1
|
Yoo J, Kim Y, Back JH, Shin J, Bae PK, Park KM, Kim M, Seo YH, Bak Y, Heo YH, Heo J, Choi H, Kim Y, Lee S, Lee JE, Jeong S, Yang JK, Kim S. Surface-engineered nanobeads for regioselective antibody binding: A robust immunoassay platform leveraging catalytic signal amplification. Biosens Bioelectron 2025; 281:117463. [PMID: 40228457 DOI: 10.1016/j.bios.2025.117463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/03/2025] [Accepted: 04/07/2025] [Indexed: 04/16/2025]
Abstract
Regulating protein interactions and protein corona formation of nanomaterials is crucial for advancing nanomedicine, where surface engineering of nanomaterials plays a pivotal role in precise control over biological interactions. Here, we present a surface-engineered nanoparticle-based immunoassay platform using carboxyl-enriched polystyrene nanobeads (CEPS) with regioselectively controlled antibody-binding properties. Proteomic analysis and theoretical simulation revealed that CEPS has an enhanced Fc-specific binding affinity for immunoglobulins compared to conventional carboxylated polystyrene beads, with a higher surface carboxyl density critically mediating protein interactions. This regioselective antibody binding with unique Fc-specific affinity eliminates the need for complex surface modifications, streamlining the assay process and broadening the applicability across various immunoassay formats. Additionally, incorporating a palladium catalyst within CEPS enables solvent-triggered on-demand catalytic signal amplification using a leucodye substrate, providing a more stable alternative to enzyme-based methods while significantly enhancing detection sensitivity and stability. The platform demonstrated enhanced performance in detecting clinically relevant biomarkers, including C-reactive protein, interferon-gamma, and the receptor-binding domain of SARS-CoV2, achieving lower detection limits and faster response times compared to conventional enzyme-based ELISA systems. Notably, the CEPS-based assay retained catalytic activity for over 140 days at room temperature, underscoring its potential for reliable, long-term use in diverse diagnostic applications.
Collapse
Affiliation(s)
- Jounghyun Yoo
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Youngsun Kim
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Ji Hyun Back
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jawon Shin
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Pan Kee Bae
- HGUARD Inc., Daejeon, 34054, Republic of Korea
| | - Kyung Mi Park
- BioNano Health Guard Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Myung Kim
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Young Hun Seo
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; Biosensor Group, Korea Institute of Science and Technology Europe, Campus E7.1, Saarbrücken, 66123, Germany
| | - Yecheol Bak
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Yoon Ho Heo
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jeongyun Heo
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Honghwan Choi
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Yongju Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Sangyoup Lee
- Bionic Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Ji Eun Lee
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
| | - Sohdam Jeong
- Department of Chemical Engineering, Dong-Eui University, Busan, 47340, Republic of Korea.
| | - Jin-Kyoung Yang
- Department of Chemical Engineering, Dong-Eui University, Busan, 47340, Republic of Korea.
| | - Sehoon Kim
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
2
|
Esmaeili A, Baghaban Eslaminejad M, Hosseini S. Biomolecular corona potential in extracellular vesicle engineering for therapeutic applications. Biomed Pharmacother 2025; 188:118202. [PMID: 40418857 DOI: 10.1016/j.biopha.2025.118202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 05/09/2025] [Accepted: 05/21/2025] [Indexed: 05/28/2025] Open
Abstract
The therapeutic effects of extracellular vesicles (EVs) have been proven in various diseases. However, EVs still face challenges, such as cargo enrichment and targeting for clinical applications. The biomolecular corona (BC) is a part of the identity of EVs and is related to these challenges. The different characteristics of EVs influence BC formation during biogenesis and secretion, and the specific features of the environment in which the EV is secreted or imported affect its formation, maturation, and function. Recent advances have shown that considering EV- BC is a significant approach for achieving effective EV therapy. This review first discusses the formation, composition, and importance of the BC of EVs. Next, biological, chemical and physical strategies for the engineering of BC are reviewed, and several points about its therapeutic applications are mentioned.
Collapse
Affiliation(s)
- Abazar Esmaeili
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Samaneh Hosseini
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
3
|
Dar AI, Randhawa S, Verma M, Saini TC, Acharya A. Debugging the dynamics of protein corona: Formation, composition, challenges, and applications at the nano-bio interface. Adv Colloid Interface Sci 2025; 342:103535. [PMID: 40319752 DOI: 10.1016/j.cis.2025.103535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 04/25/2025] [Accepted: 04/25/2025] [Indexed: 05/07/2025]
Abstract
The intricate interplay between nanomaterials and the biological molecules has garnered considerable interest in understanding the dynamics of protein corona formation at the nano-bio interface. This review provides an in-depth exploration of protein-nanoparticle interactions, elucidating their structural dynamics and thermodynamics at the nano-Bio interface and further on emphasizing its formation, composition, challenges, and applications in the biomedical and nanotechnological domains, such as drug delivery, theranostics, and the translational medicine. We delve the nuanced mechanisms governing protein corona formation on nanoparticle surfaces, highlighting the influence of nanoparticle and biological factors, and review the impact of corona formation on the biological identity and functionality of nanoparticles. Notably, emerging applications of artificial intelligence and machine learning have begun to revolutionize this field, enabling accurate prediction of corona composition and related biological outcomes. These tools not only enhance efficiency over traditional experimental methods but also help decode complex protein-nanoparticle interaction patterns, offering new insights into corona-driven cellular responses and disease diagnostics. Additionally, it discusses recent advancements in the field of protein corona, particularly in translational nanomedicine and associated applications entailing current and future strategies which are aimed at mitigating the adverse effects of protein-nanoparticle interactions at the biological interface, for tailoring the protein coronas by engineering of the nanomaterials. This comprehensive assessment from chemical, technological, and biological aspects serves as a guiding beacon for the development of future nanomedicine, enabling the more effective emulation of the biological milieu and the design of protein-NP systems for enhanced biomedical applications.
Collapse
Affiliation(s)
- Aqib Iqbal Dar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shiwani Randhawa
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohini Verma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Trilok Chand Saini
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amitabha Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
4
|
Ryabukhina E, Kobanenko M, Tretiakova D, Shchegravina E, Khaidukov S, Alekseeva A, Boldyrev I, Zgoda V, Tikhonova O, Fedorov AY, Onishchenko N, Vodovozova E. Plasma protein corona of liposomes loaded with a phospholipid-allocolchicinoid conjugate enhances their anti-inflammatory potential. Colloids Surf B Biointerfaces 2025; 253:114746. [PMID: 40319730 DOI: 10.1016/j.colsurfb.2025.114746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/15/2025] [Accepted: 04/26/2025] [Indexed: 05/07/2025]
Abstract
Today colchicine is considered as a possible new treatment for cardiovascular diseases. Its physiological effects have been shown to be primarily due to the intra-leukocyte concentrations. Nanoparticulate formulations could help accumulation of colchicine in phagocytic cells. Previously we formulated liposomes loaded with a colchicine analog in the form of an enzyme-responsive conjugate with phosphatidylcholine (aC-PC) and showed acceptable stability of the formulation in human plasma. Here, we investigated how protein coronas formed on a series of aC-PC-bearing liposomes in human plasma affected their interactions with leukocytes and endothelial cells. Liposome-protein complexes were analyzed by shotgun proteomics. Liposomes 25C with the highest load of aC-PC (25 %) were distinguished by a three times more massive protein corona and specific profile of proteins, including enrichment with ApoD and galectin-3-binding protein, which may affect the inflammation-associated signaling. Differences in the protein coronas did not noticeably affect liposome uptake by cultured monocytes and endotheliocytes, although the level of uptake decreased in the presence of plasma proteins. Nor did the composition of liposomes affect the course of phagocytosis by leukocytes in the blood ex vivo. The effects of protein coronas were manifested in the suppression of the production of inflammatory chemokine MCP-1 (and to a much lesser extent IL-8) by stimulated peripheral blood monocytes about 1.5 times compared with naked liposomes. In the case of liposomes 25C the inhibition was complete. These liposomes are considered the most promising for further preclinical studies.
Collapse
Affiliation(s)
- Ekaterina Ryabukhina
- Laboratory of Lipid Chemistry, Department of Chemical Biology of Glycans and Lipids, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Maria Kobanenko
- Laboratory of Lipid Chemistry, Department of Chemical Biology of Glycans and Lipids, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Daria Tretiakova
- Laboratory of Lipid Chemistry, Department of Chemical Biology of Glycans and Lipids, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Ekaterina Shchegravina
- Department of Chemistry, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950, Russia
| | - Sergey Khaidukov
- Laboratory of Carbohydrates, Department of Chemical Biology of Glycans and Lipids, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Anna Alekseeva
- Laboratory of Lipid Chemistry, Department of Chemical Biology of Glycans and Lipids, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Ivan Boldyrev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia
| | - Viktor Zgoda
- Institute of Biomedical Chemistry, Moscow 119121, Russia
| | - Olga Tikhonova
- Institute of Biomedical Chemistry, Moscow 119121, Russia
| | - Alexey Yu Fedorov
- Department of Chemistry, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950, Russia
| | - Natalia Onishchenko
- Laboratory of Lipid Chemistry, Department of Chemical Biology of Glycans and Lipids, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; Center for Algorithmic and Robotized Synthesis, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Elena Vodovozova
- Laboratory of Lipid Chemistry, Department of Chemical Biology of Glycans and Lipids, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia.
| |
Collapse
|
5
|
Liu X, Abmanhal-Masarweh H, Iwanowytsch O, Okwelogu E, Arashvand K, Karabatsou K, Ivo D'Urso P, Roncaroli F, Kostarelos K, Kisby T, Hadjidemetriou M. Plasma-to-tumour tissue integrated proteomics using nano-omics for biomarker discovery in glioblastoma. Nat Commun 2025; 16:3412. [PMID: 40210624 PMCID: PMC11986092 DOI: 10.1038/s41467-025-58252-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/17/2025] [Indexed: 04/12/2025] Open
Abstract
Glioblastoma (GB) is the most lethal brain cancer, with patient survival rates remaining largely unchanged over the past two decades. Here, we introduce the Nano-omics integrative workflow that links systemic (plasma) and localised (tumour tissue) protein changes associated with GB progression. Mass spectrometry analysis of the nanoparticle biomolecule corona in GL261-bearing mice at different stages of GB revealed plasma protein alterations, even at low tumour burden, with over 30% overlap between GB-specific plasma and tumour tissue proteomes. Analysis of matched plasma and surgically resected tumour samples from high-grade glioma patients demonstrates the clinical applicability of the Nano-omics pipeline. Cross-species correlation identified 48 potential GB biomarker candidates involved in actin cytoskeleton organisation, focal adhesion, platelet activation, leukocyte migration, amino acid biosynthesis, carbon metabolism, and phagosome pathways. The Nano-omics approach holds promise for the discovery of early detection and disease monitoring biomarkers of central nervous system conditions, paving the way for subsequent clinical validation.
Collapse
Affiliation(s)
- Xinming Liu
- NanoOmics Lab, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- NanoTherapeutics Lab, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Centre for Nanotechnology in Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Hanan Abmanhal-Masarweh
- NanoOmics Lab, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Centre for Nanotechnology in Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Olivia Iwanowytsch
- NanoOmics Lab, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Centre for Nanotechnology in Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Emmanuel Okwelogu
- NanoOmics Lab, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Centre for Nanotechnology in Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Kiana Arashvand
- NanoTherapeutics Lab, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Centre for Nanotechnology in Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Konstantina Karabatsou
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Manchester, UK
| | - Pietro Ivo D'Urso
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Manchester, UK
| | - Federico Roncaroli
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, The University of Manchester, Manchester, UK
| | - Kostas Kostarelos
- Centre for Nanotechnology in Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, The University of Manchester, Manchester, UK
- Nanomedicine Lab, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain
- Institute of Neuroscience, Universitat Autònoma de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys, Barcelona, Spain
| | - Thomas Kisby
- NanoTherapeutics Lab, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
- Centre for Nanotechnology in Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, The University of Manchester, Manchester, UK.
| | - Marilena Hadjidemetriou
- NanoOmics Lab, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Centre for Nanotechnology in Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, The University of Manchester, Manchester, UK.
| |
Collapse
|
6
|
Zhong YT, Qiu ZW, Zhang KY, Lu ZM, Li ZF, Cen Y, Li SY, Cheng H. Plasma Membrane Targeted Photodynamic Nanoagonist to Potentiate Immune Checkpoint Blockade Therapy by Initiating Tumor Cell Pyroptosis and Depleting Infiltrating B Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415078. [PMID: 40012447 DOI: 10.1002/adma.202415078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/09/2025] [Indexed: 02/28/2025]
Abstract
Immune checkpoint blockade (ICB) therapy has achieved remarkable benefits in the treatment of malignant tumors, but the clinical response rates are unsatisfied due to the low tumor immunogenicity and the abundant immunosuppressive cells. Herein, a plasma membrane targeted photodynamic nanoagonist (designated as PMTPN) is developed to potentiate ICB therapy by initiating tumor cell pyroptosis and depleting infiltrating B cells. PMTPN is composed of a rationally designed chimeric peptide sequence loaded with Bruton's tyrosine kinase inhibitor (Ibrutinib). Notably, PMTPN is capable of sequentially targeting tumor and tumor cell membrane to trigger immunogenic pyroptosis and cause overwhelming release of cytokines, promoting dendritic cells maturation, and cytotoxic T lymphocytes (CTLs) activation. Meanwhile, PMTPN can also deplete infiltrating B cells and reduce the secretion of interleukin-10 to decrease immunosuppressive regulatory T cells and enhance CTLs infiltration. Beneficially, the synergistic immune modulating characteristics of PMTPN potentiate ICB therapy to simultaneously eliminate primary and distant tumors. This study offers a promising strategy to elevate the immunotherapeutic response rate in consideration of the complex immunosuppressive factors.
