have been used to design EVs to escape the immune system, thereby increasing their circulation time with no major toxic effects in vivo. An understanding of the potential EV components that allow better immune evasion can be used to bioengineer EVs with better circulation times for therapeutic purposes.
Collapse
Affiliation(s)
- Bartika Ghoshal
- Department of Bioengineering, Indian Institute of Science, Bengaluru, 560012, India.
| | | |
Collapse
|
30
|
Lin F, Luo H, Wang J, Li Q, Zha L. Macrophage-derived extracellular vesicles as new players in chronic non-communicable diseases. Front Immunol 2025; 15:1479330. [PMID: 39896803 PMCID: PMC11782043 DOI: 10.3389/fimmu.2024.1479330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/23/2024] [Indexed: 02/04/2025] Open
Abstract
Macrophages are innate immune cells present in all tissues and play an important role in almost all aspects of the biology of living organisms. Extracellular vesicles (EVs) are released by cells and transport their contents (micro RNAs, mRNA, proteins, and long noncoding RNAs) to nearby or distant cells for cell-to-cell communication. Numerous studies have shown that macrophage-derived extracellular vesicles (M-EVs) and their contents play an important role in a variety of diseases and show great potential as biomarkers, therapeutics, and drug delivery vehicles for diseases. This article reviews the biological functions and mechanisms of M-EVs and their contents in chronic non-communicable diseases such as cardiovascular diseases, metabolic diseases, cancer, inflammatory diseases and bone-related diseases. In addition, the potential application of M-EVs as drug delivery systems for various diseases have been summarized.
Collapse
Affiliation(s)
- Fengjuan Lin
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Huiyu Luo
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiexian Wang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Qing Li
- Department of Clinical Nutrition, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Longying Zha
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
31
|
Zhu A, Jiang Y, Pan L, Li J, Huang Y, Shi M, Di L, Wang L, Wang R. Cell inspired delivery system equipped with natural membrane structures in applications for rescuing ischemic stroke. J Control Release 2025; 377:54-80. [PMID: 39547421 DOI: 10.1016/j.jconrel.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/10/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Ischemic stroke (IS), accounting for 87 % of stroke incidences, constitutes a paramount health challenge owing to neurological impairments and irreversible tissue damage arising from cerebral ischemia. Chief among therapeutic obstacles are the restrictive penetration of the blood-brain barrier (BBB) and insufficient targeting precision, hindering the accumulation of drugs in ischemic brain areas. Motivated by the remarkable capabilities of natural membrane-based delivery vehicles in achieving targeted delivery and traversing the BBB, thanks to their biocompatible architecture and bioactive components, numerous membrane-engineered systems such as cells, cell membranes and extracellular vesicles have emerged as promising platforms to augment IS treatment efficacy with the help of nanotechnology. This review consolidates the primary pathological manifestations following IS, elucidates the unique functionalities of natural membrane drug delivery systems (DDSs) with nanotechnology, as well as delineates the structural characteristics of various natural membranes alongside rational design strategies employed. The review illuminates both the potential and challenges encountered when employing natural membrane DDSs in IS drug therapy, offering fresh perspectives and insights for devising efficacious and practical delivery systems tailored to IS intervention.
Collapse
Affiliation(s)
- Anran Zhu
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yingyu Jiang
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Longxiang Pan
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiale Li
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yao Huang
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Minghui Shi
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Liuqing Di
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Ruoning Wang
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
32
|
Lerussi G, Villagrasa-Araya V, Moltó-Abad M, del Toro M, Pintos-Morell G, Seras-Franzoso J, Abasolo I. Extracellular Vesicles as Tools for Crossing the Blood-Brain Barrier to Treat Lysosomal Storage Diseases. Life (Basel) 2025; 15:70. [PMID: 39860010 PMCID: PMC11766495 DOI: 10.3390/life15010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/03/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Extracellular vesicles (EVs) are nanosized, membrane-bound structures that have emerged as promising tools for drug delivery, especially in the treatment of lysosomal storage disorders (LSDs) with central nervous system (CNS) involvement. This review highlights the unique properties of EVs, such as their biocompatibility, capacity to cross the blood-brain barrier (BBB), and potential for therapeutic cargo loading, including that of enzymes and genetic material. Current therapies for LSDs, like enzyme replacement therapy (ERT), often fail to address neurological symptoms due to their inability to cross the BBB. EVs offer a viable alternative, allowing for targeted delivery to the CNS and improving therapeutic outcomes. We discuss recent advancements in the engineering and modification of EVs to enhance targeting, circulation time and cargo stability, and provide a detailed overview of their application in LSDs, such as Gaucher and Fabry diseases, and Sanfilippo syndrome. Despite their potential, challenges remain in scaling production, ensuring isolation purity, and meeting regulatory requirements. Future developments will focus on overcoming these barriers, paving the way for the clinical translation of EV-based therapies in LSDs and other CNS disorders.
