1
|
Yu K, Fu L, Chao Y, Zeng X, Zhang Y, Chen Y, Gao J, Lu B, Zhu H, Gu L, Xiong X, Hu Z, Hong X, Xiao Y. Deep Learning Enhanced Near Infrared-II Imaging and Image-Guided Small Interfering Ribonucleic Acid Therapy of Ischemic Stroke. ACS NANO 2025; 19:10323-10336. [PMID: 40042964 DOI: 10.1021/acsnano.4c18035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Small interfering RNA (siRNA) targeting the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome has emerged as a promising therapeutic strategy to mitigate infarct volume and brain injury following ischemic stroke. However, the clinical translation of siRNA-based therapies is significantly hampered by the formidable blood-brain barrier (BBB), which restricts drug penetration into the central nervous system. To address this challenge, we have developed an innovative long-circulating near-infrared II (NIR-II) nanoparticle platform YWFC NPs, which is meticulously engineered to enhance BBB transcytosis and enable efficient delivery of siRNA targeting NLRP3 (siNLRP3@YWFC NPs) in preclinical models of ischemic stroke. Furthermore, we integrated advanced deep learning neural network algorithms to optimize in vivo NIR-II imaging of the cerebral infarct penumbra, achieving an improved signal-to-background ratio at 72 h poststroke. In vivo studies employing middle cerebral artery occlusion (MCAO) mouse models demonstrated that image-guided therapy with siNLRP3@YWFC NPs, guided by prolonged NIR-II imaging, resulted in significant therapeutic benefits.
Collapse
Affiliation(s)
- Kai Yu
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Lidan Fu
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Chao
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Xiaodong Zeng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Yonggang Zhang
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yuanyuan Chen
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Jialu Gao
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
- Shenzhen Institute of Wuhan University, Shenzhen 518057, China
| | - Binchun Lu
- Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Hua Zhu
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Lijuan Gu
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Zhenhua Hu
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
- National Key Laboratory of Kidney Diseases, Beijing 100853, China
| | - Xuechuan Hong
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
- Shenzhen Institute of Wuhan University, Shenzhen 518057, China
| | - Yuling Xiao
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| |
Collapse
|
2
|
Yadav VK, Gupta R, Assiri AA, Uddin J, Ishaqui AA, Kumar P, Orayj KM, Tahira S, Patel A, Choudhary N. Role of Nanotechnology in Ischemic Stroke: Advancements in Targeted Therapies and Diagnostics for Enhanced Clinical Outcomes. J Funct Biomater 2025; 16:8. [PMID: 39852564 PMCID: PMC11766075 DOI: 10.3390/jfb16010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/26/2025] Open
Abstract
Each year, the number of cases of strokes and deaths due to this is increasing around the world. This could be due to work stress, lifestyles, unhealthy food habits, and several other reasons. Currently, there are several traditional methods like thrombolysis and mechanical thrombectomy for managing strokes. The current approach has several limitations, like delayed diagnosis, limited therapeutic delivery, and risks of secondary injuries. So, there is a need for some effective and reliable methods for the management of strokes, which could help in early diagnosis followed by the treatment of strokes. Nanotechnology has played an immense role in managing strokes, and recently, it has emerged as a transformative solution offering innovative diagnostic tools and therapeutic strategies. Nanoparticles (NPs) belonging to several classes, including metallic (metallic and metal oxide), organic (lipids, liposome), and carbon, can cross the blood-brain barrier and may exhibit immense potential for managing various strokes. Moreover, these NPs have exhibited promise in improving imaging specificity and therapeutic delivery by precise drug delivery and real-time monitoring of treatment efficacy. Nanomaterials like cerium oxide (CeO2) and liposome-encapsulated agents have neuroprotective properties that reduce oxidative stress and promote neuroregeneration. In the present article, the authors have emphasized the significant advancements in the nanomedicine management of stroke, including NPs-based drug delivery systems, neuroprotective and neuroregenerative therapies, and multimodal imaging advancements.
Collapse
Affiliation(s)
- Virendra Kumar Yadav
- Marwadi University Research Center, Department of Microbiology, Faculty of Sciences, Marwadi University, Rajkot 360003, Gujarat, India
| | - Rachna Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382021, Gujarat, India;
| | - Abdullah A. Assiri
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia; (A.A.A.); (A.A.I.); (K.M.O.)
| | - Jalal Uddin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia;
| | - Azfar A. Ishaqui
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia; (A.A.A.); (A.A.I.); (K.M.O.)
| | - Pankaj Kumar
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara 391760, Gujarat, India;
| | - Khalid M. Orayj
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia; (A.A.A.); (A.A.I.); (K.M.O.)
| | - Shazia Tahira
- Institute of Professional Psychology, Bahria University Karachi Campus, Karachi 75260, Pakistan;
- Department of Psychiatry, Jinnah Postgraduate Medical Centre, Karachi 75510, Pakistan
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan 384265, Gujarat, India;
| | - Nisha Choudhary
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan 384265, Gujarat, India;
- Department of Lifesciences, Parul Institute of Applied Sciences, Parul University, Vadodara 391760, Gujarat, India
| |
Collapse
|
3
|
Balaji PG, Bhimrao LS, Yadav AK. Revolutionizing Stroke Care: Nanotechnology-Based Brain Delivery as a Novel Paradigm for Treatment and Diagnosis. Mol Neurobiol 2025; 62:184-220. [PMID: 38829514 DOI: 10.1007/s12035-024-04215-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/03/2024] [Indexed: 06/05/2024]
Abstract
Stroke, a severe medical condition arising from abnormalities in the coagulation-fibrinolysis cycle and metabolic processes, results in brain cell impairment and injury due to blood flow obstruction within the brain. Prompt and efficient therapeutic approaches are imperative to control and preserve brain functions. Conventional stroke medications, including fibrinolytic agents, play a crucial role in facilitating reperfusion to the ischemic brain. However, their clinical efficacy is hampered by short plasma half-lives, limited brain tissue distribution attributed to the blood-brain barrier (BBB), and lack of targeted drug delivery to the ischemic region. To address these challenges, diverse nanomedicine strategies, such as vesicular systems, polymeric nanoparticles, dendrimers, exosomes, inorganic nanoparticles, and biomimetic nanoparticles, have emerged. These platforms enhance drug pharmacokinetics by facilitating targeted drug accumulation at the ischemic site. By leveraging nanocarriers, engineered drug delivery systems hold the potential to overcome challenges associated with conventional stroke medications. This comprehensive review explores the pathophysiological mechanism underlying stroke and BBB disruption in stroke. Additionally, this review investigates the utilization of nanocarriers for current therapeutic and diagnostic interventions in stroke management. By addressing these aspects, the review aims to provide insight into potential strategies for improving stroke treatment and diagnosis through a nanomedicine approach.
Collapse
Affiliation(s)
- Paul Gajanan Balaji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli (An Institute of National Importance under Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, GOI), A Transit Campus at Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow, 226002, Uttar Pradesh, India
| | - Londhe Sachin Bhimrao
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli (An Institute of National Importance under Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, GOI), A Transit Campus at Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow, 226002, Uttar Pradesh, India
| | - Awesh K Yadav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli (An Institute of National Importance under Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, GOI), A Transit Campus at Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow, 226002, Uttar Pradesh, India.
| |
Collapse
|
4
|
Luo R, Le H, Wu Q, Gong C. Nanoplatform-Based In Vivo Gene Delivery Systems for Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312153. [PMID: 38441386 DOI: 10.1002/smll.202312153] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/05/2024] [Indexed: 07/26/2024]
Abstract
Gene therapy uses modern molecular biology methods to repair disease-causing genes. As a burgeoning therapeutic, it has been widely applied for cancer therapy. Since 1989, there have been numerous clinical gene therapy cases worldwide. However, a few are successful. The main challenge of clinical gene therapy is the lack of efficient and safe vectors. Although viral vectors show high transfection efficiency, their application is still limited by immune rejection and packaging capacity. Therefore, the development of non-viral vectors is overwhelming. Nanoplatform-based non-viral vectors become a hotspot in gene therapy. The reasons are mainly as follows. 1) Non-viral vectors can be engineered to be uptaken by specific types of cells or tissues, providing effective targeting capability. 2) Non-viral vectors can protect goods that need to be delivered from degradation. 3) Nanoparticles can transport large-sized cargo such as CRISPR/Cas9 plasmids and nucleoprotein complexes. 4) Nanoparticles are highly biosafe, and they are not mutagenic in themselves compared to viral vectors. 5) Nanoparticles are easy to scale preparation, which is conducive to clinical conversion and application. Here, an overview of the categories of nanoplatform-based non-viral gene vectors, the limitations on their development, and their applications in cancer therapy.