Collapse
Affiliation(s)
- Ying-Tao Zhong
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Zi-Wen Qiu
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Ke-Yan Zhang
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Zhen-Ming Lu
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Zhuo-Feng Li
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Yi Cen
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shi-Ying Li
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Hong Cheng
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
7
|
Guha A, Sadeghi SA, Kunhiraman HH, Fang F, Wang Q, Rafieioskouei A, Grumelot S, Gharibi H, Saei AA, Sayadi M, Weintraub NL, Horibata S, Yang PCM, Bonakdarpour B, Ghassemi M, Sun L, Mahmoudi M. AI-Driven Prediction of Cardio-Oncology Biomarkers Through Protein Corona Analysis. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2025; 509:161134. [PMID: 40190726 PMCID: PMC11970620 DOI: 10.1016/j.cej.2025.161134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Protein corona, a layer predominantly composed of proteins and other biomolecules that forms on nanoparticle surfaces upon interaction with biological fluids, has recently been extensively utilized to enhance the depth of plasma proteomics and biomarker discovery. In this study, we integrate protein corona profiling with mass spectrometry (MS)-based bottom-up proteomics (BUP), machine learning, and causality analysis to identify potential biomarkers in the field of cardio-oncology. We selected prostate cancer (PC) and atherosclerosis as model cardio-oncology diseases, given that PC is the most prevalent cancer among men in the United States and frequently coexists with atherosclerotic cardiovascular disease (ASCVD), which contributes to the progression of metastatic PC (mPC). Protein corona profiles were generated from 35 plasma samples categorized into four groups: mPC with ASCVD, nonmetastatic PC (nmPC) with ASCVD, mPC without ASCVD, and nmPC without ASCVD. MS-based BUP analysis identified 887 unique proteins within the protein corona. Gene Ontology (GO) analysis of the 260 proteins common to all samples revealed key plasma proteomic pathways significantly associated with ASCVD and mPC. Using Least Absolute Shrinkage and Selection Operator (LASSO) regularization, we isolated 22 proteins strongly associated with ASCVD or mPC, including chaperonin containing TCP1 subunit 7 (CCT7), which was common to both conditions. Automated formal reasoning and causality analysis of these 22 proteins identified thromboxane-A synthase 1 (TBXAS1) as a primary causal factor linked to both ASCVD and mPC. TBXAS1 plays a critical role in promoting platelet aggregation, vascular smooth muscle cell proliferation, endothelial dysfunction, and thrombosis. In this proof-of-concept study, CCT7 and TBXAS1 emerged as potential biomarkers for both ASCVD and mPC, suggesting their utility as dual biomarkers for early detection and targeted therapeutic interventions. By combining nanomedicine with advanced analytical methods, our integrated approach provides a robust framework for uncovering causal relationships between biomarkers and disease states.
Collapse
Affiliation(s)
- Avirup Guha
- Division of Cardiology, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Cardio-Oncology Program, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | | | - Harikrishnan Hyma Kunhiraman
- Division of Cardiology, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Cardio-Oncology Program, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Fei Fang
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
| | - Qianyi Wang
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
| | - Arshia Rafieioskouei
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Shaun Grumelot
- Precision Health Program, Michigan State University, East Lansing, MI, United States
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, United States
| | - Hassan Gharibi
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Amir Ata Saei
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Maryam Sayadi
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States
| | - Neal L. Weintraub
- Division of Cardiology, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Sachi Horibata
- Precision Health Program, Michigan State University, East Lansing, MI, United States
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, United States
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, United States
| | - Phillip Chung-Ming Yang
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
| | - Borzoo Bonakdarpour
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Mohammad Ghassemi
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
| | - Morteza Mahmoudi
- Precision Health Program, Michigan State University, East Lansing, MI, United States
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
8
|
Liu Q, Wang M, Dai X, Li S, Guo H, Huang H, Xie Y, Xu C, Liu Y, Tan W. Extreme Tolerance of Nanoparticle-Protein Corona to Ultra-High Abundance Proteins Enhances the Depth of Serum Proteomics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413713. [PMID: 39840619 PMCID: PMC11923864 DOI: 10.1002/advs.202413713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/15/2024] [Indexed: 01/23/2025]
Abstract
The serum nanoparticle-protein corona (NPC) provides specific disease information, thus opening a new avenue for high-throughput in-depth proteomics to facilitate biomarker discovery. Yet, little is known about the interactions between NPs and proteins, and its role in enhanced depth of serum proteomics. Herein, a series of protein spike-in experiments are conducted to systematically investigate protein depletion and enrichment during NPC formation. Proteomic depth is serum concentration-dependent, and NPC exhibits powerful tolerance to ultra-high abundant proteins. In addition, protein-protein interactions (PPI), especially those involving albumin, play a pivotal role in promoting proteomic depth. Furthermore, a triple-protein assay is established to interrogate the relationship between protein binding affinity and concentration. NPC formation is a product of balancing binding affinity, concentration, and PPI. Overall, this study elucidates how NPs achieve protein depletion and enrichment for enhanced serum proteomic depth to gain a better understanding of NPC as an essential tool of proteome profiling.
Collapse
Affiliation(s)
- Qiqi Liu
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Mengjie Wang
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Xin Dai
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
- School of Molecular MedicineHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhouZhejiang310024China
| | - Shuangqin Li
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Haoxiang Guo
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Haozhe Huang
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Yueli Xie
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Chenlu Xu
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Yuan Liu
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
- School of Molecular MedicineHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhouZhejiang310024China
| | - Weihong Tan
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
- Institute of Molecular Medicine (IMM)Renji HospitalShanghai Jiao Tong University School of Medicineand College of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityHangzhouShanghai200240China
| |
Collapse
|
9
|
Talab MJ, Valizadeh A, Tahershamsi Z, Housaindokht MR, Ranjbar B. Personalized biocorona as disease biomarker: The challenges and opportunities. Biochim Biophys Acta Gen Subj 2024; 1868:130724. [PMID: 39426758 DOI: 10.1016/j.bbagen.2024.130724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/22/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
It is well known that when nanoparticles interact with biological fluids, a layer of proteins and biological components forms on them. This layer may alter the biological fate and efficiency of the nanomaterial. Recent studies have shown that illness states have a major impact on the structure of the biocorona, sometimes referred to as the "personalized protein corona." Physiological factors like illness, which impact the proteome and metabolome pattern and result in conformational changes in proteins, give rise to this structure of discrimination in biocorona decoration. Improving the efficiency of precise platforms for developing new molecular biomarkers for accurate illness diagnosis is vitally necessary. The biocorona pattern's discrimination may be a diagnostic tool for designing biosensors. As a result, in this review, we summarize the most current studies on the relationship between physiological conditions and the variety of biocorona patterns that influence the biological responses of nanosystems. The biocorona pattern's flexibility may provide new research directions and be utilized to create nanoparticle-based therapeutic and diagnostic products suited to certain physiological situations.
Collapse
Affiliation(s)
- Mahtab Jahanshah Talab
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Valizadeh
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Tahershamsi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Reza Housaindokht
- Biophysical Chemistry Laboratory, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Bijan Ranjbar
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
10
|
Ashkarran AA, Gharibi H, Sadeghi SA, Modaresi SM, Wang Q, Lin TJ, Yerima G, Tamadon A, Sayadi M, Jafari M, Lin Z, Ritz D, Kakhniashvili D, Guha A, Mofrad MRK, Sun L, Landry MP, Saei AA, Mahmoudi M. Small molecule modulation of protein corona for deep plasma proteome profiling. Nat Commun 2024; 15:9638. [PMID: 39511193 PMCID: PMC11544298 DOI: 10.1038/s41467-024-53966-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024] Open
Abstract
The protein corona formed on nanoparticles (NPs) has potential as a valuable diagnostic tool for improving plasma proteome coverage. Here, we show that spiking small molecules, including metabolites, lipids, vitamins, and nutrients into plasma can induce diverse protein corona patterns on otherwise identical NPs, significantly enhancing the depth of plasma proteome profiling. The protein coronas on polystyrene NPs when exposed to plasma treated with an array of small molecules allows for the detection of 1793 proteins marking an 8.25-fold increase in the number of quantified proteins compared to plasma alone (218 proteins) and a 2.63-fold increase relative to the untreated protein corona (681 proteins). Furthermore, we discovered that adding 1000 µg/ml phosphatidylcholine could singularly enable the detection of 897 proteins. At this specific concentration, phosphatidylcholine selectively depletes the four most abundant plasma proteins, including albumin, thus reducing the dynamic range of plasma proteome and enabling the detection of proteins with lower abundance. Employing an optimized data-independent acquisition approach, the inclusion of phosphatidylcholine leads to the detection of 1436 proteins in a single plasma sample. Our molecular dynamics results reveal that phosphatidylcholine interacts with albumin via hydrophobic interactions, H-bonds, and water bridges. The addition of phosphatidylcholine also enables the detection of 337 additional proteoforms compared to untreated protein corona using a top-down proteomics approach. Given the critical role of plasma proteomics in biomarker discovery and disease monitoring, we anticipate the widespread adoption of this methodology for the identification and clinical translation of biomarkers.
Collapse
Affiliation(s)
- Ali Akbar Ashkarran
- Precision Health Program, Michigan State University, East Lansing, MI, USA
- Depatment of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Hassan Gharibi
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Qianyi Wang
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Teng-Jui Lin
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Ghafar Yerima
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Ali Tamadon
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Maryam Sayadi
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| | - Maryam Jafari
- Division of ENT Diseases, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Zijin Lin
- Precision Health Program, Michigan State University, East Lansing, MI, USA
| | - Danilo Ritz
- Proteomics Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - David Kakhniashvili
- Proteomics and Metabolomics Core Facility, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Avirup Guha
- Cardio-Oncology Program, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Markita P Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Amir Ata Saei
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| | - Morteza Mahmoudi
- Precision Health Program, Michigan State University, East Lansing, MI, USA.
- Depatment of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
11
|
Sun Y, Zhou Y, Rehman M, Wang YF, Guo S. Protein Corona of Nanoparticles: Isolation and Analysis. CHEM & BIO ENGINEERING 2024; 1:757-772. [PMID: 39974182 PMCID: PMC11792916 DOI: 10.1021/cbe.4c00105] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 02/21/2025]
Abstract
Nanoparticles entering biological systems or fluids inevitably adsorb biomolecules, such as protein, on their surfaces, forming a protein corona. Ensuing, the protein corona endows nanoparticles with a new biological identity and impacts the interaction between the nanoparticles and biological systems. Hence, the development of reliable techniques for protein corona isolation and analysis is key for understanding the biological behaviors of nanoparticles. First, this review systematically outlines the approach for isolating the protein corona, including centrifugation, magnetic separation, size exclusion chromatography, flow-field-flow fractionation, and other emerging methods. Next, we review the qualitative and quantitative characterization methods of the protein corona. Finally, we underscore the necessary steps to advance the efficiency and fidelity of protein corona isolation and characterization on nanoparticle surfaces. We anticipate that these insights into protein corona isolation and characterization methodologies will profoundly influence the development of technologies aimed at elucidating bionano interactions and the role of protein corona in various biomedical applications.