Collapse
Affiliation(s)
- Giovanni Lerussi
- Clinical Biochemistry, Drug Delivery & Therapy (CB-DDT), Vall d’Hebron Institute of Research (VHIR), 08035 Barcelona, Spain; (G.L.); (V.V.-A.); (M.M.-A.); (G.P.-M.); (J.S.-F.)
| | - Verónica Villagrasa-Araya
- Clinical Biochemistry, Drug Delivery & Therapy (CB-DDT), Vall d’Hebron Institute of Research (VHIR), 08035 Barcelona, Spain; (G.L.); (V.V.-A.); (M.M.-A.); (G.P.-M.); (J.S.-F.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08035 Barcelona, Spain
- Institute of Advanced Chemistry of Catalonia (IQAC), Centro Superior de Investigaciones Científicas (CSIC), 08034 Barcelona, Spain
| | - Marc Moltó-Abad
- Clinical Biochemistry, Drug Delivery & Therapy (CB-DDT), Vall d’Hebron Institute of Research (VHIR), 08035 Barcelona, Spain; (G.L.); (V.V.-A.); (M.M.-A.); (G.P.-M.); (J.S.-F.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08035 Barcelona, Spain
| | - Mireia del Toro
- Pediatric Neurology Unit, Hospital Universitari Vall d’Hebron and MetabERN, 08035 Barcelona, Spain;
- Networking Research Center on Rare Diseases (CIBERER), 08035 Barcelona, Spain
| | - Guillem Pintos-Morell
- Clinical Biochemistry, Drug Delivery & Therapy (CB-DDT), Vall d’Hebron Institute of Research (VHIR), 08035 Barcelona, Spain; (G.L.); (V.V.-A.); (M.M.-A.); (G.P.-M.); (J.S.-F.)
| | - Joaquin Seras-Franzoso
- Clinical Biochemistry, Drug Delivery & Therapy (CB-DDT), Vall d’Hebron Institute of Research (VHIR), 08035 Barcelona, Spain; (G.L.); (V.V.-A.); (M.M.-A.); (G.P.-M.); (J.S.-F.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08035 Barcelona, Spain
| | - Ibane Abasolo
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08035 Barcelona, Spain
- Institute of Advanced Chemistry of Catalonia (IQAC), Centro Superior de Investigaciones Científicas (CSIC), 08034 Barcelona, Spain
| |
Collapse
|
33
|
Gillett DA, Tigro H, Wang Y, Suo Z. FMR1 Disorders: Basics of Biology and Therapeutics in Development. Cells 2024; 13:2100. [PMID: 39768191 PMCID: PMC11674747 DOI: 10.3390/cells13242100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Fragile X Syndrome (FXS) presents with a constellation of phenotypes, including trouble regulating emotion and aggressive behaviors, disordered sleep, intellectual impairments, and atypical physical development. Genetic study of the X chromosome revealed that substantial repeat expansion of the 5' end of the gene fragile X messenger ribonucleoprotein 1 (FMR1) promoted DNA methylation and, consequently, silenced expression of FMR1. Further analysis proved that shorter repeat expansions in FMR1 also manifested in disease at later stages in life. Treatment and therapy options do exist, but they only manage symptoms. Up to now, no cure for FMR1 disorders exists. In this review, we aim to provide an overview of FMR1 biology and the latest research focused on developing therapeutic interventions that can potentially prevent and/or reverse FXS.
Collapse
Affiliation(s)
| | | | | | - Zucai Suo
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
34
|
Saleem M, Shahzad KA, Marryum M, Singh S, Zhou Q, Du S, Wang S, Shao C, Shaikh II. Exosome-based therapies for inflammatory disorders: a review of recent advances. Stem Cell Res Ther 2024; 15:477. [PMID: 39695750 DOI: 10.1186/s13287-024-04107-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024] Open
Abstract
Exosomes, small extracellular vesicles secreted by cells, have emerged as focal mediators in intercellular communication and therapeutic interventions across diverse biomedical fields. Inflammatory disorders, including inflammatory bowel disease, acute liver injury, lung injury, neuroinflammation, and myocardial infarction, are complex conditions that require innovative therapeutic approaches. This review summarizes recent advances in exosome-based therapies for inflammatory disorders, highlighting their potential as diagnostic biomarkers and therapeutic agents. Exosomes have shown promise in reducing inflammation, promoting tissue repair, and improving functional outcomes in preclinical models of inflammatory disorders. However, further research is needed to overcome the challenges associated with exosome isolation, characterization, and delivery, as well as to fully understand their mechanisms of action. Current limitations and future directions in exosome research underscore the need for enhanced isolation techniques and deeper mechanistic insights to harness exosomes' full therapeutic potential in clinical applications. Despite these challenges, exosome-based therapies hold great potential for the treatment of inflammatory disorders and may offer a new paradigm for personalized medication.
Collapse
Affiliation(s)
- Mavra Saleem
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Khawar Ali Shahzad
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Munazzah Marryum
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Shekhar Singh
- Lishui People's Hospital, Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui, 323000, Zhejiang, China
| | - Quan Zhou
- Lishui People's Hospital, Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui, 323000, Zhejiang, China
| | - Siting Du
- Lishui People's Hospital, Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui, 323000, Zhejiang, China
| | - Shuanghu Wang
- Lishui People's Hospital, Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui, 323000, Zhejiang, China
| | - Chuxiao Shao
- Lishui People's Hospital, Central Laboratory of The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
| | - Imran Ibrahim Shaikh
- Lishui People's Hospital, Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui, 323000, Zhejiang, China.
| |
Collapse
|
35
|
Wang L, Zhang X, Yang Z, Wang B, Gong H, Zhang K, Lin Y, Sun M. Extracellular vesicles: biological mechanisms and emerging therapeutic opportunities in neurodegenerative diseases. Transl Neurodegener 2024; 13:60. [PMID: 39643909 PMCID: PMC11622582 DOI: 10.1186/s40035-024-00453-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/14/2024] [Indexed: 12/09/2024] Open
Abstract
Extracellular vesicles (EVs) are membrane vesicles originating from different cells within the brain. The pathophysiological role of EVs in neurodegenerative diseases is progressively acknowledged. This field has advanced from basic biological research to essential clinical significance. The capacity to selectively enrich specific subsets of EVs from biofluids via distinctive surface markers has opened new avenues for molecular understandings across various tissues and organs, notably in the brain. In recent years, brain-derived EVs have been extensively investigated as biomarkers, therapeutic targets, and drug-delivery vehicles for neurodegenerative diseases. This review provides a brief overview of the characteristics and physiological functions of the various classes of EVs, focusing on the biological mechanisms by which various types of brain-derived EVs mediate the occurrence and development of neurodegenerative diseases. Concurrently, novel therapeutic approaches and challenges for the use of EVs as delivery vehicles are delineated.