Collapse
Affiliation(s)
- Rui Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hao Le
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qinjie Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Changyang Gong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
5
|
Wang G, Li Z, Wang G, Sun Q, Lin P, Wang Q, Zhang H, Wang Y, Zhang T, Cui F, Zhong Z. Advances in Engineered Nanoparticles for the Treatment of Ischemic Stroke by Enhancing Angiogenesis. Int J Nanomedicine 2024; 19:4377-4409. [PMID: 38774029 PMCID: PMC11108071 DOI: 10.2147/ijn.s463333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/02/2024] [Indexed: 05/24/2024] Open
Abstract
Angiogenesis, or the formation of new blood vessels, is a natural defensive mechanism that aids in the restoration of oxygen and nutrition delivery to injured brain tissue after an ischemic stroke. Angiogenesis, by increasing vessel development, may maintain brain perfusion, enabling neuronal survival, brain plasticity, and neurologic recovery. Induction of angiogenesis and the formation of new vessels aid in neurorepair processes such as neurogenesis and synaptogenesis. Advanced nano drug delivery systems hold promise for treatment stroke by facilitating efficient transportation across the the blood-brain barrier and maintaining optimal drug concentrations. Nanoparticle has recently been shown to greatly boost angiogenesis and decrease vascular permeability, as well as improve neuroplasticity and neurological recovery after ischemic stroke. We describe current breakthroughs in the development of nanoparticle-based treatments for better angiogenesis therapy for ischemic stroke employing polymeric nanoparticles, liposomes, inorganic nanoparticles, and biomimetic nanoparticles in this study. We outline new nanoparticles in detail, review the hurdles and strategies for conveying nanoparticle to lesions, and demonstrate the most recent advances in nanoparticle in angiogenesis for stroke treatment.
Collapse
Affiliation(s)
- Guangtian Wang
- Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
- Department of Microbiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Zhihui Li
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150086, People’s Republic of China
| | - Gongchen Wang
- Department of Vascular Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150086, People’s Republic of China
| | - Qixu Sun
- Department of Gastroenterology, Penglai People’s Hospital, Yantai, Shandong, 265600, People’s Republic of China
| | - Peng Lin
- Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Qian Wang
- Department of Microbiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Huishu Zhang
- Teaching Center of Biotechnology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Yanyan Wang
- Teaching Center of Morphology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Tongshuai Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Feiyun Cui
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Zhaohua Zhong
- Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
- Department of Microbiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| |
Collapse
|
6
|
Liu Y, Zhang T, Zou X, Yuan Z, Li Y, Zang J, He N, He L, Xu A, Lu D. Penumbra-targeted CircOGDH siRNA-loaded nanoparticles alleviate neuronal apoptosis in focal brain ischaemia. Stroke Vasc Neurol 2024; 9:134-144. [PMID: 37328278 PMCID: PMC11103160 DOI: 10.1136/svn-2022-002009] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 05/02/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND Nanoparticles (NPs) are a class of substances that can be loaded with therapeutic agents delivered to specific areas. In our earlier research, we identified a neuron-derived circular RNA (circRNA), circular oxoglutarate dehydrogenase (CircOGDH), as a promising therapeutic target for acute ischaemic stroke. This study dedicated to explore a prospective preliminary strategy of CircOGDH-based NP delivered to the ischaemic penumbra region in middle cerebral artery occlusion/reperfusion (MCAO/R) mice. METHODS Immunofluorescence in primary cortex neurons and in vivo fluorescence imaging revealed endocytosis of Poly(lactide-co-glycolide) (PLGA) poly amidoamine(PAMAM)@CircOGDH small interfering RNA (siRNA) NPs. Western blotting analysis and CCK8 assay were performed to evaluate the apoptotic level in ischaemic neurons treated with PLGA-PAMAM@CircOGDH siRNA NPs. Quantitative reverse transcription PCR experiments, mice behaviour test, T2 MRI analysis, Nissl and TdT-mediated dUTP nick end labeling (TUNEL) co-staining were performed to evaluate the apoptosis level of ischaemic penumbra neurons in MCAO/R mice. Biosafety evaluation of NPs in MCAO/R mice was detected by blood routine examination, liver and kidney function examination and HE staining. RESULTS PLGA-PAMAM@CircOGDH siRNA NPs were successfully assembled. Endocytosis of PLGA-PAMAM@CircOGDH siRNA NPs in ischaemic neurons alleviated neuronal apoptotic level in vitro and in vivo. Furthermore, mice behaviour test showed that the neurological defects of MCAO/R mice were significantly alleviated after the tail injection of PLGA-PAMAM@CircOGDH siRNA NPs, and no toxic effects were observed. CONCLUSION In conclusion, our results suggest that PLGA-PAMAM@CircOGDH siRNA NPs can be delivered to the ischaemic penumbra region and alleviate neuron apoptosis in MCAO/R mice and in ischaemic neurons; therefore, our study provides a desirable approach for using circRNA-based NPs for the treatment of ischaemic stroke.
Collapse
Affiliation(s)
- Yanfang Liu
- Department of Neurology and Stroke Center, Jinan University First Affiliated Hospital, Guangzhou, Guangdong, China
- Department of Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- Key Lab of Guangzhou Basic and Translational Research of Pan-vascular Diseases, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Tianyuan Zhang
- Department of Neurology and Stroke Center, Jinan University First Affiliated Hospital, Guangzhou, Guangdong, China
- Department of Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- Key Lab of Guangzhou Basic and Translational Research of Pan-vascular Diseases, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xing Zou
- Department of Neurology and Stroke Center, Jinan University First Affiliated Hospital, Guangzhou, Guangdong, China
- Department of Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- Key Lab of Guangzhou Basic and Translational Research of Pan-vascular Diseases, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhongwen Yuan
- Department of Neurology and Stroke Center, Jinan University First Affiliated Hospital, Guangzhou, Guangdong, China
- Department of Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Yufeng Li
- Department of Neurology and Stroke Center, Jinan University First Affiliated Hospital, Guangzhou, Guangdong, China
- Department of Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- Key Lab of Guangzhou Basic and Translational Research of Pan-vascular Diseases, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jiankun Zang
- Department of Neurology and Stroke Center, Jinan University First Affiliated Hospital, Guangzhou, Guangdong, China
- Department of Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- Key Lab of Guangzhou Basic and Translational Research of Pan-vascular Diseases, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Niu He
- Department of Neurology and Stroke Center, Jinan University First Affiliated Hospital, Guangzhou, Guangdong, China
- Department of Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- Key Lab of Guangzhou Basic and Translational Research of Pan-vascular Diseases, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lizhen He
- Department of Neurology and Stroke Center, Jinan University First Affiliated Hospital, Guangzhou, Guangdong, China
- Department of Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Anding Xu
- Department of Neurology and Stroke Center, Jinan University First Affiliated Hospital, Guangzhou, Guangdong, China
- Department of Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- Key Lab of Guangzhou Basic and Translational Research of Pan-vascular Diseases, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Dan Lu
- Department of Neurology and Stroke Center, Jinan University First Affiliated Hospital, Guangzhou, Guangdong, China
- Department of Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- Key Lab of Guangzhou Basic and Translational Research of Pan-vascular Diseases, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
7
|
Zhang J, Chen Z, Chen Q. Advanced Nano-Drug Delivery Systems in the Treatment of Ischemic Stroke. Molecules 2024; 29:1848. [PMID: 38675668 PMCID: PMC11054753 DOI: 10.3390/molecules29081848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
In recent years, the frequency of strokes has been on the rise year by year and has become the second leading cause of death around the world, which is characterized by a high mortality rate, high recurrence rate, and high disability rate. Ischemic strokes account for a large percentage of strokes. A reperfusion injury in ischemic strokes is a complex cascade of oxidative stress, neuroinflammation, immune infiltration, and mitochondrial damage. Conventional treatments are ineffective, and the presence of the blood-brain barrier (BBB) leads to inefficient drug delivery utilization, so researchers are turning their attention to nano-drug delivery systems. Functionalized nano-drug delivery systems have been widely studied and applied to the study of cerebral ischemic diseases due to their favorable biocompatibility, high efficiency, strong specificity, and specific targeting ability. In this paper, we briefly describe the pathological process of reperfusion injuries in strokes and focus on the therapeutic research progress of nano-drug delivery systems in ischemic strokes, aiming to provide certain references to understand the progress of research on nano-drug delivery systems (NDDSs).