Collapse
Affiliation(s)
- Yinuo Sun
- Key
Laboratory of Functional Polymer Materials of Ministry of Education,
State Key Laboratory of Medicinal Chemical Biology, Frontiers Science
Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yaxin Zhou
- Key
Laboratory of Functional Polymer Materials of Ministry of Education,
State Key Laboratory of Medicinal Chemical Biology, Frontiers Science
Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Mubashar Rehman
- School
of Biomedical Engineering and Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Yi-Feng Wang
- School
of Biomedical Engineering and Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Shutao Guo
- Key
Laboratory of Functional Polymer Materials of Ministry of Education,
State Key Laboratory of Medicinal Chemical Biology, Frontiers Science
Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
12
|
Ashkarran AA, Gharibi H, Sadeghi SA, Modaresi SM, Wang Q, Lin TJ, Yerima G, Tamadon A, Sayadi M, Jafari M, Lin Z, Ritz D, Kakhniashvili D, Guha A, Mofrad MR, Sun L, Landry MP, Saei AA, Mahmoudi M. Deep Plasma Proteome Profiling by Modulating Single Nanoparticle Protein Corona with Small Molecules. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.582595. [PMID: 38496642 PMCID: PMC10942461 DOI: 10.1101/2024.03.06.582595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The protein corona, a dynamic biomolecular layer that forms on nanoparticle (NP) surfaces upon exposure to biological fluids is emerging as a valuable diagnostic tool for improving plasma proteome coverage analyzed by liquid chromatography-mass spectrometry (LC-MS/MS). Here, we show that spiking small molecules, including metabolites, lipids, vitamins, and nutrients (namely, glucose, triglyceride, diglycerol, phosphatidylcholine, phosphatidylethanolamine, L-α-phosphatidylinositol, inosine 5'-monophosphate, and B complex), into plasma can induce diverse protein corona patterns on otherwise identical NPs, significantly enhancing the depth of plasma proteome profiling. The protein coronas on polystyrene NPs when exposed to plasma treated with an array of small molecules (n=10) allowed for detection of 1793 proteins marking an 8.25-fold increase in the number of quantified proteins compared to plasma alone (218 proteins) and a 2.63-fold increase relative to the untreated protein corona (681 proteins). Furthermore, we discovered that adding 1000 μg/ml phosphatidylcholine could singularly enable the detection of 897 proteins. At this specific concentration, phosphatidylcholine selectively depleted the four most abundant plasma proteins, including albumin, thus reducing the dynamic range of plasma proteome and enabling the detection of proteins with lower abundance. By employing an optimized data-independent acquisition (DIA) approach, the inclusion of phosphatidylcholine led to the detection of 1436 proteins in a single plasma sample. Our molecular dynamic results revealed that phosphatidylcholine interacts with albumin via hydrophobic interactions, h-bonds, and water-bridges. Addition of phosphatidylcholine also enabled the detection of 337 additional proteoforms compared to untreated protein corona using a top-down proteomics approach. These significant achievements are made utilizing only a single NP type and one small molecule to analyze a single plasma sample, setting a new standard in plasma proteome profiling. Given the critical role of plasma proteomics in biomarker discovery and disease monitoring, we anticipate widespread adoption of this methodology for identification and clinical translation of proteomic biomarkers into FDA approved diagnostics.
Collapse
Affiliation(s)
- Ali Akbar Ashkarran
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI 48824, USA
| | - Hassan Gharibi
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Seyed Amirhossein Sadeghi
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, MI 48824, United States
| | | | - Qianyi Wang
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, MI 48824, United States
| | - Teng-Jui Lin
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ghafar Yerima
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, CA 94720, USA
| | - Ali Tamadon
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, CA 94720, USA
| | - Maryam Sayadi
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Maryam Jafari
- Division of ENT Diseases, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Zijin Lin
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI 48824, USA
| | - Danilo Ritz
- Proteomics Core Facility, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - David Kakhniashvili
- Proteomics and Metabolomics Core Facility, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Avirup Guha
- Cardio-Oncology Program, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Mohammad R.K. Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, CA 94720, USA
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, MI 48824, United States
| | - Markita P. Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA 94720, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94063, USA
| | - Amir Ata Saei
- Biozentrum, University of Basel, 4056 Basel, Switzerland
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm 17165, Sweden
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
13
|
Barz M, Parak WJ, Zentel R. Concepts and Approaches to Reduce or Avoid Protein Corona Formation on Nanoparticles: Challenges and Opportunities. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402935. [PMID: 38976560 PMCID: PMC11425909 DOI: 10.1002/advs.202402935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/19/2024] [Indexed: 07/10/2024]
Abstract
This review describes the formation of a protein corona (or its absence) on different classes of nanoparticles, its basic principles, and its consequences for nanomedicine. For this purpose, it describes general concepts to control (guide/minimize) the interaction between artificial nanoparticles and plasma proteins to reduce protein corona formation. Thereafter, methods for the qualitative or quantitative determination of protein corona formation are presented, as well as the properties of nanoparticle surfaces, which are relevant for protein corona prevention (or formation). Thereby especially the role of grafting density of hydrophilic polymers on the surface of the nanoparticle is discussed to prevent the formation of a protein corona. In this context also the potential of detergents (surfactants) for a temporary modification as well as grafting-to and grafting-from approaches for a permanent modification of the surface are discussed. The review concludes by highlighting several promising avenues. This includes (i) the use of nanoparticles without protein corona for active targeting, (ii) the use of synthetic nanoparticles without protein corona formation to address the immune system, (iii) the recollection of nanoparticles with a defined protein corona after in vivo application to sample the blood proteome and (iv) further concepts to reduce protein corona formation.
Collapse
Affiliation(s)
- Matthias Barz
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, NL-2333 CC, Netherlands
| | - Wolfgang J Parak
- Institut für Nanostruktur- und Festkörperphysik, Universität Hamburg, Luruper Chaussee 149, D-22761, Hamburg, Germany
| | - Rudolf Zentel
- Department of Chemistry, Johannes Gutenberg-University of Mainz, Duesbergweg 10-14, D-55128, Mainz, Germany
| |
Collapse
|
14
|
Saei AA, Mahmoudi M. Multi-omics exploration of biomolecular corona in nanomedicine therapeutics and diagnostics. Nanomedicine (Lond) 2024; 19:1223-1226. [PMID: 38593028 PMCID: PMC11285268 DOI: 10.2217/nnm-2024-0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024] Open
Affiliation(s)
- Amir Ata Saei
- Center for Translational Microbiome Research, Department of Microbiology, Tumor & Cell Biology, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Morteza Mahmoudi
- Department of Radiology & Precision Health Program, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
15
|
Boselli L, Castagnola V, Armirotti A, Benfenati F, Pompa PP. Biomolecular Corona of Gold Nanoparticles: The Urgent Need for Strong Roots to Grow Strong Branches. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306474. [PMID: 38085683 DOI: 10.1002/smll.202306474] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/20/2023] [Indexed: 04/13/2024]
Abstract
Gold nanoparticles (GNPs) are largely employed in diagnostics/biosensors and are among the most investigated nanomaterials in biology/medicine. However, few GNP-based nanoformulations have received FDA approval to date, and promising in vitro studies have failed to translate to in vivo efficacy. One key factor is that biological fluids contain high concentrations of proteins, lipids, sugars, and metabolites, which can adsorb/interact with the GNP's surface, forming a layer called biomolecular corona (BMC). The BMC can mask prepared functionalities and target moieties, creating new surface chemistry and determining GNPs' biological fate. Here, the current knowledge is summarized on GNP-BMCs, analyzing the factors driving these interactions and the biological consequences. A partial fingerprint of GNP-BMC analyzing common patterns of composition in the literature is extrapolated. However, a red flag is also risen concerning the current lack of data availability and regulated form of knowledge on BMC. Nanomedicine is still in its infancy, and relying on recently developed analytical and informatic tools offers an unprecedented opportunity to make a leap forward. However, a restart through robust shared protocols and data sharing is necessary to obtain "stronger roots". This will create a path to exploiting BMC for human benefit, promoting the clinical translation of biomedical nanotools.
Collapse
Affiliation(s)
- Luca Boselli
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, Genova, 16163, Italy
| | - Valentina Castagnola
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova, 16132, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, Genova, 16132, Italy
| | - Andrea Armirotti
- Analytical Chemistry Lab, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova, 16132, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, Genova, 16132, Italy
| | - Pier Paolo Pompa
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, Genova, 16163, Italy
| |
Collapse
|
16
|
Lee GY, Li AA, Moon I, Katritsis D, Pantos Y, Stingo F, Fabbrico D, Molinaro R, Taraballi F, Tao W, Corbo C. Protein Corona Sensor Array Nanosystem for Detection of Coronary Artery Disease. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306168. [PMID: 37880910 PMCID: PMC11573401 DOI: 10.1002/smll.202306168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/26/2023] [Indexed: 10/27/2023]
Abstract
Coronary artery disease (CAD) is the most common type of heart disease and represents the leading cause of death in both men and women worldwide. Early detection of CAD is crucial for decreasing mortality, prolonging survival, and improving patient quality of life. Herein, a non-invasive is described, nanoparticle-based diagnostic technology which takes advantages of proteomic changes in the nano-bio interface for CAD detection. Nanoparticles (NPs) exposed to biological fluids adsorb on their surface a layer of proteins, the "protein corona" (PC). Pathological changes that alter the plasma proteome can directly result in changes in the PC. By forming disease-specific PCs on six NPs with varying physicochemical properties, a PC-based sensor array is developed for detection of CAD using specific PC pattern recognition. While the PC of a single NP may not provide the required specificity, it is reasoned that multivariate PCs across NPs with different surface chemistries, can provide the desirable information to selectively discriminate the condition under investigation. The results suggest that such an approach can detect CAD with an accuracy of 92.84%, a sensitivity of 87.5%, and a specificity of 82.5%. These new findings demonstrate the potential of PC-based sensor array detection systems for clinical use.
Collapse
Affiliation(s)
- Gha Young Lee
- Center for Nanomedicine, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Andrew A. Li
- Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Intae Moon
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 4307, USA
| | - Demos Katritsis
- Comprehensive Cardiology Care at Hygeia Hospital, Athens, 15123, Greece
- Johns Hopkins Medicine, Baltimore, MD, 21287, USA
| | - Yoannis Pantos
- Comprehensive Cardiology Care at Hygeia Hospital, Athens, 15123, Greece
| | - Francesco Stingo
- Department of Statistics, Computer Sciences and Applications, University of Florence, Florence, 50121, Italy
| | - Davide Fabbrico
- Department of Statistics, Computer Sciences and Applications, University of Florence, Florence, 50121, Italy
| | - Roberto Molinaro
- Department of Cardiovascular, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Academic Institute & Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Wei Tao
- Center for Nanomedicine, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Claudia Corbo
- University of Milano-Bicocca, Department of Medicine and Surgery, NANOMIB Center, Monza, 20900, Italy
- IRCCS Istituto Ortopedico Galeazzi, Milan, 20161, Italy
| |
Collapse
|
17
|
Gharibi H, Ashkarran AA, Jafari M, Voke E, Landry MP, Saei AA, Mahmoudi M. A uniform data processing pipeline enables harmonized nanoparticle protein corona analysis across proteomics core facilities. Nat Commun 2024; 15:342. [PMID: 38184668 PMCID: PMC10771434 DOI: 10.1038/s41467-023-44678-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/20/2023] [Indexed: 01/08/2024] Open
Abstract
Protein corona, a layer of biomolecules primarily comprising proteins, forms dynamically on nanoparticles in biological fluids and is crucial for predicting nanomedicine safety and efficacy. The protein composition of the corona layer is typically analyzed using liquid chromatography-mass spectrometry (LC-MS/MS). Our recent study, involving identical samples analyzed by 17 proteomics facilities, highlighted significant data variability, with only 1.8% of proteins consistently identified across these centers. Here, we implement an aggregated database search unifying parameters such as variable modifications, enzyme specificity, number of allowed missed cleavages and a stringent 1% false discovery rate at the protein and peptide levels. Such uniform search dramatically harmonizes the proteomics data, increasing the reproducibility and the percentage of consistency-identified unique proteins across distinct cores. Specifically, out of the 717 quantified proteins, 253 (35.3%) are shared among the top 5 facilities (and 16.2% among top 11 facilities). Furthermore, we note that reduction and alkylation are important steps in protein corona sample processing and as expected, omitting these steps reduces the number of total quantified peptides by around 20%. These findings underscore the need for standardized procedures in protein corona analysis, which is vital for advancing clinical applications of nanoscale biotechnologies.