Collapse
Affiliation(s)
- Ling Wang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xiaoyan Zhang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Ziyi Yang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Binquan Wang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Hongyang Gong
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Ke Zhang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yi Lin
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Mingkuan Sun
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
36
|
Kostka M, Morys J, Małecki A, Nowacka-Chmielewska M. Muscle-brain crosstalk mediated by exercise-induced myokines - insights from experimental studies. Front Physiol 2024; 15:1488375. [PMID: 39687518 PMCID: PMC11647023 DOI: 10.3389/fphys.2024.1488375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Over the past couple of decades, it has become apparent that skeletal muscles might be engaged in endocrine signaling, mostly as a result of exercise or physical activity in general. The importance of this phenomenon is currently studied in terms of the impact that exercise- or physical activity -induced signaling factors have, in the interaction of the "muscle-brain crosstalk." So far, skeletal muscle-derived myokines were demonstrated to intercede in the connection between muscles and a plethora of various organs such as adipose tissue, liver, or pancreas. However, the exact mechanism of muscle-brain communication is yet to be determined. It is speculated that, in particular, brain-derived neurotrophic factor (BDNF), irisin, cathepsin B (CTSB), interleukin 6 (IL-6), and insulin-like growth factor-1 (IGF-1) partake in this crosstalk by promoting neuronal proliferation and synaptic plasticity, also resulting in improved cognition and ameliorated behavioral alterations. Researchers suggest that myokines might act directly on the brain parenchyma via crossing the blood-brain barrier (BBB). The following article reviews the information available regarding rodent studies on main myokines determined to cross the BBB, specifically addressing the association between exercise-induced myokine release and central nervous system (CNS) impairments. Although the hypothesis of skeletal muscles being critical sources of myokines seems promising, it should not be forgotten that the origin of these factors might vary, depending on the cell types engaged in their synthesis. Limited amount of research providing information on alterations in myokines expression in various organs at the same time, results in taking them only as circumstantial evidence on the way to determine the actual involvement of skeletal muscles in the overall state of homeostasis. The following article reviews the information available regarding rodent studies on main myokines determined to cross the BBB, specifically addressing the association between exercise-induced myokine release and CNS impairments.
Collapse
Affiliation(s)
| | | | | | - Marta Nowacka-Chmielewska
- Laboratory of Molecular Biology, Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
| |
Collapse
|
37
|
He A, Huang Y, Cao C, Li X. Advances in drug delivery systems utilizing blood cells and their membrane-derived microvesicles. Drug Deliv 2024; 31:2425156. [PMID: 39520082 PMCID: PMC11552282 DOI: 10.1080/10717544.2024.2425156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/11/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
The advancement of drug delivery systems (DDSs) in recent decades has demonstrated significant potential in enhancing the efficacy of pharmacological agents. Despite the approval of certain DDSs for clinical use, challenges such as rapid clearance from circulation, toxic accumulation in the body, and ineffective targeted delivery persist as obstacles to successful clinical application. Blood cell-based DDSs have emerged as a popular strategy for drug administration, offering enhanced biocompatibility, stability, and prolonged circulation. These DDSs are well-suited for systemic drug delivery and have played a crucial role in formulating optimal drug combinations for treating a variety of diseases in both preclinical studies and clinical trials. This review focuses on recent advancements and applications of DDSs utilizing blood cells and their membrane-derived microvesicles. It addresses the current therapeutic applications of blood cell-based DDSs at the organ and tissue levels, highlighting their successful deployment at the cellular level. Furthermore, it explores the mechanisms of cellular uptake of drug delivery vectors at the subcellular level. Additionally, the review discusses the opportunities and challenges associated with these DDSs.
Collapse
Affiliation(s)
- Andong He
- Center for Medical and Engineering Innovation, Central Laboratory, The First Affiliated Hospital, Ningbo University School of Medicine, Ningbo, China
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Yuye Huang
- Center for Medical and Engineering Innovation, Central Laboratory, The First Affiliated Hospital, Ningbo University School of Medicine, Ningbo, China
| | - Chao Cao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Xuejin Li
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| |
Collapse
|
38
|
Tian H, Yao J, Ba Q, Meng Y, Cui Y, Quan L, Gong W, Wang Y, Yang Y, Yang M, Gao C. Cerebral biomimetic nano-drug delivery systems: A frontier strategy for immunotherapy. J Control Release 2024; 376:1039-1067. [PMID: 39505218 DOI: 10.1016/j.jconrel.2024.10.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/19/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
Brain diseases are a significant threat to human health, especially in the elderly, and this problem is growing as the aging population increases. Efficient brain-targeted drug delivery has been the greatest challenge in treating brain disorders due to the unique immune environment of the brain, including the blood-brain barrier (BBB). Recently, cerebral biomimetic nano-drug delivery systems (CBNDSs) have provided a promising strategy for brain targeting by mimicking natural biological materials. Herein, this review explores the latest understanding of the immune microenvironment of the brain, emphasizing the immune mechanisms of the occurrence and progression of brain disease. Several brain targeting systems are summarized, including cell-based, exosome-based, protein-based, and microbe-based CBNDSs, and their immunological mechanisms are highlighted. Moreover, given the rise of immunotherapy, the latest applications of CBNDSs in immunotherapy are also discussed. This review provides a comprehensive understanding of CBNDSs and serves as a guideline for immunotherapy in treating brain diseases. In addition, it provides inspiration for the future of CBNDSs.