Collapse
Affiliation(s)
- Jiajie Zhang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (J.Z.); (Z.C.)
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (J.Z.); (Z.C.)
| | - Qi Chen
- Interdisciplinary Institute for Medical Engineering, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
8
|
Chung K, Ullah I, Yi Y, Kang E, Yun G, Heo S, Kim M, Chung SE, Park S, Lim J, Lee M, Rhim T, Lee SK. Intranasal Delivery of Anti-Apoptotic siRNA Complexed with Fas-Signaling Blocking Peptides Attenuates Cellular Apoptosis in Brain Ischemia. Pharmaceutics 2024; 16:290. [PMID: 38399343 PMCID: PMC10892455 DOI: 10.3390/pharmaceutics16020290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Ischemic stroke-induced neuronal cell death leads to the permanent impairment of brain function. The Fas-mediating extrinsic apoptosis pathway and the cytochrome c-mediating intrinsic apoptosis pathway are two major molecular mechanisms contributing to neuronal injury in ischemic stroke. In this study, we employed a Fas-blocking peptide (FBP) coupled with a positively charged nona-arginine peptide (9R) to form a complex with negatively charged siRNA targeting Bax (FBP9R/siBax). This complex is specifically designed to deliver siRNA to Fas-expressing ischemic brain cells. This complex enables the targeted inhibition of Fas-mediating extrinsic apoptosis pathways and cytochrome c-mediating intrinsic apoptosis pathways. Specifically, the FBP targets the Fas/Fas ligand signaling, while siBax targets Bax involved in mitochondria disruption in the intrinsic pathway. The FBP9R carrier system enables the delivery of functional siRNA to hypoxic cells expressing the Fas receptor on their surface-a finding validated through qPCR and confocal microscopy analyses. Through intranasal (IN) administration of FBP9R/siCy5 to middle cerebral artery occlusion (MCAO) ischemic rat models, brain imaging revealed the complex specifically localized to the Fas-expressing infarcted region but did not localize in the non-infarcted region of the brain. A single IN administration of FBP9R/siBax demonstrated a significant reduction in neuronal cell death by effectively inhibiting Fas signaling and preventing the release of cytochrome c. The targeted delivery of FBP9R/siBax represents a promising alternative strategy for the treatment of brain ischemia.
Collapse
Affiliation(s)
- Kunho Chung
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea; (K.C.); (Y.Y.); (S.H.)
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Irfan Ullah
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea; (K.C.); (Y.Y.); (S.H.)
- Department of Internal Medicine, Yale University, New Haven, CT 06520, USA
| | - Yujong Yi
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea; (K.C.); (Y.Y.); (S.H.)
| | - Eunhwa Kang
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea; (K.C.); (Y.Y.); (S.H.)
| | - Gyeongju Yun
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea; (K.C.); (Y.Y.); (S.H.)
| | - Seoyoun Heo
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea; (K.C.); (Y.Y.); (S.H.)
| | - Minkyung Kim
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea; (K.C.); (Y.Y.); (S.H.)
| | - Seong-Eun Chung
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea; (K.C.); (Y.Y.); (S.H.)
| | - Seongjun Park
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea; (K.C.); (Y.Y.); (S.H.)
| | - Jaeyeoung Lim
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea; (K.C.); (Y.Y.); (S.H.)
| | - Minhyung Lee
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea; (K.C.); (Y.Y.); (S.H.)
| | - Taiyoun Rhim
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea; (K.C.); (Y.Y.); (S.H.)
| | - Sang-Kyung Lee
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea; (K.C.); (Y.Y.); (S.H.)
| |
Collapse
|
9
|
Qiao R, Fu C, Forgham H, Javed I, Huang X, Zhu J, Whittaker AK, Davis TP. Magnetic Iron Oxide Nanoparticles for Brain Imaging and Drug Delivery. Adv Drug Deliv Rev 2023; 197:114822. [PMID: 37086918 DOI: 10.1016/j.addr.2023.114822] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/14/2023] [Accepted: 04/09/2023] [Indexed: 04/24/2023]
Abstract
Central nervous system (CNS) disorders affect as many as 1.5 billion people globally. The limited delivery of most imaging and therapeutic agents into the brain is a major challenge for treatment of CNS disorders. With the advent of nanotechnologies, controlled delivery of drugs with nanoparticles holds great promise in CNS disorders for overcoming the blood-brain barrier (BBB) and improving delivery efficacy. In recent years, magnetic iron oxide nanoparticles (MIONPs) have stood out as a promising theranostic nanoplatform for brain imaging and drug delivery as they possess unique physical properties and biodegradable characteristics. In this review, we summarize the recent advances in MIONP-based platforms as imaging and drug delivery agents for brain diseases. We firstly introduce the methods of synthesis and surface functionalization of MIONPs with emphasis on the inclusion of biocompatible polymers that allow for the addition of tailored physicochemical properties. We then discuss the recent advances in in vivo imaging and drug delivery applications using MIONPs. Finally, we present a perspective on the remaining challenges and possible future directions for MIONP-based brain delivery systems.
Collapse
Affiliation(s)
- Ruirui Qiao
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Changkui Fu
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Helen Forgham
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ibrahim Javed
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Xumin Huang
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jiayuan Zhu
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Andrew K Whittaker
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Thomas P Davis
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
10
|
Methods for CRISPR-Cas as Ribonucleoprotein Complex Delivery In Vivo. Mol Biotechnol 2023; 65:181-195. [PMID: 35322386 DOI: 10.1007/s12033-022-00479-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 03/14/2022] [Indexed: 01/18/2023]
Abstract
The efficient delivery of CRISPR-Cas components is still a key and unsolved problem. CRISPR-Cas delivery in the form of a Cas protein+sgRNA (ribonucleoprotein complex, RNP complex), has proven to be extremely effective, since it allows to increase on-target activity, while reducing nonspecific activity. The key point for in vivo genome editing is the direct delivery of artificial nucleases and donor DNA molecules into the somatic cells of an adult organism. At the same time, control of the dose of artificial nucleases is impossible, which affects the efficiency of genome editing in the affected cells. Poor delivery efficiency and low editing efficacy reduce the overall potency of the in vivo genome editing process. Here we review how this problem is currently being solved in scientific works and what types of in vivo delivery methods of Cas9/sgRNA RNPs have been developed.
Collapse
|
11
|
Lu ZG, Shen J, Yang J, Wang JW, Zhao RC, Zhang TL, Guo J, Zhang X. Nucleic acid drug vectors for diagnosis and treatment of brain diseases. Signal Transduct Target Ther 2023; 8:39. [PMID: 36650130 PMCID: PMC9844208 DOI: 10.1038/s41392-022-01298-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/08/2022] [Accepted: 12/21/2022] [Indexed: 01/18/2023] Open
Abstract
Nucleic acid drugs have the advantages of rich target selection, simple in design, good and enduring effect. They have been demonstrated to have irreplaceable superiority in brain disease treatment, while vectors are a decisive factor in therapeutic efficacy. Strict physiological barriers, such as degradation and clearance in circulation, blood-brain barrier, cellular uptake, endosome/lysosome barriers, release, obstruct the delivery of nucleic acid drugs to the brain by the vectors. Nucleic acid drugs against a single target are inefficient in treating brain diseases of complex pathogenesis. Differences between individual patients lead to severe uncertainties in brain disease treatment with nucleic acid drugs. In this Review, we briefly summarize the classification of nucleic acid drugs. Next, we discuss physiological barriers during drug delivery and universal coping strategies and introduce the application methods of these universal strategies to nucleic acid drug vectors. Subsequently, we explore nucleic acid drug-based multidrug regimens for the combination treatment of brain diseases and the construction of the corresponding vectors. In the following, we address the feasibility of patient stratification and personalized therapy through diagnostic information from medical imaging and the manner of introducing contrast agents into vectors. Finally, we take a perspective on the future feasibility and remaining challenges of vector-based integrated diagnosis and gene therapy for brain diseases.