Collapse
Affiliation(s)
- Hassan Gharibi
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ali Akbar Ashkarran
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, USA
| | - Maryam Jafari
- Division of ENT Diseases, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Elizabeth Voke
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Markita P Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Amir Ata Saei
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17165, Sweden.
- Biozentrum, University of Basel, 4056, Basel, Switzerland.
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
18
|
Wu J, Xing L, Zheng Y, Yu Y, Wu R, Liu X, Li L, Huang Y. Disease-specific protein corona formed in pathological intestine enhances the oral absorption of nanoparticles. Acta Pharm Sin B 2023; 13:3876-3891. [PMID: 37719377 PMCID: PMC10501873 DOI: 10.1016/j.apsb.2023.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/25/2023] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
Protein corona (PC) has been identified to impede the transportation of intravenously injected nanoparticles (NPs) from blood circulation to their targeted sites. However, how intestinal PC (IPC) affects the delivery of orally administered NPs are still needed to be elucidated. Here, we found that IPC exerted "positive effect" or "negative effect" depending on different pathological conditions in the gastrointestinal tract. We prepared polystyrene nanoparticles (PS) adsorbed with different IPC derived from the intestinal tract of healthy, diabetic, and colitis rats (H-IPC@PS, D-IPC@PS, C-IPC@PS). Proteomics analysis revealed that, compared with healthy IPC, the two disease-specific IPC consisted of a higher proportion of proteins that were closely correlated with transepithelial transport across the intestine. Consequently, both D-IPC@PS and C-IPC@PS mainly exploited the recycling endosome and ER-Golgi mediated secretory routes for intracellular trafficking, which increased the transcytosis from the epithelium. Together, disease-specific IPC endowed NPs with higher intestinal absorption. D-IPC@PS posed "positive effect" on intestinal absorption into blood circulation for diabetic therapy. Conversely, C-IPC@PS had "negative effect" on colitis treatment because of unfavorable absorption in the intestine before arriving colon. These results imply that different or even opposite strategies to modulate the disease-specific IPC need to be adopted for oral nanomedicine in the treatment of variable diseases.
Collapse
Affiliation(s)
- Jiawei Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Liyun Xing
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yaxian Zheng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yinglan Yu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ruinan Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xi Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lian Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
19
|
Quagliarini E, Pozzi D, Cardarelli F, Caracciolo G. The influence of protein corona on Graphene Oxide: implications for biomedical theranostics. J Nanobiotechnology 2023; 21:267. [PMID: 37568181 PMCID: PMC10416361 DOI: 10.1186/s12951-023-02030-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Graphene-based nanomaterials have attracted significant attention in the field of nanomedicine due to their unique atomic arrangement which allows for manifold applications. However, their inherent high hydrophobicity poses challenges in biological systems, thereby limiting their usage in biomedical areas. To address this limitation, one approach involves introducing oxygen functional groups on graphene surfaces, resulting in the formation of graphene oxide (GO). This modification enables improved dispersion, enhanced stability, reduced toxicity, and tunable surface properties. In this review, we aim to explore the interactions between GO and the biological fluids in the context of theranostics, shedding light on the formation of the "protein corona" (PC) i.e., the protein-enriched layer that formed around nanosystems when exposed to blood. The presence of the PC alters the surface properties and biological identity of GO, thus influencing its behavior and performance in various applications. By investigating this phenomenon, we gain insights into the bio-nano interactions that occur and their biological implications for different intents such as nucleic acid and drug delivery, active cell targeting, and modulation of cell signalling pathways. Additionally, we discuss diagnostic applications utilizing biocoronated GO and personalized PC analysis, with a particular focus on the detection of cancer biomarkers. By exploring these cutting-edge advancements, this comprehensive review provides valuable insights into the rapidly evolving field of GO-based nanomedicine for theranostic applications.
Collapse
Affiliation(s)
- Erica Quagliarini
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
| | - Daniela Pozzi
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
| | - Francesco Cardarelli
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - Giulio Caracciolo
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy.
| |
Collapse
|
20
|
Ma C, Li Y, Li J, Song L, Chen L, Zhao N, Li X, Chen N, Long L, Zhao J, Hou X, Ren L, Yuan X. Comprehensive and deep profiling of the plasma proteome with protein corona on zeolite NaY. J Pharm Anal 2023; 13:503-513. [PMID: 37305782 PMCID: PMC10257194 DOI: 10.1016/j.jpha.2023.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/27/2023] [Accepted: 04/06/2023] [Indexed: 06/13/2023] Open
Abstract
Proteomic characterization of plasma is critical for the development of novel pharmacodynamic biomarkers. However, the vast dynamic range renders the profiling of proteomes extremely challenging. Here, we synthesized zeolite NaY and developed a simple and rapid method to achieve comprehensive and deep profiling of the plasma proteome using the plasma protein corona formed on zeolite NaY. Specifically, zeolite NaY and plasma were co-incubated to form plasma protein corona on zeolite NaY (NaY-PPC), followed by conventional protein identification using liquid chromatography-tandem mass spectrometry. NaY was able to significantly enhance the detection of low-abundance plasma proteins, minimizing the "masking" effect caused by high-abundance proteins. The relative abundance of middle- and low-abundance proteins increased substantially from 2.54% to 54.41%, and the top 20 high-abundance proteins decreased from 83.63% to 25.77%. Notably, our method can quantify approximately 4000 plasma proteins with sensitivity up to pg/mL, compared to only about 600 proteins identified from untreated plasma samples. A pilot study based on plasma samples from 30 lung adenocarcinoma patients and 15 healthy subjects demonstrated that our method could successfully distinguish between healthy and disease states. In summary, this work provides an advantageous tool for the exploration of plasma proteomics and its translational applications.
Collapse
Affiliation(s)
- Congcong Ma
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Yanwei Li
- Department of Integrative Oncology, Tianjin Medical University Cancer Institute and Hospital and Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Jie Li
- Department of Proteomics, Tianjin Key Laboratory of Clinical Multi-omics, Tianjin, 300308, China
| | - Lei Song
- Department of Proteomics, Tianjin Key Laboratory of Clinical Multi-omics, Tianjin, 300308, China
| | - Liangyu Chen
- Department of Proteomics, Tianjin Key Laboratory of Clinical Multi-omics, Tianjin, 300308, China
| | - Na Zhao
- Department of Proteomics, Tianjin Key Laboratory of Clinical Multi-omics, Tianjin, 300308, China
| | - Xueping Li
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Ning Chen
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Lixia Long
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Jin Zhao
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Xin Hou
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Li Ren
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Xubo Yuan
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
21
|
Mahmoudi M, Landry MP, Moore A, Coreas R. The protein corona from nanomedicine to environmental science. NATURE REVIEWS. MATERIALS 2023; 8:1-17. [PMID: 37361608 PMCID: PMC10037407 DOI: 10.1038/s41578-023-00552-2] [Citation(s) in RCA: 233] [Impact Index Per Article: 116.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 05/15/2023]
Abstract
The protein corona spontaneously develops and evolves on the surface of nanoscale materials when they are exposed to biological environments, altering their physiochemical properties and affecting their subsequent interactions with biosystems. In this Review, we provide an overview of the current state of protein corona research in nanomedicine. We next discuss remaining challenges in the research methodology and characterization of the protein corona that slow the development of nanoparticle therapeutics and diagnostics, and we address how artificial intelligence can advance protein corona research as a complement to experimental research efforts. We then review emerging opportunities provided by the protein corona to address major issues in healthcare and environmental sciences. This Review details how mechanistic insights into nanoparticle protein corona formation can broadly address unmet clinical and environmental needs, as well as enhance the safety and efficacy of nanobiotechnology products.
Collapse
Affiliation(s)
- Morteza Mahmoudi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI USA
| | - Markita P. Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA USA
- Innovative Genomics Institute, Berkeley, CA USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA USA
- Chan Zuckerberg Biohub, San Francisco, CA USA
| | - Anna Moore
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI USA
| | - Roxana Coreas
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA USA
| |
Collapse
|
22
|
Seaberg J, Clegg JR, Bhattacharya R, Mukherjee P. Self-Therapeutic Nanomaterials: Applications in Biology and Medicine. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2023; 62:190-224. [PMID: 36938366 PMCID: PMC10022599 DOI: 10.1016/j.mattod.2022.11.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Over past decades, nanotechnology has contributed to the biomedical field in areas including detection, diagnosis, and drug delivery via opto-electronic properties or enhancement of biological effects. Though generally considered inert delivery vehicles, a plethora of past and present evidence demonstrates that nanomaterials also exude unique intrinsic biological activity based on composition, shape, and surface functionalization. These intrinsic biological activities, termed self-therapeutic properties, take several forms, including mediation of cell-cell interactions, modulation of interactions between biomolecules, catalytic amplification of biochemical reactions, and alteration of biological signal transduction events. Moreover, study of biomolecule-nanomaterial interactions offers a promising avenue for uncovering the molecular mechanisms of biology and the evolution of disease. In this review, we observe the historical development, synthesis, and characterization of self-therapeutic nanomaterials. Next, we discuss nanomaterial interactions with biological systems, starting with administration and concluding with elimination. Finally, we apply this materials perspective to advances in intrinsic nanotherapies across the biomedical field, from cancer therapy to treatment of microbial infections and tissue regeneration. We conclude with a description of self-therapeutic nanomaterials in clinical trials and share our perspective on the direction of the field in upcoming years.
Collapse
Affiliation(s)
- Joshua Seaberg
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
- M.D./Ph.D. Program, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - John R. Clegg
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Priyabrata Mukherjee
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
23
|
Liu Y, Yang Q, Du Z, Liu J, Zhang Y, Zhang W, Qin W. Synthesis of Surface-Functionalized Molybdenum Disulfide Nanomaterials for Efficient Adsorption and Deep Profiling of the Human Plasma Proteome by Data-Independent Acquisition. Anal Chem 2022; 94:14956-14964. [PMID: 36264706 DOI: 10.1021/acs.analchem.2c02736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Blood is one of the most important clinical samples for protein biomarker discovery, as it provides rich physiological and pathological information and is easy to obtain with low invasiveness. However, the discovery of protein biomarkers in the blood by mass spectrometry (MS)-based proteomic strategies has been shown to be highly challenging due to the particularly large concentration range of proteins and the strong interference by the high-abundant proteins in the blood. Therefore, developing sensitive methods for low-abundant biomarker protein identification is a key issue that has received great attention. Here, we report the synthesis and characterization of surface-functionalized magnetic molybdenum disulfide (MoS2) for the large-scale adsorption of low-abundant plasma proteins and deep profiling by MS. MoS2 nanomaterials resulted in the coverage of more than 3400 proteins (including a single-peptide hit) in a single LC-MS analysis without peptide prefractionation using pooled plasma samples, which were five times more than those obtained by the direct analysis of the plasma proteome. A detection limit in the low ng L-1 range was obtained, which is rare compared with previous reports.
Collapse
Affiliation(s)
- Yuanyuan Liu
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P.R. China
| | - Qianying Yang
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P.R. China.,School of Basic Medical Science, Anhui Medical University, Hefei 230032, China
| | - Zhuokun Du
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P.R. China.,School of Basic Medical Science, Anhui Medical University, Hefei 230032, China
| | - Jiayu Liu
- Department of Laboratory Medicine, the First Medical Centre, Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Yangjun Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P.R. China.,School of Basic Medical Science, Anhui Medical University, Hefei 230032, China
| | - Wanjun Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P.R. China.,School of Basic Medical Science, Anhui Medical University, Hefei 230032, China
| | - Weijie Qin
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P.R. China.,School of Basic Medical Science, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
24
|
Caputo D, Quagliarini E, Pozzi D, Caracciolo G. Nanotechnology Meets Oncology: A Perspective on the Role of the Personalized Nanoparticle-Protein Corona in the Development of Technologies for Pancreatic Cancer Detection. Int J Mol Sci 2022; 23:10591. [PMID: 36142503 PMCID: PMC9505839 DOI: 10.3390/ijms231810591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/25/2022] Open
Abstract
In recent years nanotechnology has opened exciting opportunities in the struggle against cancer. In 2007 Dawson and coworkers demonstrated that nanomaterials exposed to biological fluids are coated with plasma proteins that form the so-called "protein corona". A few years later our joint research team made of physicists, chemists, biotechnologists, surgeons, oncologists, and bioinformaticians introduced the concept of "personalized protein corona" and demonstrated that it is unique for each human condition. This concept paved the way for the development of nano-enabled blood (NEB) tests for the diagnosis of pancreatic ductal adenocarcinoma (PDAC). These studies gave an impetus to serious work in the field that came to maturity in the late 2010s. In this special issue, we provide the reader with a comprehensive overview of the most significant discoveries of our research team in the field of PDAC detection. We focus on the main achievements with an emphasis on the fundamental aspects of this arena and how they shaped the integration of different scientific backgrounds towards the development of advanced diagnostic technologies. We conclude the review by outlining future perspectives and opportunities to transform the NEB tests into a reliable clinical diagnostic technology for early diagnosis, follow-up, and management of PDAC patients.