Collapse
Affiliation(s)
- Hao Tian
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Jiaxin Yao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Qi Ba
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Yuanyuan Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yanan Cui
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Liangzhu Quan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Wei Gong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yuli Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yang Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Meiyan Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Chunsheng Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| |
Collapse
|
39
|
Hassaan NA, Mansour HA. Exosomal therapy is a luxury area for regenerative medicine. Tissue Cell 2024; 91:102570. [PMID: 39383641 DOI: 10.1016/j.tice.2024.102570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/02/2024] [Accepted: 09/17/2024] [Indexed: 10/11/2024]
Abstract
Stem cell-based therapies have made significant advancements in tissue regeneration and medical engineering. However, there are limitations to cell transplantation therapy, such as immune rejection and limited cell viability. These limitations greatly impede the translation of stem cell-based tissue regeneration into clinical practice. In recent years, exosomes, which are packaged vesicles released from cells, have shown promising progress. Specifically, exosomes derived from stem cells have demonstrated remarkable therapeutic benefits. Exosomes are nanoscale extracellular vesicles that act as paracrine mediators. They transfer functional cargos, such as miRNA and mRNA molecules, peptides, proteins, cytokines, and lipids, from MSCs to recipient cells. By participating in intercellular communication events, exosomes contribute to the healing of injured or diseased tissues and organs. Studies have shown that the therapeutic effects of MSCs in various experimental paradigms can be solely attributed to their exosomes. Consequently, MSC-derived exosomes can be modified and utilized to develop a unique cell-free therapeutic approach for treating multiple diseases, including neurological, immunological, heart, and other diseases. This review is divided into several categories, including the current understanding of exosome biogenesis, isolation techniques, and their application as therapeutic tools.
Collapse
Affiliation(s)
- Nahla A Hassaan
- Department of Zoology, Faculty of Science, Al-Azhar University, Cairo, Egypt.
| | - Hanaa A Mansour
- Department of Pharmacology, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| |
Collapse
|
40
|
Sun X, Setrerrahmane S, Li C, Hu J, Xu H. Nucleic acid drugs: recent progress and future perspectives. Signal Transduct Target Ther 2024; 9:316. [PMID: 39609384 PMCID: PMC11604671 DOI: 10.1038/s41392-024-02035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 09/20/2024] [Accepted: 10/25/2024] [Indexed: 11/30/2024] Open
Abstract
High efficacy, selectivity and cellular targeting of therapeutic agents has been an active area of investigation for decades. Currently, most clinically approved therapeutics are small molecules or protein/antibody biologics. Targeted action of small molecule drugs remains a challenge in medicine. In addition, many diseases are considered 'undruggable' using standard biomacromolecules. Many of these challenges however, can be addressed using nucleic therapeutics. Nucleic acid drugs (NADs) are a new generation of gene-editing modalities characterized by their high efficiency and rapid development, which have become an active research topic in new drug development field. However, many factors, including their low stability, short half-life, high immunogenicity, tissue targeting, cellular uptake, and endosomal escape, hamper the delivery and clinical application of NADs. Scientists have used chemical modification techniques to improve the physicochemical properties of NADs. In contrast, modified NADs typically require carriers to enter target cells and reach specific intracellular locations. Multiple delivery approaches have been developed to effectively improve intracellular delivery and the in vivo bioavailability of NADs. Several NADs have entered the clinical trial recently, and some have been approved for therapeutic use in different fields. This review summarizes NADs development and evolution and introduces NADs classifications and general delivery strategies, highlighting their success in clinical applications. Additionally, this review discusses the limitations and potential future applications of NADs as gene therapy candidates.
Collapse
Affiliation(s)
- Xiaoyi Sun
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | | | - Chencheng Li
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Jialiang Hu
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Hanmei Xu
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
41
|
Lin L, Liu H, Zhang D, Du L, Zhang H. Nanolevel Immunomodulators in Sepsis: Novel Roles, Current Perspectives, and Future Directions. Int J Nanomedicine 2024; 19:12529-12556. [PMID: 39606559 PMCID: PMC11600945 DOI: 10.2147/ijn.s496456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Sepsis represents a profound challenge in critical care, characterized by a severe systemic inflammatory response which can lead to multi-organ failure and death. The intricate pathophysiology of sepsis involves an overwhelming immune reaction that disrupts normal host defense mechanisms, necessitating innovative approaches to modulation. Nanoscale immunomodulators, with their precision targeting and controlled release capabilities, have emerged as a potent solution to recalibrate immune responses in sepsis. This review explores the recent advancements in nanotechnology for sepsis management, emphasizing the integration of nanoparticulate systems to modulate immune function and inflammatory pathways. Discussions detail the development of the immune system, the distinct inflammatory responses triggered by sepsis, and the scientific principles underpinning nanoscale immunomodulation, including specific targeting mechanisms and delivery systems. The review highlights nanoformulation designs aimed at enhancing bioavailability, stability, and therapeutic efficacy, which shows promise in clinical settings by modulating key inflammatory pathways. Ultimately, this review synthesizes the current state of knowledge and projects future directions for research, underscoring the transformative potential of nanolevel immunomodulators for sepsis treatment through innovative technologies and therapeutic strategies.