Collapse
Affiliation(s)
- Zhi-Guo Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| | - Jie Shen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jun Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jing-Wen Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Rui-Chen Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Tian-Lu Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Jing Guo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Xin Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| |
Collapse
|
12
|
Mohd Satar A, Othman FA, Tan SC. Biomaterial application strategies to enhance stem cell-based therapy for ischemic stroke. World J Stem Cells 2022; 14:851-867. [PMID: 36619694 PMCID: PMC9813837 DOI: 10.4252/wjsc.v14.i12.851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/29/2022] [Accepted: 12/06/2022] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Ischemic stroke is a condition in which an occluded blood vessel interrupts blood flow to the brain and causes irreversible neuronal cell death. Transplantation of regenerative stem cells has been proposed as a novel therapy to restore damaged neural circuitry after ischemic stroke attack. However, limitations such as low cell survival rates after transplantation remain significant challenges to stem cell-based therapy for ischemic stroke in the clinical setting. In order to enhance the therapeutic efficacy of transplanted stem cells, several biomaterials have been developed to provide a supportable cellular microenvironment or functional modification on the stem cells to optimize their reparative roles in injured tissues or organs. AIM To discuss state-of-the-art functional biomaterials that could enhance the therapeutic potential of stem cell-based treatment for ischemic stroke and provide detailed insights into the mechanisms underlying these biomaterial approaches. METHODS The PubMed, Science Direct and Scopus literature databases were searched using the keywords of "biomaterial" and "ischemic stroke". All topically-relevant articles were then screened to identify those with focused relevance to in vivo, in vitro and clinical studies related to "stem cells" OR "progenitor cells" OR "undifferentiated cells" published in English during the years of 2011 to 2022. The systematic search was conducted up to September 30, 2022. RESULTS A total of 19 articles matched all the inclusion criteria. The data contained within this collection of papers comprehensively represented 19 types of biomaterials applied on seven different types of stem/progenitor cells, namely mesenchymal stem cells, neural stem cells, induced pluripotent stem cells, neural progenitor cells, endothelial progenitor cells, neuroepithelial progenitor cells, and neuroblasts. The potential major benefits gained from the application of biomaterials in stem cell-based therapy were noted as induction of structural and functional modifications, increased stem cell retention rate in the hostile ischemic microenvironment, and promoting the secretion of important cytokines for reparative mechanisms. CONCLUSION Biomaterials have a relatively high potential for enhancing stem cell therapy. Nonetheless, there is a scarcity of evidence from human clinical studies for the efficacy of this bioengineered cell therapy, highlighting that it is still too early to draw a definitive conclusion on efficacy and safety for patient usage. Future in-depth clinical investigations are necessary to realize translation of this therapy into a more conscientious and judicious evidence-based therapy for clinical application.
Collapse
Affiliation(s)
- Asmaa' Mohd Satar
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Farah Amna Othman
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Suat Cheng Tan
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia.
| |
Collapse
|
13
|
Liu H, Sun R, Wang L, Chen X, Li G, Cheng Y, Zhai G, Bay BH, Yang F, Gu N, Guo Y, Fan H. Biocompatible Iron Oxide Nanoring-Labeled Mesenchymal Stem Cells: An Innovative Magnetothermal Approach for Cell Tracking and Targeted Stroke Therapy. ACS NANO 2022; 16:18806-18821. [PMID: 36278899 DOI: 10.1021/acsnano.2c07581] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Labeling stem cells with magnetic nanoparticles is a promising technique for in vivo tracking and magnetic targeting of transplanted stem cells, which is critical for improving the therapeutic efficacy of cell therapy. However, conventional endocytic labeling with relatively poor labeling efficiency and a short labeling lifetime has hindered the implementation of these innovative enhancements in stem-cell-mediated regenerative medicine. Herein, we describe an advanced magnetothermal approach to label mesenchymal stem cells (MSCs) efficiently by local induction of heat-enhanced membrane permeability for magnetic resonance imaging (MRI) tracking and targeted therapy of stroke, where biocompatible γ-phase, ferrimagnetic vortex-domain iron oxide nanorings (γ-FVIOs) with superior magnetoresponsive properties were used as a tracer. This approach facilitates a safe and efficient labeling of γ-FVIOs as high as 150 pg of Fe per cell without affecting the MSCs proliferation and differentiation, which is 3.44-fold higher than that by endocytosis labeling. Such a high labeling efficiency not only enables the ultrasensitive magnetic resonance imaging (MRI) detection of sub-10 cells and long-term tracking of transplanted MSCs over 10 weeks but also endows transplanted MSCs with a magnetic manipulation ability in vivo. A proof-of-concept study using a rat stroke model showed that the labeled MSCs facilitated MRI tracking and magnetic targeting for efficient replacement therapy with a significantly reduced dosage of 5 × 104 transplanted cells. The findings in this study have demonstrated the great potential of the magnetothermal approach as an efficient labeling technique for future clinical usage.
Collapse
Affiliation(s)
- Hanrui Liu
- Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu610041, China
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an710127, China
| | - Ran Sun
- Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu610041, China
| | - Lei Wang
- Molecular Imaging Center, West China Hospital, Sichuan University, Chengdu610041, China
| | - Xiaoyong Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an710127, China
| | - Galong Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an710127, China
- School of Medicine, Northwest University, Xi'an710069, China
| | - Yu Cheng
- Institute for Regenerative Medicine, The Institute for Biomedical Engineering & Nano Science, Shanghai East Hospital, Tongji University School of Medicine, 1800 Yuntai Road, Shanghai200092, China
| | - Gaohong Zhai
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an710127, China
| | - Boon-Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, MD10, 117594, Singapore
| | - Fang Yang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing210009, China
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing210009, China
| | - Yingkun Guo
- Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu610041, China
| | - Haiming Fan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an710127, China
- School of Medicine, Northwest University, Xi'an710069, China
| |
Collapse
|
14
|
Hoseinzadeh A, Ghoddusi Johari H, Anbardar MH, Tayebi L, Vafa E, Abbasi M, Vaez A, Golchin A, Amani AM, Jangjou A. Effective treatment of intractable diseases using nanoparticles to interfere with vascular supply and angiogenic process. Eur J Med Res 2022; 27:232. [PMID: 36333816 PMCID: PMC9636835 DOI: 10.1186/s40001-022-00833-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
Angiogenesis is a vital biological process involving blood vessels forming from pre-existing vascular systems. This process contributes to various physiological activities, including embryonic development, hair growth, ovulation, menstruation, and the repair and regeneration of damaged tissue. On the other hand, it is essential in treating a wide range of pathological diseases, such as cardiovascular and ischemic diseases, rheumatoid arthritis, malignancies, ophthalmic and retinal diseases, and other chronic conditions. These diseases and disorders are frequently treated by regulating angiogenesis by utilizing a variety of pro-angiogenic or anti-angiogenic agents or molecules by stimulating or suppressing this complicated process, respectively. Nevertheless, many traditional angiogenic therapy techniques suffer from a lack of ability to achieve the intended therapeutic impact because of various constraints. These disadvantages include limited bioavailability, drug resistance, fast elimination, increased price, nonspecificity, and adverse effects. As a result, it is an excellent time for developing various pro- and anti-angiogenic substances that might circumvent the abovementioned restrictions, followed by their efficient use in treating disorders associated with angiogenesis. In recent years, significant progress has been made in different fields of medicine and biology, including therapeutic angiogenesis. Around the world, a multitude of research groups investigated several inorganic or organic nanoparticles (NPs) that had the potential to effectively modify the angiogenesis processes by either enhancing or suppressing the process. Many studies into the processes behind NP-mediated angiogenesis are well described. In this article, we also cover the application of NPs to encourage tissue vascularization as well as their angiogenic and anti-angiogenic effects in the treatment of several disorders, including bone regeneration, peripheral vascular disease, diabetic retinopathy, ischemic stroke, rheumatoid arthritis, post-ischemic cardiovascular injury, age-related macular degeneration, diabetic retinopathy, gene delivery-based angiogenic therapy, protein delivery-based angiogenic therapy, stem cell angiogenic therapy, and diabetic retinopathy, cancer that may benefit from the behavior of the nanostructures in the vascular system throughout the body. In addition, the accompanying difficulties and potential future applications of NPs in treating angiogenesis-related diseases and antiangiogenic therapies are discussed.