Collapse
Affiliation(s)
- Damiano Caputo
- Department of Surgery, University Campus Bio-Medico di Roma, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Erica Quagliarini
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| | - Daniela Pozzi
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| | - Giulio Caracciolo
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| |
Collapse
|
25
|
Gardner L, Kostarelos K, Mallick P, Dive C, Hadjidemetriou M. Nano-omics: nanotechnology-based multidimensional harvesting of the blood-circulating cancerome. Nat Rev Clin Oncol 2022; 19:551-561. [PMID: 35739399 DOI: 10.1038/s41571-022-00645-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2022] [Indexed: 02/08/2023]
Abstract
Over the past decade, the development of 'simple' blood tests that enable cancer screening, diagnosis or monitoring and facilitate the design of personalized therapies without the need for invasive tumour biopsy sampling has been a core ambition in cancer research. Data emerging from ongoing biomarker development efforts indicate that multiple markers, used individually or as part of a multimodal panel, are required to enhance the sensitivity and specificity of assays for early stage cancer detection. The discovery of cancer-associated molecular alterations that are reflected in blood at multiple dimensions (genome, epigenome, transcriptome, proteome and metabolome) and integration of the resultant multi-omics data have the potential to uncover novel biomarkers as well as to further elucidate the underlying molecular pathways. Herein, we review key advances in multi-omics liquid biopsy approaches and introduce the 'nano-omics' paradigm: the development and utilization of nanotechnology tools for the enrichment and subsequent omics analysis of the blood-circulating cancerome.
Collapse
Affiliation(s)
- Lois Gardner
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, The University of Manchester, Manchester, UK
| | - Kostas Kostarelos
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Catalan Institute of Nanoscience & Nanotechnology (ICN2), UAB Campus, Barcelona, Spain
| | - Parag Mallick
- Canary Center at Stanford for Cancer Early Detection, Stanford University, California, USA
| | - Caroline Dive
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, The University of Manchester, Manchester, UK
| | - Marilena Hadjidemetriou
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
| |
Collapse
|
26
|
Huppertsberg A, Leps C, Alberg I, Rosenauer C, Morsbach S, Landfester K, Tenzer S, Zentel R, Nuhn L. Squaric Ester-Based Nanogels Induce No Distinct Protein Corona but Entrap Plasma Proteins into their Porous Hydrogel Network. Macromol Rapid Commun 2022; 43:e2200318. [PMID: 35687083 DOI: 10.1002/marc.202200318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/17/2022] [Indexed: 11/11/2022]
Abstract
After intravenous administration of nanocarriers, plasma proteins may rapidly adsorb onto their surfaces. This process hampers the prediction of the nanocarriers' pharmacokinetics as it determines their physiological identity in a complex biological environment. Toward clinical translation it is therefore an essential prerequisite to investigate the nanocarriers' interaction with plasma proteins. Here, this work evaluates a highly "PEGylated" squaric ester-based nanogel with inherent prolonged blood circulation properties. After incubation with human blood plasma, the nanogels are isolated by asymmetrical flow-field flow fractionation. Multiangle light scattering measurements confirm the absence of significant size increases as well as aggregation upon plasma incubation. However, proteomic analyses by gel electrophoresis find minor absolute amounts of proteins (3 wt%), whereas label-free liquid chromatography mass spectrometry identify 65 enriched proteins. Interestingly, the relative abundance of these proteins is almost similar to their proportion in pure native plasma. Due to the nanogels' hydrated and porous network morphology, it is concluded that the detected proteins rather result from passive diffusion into the nanogel network than from specific interactions at the plasma particle interface. Consequently, these results do not indicate a classical surface protein corona but rather reflect the highly outer and inner stealth-like behavior of the porous hydrogel network.
Collapse
Affiliation(s)
| | - Christian Leps
- Institute for Immunology, University Medical Center of Mainz, 55131, Mainz, Germany
| | - Irina Alberg
- Department of Chemistry, Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | | | - Svenja Morsbach
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | | | - Stefan Tenzer
- Institute for Immunology, University Medical Center of Mainz, 55131, Mainz, Germany
| | - Rudolf Zentel
- Department of Chemistry, Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Lutz Nuhn
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany.,Chair of Macromolecular Chemistry, Faculty of Chemistry and Pharmacy, Julius Maximilian University Würzburg, 97074, Würzburg, Germany
| |
Collapse
|
27
|
Li W, Wu CC, Wang S, Zhou L, Qiao L, Ba W, Liu F, Zhan L, Chen H, Yu JS, Fang J. Identification of the target protein of the metastatic colorectal cancer-specific aptamer W3 as a biomarker by aptamer-based target cells sorting and functional characterization. Biosens Bioelectron 2022; 213:114451. [PMID: 35700603 DOI: 10.1016/j.bios.2022.114451] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 11/19/2022]
Abstract
Metastasis is a leading cause of cancer-related deaths. Hence, the discovery of more reliable metastasis-related biomarkers is crucial to improve the survival rate of cancer patients. W3 is an aptamer previously produced by the subtractive cell-SELEX using metastatic colorectal cancer cells as target cells and non-metastatic cells as negative cells. In this study, we aimed to evaluate whether the target molecule of W3 can potentially act as a metastatic biomarker. First, we obtained two cell subpopulations with different expression levels of the target molecule by W3-based cell sorting. Subsequently, we demonstrated that W3high cells have a higher metastatic potential than W3low cells both in vitro and in vivo. Further, immunohistochemical analysis revealed that W3 target expression is positively associated with metastasis and poor prognosis of CRC patients. Using mass spectrometry (MS) combined with pull-down, we identified that Ephrin type-A receptor 2 (EphA2) is the target of W3. EphA2's potential as a metastatic predictor was demonstrated by capturing W3-positive circulating tumor cells from CRC patients using a W3 probe. Based on these results, we put forward a stratagem for cell-SELEX-based biomarker discovery: selecting an aptamer through subtractive cell-SELEX towards the phenotype of interest; evaluating the functional phenotype of the target molecule by aptamer-based target cell sorting and analysis of clinical samples; and identifying the aptamer's target molecule using MS and aptamer-based target enrichment. This stratagem not only shortens the time for the clinical application of aptamers but also enables a more targeted and efficient discovery of biomarkers.
Collapse
Affiliation(s)
- Wanming Li
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, PR China
| | - Chia-Chun Wu
- Molecular Medicine Research Center, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 333, Taiwan; Liver Research Center, Chang Gung Memorial Hospital, Linkou 33305, Taiwan; Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 33302, Taiwan
| | - Shuo Wang
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, PR China; Analytical Instrumentation Center, Shenyang Agricultural University, Shenyang, 110866, PR China
| | - Linlin Zhou
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, PR China
| | - Lei Qiao
- Colorectal & Henia Minimally Invasive Surgery Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China
| | - Wei Ba
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, PR China
| | - Furong Liu
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, PR China
| | - Linan Zhan
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, PR China
| | - Hang Chen
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, PR China
| | - Jau-Song Yu
- Molecular Medicine Research Center, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 333, Taiwan; Liver Research Center, Chang Gung Memorial Hospital, Linkou 33305, Taiwan; Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 33302, Taiwan.
| | - Jin Fang
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, PR China.
| |
Collapse
|
28
|
Shaw J, Pearson RM. Nanoparticle personalized biomolecular corona: implications of pre-existing conditions for immunomodulation and cancer. Biomater Sci 2022; 10:2540-2549. [PMID: 35476072 PMCID: PMC9117514 DOI: 10.1039/d2bm00315e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Nanoparticles (NPs) have demonstrated great promise as immunotherapies for applications ranging from cancer, autoimmunity, and infectious disease. Upon encountering biological fluids, NPs rapidly adsorb biomolecules, forming the "biomolecular corona" (BC), and the altered character of NPs due to their newly acquired biological identity can impact their in vivo fate. Recently, it has been shown that the NP-BC is person-specific, and even minute differences in the biomolecule composition can give rise to altered immune recognition, cellular interactions, pharmacokinetics, and biodistribution. Given the current rise in the development of NP-based therapeutics, it is of utmost importance to better understand how pre-existing conditions, that result in the formation of a personalized BC, can be leveraged to aid in the prediction of the therapeutic outcomes of NPs. In this minireview, we will discuss the formation of the BC, implications of the BC for NP-biological interactions, and its clinical importance in the context of immunomodulation and cancer therapeutics.
Collapse
Affiliation(s)
- Jacob Shaw
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, Baltimore, MD 21201, USA.
| | - Ryan M Pearson
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, Baltimore, MD 21201, USA.
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, MD 21201, USA
| |
Collapse
|
29
|
Abstract
Over the years, the engineering aspect of nanotechnology has been significantly exploited. Medical intervention strategies have been developed by leveraging existing molecular biology knowledge and combining it with nanotechnology tools to improve outcomes. However, little attention has been paid to harnessing the strengths of nanotechnology as a biological discovery tool. Fundamental understanding of controlling dynamic biological processes at the subcellular level is key to developing personalized therapeutic and diagnostic interventions. Single-cell analyses using intravital microscopy, expansion microscopy, and microfluidic-based platforms have been helping to better understand cell heterogeneity in healthy and diseased cells, a major challenge in oncology. Also, single-cell analysis has revealed critical signaling pathways and biological intracellular components with key biological functions. The physical manipulation enabled by nanotools can allow real-time monitoring of biological changes at a single-cell level by sampling intracellular fluid from the same cell. The formation of intercellular highways by nanotube-like structures has important clinical implications such as metastasis development. The integration of nanomaterials into optical and molecular imaging techniques has rendered valuable morphological, structural, and biological information. Nanoscale imaging unravels mechanisms of temporality by enabling the visualization of nanoscale dynamics never observed or measured between individual cells with standard biological techniques. The exceptional sensitivity of nanozymes, artificial enzymes, make them perfect components of the next-generation mobile diagnostics devices. Here, we highlight these impactful cancer-related biological discoveries enabled by nanotechnology and producing a paradigm shift in cancer research and oncology.
Collapse
Affiliation(s)
- Carolina Salvador-Morales
- Nanodelivery Systems and Devices Branch, Cancer Imaging Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Piotr Grodzinski
- Nanodelivery Systems and Devices Branch, Cancer Imaging Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, Maryland 20850, United States
| |
Collapse
|
30
|
Tang Y, Gao J, Wang T, Zhang Q, Wang A, Huang M, Yu R, Chen H, Gao X. The effect of drug loading and multiple administration on the protein corona formation and brain delivery property of PEG-PLA nanoparticles. Acta Pharm Sin B 2022; 12:2043-2056. [PMID: 35847504 PMCID: PMC9279712 DOI: 10.1016/j.apsb.2021.09.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/23/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
The presence of protein corona on the surface of nanoparticles modulates their physiological interactions such as cellular association and targeting property. It has been shown that α-mangostin (αM)-loaded poly(ethylene glycol)-poly(l-lactide) (PEG-PLA) nanoparticles (NP-αM) specifically increased low density lipoprotein receptor (LDLR) expression in microglia and improved clearance of amyloid beta (Aβ) after multiple administration. However, how do the nanoparticles cross the blood‒brain barrier and access microglia remain unknown. Here, we studied the brain delivery property of PEG-PLA nanoparticles under different conditions, finding that the nanoparticles exhibited higher brain transport efficiency and microglia uptake efficiency after αM loading and multiple administration. To reveal the mechanism, we performed proteomic analysis to characterize the composition of protein corona formed under various conditions, finding that both drug loading and multiple dosing affect the composition of protein corona and subsequently influence the cellular uptake of nanoparticles in b.End3 and BV-2 cells. Complement proteins, immunoglobulins, RAB5A and CD36 were found to be enriched in the corona and associated with the process of nanoparticles uptake. Collectively, we bring a mechanistic understanding about the modulator role of protein corona on targeted drug delivery, and provide theoretical basis for engineering brain or microglia-specific targeted delivery system.