Collapse
Affiliation(s)
- Liangkang Lin
- Department of Pediatrics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Hanyou Liu
- Department of Pediatrics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Dingshan Zhang
- Department of Intensive Care Unit, Public Health Clinical Center of Chengdu, Chengdu, People’s Republic of China
| | - Lijia Du
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, People’s Republic of China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, People’s Republic of China
| | - Haiyang Zhang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, People’s Republic of China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
42
|
Mastantuono S, Manini I, Di Loreto C, Beltrami AP, Vindigni M, Cesselli D. Glioma-Derived Exosomes and Their Application as Drug Nanoparticles. Int J Mol Sci 2024; 25:12524. [PMID: 39684236 DOI: 10.3390/ijms252312524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Glioblastoma Multiforme (GBM) is the most aggressive primary tumor of the Central Nervous System (CNS) with a low survival rate. The malignancy of GBM is sustained by a bidirectional crosstalk between tumor cells and the Tumor Microenvironment (TME). This mechanism of intercellular communication is mediated, at least in part, by the release of exosomes. Glioma-Derived Exosomes (GDEs) work, indeed, as potent signaling particles promoting the progression of brain tumors by inducing tumor proliferation, invasion, migration, angiogenesis and resistance to chemotherapy or radiation. Given their nanoscale size, exosomes can cross the blood-brain barrier (BBB), thus becoming not only a promising biomarker to predict diagnosis and prognosis but also a therapeutic target to treat GBM. In this review, we describe the structural and functional characteristics of exosomes and their involvement in GBM development, diagnosis, prognosis and treatment. In addition, we discuss how exosomes can be modified to be used as a therapeutic target/drug delivery system for clinical applications.
Collapse
Affiliation(s)
- Serena Mastantuono
- Department of Medicine, University of Udine, Piazzale S. Maria della Misericordia 15, 33100 Udine, Italy
| | - Ivana Manini
- Department of Pathological Anatomy, University Hospital of Udine, Piazzale S. Maria della Misericordia 15, 33100 Udine, Italy
| | - Carla Di Loreto
- Department of Pathological Anatomy, University Hospital of Udine, Piazzale S. Maria della Misericordia 15, 33100 Udine, Italy
| | - Antonio Paolo Beltrami
- Department of Medicine, University of Udine, Piazzale S. Maria della Misericordia 15, 33100 Udine, Italy
- Institute of Clinical Pathology, University Hospital of Udine, Piazzale S. Maria della Misericordia 15, 33100 Udine, Italy
| | - Marco Vindigni
- Department of Neurosurgery, University Hospital of Udine, Piazzale S. Maria della Misericordia 15, 33100 Udine, Italy
| | - Daniela Cesselli
- Department of Medicine, University of Udine, Piazzale S. Maria della Misericordia 15, 33100 Udine, Italy
- Department of Pathological Anatomy, University Hospital of Udine, Piazzale S. Maria della Misericordia 15, 33100 Udine, Italy
| |
Collapse
|
43
|
Ghosh M, Pearse DD. The Yin and Yang of Microglia-Derived Extracellular Vesicles in CNS Injury and Diseases. Cells 2024; 13:1834. [PMID: 39594583 PMCID: PMC11592485 DOI: 10.3390/cells13221834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Microglia, the resident immune cells of the central nervous system (CNS), play a crucial role in maintaining neural homeostasis but can also contribute to disease and injury when this state is disrupted or conversely play a pivotal role in neurorepair. One way that microglia exert their effects is through the secretion of small vesicles, microglia-derived exosomes (MGEVs). Exosomes facilitate intercellular communication through transported cargoes of proteins, lipids, RNA, and other bioactive molecules that can alter the behavior of the cells that internalize them. Under normal physiological conditions, MGEVs are essential to homeostasis, whereas the dysregulation of their production and/or alterations in their cargoes have been implicated in the pathogenesis of numerous neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), spinal cord injury (SCI), and traumatic brain injury (TBI). In contrast, MGEVs may also offer therapeutic potential by reversing inflammation or being amenable to engineering for the delivery of beneficial biologics or drugs. The effects of MGEVs are determined by the phenotypic state of the parent microglia. Exosomes from anti-inflammatory or pro-regenerative microglia support neurorepair and cell survival by delivering neurotrophic factors, anti-inflammatory mediators, and molecular chaperones. Further, MGEVs can also deliver components like mitochondrial DNA (mtDNA) and proteins to damaged neurons to enhance cellular metabolism and resilience. MGEVs derived from pro-inflammatory microglia can have detrimental effects on neural health. Their cargo often contains pro-inflammatory cytokines, molecules involved in oxidative stress, and neurotoxic proteins, which can exacerbate neuroinflammation, contribute to neuronal damage, and impair synaptic function, hindering neurorepair processes. The role of MGEVs in neurodegeneration and injury-whether beneficial or harmful-largely depends on how they modulate inflammation through the pro- and anti-inflammatory factors in their cargo, including cytokines and microRNAs. In addition, through the propagation of pathological proteins, such as amyloid-beta and alpha-synuclein, MGEVs can also contribute to disease progression in disorders such as AD and PD, or by the transfer of apoptotic or necrotic factors, they can induce neuron toxicity or trigger glial scarring during neurological injury. In this review, we have provided a comprehensive and up-to-date understanding of the molecular mechanisms underlying the multifaceted role of MGEVs in neurological injury and disease. In particular, the role that specific exosome cargoes play in various pathological conditions, either in disease progression or recovery, will be discussed. The therapeutic potential of MGEVs has been highlighted including potential engineering methodologies that have been employed to alter their cargoes or cell-selective targeting. Understanding the factors that influence the balance between beneficial and detrimental exosome signaling in the CNS is crucial for developing new therapeutic strategies for neurodegenerative diseases and neurotrauma.