Collapse
Affiliation(s)
- Ahmad Hoseinzadeh
- Thoracic and Vascular Surgery Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Surgery, School of Medicine, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Ghoddusi Johari
- Thoracic and Vascular Surgery Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Surgery, School of Medicine, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA
| | - Ehsan Vafa
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Golchin
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Jangjou
- Department of Emergency Medicine, School of Medicine, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
15
|
Zhuang J, Zhang X, Liu Q, Zhu M, Huang X. Targeted delivery of nanomedicines for promoting vascular regeneration in ischemic diseases. Am J Cancer Res 2022; 12:6223-6241. [PMID: 36168632 PMCID: PMC9475455 DOI: 10.7150/thno.73421] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022] Open
Abstract
Ischemic diseases, the leading cause of disability and death, are caused by the restriction or blockage of blood flow in specific tissues, including ischemic cardiac, ischemic cerebrovascular and ischemic peripheral vascular diseases. The regeneration of functional vasculature network in ischemic tissues is essential for treatment of ischemic diseases. Direct delivery of pro-angiogenesis factors, such as VEGF, has demonstrated the effectiveness in ischemic disease therapy but suffering from several obstacles, such as low delivery efficacy in disease sites and uncontrolled modulation. In this review, we summarize the molecular mechanisms of inducing vascular regeneration, providing the guidance for designing the desired nanomedicines. We also introduce the delivery of various nanomedicines to ischemic tissues by passive or active targeting manner. To achieve the efficient delivery of nanomedicines in various ischemic diseases, we highlight targeted delivery of nanomedicines and controllable modulation of disease microenvironment using nanomedicines.
Collapse
Affiliation(s)
- Jie Zhuang
- School of Medicine, Nankai University, Tianjin 300071, China.,Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China.,Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiangyun Zhang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China.,Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qiqi Liu
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China.,Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mingsheng Zhu
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China.,Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xinglu Huang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China.,Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
16
|
Luo M, Lee LKC, Peng B, Choi CHJ, Tong WY, Voelcker NH. Delivering the Promise of Gene Therapy with Nanomedicines in Treating Central Nervous System Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201740. [PMID: 35851766 PMCID: PMC9475540 DOI: 10.1002/advs.202201740] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/19/2022] [Indexed: 06/01/2023]
Abstract
Central Nervous System (CNS) diseases, such as Alzheimer's diseases (AD), Parkinson's Diseases (PD), brain tumors, Huntington's disease (HD), and stroke, still remain difficult to treat by the conventional molecular drugs. In recent years, various gene therapies have come into the spotlight as versatile therapeutics providing the potential to prevent and treat these diseases. Despite the significant progress that has undoubtedly been achieved in terms of the design and modification of genetic modulators with desired potency and minimized unwanted immune responses, the efficient and safe in vivo delivery of gene therapies still poses major translational challenges. Various non-viral nanomedicines have been recently explored to circumvent this limitation. In this review, an overview of gene therapies for CNS diseases is provided and describes recent advances in the development of nanomedicines, including their unique characteristics, chemical modifications, bioconjugations, and the specific applications that those nanomedicines are harnessed to deliver gene therapies.
Collapse
Affiliation(s)
- Meihua Luo
- Monash Institute of Pharmaceutics ScienceMonash UniversityParkville Campus, 381 Royal ParadeParkvilleVIC3052Australia
- Australian Institute for Bioengineering and Nanotechnologythe University of QueenslandSt LuciaQLD4072Australia
| | - Leo Kit Cheung Lee
- Department of Biomedical EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong
| | - Bo Peng
- Monash Institute of Pharmaceutics ScienceMonash UniversityParkville Campus, 381 Royal ParadeParkvilleVIC3052Australia
- Frontiers Science Center for Flexible ElectronicsXi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical materials & EngineeringNorthwestern Polytechnical UniversityXi'an710072China
| | - Chung Hang Jonathan Choi
- Department of Biomedical EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong
| | - Wing Yin Tong
- Monash Institute of Pharmaceutics ScienceMonash UniversityParkville Campus, 381 Royal ParadeParkvilleVIC3052Australia
| | - Nicolas H. Voelcker
- Monash Institute of Pharmaceutics ScienceMonash UniversityParkville Campus, 381 Royal ParadeParkvilleVIC3052Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO)ClaytonVIC3168Australia
- Melbourne Centre for NanofabricationVictorian Node of the Australian National Fabrication Facility151 Wellington RoadClaytonVIC3168Australia
- Materials Science and EngineeringMonash University14 Alliance LaneClaytonVIC3800Australia
| |
Collapse
|
17
|
Xu H, Li S, Liu YS. Nanoparticles in the diagnosis and treatment of vascular aging and related diseases. Signal Transduct Target Ther 2022; 7:231. [PMID: 35817770 PMCID: PMC9272665 DOI: 10.1038/s41392-022-01082-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/23/2022] [Accepted: 06/26/2022] [Indexed: 11/09/2022] Open
Abstract
Aging-induced alternations of vasculature structures, phenotypes, and functions are key in the occurrence and development of vascular aging-related diseases. Multiple molecular and cellular events, such as oxidative stress, mitochondrial dysfunction, vascular inflammation, cellular senescence, and epigenetic alterations are highly associated with vascular aging physiopathology. Advances in nanoparticles and nanotechnology, which can realize sensitive diagnostic modalities, efficient medical treatment, and better prognosis as well as less adverse effects on non-target tissues, provide an amazing window in the field of vascular aging and related diseases. Throughout this review, we presented current knowledge on classification of nanoparticles and the relationship between vascular aging and related diseases. Importantly, we comprehensively summarized the potential of nanoparticles-based diagnostic and therapeutic techniques in vascular aging and related diseases, including cardiovascular diseases, cerebrovascular diseases, as well as chronic kidney diseases, and discussed the advantages and limitations of their clinical applications.
Collapse
Affiliation(s)
- Hui Xu
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China.,Institute of Aging and Age-related Disease Research, Central South University, 410011, Changsha, Hunan, China
| | - Shuang Li
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China.,Institute of Aging and Age-related Disease Research, Central South University, 410011, Changsha, Hunan, China
| | - You-Shuo Liu
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China. .,Institute of Aging and Age-related Disease Research, Central South University, 410011, Changsha, Hunan, China.
| |
Collapse
|
18
|
Optimization of Multimodal Nanoparticles Internalization Process in Mesenchymal Stem Cells for Cell Therapy Studies. Pharmaceutics 2022; 14:pharmaceutics14061249. [PMID: 35745821 PMCID: PMC9227698 DOI: 10.3390/pharmaceutics14061249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022] Open
Abstract
Considering there are several difficulties and limitations in labeling stem cells using multifunctional nanoparticles (MFNP), the purpose of this study was to determine the optimal conditions for labeling human bone marrow mesenchymal stem cells (hBM-MSC), aiming to monitor these cells in vivo. Thus, this study provides information on hBM-MSC direct labeling using multimodal nanoparticles in terms of concentration, magnetic field, and period of incubation while maintaining these cells’ viability and the homing ability for in vivo experiments. The cell labeling process was assessed using 10, 30, and 50 µg Fe/mL of MFNP, with periods of incubation ranging from 4 to 24 h, with or without a magnetic field, using optical microscopy, near-infrared fluorescence (NIRF), and inductively coupled plasma mass spectrometry (ICP-MS). After the determination of optimal labeling conditions, these cells were applied in vivo 24 h after stroke induction, intending to evaluate cell homing and improve NIRF signal detection. In the presence of a magnetic field and utilizing the maximal concentration of MFNP during cell labeling, the iron load assessed by NIRF and ICP-MS was four times higher than what was achieved before. In addition, considering cell viability higher than 98%, the recommended incubation time was 9 h, which corresponded to a 25.4 pg Fe/cell iron load (86% of the iron load internalized in 24 h). The optimization of cellular labeling for application in the in vivo study promoted an increase in the NIRF signal by 215% at 1 h and 201% at 7 h due to the use of a magnetized field during the cellular labeling process. In the case of BLI, the signal does not depend on cell labeling showing no significant differences between unlabeled or labeled cells (with or without a magnetic field). Therefore, the in vitro cellular optimized labeling process using magnetic fields resulted in a shorter period of incubation with efficient iron load internalization using higher MFNP concentration (50 μgFe/mL), leading to significant improvement in cell detection by NIRF technique without compromising cellular viability in the stroke model.