Collapse
|
31
|
Đorđević S, Gonzalez MM, Conejos-Sánchez I, Carreira B, Pozzi S, Acúrcio RC, Satchi-Fainaro R, Florindo HF, Vicent MJ. Current hurdles to the translation of nanomedicines from bench to the clinic. Drug Deliv Transl Res 2022; 12:500-525. [PMID: 34302274 PMCID: PMC8300981 DOI: 10.1007/s13346-021-01024-2] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2021] [Indexed: 02/07/2023]
Abstract
The field of nanomedicine has significantly influenced research areas such as drug delivery, diagnostics, theranostics, and regenerative medicine; however, the further development of this field will face significant challenges at the regulatory level if related guidance remains unclear and unconsolidated. This review describes those features and pathways crucial to the clinical translation of nanomedicine and highlights considerations for early-stage product development. These include identifying those critical quality attributes of the drug product essential for activity and safety, appropriate analytical methods (physical, chemical, biological) for characterization, important process parameters, and adequate pre-clinical models. Additional concerns include the evaluation of batch-to-batch consistency and considerations regarding scaling up that will ensure a successful reproducible manufacturing process. Furthermore, we advise close collaboration with regulatory agencies from the early stages of development to assure an aligned position to accelerate the development of future nanomedicines.
Collapse
Affiliation(s)
- Snežana Đorđević
- Polymer Therapeutics Laboratory, Prince Felipe Research Center (CIPF), Eduardo Primo Yúfera 3, 46012, Valencia, Av, Spain
| | - María Medel Gonzalez
- Polymer Therapeutics Laboratory, Prince Felipe Research Center (CIPF), Eduardo Primo Yúfera 3, 46012, Valencia, Av, Spain
| | - Inmaculada Conejos-Sánchez
- Polymer Therapeutics Laboratory, Prince Felipe Research Center (CIPF), Eduardo Primo Yúfera 3, 46012, Valencia, Av, Spain
| | - Barbara Carreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisboa, Portugal
| | - Sabina Pozzi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Rita C Acúrcio
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisboa, Portugal
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, 69978, Tel Aviv, Israel.
| | - Helena F Florindo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisboa, Portugal.
| | - María J Vicent
- Polymer Therapeutics Laboratory, Prince Felipe Research Center (CIPF), Eduardo Primo Yúfera 3, 46012, Valencia, Av, Spain.
| |
Collapse
|
32
|
Liu K, Salvati A, Sabirsh A. Physiology, pathology and the biomolecular corona: the confounding factors in nanomedicine design. NANOSCALE 2022; 14:2136-2154. [PMID: 35103268 DOI: 10.1039/d1nr08101b] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The biomolecular corona that forms on nanomedicines in different physiological and pathological environments confers a new biological identity. How the recipient biological system's state can potentially affect nanomedicine corona formation, and how this can be modulated, remains obscure. With this perspective, this review summarizes the current knowledge about the content of biological fluids in various compartments and how they can be affected by pathological states, thus impacting biomolecular corona formation. The content of representative biological fluids is explored, and the urgency of integrating corona formation, as an essential component of nanomedicine designs for effective cargo delivery, is highlighted.
Collapse
Affiliation(s)
- Kai Liu
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden.
| | - Anna Salvati
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen 9713AV, The Netherlands
| | - Alan Sabirsh
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
33
|
Farshbaf M, Valizadeh H, Panahi Y, Fatahi Y, Chen M, Zarebkohan A, Gao H. The impact of protein corona on the biological behavior of targeting nanomedicines. Int J Pharm 2022; 614:121458. [PMID: 35017025 DOI: 10.1016/j.ijpharm.2022.121458] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/27/2021] [Accepted: 01/05/2022] [Indexed: 12/17/2022]
Abstract
For successful translation of targeting nanomedicines from bench to bedside, it is vital to address their most common drawbacks namely rapid clearance and off-target accumulation. These complications evidently originate from a phenomenon called "protein corona (PC) formation" around the surface of targeting nanoparticles (NPs) which happens once they encounter the bloodstream and interact with plasma proteins with high collision frequency. This phenomenon endows the targeting nanomedicines with a different biological behavior followed by an unexpected fate, which is usually very different from what we commonly observe in vitro. In addition to the inherent physiochemical properties of NPs, the targeting ligands could also remarkably dictate the amount and type of adsorbed PC. As very limited studies have focused their attention on this particular factor, the present review is tasked to discuss the best simulated environment and latest characterization techniques applied to PC analysis. The effect of PC on the biological behavior of targeting NPs engineered with different targeting moieties is further discussed. Ultimately, the recent progresses in manipulation of nano-bio interfaces to achieve the most favorite therapeutic outcome are highlighted.
Collapse
Affiliation(s)
- Masoud Farshbaf
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Valizadeh
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yunes Panahi
- Pharmacotherapy Department, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Yousef Fatahi
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Amir Zarebkohan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Huile Gao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Sichuan 610041, China.
| |
Collapse
|
34
|
Mills-Goodlet R, Johnson L, Hoppe IJ, Regl C, Geppert M, Schenck M, Huber S, Hauser M, Ferreira F, Hüsing N, Huber CG, Brandstetter H, Duschl A, Himly M. The nanotopography of SiO 2 particles impacts the selectivity and 3D fold of bound allergens. NANOSCALE 2021; 13:20508-20520. [PMID: 34854455 PMCID: PMC8675021 DOI: 10.1039/d1nr05958k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
A detailed description of the changes that occur during the formation of protein corona represents a fundamental question in nanoscience, given that it not only impacts the behaviour of nanoparticles but also affects the bound proteins. Relevant questions include whether proteins selectively bind particles, whether a specific orientation is preferred for binding, and whether particle binding leads to a modulation of their 3D fold. For allergens, it is important to answer these questions given that all these effects can modify the allergenic response of atopic individuals. These potential impacts on the bound allergen are closely related to the specific properties of the involved nanoparticles. One important property influencing the formation of protein corona is the nanotopography of the particles. Herein, we studied the effect of nanoparticle porosity on allergen binding using mesoporous and non-porous SiO2 NPs. We investigated (i) the selectivity of allergen binding from a mixture such as crude pollen extract, (ii) whether allergen binding results in a preferred orientation, (iii) the influence of binding on the conformation of the allergen, and (iv) how the binding affects the allergenic response. Nanotopography was found to play a major role in the formation of protein corona, impacting the physicochemical and biological properties of the NP-bound allergen. The porosity of the surface of the SiO2 nanoparticles resulted in a higher binding capacity with pronounced selectivity for (preferentially) binding the major birch pollen allergen Bet v 1. Furthermore, the binding of Bet v 1 to the mesoporous rather than the non-porous SiO2 nanoparticles influenced the 3D fold of the protein, resulting in at least partial unfolding. Consequently, this conformational change influenced the allergenic response, as observed by mediator release assays employing the sera of patients and immune effector cells. For an in-depth understanding of the bio-nano interactions, the properties of the particles need to be considered not only regarding the identity and morphology of the material, but also their nanotopography, given that porosity may greatly influence the structure, and hence the biological behaviour of the bound proteins. Thus, thorough structural investigations upon the formation of protein corona are important when considering immunological outcomes, as particle binding can influence the allergenic response elicited by the bound allergen.
Collapse
Affiliation(s)
| | - Litty Johnson
- Dept. Biosciences, Paris Lodron University of Salzburg, Austria.
| | - Isabel J Hoppe
- Dept. Biosciences, Paris Lodron University of Salzburg, Austria.
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, Paris Lodron University of Salzburg, Austria
| | - Christof Regl
- Dept. Biosciences, Paris Lodron University of Salzburg, Austria.
| | - Mark Geppert
- Dept. Biosciences, Paris Lodron University of Salzburg, Austria.
| | - Milena Schenck
- Dept. Chemistry and Physics of Materials, Paris Lodron University of Salzburg, Austria
| | - Sara Huber
- Dept. Biosciences, Paris Lodron University of Salzburg, Austria.
| | - Michael Hauser
- Dept. Biosciences, Paris Lodron University of Salzburg, Austria.
| | - Fátima Ferreira
- Dept. Biosciences, Paris Lodron University of Salzburg, Austria.
| | - Nicola Hüsing
- Dept. Chemistry and Physics of Materials, Paris Lodron University of Salzburg, Austria
| | - Christian G Huber
- Dept. Biosciences, Paris Lodron University of Salzburg, Austria.
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, Paris Lodron University of Salzburg, Austria
| | - Hans Brandstetter
- Dept. Biosciences, Paris Lodron University of Salzburg, Austria.
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, Paris Lodron University of Salzburg, Austria
| | - Albert Duschl
- Dept. Biosciences, Paris Lodron University of Salzburg, Austria.
| | - Martin Himly
- Dept. Biosciences, Paris Lodron University of Salzburg, Austria.
| |
Collapse
|
35
|
Nemati M, Bani F, Sepasi T, Zamiri RE, Rasmi Y, Kahroba H, Rahbarghazi R, Sadeghi MR, Wang Y, Zarebkohan A, Gao H. Unraveling the Effect of Breast Cancer Patients' Plasma on the Targeting Ability of Folic Acid-Modified Chitosan Nanoparticles. Mol Pharm 2021; 18:4341-4353. [PMID: 34779630 DOI: 10.1021/acs.molpharmaceut.1c00525] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The formation of protein corona (PC) around nanoparticles (NPs) has been reported inside biological conditions. This effect can alter delivery capacity toward the targeted tissues. Here, we synthesized folic acid-modified chitosan NPs (FA-CS NPs) using different concentrations of folic acid (5, 10, and 20%). FA-CS NPs were exposed to plasmas of breast cancer patients and healthy donors to evaluate the possibility of PC formation. We also monitored uptake efficiency in in vitro conditions after incubation with human breast cancer cell line MDA-MB-231 and monocyte/macrophage-like Raw264.7 cells. Data showed that the formation of PC around FA-CS NPs can change physicochemical properties coincided with the rise in NP size and negative surface charge. SDS-PAGE electrophoresis revealed differences in the type and content rate of plasma proteins attached to NP surface in a personalized manner. Based on MTT data, the formation of PC around NPs did not exert cytotoxic effects on MDA-MB-231 cells while this phenomenon reduced uptake rate. Fluorescence imaging and flow cytometry analyses revealed reduced cellular internalization rate in NPs exposed to patients' plasma compared to the control group. In contrast to breast MDA-MB-231 cells, Raw264.7 cells efficiently adsorbed the bare and PC-coated NPs from both sources, indicating the involvement of ligand-receptor-dependent and independent cellular engulfment. These data showed that the PC formed on the FA-CS NPs is entirely different in breast cancer patients and healthy counterparts. PC derived from patients' plasma almost abolishes the targeting efficiency of FA-CS NPs even in different mechanisms, while this behavior was not shown in the control group. Surprisingly, Raw264.7 cells strongly adsorbed the PC-coated NPs, especially when these particles were in the presence of patients' sera. It is strongly suggested that the formation of PC around can affect delivering capacity of FA-CS NPs to cancer cells. It seems that the PC-coated FA-CS NPs can be used as an efficient delivery strategy for the transfer of specific biomolecules in immune system disorders.