Collapse
Affiliation(s)
- Mousumi Ghosh
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- The Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Veterans Affairs, Veterans Affairs Medical Center, Miami, FL 33136, USA
| | - Damien D. Pearse
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- The Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Veterans Affairs, Veterans Affairs Medical Center, Miami, FL 33136, USA
- The Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
44
|
Wang CC, Hu XM, Long YF, Huang HR, He Y, Xu ZR, Qi ZQ. Treatment of Parkinson's disease model with human umbilical cord mesenchymal stem cell-derived exosomes loaded with BDNF. Life Sci 2024; 356:123014. [PMID: 39182566 DOI: 10.1016/j.lfs.2024.123014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
AIMS Parkinson's disease (PD) is a common neurodegenerative disease that has received widespread attention; however, current clinical treatments can only relieve its symptoms, and do not effectively protect dopaminergic neurons. The purpose of the present study was to investigate the therapeutic effects of human umbilical cord mesenchymal stem cell-derived exosomes loaded with brain-derived neurotrophic factor (BDNF-EXO) on PD models and to explore the underlying mechanisms of these effects. MAIN METHODS 6-Hydroxydopamine was used to establish in vivo and in vitro PD models. Western blotting, flow cytometry, and immunofluorescence were used to detect the effects of BDNF-EXO on apoptosis and ferroptosis in SH-SY5Y cells. The in vivo biological distribution of BDNF-EXO was detected using a small animal imaging system, and dopaminergic neuron improvements in brain tissue were detected using western blotting, immunofluorescence, immunohistochemistry, and Nissl and Prussian blue staining. KEY FINDINGS BDNF-EXO effectively suppressed 6-hydroxydopamine-induced apoptosis and ferroptosis in SH-SY5Y cells. Following intravenous administration, BDNF-EXO crossed the blood-brain barrier to reach afflicted brain regions in mice, leading to a notable enhancement in neuronal survival. Furthermore, BDNF-EXO modulated microtubule-associated protein 2 and phosphorylated tau expression, thereby promoting neuronal cytoskeletal stability. Additionally, BDNF-EXO bolstered cellular antioxidant defense mechanisms through the activation of the nuclear factor erythroid 2-related factor 2 signaling pathway, thereby conferring neuroprotection against damage. SIGNIFICANCE The novel drug delivery system, BDNF-EXO, had substantial therapeutic effects in both in vivo and in vitro PD models, and may represent a new treatment strategy for PD.
Collapse
Affiliation(s)
- Can-Can Wang
- Medical College, Guangxi University, Da-Xue-Dong Road No.100, Nanning 530004, Guangxi Zhuang Autonomous Region, China
| | - Xin-Mei Hu
- Medical College, Guangxi University, Da-Xue-Dong Road No.100, Nanning 530004, Guangxi Zhuang Autonomous Region, China
| | - Yu-Fei Long
- Medical College, Guangxi University, Da-Xue-Dong Road No.100, Nanning 530004, Guangxi Zhuang Autonomous Region, China
| | - Hong-Ri Huang
- GuangXi TaiMeiRenSheng Biotechnology Co., LTD., Nanning, Guangxi 530000, China
| | - Ying He
- Medical College, Guangxi University, Da-Xue-Dong Road No.100, Nanning 530004, Guangxi Zhuang Autonomous Region, China
| | - Zhi-Ran Xu
- Translational Medicine Research Center, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi 530011, China
| | - Zhong-Quan Qi
- Medical College, Guangxi University, Da-Xue-Dong Road No.100, Nanning 530004, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
45
|
Yang Y, Wang F, Li Y, Chen R, Wang X, Chen J, Lin X, Zhang H, Huang Y, Wang R. Engineered extracellular vesicles with polypeptide for targeted delivery of doxorubicin against EGFR‑positive tumors. Oncol Rep 2024; 52:154. [PMID: 39329273 PMCID: PMC11465103 DOI: 10.3892/or.2024.8813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
Lack of effective tumor‑specific delivery systems remains an unmet clinical challenge for the employment of chemotherapy using cytotoxic drugs. Extracellular vesicles (EVs) have recently been investigated for their potential as an efficient drug‑delivery platform, due to their good biodistribution, biocompatibility and low immunogenicity. In the present study, the formulation of GE11 peptide‑modified EVs (GE11‑EVs) loaded with doxorubicin (Dox‑GE11‑EVs), was developed to target epidermal growth factor receptor (EGFR)‑positive tumor cells. The results obtained demonstrated that GE11‑EVs exhibited highly efficient targeting and drug delivery to EGFR‑positive tumor cells compared with non‑modified EVs. Furthermore, treatment with Dox‑GE11‑EVs led to a significantly inhibition of cell proliferation and increased apoptosis of EGFR‑positive tumor cells compared with Dox‑EVs and free Dox treatments. In addition, it was observed that treatment with either free Dox or Dox‑EVs exhibited a high level of cytotoxicity to normal cells, whereas treatment with Dox‑GE11‑EVs had only a limited effect on cell viability of normal cells. Taken together, the findings of the present study demonstrated that the engineered Dox‑GE11‑EVs can treat EGFR‑positive tumors more accurately and have higher safety than traditional tumor therapies.