Collapse
|
19
|
Yang Y, Yin N, Gu Z, Zhao Y, Liu C, Zhou T, Zhang K, Zhang Z, Liu J, Shi J. Engineered biomimetic drug-delivery systems for ischemic stroke therapy. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
20
|
Li YX, Wang HB, Jin JB, Yang CL, Hu JB, Li J. Advances in the research of nano delivery systems in ischemic stroke. Front Bioeng Biotechnol 2022; 10:984424. [PMID: 36338131 PMCID: PMC9634573 DOI: 10.3389/fbioe.2022.984424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/07/2022] [Indexed: 11/29/2022] Open
Abstract
Ischemic stroke is the most common type of cerebrovascular disease with high disability rate and mortality. The blood-brain barrier (BBB) protects the homeostasis of the brain's microenvironment and impedes the penetration of 98% of drugs. Therefore, effective treatment requires the better drug transport across membranes and increased drug distribution. Nanoparticles are a good choice for drugs to cross BBB. The main pathways of nano delivery systems through BBB include passive diffusion, adsorption-mediated endocytosis, receptor-mediated transport, carrier-mediated transport, etc. At present, the materials used in brain-targeted delivery can be divided into natural polymer, synthetic polymers, inorganic materials and phospholipid. In this review, we first introduced several ways of nano delivery systems crossing the BBB, and then summarized their applications in ischemic stroke. Based on their potential and challenges in the treatment of ischemic stroke, new ideas and prospects are proposed for designing feasible and effective nano delivery systems.
Collapse
Affiliation(s)
- Yi-Xuan Li
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, China
| | - Hong-Bo Wang
- Department of Pharmacy, Ningbo University Affiliated Yangming Hospital, Yuyao, China
| | - Jian-Bo Jin
- Department of Pharmacy, Ningbo University Affiliated Yangming Hospital, Yuyao, China
| | - Chun-Lin Yang
- Department of Pharmacy, Ningbo University Affiliated Yangming Hospital, Yuyao, China
| | - Jing-Bo Hu
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, China
| | - Jing Li
- Department of Pharmacy, Ningbo University Affiliated Yangming Hospital, Yuyao, China
- *Correspondence: Jing Li,
| |
Collapse
|
21
|
Abstract
Cerebral ischemic injury may lead to a series of serious brain diseases, death or different degrees of disability. Hypoxia-inducible factor-1α (HIF-1α) is an oxygen-sensitive transcription factor, which mediates the adaptive metabolic response to hypoxia and serves a key role in cerebral ischemia. HIF-1α is the main molecule that responds to hypoxia. HIF-1α serves an important role in the development of cerebral ischemia by participating in numerous processes, including metabolism, proliferation and angiogenesis. The present review focuses on the endogenous protective mechanism of cerebral ischemia and elaborates on the role of HIF-1α in cerebral ischemia. In addition, it focuses on cerebral ischemia interventions that act on the HIF-1α target, including biological factors, non-coding RNA, hypoxic-ischemic preconditioning and drugs, and expands upon the measures to strengthen the endogenous compensatory response to support HIF-1α as a therapeutic target, thus providing novel suggestions for the treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Peiliang Dong
- Institute of Traditional Chinese Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Qingna Li
- College of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Hua Han
- College of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| |
Collapse
|
22
|
Peng X, Lin G, Zeng Y, Lei Z, Liu G. Mesoporous Silica Nanoparticle-Based Imaging Agents for Hepatocellular Carcinoma Detection. Front Bioeng Biotechnol 2021; 9:749381. [PMID: 34869261 PMCID: PMC8635232 DOI: 10.3389/fbioe.2021.749381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/04/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is characterized by poor prognosis and high mortality. The treatment of HCC is closely related to the stage, and the early-stage of HCC patients usually accompanies a more long-term survival rate after clinical treatment. Hence, there are critical needs to develop effective imaging agents with superior diagnostic precision for HCC detection at an early stage. Recently, mesoporous silica nanoparticles (MSNs) based imaging agents have gained extensive attentions in HCC detection, which can serve as a multifunctional nanoplatform with controllable size and facile surface functionalization. This perspective summarizes recent advances in MSNs based imaging agents for HCC detection by the incorporation of several clinical imaging modalities. Multi-modal imaging system has been developed for higher spatial resolution and sensitivity. Even though some limitations and challenges need to be overcome, we envision the development of novel MSNs based imaging agents will offer great potential applications in clinical HCC detection.
Collapse
Affiliation(s)
| | | | | | - Zhao Lei
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
23
|
He W, Zhang Z, Sha X. Nanoparticles-mediated emerging approaches for effective treatment of ischemic stroke. Biomaterials 2021; 277:121111. [PMID: 34488117 DOI: 10.1016/j.biomaterials.2021.121111] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/20/2022]
Abstract
Ischemic stroke leads to high disability and mortality. The limited delivery efficiency of most therapeutic substances is a major challenge for effective treatment of ischemic stroke. Inspired by the prominent merit of nanoscale particles in brain targeting and blood-brain barrier (BBB) penetration, various functional nanoparticles have been designed as promising drug delivery platforms that are expected to improve the therapeutic effect of ischemic stroke. Based on the complex pathological mechanisms of ischemic stroke, this review outline and summarize the rationally designed nanoparticles-mediated emerging approaches for effective treatment of ischemic stroke, including recanalization therapy, neuroprotection therapy, and combination therapy. On this bases, the potentials and challenges of nanoparticles in the treatment of ischemic stroke are revealed, and new thoughts and perspectives are proposed for the design of feasible nanoparticles for effective treatment of ischemic stroke.
Collapse
Affiliation(s)
- Wenxiu He
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Zhiwen Zhang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xianyi Sha
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China; The Institutes of Integrative Medicine of Fudan University, 120 Urumqi Middle Road, Shanghai, 200040, China.
| |
Collapse
|
24
|
Therapeutic Nanoparticles for the Different Phases of Ischemic Stroke. Life (Basel) 2021; 11:life11060482. [PMID: 34073229 PMCID: PMC8227304 DOI: 10.3390/life11060482] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/27/2022] Open
Abstract
Stroke represents the second leading cause of mortality and morbidity worldwide. Ischemic strokes are the most prevalent type of stroke, and they are characterized by a series of pathological events prompted by an arterial occlusion that leads to a heterogeneous pathophysiological response through different hemodynamic phases, namely the hyperacute, acute, subacute, and chronic phases. Stroke treatment is highly reliant on recanalization therapies, which are limited to only a subset of patients due to their narrow therapeutic window; hence, there is a huge need for new stroke treatments. Nonetheless, the vast majority of promising treatments are not effective in the clinical setting due to their inability to cross the blood-brain barrier and reach the brain. In this context, nanotechnology-based approaches such as nanoparticle drug delivery emerge as the most promising option. In this review, we will discuss the current status of nanotechnology in the setting of stroke, focusing on the diverse available nanoparticle approaches targeted to the different pathological and physiological repair mechanisms involved in each of the stroke phases.
Collapse
|
25
|
Perrelli A, Fatehbasharzad P, Benedetti V, Ferraris C, Fontanella M, De Luca E, Moglianetti M, Battaglia L, Retta SF. Towards precision nanomedicine for cerebrovascular diseases with emphasis on Cerebral Cavernous Malformation (CCM). Expert Opin Drug Deliv 2021; 18:849-876. [PMID: 33406376 DOI: 10.1080/17425247.2021.1873273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Cerebrovascular diseases encompass various disorders of the brain vasculature, such as ischemic/hemorrhagic strokes, aneurysms, and vascular malformations, also affecting the central nervous system leading to a large variety of transient or permanent neurological disorders. They represent major causes of mortality and long-term disability worldwide, and some of them can be inherited, including Cerebral Cavernous Malformation (CCM), an autosomal dominant cerebrovascular disease linked to mutations in CCM1/KRIT1, CCM2, or CCM3/PDCD10 genes.Areas covered: Besides marked clinical and etiological heterogeneity, some commonalities are emerging among distinct cerebrovascular diseases, including key pathogenetic roles of oxidative stress and inflammation, which are increasingly recognized as major disease hallmarks and therapeutic targets. This review provides a comprehensive overview of the different clinical features and common pathogenetic determinants of cerebrovascular diseases, highlighting major challenges, including the pressing need for new diagnostic and therapeutic strategies, and focusing on emerging innovative features and promising benefits of nanomedicine strategies for early detection and targeted treatment of such diseases.Expert opinion: Specifically, we describe and discuss the multiple physico-chemical features and unique biological advantages of nanosystems, including nanodiagnostics, nanotherapeutics, and nanotheranostics, that may help improving diagnosis and treatment of cerebrovascular diseases and neurological comorbidities, with an emphasis on CCM disease.