Collapse
Affiliation(s)
- Mahdieh Nemati
- Department of Medical Nanotechnology, Advanced Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - Farhad Bani
- Department of Medical Nanotechnology, Advanced Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - Tina Sepasi
- Department of Medical Nanotechnology, Advanced Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - Reza Eghdam Zamiri
- Department of Radiation Oncology, Shahid Madani Hospital, Tabriz University of Medical Science, Tabriz 5166/15731, Iran
| | - Yousef Rasmi
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia 571478334, Iran
| | - Houman Kahroba
- Department of Molecular Medicine, Advanced Faculty of Medical Sciences, Tabriz University of Medical, Tabriz 5166/15731, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran.,Department of Applied Cell Sciences, Advanced Faculty of Medical Sciences, Tabriz University of Medical, Tabriz 5166/15731, Iran
| | - Mohammed Reza Sadeghi
- Department of Molecular Medicine, Advanced Faculty of Medical Sciences, Tabriz University of Medical, Tabriz 5166/15731, Iran
| | - Yazhen Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, P. R. China
| | - Amir Zarebkohan
- Department of Medical Nanotechnology, Advanced Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
36
|
Vianello F, Cecconello A, Magro M. Toward the Specificity of Bare Nanomaterial Surfaces for Protein Corona Formation. Int J Mol Sci 2021; 22:7625. [PMID: 34299242 PMCID: PMC8305441 DOI: 10.3390/ijms22147625] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/08/2021] [Accepted: 07/15/2021] [Indexed: 12/16/2022] Open
Abstract
Aiming at creating smart nanomaterials for biomedical applications, nanotechnology aspires to develop a new generation of nanomaterials with the ability to recognize different biological components in a complex environment. It is common opinion that nanomaterials must be coated with organic or inorganic layers as a mandatory prerequisite for applications in biological systems. Thus, it is the nanomaterial surface coating that predominantly controls the nanomaterial fate in the biological environment. In the last decades, interdisciplinary studies involving not only life sciences, but all branches of scientific research, provided hints for obtaining uncoated inorganic materials able to interact with biological systems with high complexity and selectivity. Herein, the fragmentary literature on the interactions between bare abiotic materials and biological components is reviewed. Moreover, the most relevant examples of selective binding and the conceptualization of the general principles behind recognition mechanisms were provided. Nanoparticle features, such as crystalline facets, density and distribution of surface chemical groups, and surface roughness and topography were encompassed for deepening the comprehension of the general concept of recognition patterns.
Collapse
Affiliation(s)
| | | | - Massimiliano Magro
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy; (F.V.); (A.C.)
| |
Collapse
|
37
|
Li H, Wang Y, Tang Q, Yin D, Tang C, He E, Zou L, Peng Q. The protein corona and its effects on nanoparticle-based drug delivery systems. Acta Biomater 2021; 129:57-72. [PMID: 34048973 DOI: 10.1016/j.actbio.2021.05.019] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/25/2021] [Accepted: 05/18/2021] [Indexed: 02/04/2023]
Abstract
In most cases, once nanoparticles (NPs) enter the blood, their surface is covered by biological molecules, especially proteins, forming a so-called protein corona (PC). As a result, what the cells of the body "see" is not the NPs as formulated by the chemists, but the PC. In this way, the PC can influence the effects of the NPs and even mask the desired effects of the NP components. While this can argue for trying to inhibit protein-nanomaterial interactions, encapsulating NPs in an endogenous PC may increase their clinical usefulness. In this review, we briefly introduce the concept of the PC, its formation and its effects on the behavior of NPs. We also discuss how to reduce the formation of PCs or exploit them to enhance NP functions. Studying the interactions between proteins and NPs will provide insights into their clinical activity in health and disease. STATEMENT OF SIGNIFICANCE: The formation of protein corona (PC) will affect the operation of nanoparticles (NPs) in vivo. Since there are many proteins in the blood, it is impossible to completely overcome the formation of PC. Therefore, the use of PCs to deliver drug is the best choice. De-opsonins adsorbed on NPs can reduce macrophage phagocytosis and cytotoxicity of NPs, and prolong their circulation in blood. Albumin, apolipoprotein and transferrin are typical de-opsonins. In present review, we mainly discuss how to optimize the delivery of nanoparticles through the formation of albumin corona, transferrin corona and apolipoprotein corona in vivo or in vitro.
Collapse
Affiliation(s)
- Hanmei Li
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu university, Chengdu 610106, China
| | - Yao Wang
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu university, Chengdu 610106, China
| | - Qi Tang
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu university, Chengdu 610106, China
| | - Dan Yin
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu university, Chengdu 610106, China
| | - Chuane Tang
- School of Mechanical Engineering, Chengdu university, Chengdu 610106, China
| | - En He
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu university, Chengdu 610106, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu university, Chengdu 610106, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
38
|
Digiacomo L, Giulimondi F, Capriotti AL, Piovesana S, Montone CM, Chiozzi RZ, Laganà A, Mahmoudi M, Pozzi D, Caracciolo G. Optimal centrifugal isolating of liposome-protein complexes from human plasma. NANOSCALE ADVANCES 2021; 3:3824-3834. [PMID: 36133013 PMCID: PMC9418580 DOI: 10.1039/d1na00211b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/15/2021] [Indexed: 05/14/2023]
Abstract
In the past few years, characterization of the protein corona (PC) that forms around liposomal systems has gained increasing interest for the development of novel therapeutic and diagnostic technologies. At the crossroads of fast-moving research fields, the interdisciplinarity of protein corona investigations poses challenges for experimental design and reporting. Isolation of liposome-protein complexes from biological fluids has been identified as a fundamental step of the entire workflow of PC characterization but exact specifications for conditions to optimize pelleting remain elusive. In the present work, key factors affecting precipitation of liposome-protein complexes by centrifugation, including time of centrifugation, total sample volume, lipid : protein ratio and contamination from biological NPs were comprehensively evaluated. Here we show that the total amount of isolated liposome-protein complexes and the extent of contamination from biological NPs may vary with influence factors. Our results provide protein corona researchers with precise indications to separate liposome-protein complexes from protein-rich fluids and include proper controls, thus they are anticipated to catalyze improved consistency of data mining and computational modelling of protein corona composition.
Collapse
Affiliation(s)
- Luca Digiacomo
- Department of Molecular Medicine, Sapienza University of Rome Viale Regina Elena 291 00161 Rome Italy
| | - Francesca Giulimondi
- Department of Molecular Medicine, Sapienza University of Rome Viale Regina Elena 291 00161 Rome Italy
| | - Anna Laura Capriotti
- Department of Chemistry, Sapienza University of Rome P.le A. Moro 5 00185 Rome Italy
| | - Susy Piovesana
- Department of Chemistry, Sapienza University of Rome P.le A. Moro 5 00185 Rome Italy
| | - Carmela Maria Montone
- Department of Chemistry, Sapienza University of Rome P.le A. Moro 5 00185 Rome Italy
| | - Riccardo Zenezini Chiozzi
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences Utrecht University Heidelberglaan 8 3584 CS Utrecht The Netherlands
| | - Aldo Laganà
- Department of Chemistry, Sapienza University of Rome P.le A. Moro 5 00185 Rome Italy
| | - Morteza Mahmoudi
- Department of Radiology, Precision Health Program, Michigan State University MI USA
| | - Daniela Pozzi
- Department of Molecular Medicine, Sapienza University of Rome Viale Regina Elena 291 00161 Rome Italy
| | - Giulio Caracciolo
- Department of Molecular Medicine, Sapienza University of Rome Viale Regina Elena 291 00161 Rome Italy
| |
Collapse
|
39
|
Abstract
Nanomedicine has demonstrated substantial potential to improve the quality and efficacy of healthcare systems. Although the promise of nanomedicine to transform conventional medicine is evident, significant numbers of therapeutic nanomedicine products have failed in clinical trials. Most studies in nanomedicine have overlooked several important factors, including the significance of sex differences at various physiological levels. This report attempts to highlight the importance of sex in nanomedicine at cellular and molecular level. A more thorough consideration of sex physiology, among other critical variations (e.g., health status of individuals), would enable researchers to design and develop safer and more-efficient sex-specific diagnostic and therapeutic nanomedicine products.
Collapse
|
40
|
Hadjidemetriou M, Rivers-Auty J, Papafilippou L, Eales J, Kellett KAB, Hooper NM, Lawrence CB, Kostarelos K. Nanoparticle-Enabled Enrichment of Longitudinal Blood Proteomic Fingerprints in Alzheimer's Disease. ACS NANO 2021; 15:7357-7369. [PMID: 33730479 PMCID: PMC8155389 DOI: 10.1021/acsnano.1c00658] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Blood-circulating biomarkers have the potential to detect Alzheimer's disease (AD) pathology before clinical symptoms emerge and to improve the outcomes of clinical trials for disease-modifying therapies. Despite recent advances in understanding concomitant systemic abnormalities, there are currently no validated or clinically used blood-based biomarkers for AD. The extremely low concentration of neurodegeneration-associated proteins in blood necessitates the development of analytical platforms to address the "signal-to-noise" issue and to allow an in-depth analysis of the plasma proteome. Here, we aimed to discover and longitudinally track alterations of the blood proteome in a transgenic mouse model of AD, using a nanoparticle-based proteomics enrichment approach. We employed blood-circulating, lipid-based nanoparticles to extract, analyze and monitor AD-specific protein signatures and to systemically uncover molecular pathways associated with AD progression. Our data revealed the existence of multiple proteomic signals in blood, indicative of the asymptomatic stages of AD. Comprehensive analysis of the nanoparticle-recovered blood proteome by label-free liquid chromatography-tandem mass spectrometry resulted in the discovery of AD-monitoring signatures that could discriminate the asymptomatic phase from amyloidopathy and cognitive deterioration. While the majority of differentially abundant plasma proteins were found to be upregulated at the initial asymptomatic stages, the abundance of these molecules was significantly reduced as a result of amyloidosis, suggesting a disease-stage-dependent fluctuation of the AD-specific blood proteome. The potential use of the proposed nano-omics approach to uncover information in the blood that is directly associated with brain neurodegeneration was further exemplified by the recovery of focal adhesion cascade proteins. We herein propose the integration of nanotechnology with already existing proteomic analytical tools in order to enrich the identification of blood-circulating signals of neurodegeneration, reinvigorating the potential clinical utility of the blood proteome at predicting the onset and kinetics of the AD progression trajectory.
Collapse
Affiliation(s)
- Marilena Hadjidemetriou
- Nanomedicine
Lab, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom
- (M.H.)
| | - Jack Rivers-Auty
- Division
of Neuroscience and Experimental Psychology, School of Biological
Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science
Centre, Manchester M13 9PT, United Kingdom
| | - Lana Papafilippou
- Nanomedicine
Lab, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom
| | - James Eales
- Division
of Cardiovascular Sciences, School of Medical Sciences, Faculty of
Biology, Medicine and Health, The University
of Manchester M13 9PT, Manchester, United Kingdom
| | - Katherine A. B. Kellett
- Division
of Neuroscience and Experimental Psychology, School of Biological
Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science
Centre, Manchester M13 9PT, United Kingdom
| | - Nigel M. Hooper
- Division
of Neuroscience and Experimental Psychology, School of Biological
Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science
Centre, Manchester M13 9PT, United Kingdom
| | - Catherine B. Lawrence
- Division
of Neuroscience and Experimental Psychology, School of Biological
Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science
Centre, Manchester M13 9PT, United Kingdom
| | - Kostas Kostarelos
- Nanomedicine
Lab, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom
- (K.K.)
| |
Collapse
|
41
|
García-Álvarez R, Vallet-Regí M. Hard and Soft Protein Corona of Nanomaterials: Analysis and Relevance. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:888. [PMID: 33807228 PMCID: PMC8067325 DOI: 10.3390/nano11040888] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 12/15/2022]
Abstract
Upon contact with a biological milieu, nanomaterials tend to interact with biomolecules present in the media, especially proteins, leading to the formation of the so-called "protein corona". As a result of these nanomaterial-protein interactions, the bio-identity of the nanomaterial is altered, which is translated into modifications of its behavior, fate, and pharmacological profile. For biomedical applications, it is fundamental to understand the biological behavior of nanomaterials prior to any clinical translation. For these reasons, during the last decade, numerous publications have been focused on the investigation of the protein corona of many different types of nanomaterials. Interestingly, it has been demonstrated that the structure of the protein corona can be divided into hard and soft corona, depending on the affinity of the proteins for the nanoparticle surface. In the present document, we explore the differences between these two protein coronas, review the analysis techniques used for their assessment, and reflect on their relevance for medical purposes.