Collapse
Affiliation(s)
- Yuqing Yang
- Department of Pharmacology, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Fang Wang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yuqin Li
- Department of Pharmacology, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Ruxi Chen
- Department of Pharmacology, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Xiangyu Wang
- Institute of Evolution and Marine Biodiversity, Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, P.R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, P.R. China
| | - Jiahong Chen
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing 100191, P.R. China
| | - Xi Lin
- Department of Pharmacology, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Haipeng Zhang
- Department of Pharmacology, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Youwei Huang
- Department of Oncology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, P.R. China
- Department of Oncology, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong 519000, P.R. China
| | - Rui Wang
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
46
|
Jhaveri JR, Khare P, Paul Pinky P, Kamte YS, Chandwani MN, Milosevic J, Abraham N, Sun M, Stolz DB, Dave KM, Zheng SY, O'Donnell L, Manickam DS. Low pinocytic brain endothelial cells primarily utilize membrane fusion to internalize extracellular vesicles. Eur J Pharm Biopharm 2024; 204:114500. [PMID: 39303949 DOI: 10.1016/j.ejpb.2024.114500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Extracellular vesicles (EVs) are an emerging class of drug carriers and are primarily reported to be internalized into recipient cells via a combination of endocytic routes such as clathrin-mediated, caveolae-mediated and macropinocytosis pathways. In this work, (1) we investigated potential effects of homotypic vs. heterotypic interactions by studying the cellular uptake of homologous EVs (EV donor cells and recipient cells of the same type) vs. heterologous EVs (EV donor cells and recipient cells of different types) and (2) determined the route of EV internalization into low pinocytic/hard-to-deliver cell models such as brain endothelial cells (BECs). Homotypic interactions led to a greater extent of uptake into the recipient BECs compared to heterotypic interactions. However, we did not see a complete reduction in EV uptake into recipient BECs when endocytic pathways were blocked using pharmacological inhibitors and our findings from a R18-based fusion assay suggest that EVs primarily use membrane fusion to enter low-pinocytic recipient BECs instead of relying on endocytosis. Lipophilic PKH67 dye-labeled EVs but not intravesicular esterase-activated calcein ester-labeled EVs severely reduced particle uptake into BECs while phagocytic macrophages internalized EVs labeled with both dyes to comparable extents. Our results also highlight the importance of carefully choosing labeling dye chemistry to study EV uptake, especially in the case of low pinocytic cells such as BECs.
Collapse
Affiliation(s)
- Jhanvi R Jhaveri
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Purva Khare
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Paromita Paul Pinky
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Yashika S Kamte
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Manisha N Chandwani
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Jadranka Milosevic
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States; Captis Diagnostics Inc., Pittsburgh, PA, United States
| | - Nevil Abraham
- Unified Flow Core, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ming Sun
- Center for Biologic Imaging, University of Pittsburgh Medical School, Pittsburgh, PA, United States
| | - Donna B Stolz
- Center for Biologic Imaging, University of Pittsburgh Medical School, Pittsburgh, PA, United States
| | - Kandarp M Dave
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Si-Yang Zheng
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Lauren O'Donnell
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Devika S Manickam
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States.
| |
Collapse
|
47
|
Ale Y, Nainwal N. Exosomes as nanocarrier for Neurotherapy: Journey from application to challenges. J Drug Deliv Sci Technol 2024; 101:106312. [DOI: 10.1016/j.jddst.2024.106312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
48
|
Ding L, Chang C, Liang M, Dong K, Li F. Plant‐Derived Extracellular Vesicles as Potential Emerging Tools for Cancer Therapeutics. ADVANCED THERAPEUTICS 2024; 7. [DOI: 10.1002/adtp.202400256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Indexed: 01/03/2025]
Abstract
AbstractExtracellular vesicles (EVs) are membranous structures secreted by cells that play important roles in intercellular communication and material transport. Due to its excellent biocompatibility, lipophilicity, and homing properties, EVs have been used as a new generation of drug delivery systems for the diagnosis and treatment of tumors. Despite the potential clinical benefits of animal‐derived extracellular vesicles (AEVs), their large‐scale production remains sluggish due to the exorbitant cost of cell culture, challenging quality control measures, and limited production capabilities. This constraint significantly hinders their widespread clinical application. Plant‐derived extracellular vesicles (PEVs) share similar functionalities with AEVs, yet they hold several advantages including a wide variety of source materials, cost‐effectiveness, ease of preparation, enhanced safety, more stable physicochemical properties, and notable efficacy. These merits position PEVs as promising contenders with broad potential in the biomedical sector. This review will elucidate the advantages of PEVs, delineating their therapeutic mechanisms in cancer treatment, and explore the prospective applications of engineered PEVs as targeted delivery nano‐system for drugs, microRNAs, small interfering RNAs, and beyond. The aim is to heighten researchers’ focus on PEVs and expedite the progression from fundamental research to the transformation of groundbreaking discoveries.