Collapse
Affiliation(s)
- Andrea Perrelli
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy.,CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy
| | - Parisa Fatehbasharzad
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy.,CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy
| | - Valerio Benedetti
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy.,CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy
| | - Chiara Ferraris
- Department of Drug Science and Technology, University of Torino, Torino, Italy.,Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Torino, Torino, Italy
| | - Marco Fontanella
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy.,Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Elisa De Luca
- Nanobiointeractions & Nanodiagnostics, Center for Biomolecular Nanotechnologies, Arnesano, Lecce, Italy.,Institute for Microelectronics and Microsystems (IMM), CNR, Lecce, Italy
| | - Mauro Moglianetti
- Nanobiointeractions & Nanodiagnostics, Center for Biomolecular Nanotechnologies, Arnesano, Lecce, Italy.,Istituto Italiano Di Tecnologia, Nanobiointeractions & Nanodiagnostics, Genova, Italy
| | - Luigi Battaglia
- Department of Drug Science and Technology, University of Torino, Torino, Italy.,Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Torino, Torino, Italy
| | - Saverio Francesco Retta
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy.,CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy
| |
Collapse
|
26
|
Nucci MP, Filgueiras IS, Ferreira JM, de Oliveira FA, Nucci LP, Mamani JB, Rego GNA, Gamarra LF. Stem cell homing, tracking and therapeutic efficiency evaluation for stroke treatment using nanoparticles: A systematic review. World J Stem Cells 2020; 12:381-405. [PMID: 32547686 PMCID: PMC7280869 DOI: 10.4252/wjsc.v12.i5.381] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/02/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Stroke is the second leading cause of death worldwide. There is a real need to develop treatment strategies for reducing neurological deficits in stroke survivors, and stem cell (SC) therapeutics appear to be a promising alternative for stroke therapy that can be used in combination with approved thrombolytic or thrombectomy approaches. However, the efficacy of SC therapy depends on the SC homing ability and engraftment into the injury site over a long period of time. Nonetheless, tracking SCs from their niche to the target tissues is a complex process.
AIM To evaluate SC migration homing, tracking and therapeutic efficacy in the treatment of stroke using nanoparticles
METHODS A systematic literature search was performed to identify articles published prior to November 2019 that were indexed in PubMed and Scopus. The following inclusion criteria were used: (1) Studies that used in vivo models of stroke or ischemic brain lesions; (2) Studies of SCs labeled with some type of contrast agent for cell migration detection; and (3) Studies that involved in vivo cellular homing and tracking analysis.
RESULTS A total of 82 articles were identified by indexing in Scopus and PubMed. After the inclusion criteria were applied, 35 studies were selected, and the articles were assessed for eligibility; ultimately, only 25 studies were included. Most of the selected studies used SCs from human and mouse bone marrow labeled with magnetic nanoparticles alone or combined with fluorophore dyes. These cells were administered in the stroke model (to treat middle cerebral artery occlusion in 74% of studies and for photothrombotic induction in 26% of studies). Fifty-three percent of studies used xenogeneic grafts for cell therapy, and the migration homing and tracking evaluation was performed by magnetic resonance imaging as well as other techniques, such as near-infrared fluorescence imaging (12%) or bioluminescence assays (12%).
CONCLUSION Our systematic review provided an up-to-date evaluation of SC migration homing and the efficacy of cellular therapy for stroke treatment in terms of functional and structural improvements in the late stage.
Collapse
Affiliation(s)
- Mariana Penteado Nucci
- LIM44, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05529-060, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
27
|
González-Nieto D, Fernández-Serra R, Pérez-Rigueiro J, Panetsos F, Martinez-Murillo R, Guinea GV. Biomaterials to Neuroprotect the Stroke Brain: A Large Opportunity for Narrow Time Windows. Cells 2020; 9:E1074. [PMID: 32357544 PMCID: PMC7291200 DOI: 10.3390/cells9051074] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke represents one of the most prevalent pathologies in humans and is a leading cause of death and disability. Anti-thrombolytic therapy with tissue plasminogen activator (t-PA) and surgical thrombectomy are the primary treatments to recanalize occluded vessels and normalize the blood flow in ischemic and peri-ischemic regions. A large majority of stroke patients are refractory to treatment or are not eligible due to the narrow time window of therapeutic efficacy. In recent decades, we have significantly increased our knowledge of the molecular and cellular mechanisms that inexorably lead to progressive damage in infarcted and peri-lesional brain areas. As a result, promising neuroprotective targets have been identified and exploited in several stroke models. However, these considerable advances have been unsuccessful in clinical contexts. This lack of clinical translatability and the emerging use of biomaterials in different biomedical disciplines have contributed to developing a new class of biomaterial-based systems for the better control of drug delivery in cerebral disorders. These systems are based on specific polymer formulations structured in nanoparticles and hydrogels that can be administered through different routes and, in general, bring the concentrations of drugs to therapeutic levels for prolonged times. In this review, we first provide the general context of the molecular and cellular mechanisms impaired by cerebral ischemia, highlighting the role of excitotoxicity, inflammation, oxidative stress, and depolarization waves as the main pathways and targets to promote neuroprotection avoiding neuronal dysfunction. In the second part, we discuss the versatile role played by distinct biomaterials and formats to support the sustained administration of particular compounds to neuroprotect the cerebral tissue at risk of damage.
Collapse
Affiliation(s)
- Daniel González-Nieto
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (R.F.-S.); (J.P.-R.); (G.V.G.)
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Rocío Fernández-Serra
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (R.F.-S.); (J.P.-R.); (G.V.G.)
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - José Pérez-Rigueiro
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (R.F.-S.); (J.P.-R.); (G.V.G.)
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Fivos Panetsos
- Neurocomputing and Neurorobotics Research Group: Faculty of Biology and Faculty of Optics, Universidad Complutense de Madrid, 28040 Madrid, Spain;
- Brain Plasticity Group, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | | | - Gustavo V. Guinea
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (R.F.-S.); (J.P.-R.); (G.V.G.)
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| |
Collapse
|
28
|
Han Y, Gong T, Zhang C, Dissanayaka WL. HIF-1α Stabilization Enhances Angio-/Vasculogenic Properties of SHED. J Dent Res 2020; 99:804-812. [PMID: 32298193 DOI: 10.1177/0022034520912190] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The outcome of regenerative procedures could be augmented by enhancing the biological performances of stem cells prior to their transplantation. The current study aimed to investigate whether hypoxic preconditioning through stabilization of hypoxia-inducible factor 1α (HIF-1α) could enhance the angio-/vasculogenic properties of stem cells from human exfoliated deciduous teeth (SHED). HIF-1α expression in SHED under normoxia was stabilized by silencing the expression of prolyl hydroxylase domain-containing protein 2 (PHD2) via lentiviral small hairpin RNA. This in turn significantly increased the expression of an angiogenic factor: vascular endothelial growth factor. Conditioned medium of HIF-1α-stabilized SHED increased the migration and proliferation of human umbilical vein endothelial cells (HUVECs), indicating enhanced paracrine signaling of SHED following PHD2 knockdown (P < 0.05). Furthermore, the coculture of HIF-1α-stabilized SHED with HUVECs directly and in fibrin beads demonstrated significantly longer vascular sprouts through juxtacrine and paracrine effects (P < 0.05). When HIF-1α-stabilized SHED were added to a preformed HUVEC vascular tube network on Matrigel, it not only stabilized the vessels, as shown by the increased thickness (P < 0.05) and junctional area (P < 0.01) of tubes, but also gave rise to new sprouting (P < 0.01). This observation, with the morphologic changes and increased CD31 expression, suggested that HIF-1α stabilization enhanced the endothelial differentiation capacity of SHED through autocrine signaling. In vivo Matrigel plug assay demonstrated that HIF-1α-stabilized SHED alone could give rise to a vasculature that was significantly higher than that of control SHED ± HUVECs and similar to that of HIF-1α-stabilized SHED + HUVECs. In addition to vasculogenesis by endothelial differentiation, HIF-1α-stabilized SHED recruited host blood vessels into the implant by exerting a significant paracrine effect. Taken together, our results confirmed that HIF-1α-stabilized SHED could replace the function of HUVECs and act as the sole cell source of vascularization. Thus, targeting PHD2 to stabilize HIF-1α expression is an appealing strategy that enables the use of a single cell source for achieving vascularized tissue regeneration.