Collapse
Affiliation(s)
- Lin Ding
- The First Affiliated Hospital (Shenzhen People's Hospital),Southern University of Science and Technology,The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital) Shenzhen 518055 China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy Shenzhen 518020 China
- Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation Shenzhen 518020 China
- Shenzhen Immune Cell Therapy Public Service Platform Shenzhen 518020 China
| | - Chih‐Jung Chang
- School of Medicine and Medical Research Center Xiamen Chang Gung Hospital Hua Qiao University Xiamen Fujian 362017 China
- Department of Dermatology Drug Hypersensitivity Clinical and Research Center Chang Gung Memorial Hospital Linkou Taoyuan 244330 Taiwan
| | - Min‐Li Liang
- The First Affiliated Hospital (Shenzhen People's Hospital),Southern University of Science and Technology,The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital) Shenzhen 518055 China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy Shenzhen 518020 China
- Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation Shenzhen 518020 China
- Shenzhen Immune Cell Therapy Public Service Platform Shenzhen 518020 China
| | - Kang‐Mei Dong
- Xiamen Lifeint Technology Co., Ltd. Fujian 361000 China
| | - Fu‐Rong Li
- The First Affiliated Hospital (Shenzhen People's Hospital),Southern University of Science and Technology,The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital) Shenzhen 518055 China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy Shenzhen 518020 China
- Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation Shenzhen 518020 China
- Shenzhen Immune Cell Therapy Public Service Platform Shenzhen 518020 China
| |
Collapse
|
49
|
Klyachko NL, Haney MJ, Lopukhov AV, Le-Deygen IM. Cationized extracellular vesicles for gene delivery. Sci Rep 2024; 14:25818. [PMID: 39468145 PMCID: PMC11519934 DOI: 10.1038/s41598-024-75985-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
Last decade, extracellular vesicles (EVs) attracted a lot of attention as potent versatile drug delivery vehicles. We reported earlier the development of EV-based delivery systems for therapeutic proteins and small molecule chemotherapeutics. In this work, we first time engineered EVs with multivalent cationic lipids for the delivery of nucleic acids. Stable, small size cationized EVs were loaded with plasmid DNA (pDNA), or mRNA, or siRNA. Nucleic acid loaded EVs were efficiently taken up by target cells as demonstrated by confocal microscopy and delivered their cargo to the nuclei in triple negative breast cancer (TNBC) cells and macrophages. Efficient transfection was achieved by engineered cationized EVs formulations of pDNA- and mRNA in vitro. Furthermore, siRNA loaded into cationized EVs showed significant knockdown of the reporter gene in Luc-expressing cells. Overall, multivalent cationized EVs represent a promising strategy for gene delivery.
Collapse
Affiliation(s)
- Natalia L Klyachko
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7362, USA.
- Deparment of Chemical Enzymology, Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russia.
| | - Matthew J Haney
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7362, USA
- Center for Nanotechnology in Drug Delivery, Carolina Institute for Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anton V Lopukhov
- Deparment of Chemical Enzymology, Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Irina M Le-Deygen
- Deparment of Chemical Enzymology, Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
50
|
Zhang L, Lin J, Xiang K, Shi T, Guo B. Omnidirectional improvement of mitochondrial health in Alzheimer's disease by multi-targeting engineered activated neutrophil exosomes. J Control Release 2024; 376:470-487. [PMID: 39433157 DOI: 10.1016/j.jconrel.2024.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 10/23/2024]
Abstract
Alzheimer's disease (AD) is one kind of devasting neurodegenerative disorders affecting over 50 million people worldwide. Multi-targeted therapy has emerged as a new treatment for diagnosing and alleviating the pathogenesis process of AD; however, the current strategy is limited by its unsatisfactory efficiency. In our study, engineered activated neutrophil-derived exosomes (MP@Cur-MExo) were developed to improve the mitochondrial function in neurons by targeting and alleviating Aβ-induced neurotoxicity. MP@Cur-MExo are exosomes derived from IL-8-stimulated neutrophils decorated with mitochondria targeting ligand and Aβ targeted ligand modified SPION. Engineered exosomes can be cleaved by matrix metallopeptidase-2, which is overexpressed in the AD brain. Consequently, the released SPION and Curcumin-loaded engineered exosomes collaboratively protected neuron cells against Aβ-induced mitochondrial deficiency. In addition, MP@Cur-MExo effectively accumulated in the inflamed region of AD brain at an early stage, allowing early diagnosis of AD through bimodal (MRI/IVIS) imaging. Importantly, in a mouse model at an early stage of AD, intravenously injected MP@Cur-MExo restored mitochondrial function and reduced Aβ-induced mitochondrial damage, thereby attenuating AD progression. In conclusion, our designed engineered exosomes demonstrated that omnidirectional improvement of mitochondrial function can serve as a novel and practical approach for the diagnosis and treatment of neurodegenerative diseases. This study also reveals a promising therapeutic agent for impeding AD progression for future clinical applications.
Collapse
Affiliation(s)
- Lei Zhang
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China.
| | - Jiaquan Lin
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Branch of National Clinical Research Center for Orthopedics Sports Medicine and Rehabilitation, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China
| | - Kai Xiang
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Tianshu Shi
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Branch of National Clinical Research Center for Orthopedics Sports Medicine and Rehabilitation, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China.
| | - Baosheng Guo
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Branch of National Clinical Research Center for Orthopedics Sports Medicine and Rehabilitation, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China.
| |
Collapse
|