Collapse
Affiliation(s)
- Y Han
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR
| | - T Gong
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR
| | - C Zhang
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR
| | - W L Dissanayaka
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR
| |
Collapse
|
29
|
Ahmeda A, Zangeneh MM, Mansooridara S, Malek Z, Zangeneh A. Suppressor capacity of iron nanoparticles biosynthesized using
Salvia chloroleuca
leaf aqueous extract on methadone‐induced cell death in PC12: Formulation a new drug from relationship between the nanobiotechnology and neurology sciences. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Ahmad Ahmeda
- College of MedicineQU Health, Qatar University Doha Qatar
| | - Mohammad Mahdi Zangeneh
- Department of Clinical Sciences, Faculty of Veterinary MedicineRazi University Kermanshah Iran
- Biotechnology and Medicinal Plants Research CenterIlam University of Medical Sciences Ilam Iran
| | - Shirin Mansooridara
- Medical Sciences Research Center, Faculty of Medicine, Tehran Medical Sciences BranchIslamic Azad University Tehran Iran
| | - Zahra Malek
- Medical Sciences Research Center, Faculty of Medicine, Tehran Medical Sciences BranchIslamic Azad University Tehran Iran
| | - Akram Zangeneh
- Department of Clinical Sciences, Faculty of Veterinary MedicineRazi University Kermanshah Iran
- Biotechnology and Medicinal Plants Research CenterIlam University of Medical Sciences Ilam Iran
| |
Collapse
|
30
|
Shi J, Yu W, Xu L, Yin N, Liu W, Zhang K, Liu J, Zhang Z. Bioinspired Nanosponge for Salvaging Ischemic Stroke via Free Radical Scavenging and Self-Adapted Oxygen Regulating. NANO LETTERS 2020; 20:780-789. [PMID: 31830790 DOI: 10.1021/acs.nanolett.9b04974] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Either hypoxia in an acute ischemic stroke before thrombolysis or the oxygen-boost after thrombolysis cause a high level of free radicals, resulting in successive injuries to neurocytes. To treat an ischemic stroke, it is needed to scavenge free radicals, combining sequentially regulating hypoxia and oxygen-boost microenvironment. Here, we report an engineered nanosponge (Mn3O4@nanoerythrocyte-T7, MNET) that could remodel the microenvironment of a stroke by self-adapted oxygen regulating and free radical scavenging. With a long circulation time in blood due to the stealth effect of the erythrocyte and preferential accumulation in the infarct site by the assisting of T7 peptide, MNET exerts a distinct therapeutic effect in two stages of an ischemic stroke: (i) before thrombolysis, rescue neurocyte via rapid free radical scavenging and timely oxygen supply; (ii) after thrombolysis, suppress oxygen-boost via oxygen storage, as well as scavenge free radical to avoid reperfusion injury. MNET holds an attractive potential for ischemic stroke treatment via phased regulation of pathological microenvironment.
Collapse
Affiliation(s)
- Jinjin Shi
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou , 450001 , China
| | - Wenyan Yu
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou , 450001 , China
| | - Lihua Xu
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou , 450001 , China
| | - Na Yin
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou , 450001 , China
| | - Wei Liu
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou , 450001 , China
| | - Kaixiang Zhang
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou , 450001 , China
| | - Junjie Liu
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou , 450001 , China
| | - Zhenzhong Zhang
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou , 450001 , China
| |
Collapse
|
31
|
Tapeinos C, Battaglini M, Marino A, Ciofani G. Smart diagnostic nano-agents for cerebral ischemia. J Mater Chem B 2020; 8:6233-6251. [DOI: 10.1039/d0tb00260g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A summary of the latest developments on imaging techniques and smart nano-diagnostics used for ischemic stroke.
Collapse
Affiliation(s)
- Christos Tapeinos
- Istituto Italiano di Tecnologia
- Smart Bio-Interfaces
- 56025 Pontedera
- Italy
| | - Matteo Battaglini
- Istituto Italiano di Tecnologia
- Smart Bio-Interfaces
- 56025 Pontedera
- Italy
- Scuola Superiore Sant’Anna
| | - Attilio Marino
- Istituto Italiano di Tecnologia
- Smart Bio-Interfaces
- 56025 Pontedera
- Italy
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia
- Smart Bio-Interfaces
- 56025 Pontedera
- Italy
| |
Collapse
|
32
|
Zhang C, Hsu P, Wang D, Zhang W, Zhang C, Guo S, Yang W, Wei X, Zhang Y, Zhong B. Superparamagnetic iron oxide (SPIO) nanoparticles labeled endothelial progenitor cells (EPCs) administration inhibited heterotopic ossification in rats. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 21:102078. [DOI: 10.1016/j.nano.2019.102078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 07/27/2019] [Accepted: 07/29/2019] [Indexed: 02/05/2023]
|
33
|
Teleanu DM, Chircov C, Grumezescu AM, Teleanu RI. Neuronanomedicine: An Up-to-Date Overview. Pharmaceutics 2019; 11:E101. [PMID: 30813646 PMCID: PMC6471564 DOI: 10.3390/pharmaceutics11030101] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 12/31/2022] Open
Abstract
The field of neuronanomedicine has recently emerged as the bridge between neurological sciences and nanotechnology. The possibilities of this novel perspective are promising for the diagnosis and treatment strategies of severe central nervous system disorders. Therefore, the development of nano-vehicles capable of permeating the blood⁻brain barrier (BBB) and reaching the brain parenchyma may lead to breakthrough therapies that could improve life expectancy and quality of the patients diagnosed with brain disorders. The aim of this review is to summarize the recently developed organic, inorganic, and biological nanocarriers that could be used for the delivery of imaging and therapeutic agents to the brain, as well as the latest studies on the use of nanomaterials in brain cancer, neurodegenerative diseases, and stroke. Additionally, the main challenges and limitations associated with the use of these nanocarriers are briefly presented.
Collapse
Affiliation(s)
- Daniel Mihai Teleanu
- Emergency University Hospital, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | - Cristina Chircov
- Faculty of Engineering in Foreign Languages, University Politehnica of Bucharest, 060042 Bucharest, Romania.
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 060042Bucharest, Romania.
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 060042Bucharest, Romania.
- ICUB-Research Institute of University of Bucharest, University of Bucharest, 36-46 M. Kogalniceanu Blvd., 050107 Bucharest, Romania.
| | - Raluca Ioana Teleanu
- "Dr. Victor Gomoiu" Clinical Children's Hospital, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| |
Collapse
|
34
|
Teleanu DM, Chircov C, Grumezescu AM, Volceanov A, Teleanu RI. Impact of Nanoparticles on Brain Health: An Up to Date Overview. J Clin Med 2018; 7:E490. [PMID: 30486404 PMCID: PMC6306759 DOI: 10.3390/jcm7120490] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 12/12/2022] Open
Abstract
Nanoparticles are zero-dimensional nanomaterials and, based on their nature, they can be categorized into organic, inorganic, and composites nanoparticles. Due to their unique physical and chemical properties, nanoparticles are extensively used in a variety of fields, including medicine, pharmaceutics, and food industry. Although they have the potential to improve the diagnosis and treatment of brain diseases, it is fundamentally important to develop standardized toxicological studies, which can prevent the induction of neurotoxic effects. The focus of this review is to emphasize both the beneficial and negative effects of nanoparticles on brain health.
Collapse
Affiliation(s)
- Daniel Mihai Teleanu
- Emergency University Hospital, Bucharest, Romania, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | - Cristina Chircov
- Faculty of Engineering in Foreign Languages, 060042 Bucharest, Romania.
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania.
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania.
- ICUB-Research Institute of University of Bucharest, University of Bucharest, 36-46 M. Kogalniceanu Blvd., 050107 Bucharest, Romania.
| | - Adrian Volceanov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania.
| | - Raluca Ioana Teleanu
- Emergency University Hospital, Bucharest, Romania, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| |
Collapse
|