Collapse
Affiliation(s)
- Rafaela García-Álvarez
- Departamento Química en Ciencias Farmaceúticas, Unidad de Química Inorgánica y Bioinorgánica, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - María Vallet-Regí
- Departamento Química en Ciencias Farmaceúticas, Unidad de Química Inorgánica y Bioinorgánica, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28029 Madrid, Spain
| |
Collapse
|
42
|
Singh N, Marets C, Boudon J, Millot N, Saviot L, Maurizi L. In vivo protein corona on nanoparticles: does the control of all material parameters orient the biological behavior? NANOSCALE ADVANCES 2021; 3:1209-1229. [PMID: 36132858 PMCID: PMC9416870 DOI: 10.1039/d0na00863j] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/13/2021] [Indexed: 05/18/2023]
Abstract
Nanomaterials have a huge potential in research fields from nanomedicine to medical devices. However, surface modifications of nanoparticles (NPs) and thus of their physicochemical properties failed to predict their biological behavior. This requires investigating the "missing link" at the nano-bio interface. The protein corona (PC), the set of proteins binding to the NPs surface, plays a critical role in particle recognition by the innate immune system. Still, in vitro incubation offers a limited understanding of biological interactions and fails to explain the in vivo fate. To date, several reports explained the impact of PC in vitro but its applications in the clinical field have been very limited. Furthermore, PC is often considered as a biological barrier reducing the targeting efficiency of nano vehicles. But the protein binding can actually be controlled by altering PC both in vitro and in vivo. Analyzing PC in vivo could accordingly provide a deep understanding of its biological effect and speed up the transfer to clinical applications. This review demonstrates the need for clarifications on the effect of PC in vivo and the control of its behavior by changing its physicochemical properties. It unfolds the recent in vivo developments to understand mechanisms and challenges at the nano-bio interface. Finally, it reports recent advances in the in vivo PC to overcome and control the limitations of the in vitro PC by employing PC as a boosting resource to prolong the NPs half-life, to improve their formulations and thereby to increase its use for biomedical applications.
Collapse
Affiliation(s)
- Nimisha Singh
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS - Université Bourgogne Franche-Comté BP 47870 Dijon Cedex F-21078 France
| | - Célia Marets
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS - Université Bourgogne Franche-Comté BP 47870 Dijon Cedex F-21078 France
| | - Julien Boudon
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS - Université Bourgogne Franche-Comté BP 47870 Dijon Cedex F-21078 France
| | - Nadine Millot
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS - Université Bourgogne Franche-Comté BP 47870 Dijon Cedex F-21078 France
| | - Lucien Saviot
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS - Université Bourgogne Franche-Comté BP 47870 Dijon Cedex F-21078 France
| | - Lionel Maurizi
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS - Université Bourgogne Franche-Comté BP 47870 Dijon Cedex F-21078 France
| |
Collapse
|
43
|
Mahmoudi M. Emerging Biomolecular Testing to Assess the Risk of Mortality from COVID-19 Infection. Mol Pharm 2021; 18:476-482. [PMID: 32379456 PMCID: PMC7241738 DOI: 10.1021/acs.molpharmaceut.0c00371] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/29/2020] [Accepted: 05/07/2020] [Indexed: 02/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 and COVID-19) has produced an unprecedented global pandemic. Though the death rate from COVID-19 infection is ∼2%, many infected people recover at home. Among patients for whom COVID-19 is deadly are those with pre-existing comorbidities. Therefore, identification of populations at highest risk of COVID-19 mortality could significantly improve the capacity of healthcare providers to take early action and minimize the possibility of overwhelming care centers, which in turn would save many lives. Although several approaches have been used/developed (or are being developed/suggested) to diagnose COVID-19 infection, no approach is available/proposed for fast diagnosis of COVID-19 infections likely to be fatal. The central aim of this short perspective is to suggest a few possible nanobased technologies (i.e., protein corona sensor array and magnetic levitation) that could discriminate COVID-19-infected people while still in the early stages of infection who are at high risk of death. Such discrimination technologies would not only be useful in protecting health care centers from becoming overwhelmed but would also provide a powerful tool to better control possible future pandemics with a less social and economic burden.
Collapse
Affiliation(s)
- Morteza Mahmoudi
- Precision Health Program and Department of Radiology, Michigan
State University, East Lansing, Michigan 48824, United
States
| |
Collapse
|
44
|
Papafilippou L, Claxton A, Dark P, Kostarelos K, Hadjidemetriou M. Nanotools for Sepsis Diagnosis and Treatment. Adv Healthc Mater 2021; 10:e2001378. [PMID: 33236524 PMCID: PMC11469323 DOI: 10.1002/adhm.202001378] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/07/2020] [Indexed: 12/12/2022]
Abstract
Sepsis is one of the leading causes of death worldwide with high mortality rates and a pathological complexity hindering early and accurate diagnosis. Today, laboratory culture tests are the epitome of pathogen recognition in sepsis. However, their consistency remains an issue of controversy with false negative results often observed. Clinically used blood markers, C reactive protein (CRP) and procalcitonin (PCT) are indicators of an acute-phase response and thus lack specificity, offering limited diagnostic efficacy. In addition to poor diagnosis, inefficient drug delivery and the increasing prevalence of antibiotic-resistant microorganisms constitute significant barriers in antibiotic stewardship and impede effective therapy. These challenges have prompted the exploration for alternative strategies that pursue accurate diagnosis and effective treatment. Nanomaterials are examined for both diagnostic and therapeutic purposes in sepsis. The nanoparticle (NP)-enabled capture of sepsis causative agents and/or sepsis biomarkers in biofluids can revolutionize sepsis diagnosis. From the therapeutic point of view, currently existing nanoscale drug delivery systems have proven to be excellent allies in targeted therapy, while many other nanotherapeutic applications are envisioned. Herein, the most relevant applications of nanomedicine for the diagnosis, prognosis, and treatment of sepsis is reviewed, providing a critical assessment of their potentiality for clinical translation.
Collapse
Affiliation(s)
- Lana Papafilippou
- Nanomedicine LabFaculty of BiologyMedicine and HealthAV Hill BuildingThe University of ManchesterManchesterM13 9PTUK
| | - Andrew Claxton
- Department of Critical CareSalford Royal Foundation TrustStott LaneSalfordM6 8HDUK
| | - Paul Dark
- Manchester NIHR Biomedical Research CentreDivision of InfectionImmunity and Respiratory MedicineUniversity of ManchesterManchesterM13 9PTUK
| | - Kostas Kostarelos
- Nanomedicine LabFaculty of BiologyMedicine and HealthAV Hill BuildingThe University of ManchesterManchesterM13 9PTUK
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)Campus UABBellaterraBarcelona08193Spain
| | - Marilena Hadjidemetriou
- Nanomedicine LabFaculty of BiologyMedicine and HealthAV Hill BuildingThe University of ManchesterManchesterM13 9PTUK
| |
Collapse
|
45
|
Skalickova S, Horky P, Mlejnkova V, Skladanka J, Hosnedlova B, Ruttkay‐Nedecky B, Fernandez C, Kizek R. Theranostic Approach for the Protein Corona of Polysaccharide Nanoparticles. CHEM REC 2020; 21:17-28. [DOI: 10.1002/tcr.202000042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 10/22/2020] [Indexed: 01/06/2023]
Affiliation(s)
- Sylvie Skalickova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy Masaryk University Palackeho 1946/1 612 00 Brno Czech Republic
- Department of Animal Nutrition and Forage Production Mendel University in Brno Zemedelska 1 613 00 Brno Czech Republic
| | - Pavel Horky
- Department of Animal Nutrition and Forage Production Mendel University in Brno Zemedelska 1 613 00 Brno Czech Republic
| | - Veronika Mlejnkova
- Department of Animal Nutrition and Forage Production Mendel University in Brno Zemedelska 1 613 00 Brno Czech Republic
| | - Jiri Skladanka
- Department of Animal Nutrition and Forage Production Mendel University in Brno Zemedelska 1 613 00 Brno Czech Republic
| | - Bozena Hosnedlova
- Department of Research and Development Prevention Medicals Tovarni 342 742 13 Studenka-Butovice Czech Republic
- Department of Viticulture and Enology, Faculty of Horticulture Mendel University in Brno Valticka 337 CZ-691 44 Lednice Czech Republic
| | - Branislav Ruttkay‐Nedecky
- Department of Research and Development Prevention Medicals Tovarni 342 742 13 Studenka-Butovice Czech Republic
- Department of Viticulture and Enology, Faculty of Horticulture Mendel University in Brno Valticka 337 CZ-691 44 Lednice Czech Republic
- Department of Molecular Pharmacy, Faculty of Pharmacy Masaryk University Palackeho 1946/1 612 00 Brno Czech Republic
| | - Carlos Fernandez
- School of Pharmacy and Life Sciences Robert Gordon University Garthdee Road AB10 7QB Aberdeen UK
| | - Rene Kizek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy Masaryk University Palackeho 1946/1 612 00 Brno Czech Republic
- Department of Research and Development Prevention Medicals Tovarni 342 742 13 Studenka-Butovice Czech Republic
- Department of Viticulture and Enology, Faculty of Horticulture Mendel University in Brno Valticka 337 CZ-691 44 Lednice Czech Republic
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy with Division of Laboratory Medicine Wroclaw Medical University Borowska 211 50-556 Wroclaw Poland
| |
Collapse
|
46
|
Westmeier D, Siemer S, Vallet C, Steinmann J, Docter D, Buer J, Knauer SK, Stauber RH. Boosting nanotoxicity to combat multidrug-resistant bacteria in pathophysiological environments. NANOSCALE ADVANCES 2020; 2:5428-5440. [PMID: 36132026 PMCID: PMC9419095 DOI: 10.1039/d0na00644k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/21/2020] [Indexed: 06/15/2023]
Abstract
Nanomaterials are promising novel antibiotics, but often ineffective. We found that nanomaterial-bacteria complex formation occurred with various nanomaterials. The bactericidal activity of NMs strongly depends on their physical binding to (multidrug-resistant) bacteria. Nanomaterials' binding and antibiotic effect was reduced by various pathophysiological biomolecule coronas strongly inhibiting their antibiotic effects. We show from analytical to in vitro to in vivo that nanomaterial-based killing could be restored by acidic pH treatments. Here, complex formation of negatively-charged, plasma corona-covered, nanomaterials with bacteria was electrostatically enhanced by reducing bacteria's negative surface charge. Employing in vivo skin infection models, acidic pH-induced complex formation was critical to counteract Staphylococcus aureus infections by silver nanomaterials. We explain why nano-antibiotics show reduced activity and provide a clinically practical solution.
Collapse
Affiliation(s)
- Dana Westmeier
- ENT Department, University Medical Center Mainz Langenbeckstrasse 1 55131 Mainz Germany
| | - Svenja Siemer
- ENT Department, University Medical Center Mainz Langenbeckstrasse 1 55131 Mainz Germany
| | - Cecilia Vallet
- Department of Molecular Biology II, Center for Medical Biotechnology/Nanointegration (ZMB/CENIDE), University Duisburg-Essen, Universitätsstrasse 5 45117 Essen Germany
| | - Jörg Steinmann
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen Hufelandstrasse 55 45112 Essen Germany
| | - Dominic Docter
- ENT Department, University Medical Center Mainz Langenbeckstrasse 1 55131 Mainz Germany
| | - Jan Buer
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen Hufelandstrasse 55 45112 Essen Germany
| | - Shirley K Knauer
- Department of Molecular Biology II, Center for Medical Biotechnology/Nanointegration (ZMB/CENIDE), University Duisburg-Essen, Universitätsstrasse 5 45117 Essen Germany
| | - Roland H Stauber
- ENT Department, University Medical Center Mainz Langenbeckstrasse 1 55131 Mainz Germany
| |
Collapse
|
47
|
Abstract
Further complications associated with infection by severe acute respiratory syndrome coronavirus 2 (a.k.a. SARS-CoV-2) continue to be reported. Very recent findings reveal that 20-30% of patients at high risk of mortality from COVID-19 infection experience blood clotting that leads to stroke and sudden death. Timely assessment of the severity of blood clotting will be of enormous help to clinicians in determining the right blood-thinning medications to prevent stroke or other life-threatening consequences. Therefore, rapid identification of blood-clotting-related proteins in the plasma of COVID-19 patients would save many lives. Several nanotechnology-based approaches are being developed to diagnose patients at high risk of death due to complications from COVID-19 infections, including blood clots. This Perspective outlines (i) the significant potential of nanomedicine in assessing the risk of blood clotting and its severity in SARS-CoV-2 infected patients and (ii) its synergistic roles with advanced mass-spectrometry-based proteomics approaches in identifying the important protein patterns that are involved in the occurrence and progression of this disease. The combination of such powerful tools might help us understand the clotting phenomenon and pave the way for development of new diagnostics and therapeutics in the fight against COVID-19.
Collapse
Affiliation(s)
- Amir Ata Saei
- Division
of Physiological Chemistry I, Department of Medical Biochemistry and
Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Shahriar Sharifi
- Precision
Health Program and Department of Radiology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Morteza Mahmoudi
- Precision
Health Program and Department of Radiology, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
48
|
Gardner L, Warrington J, Rogan J, Rothwell DG, Brady G, Dive C, Kostarelos K, Hadjidemetriou M. The biomolecule corona of lipid nanoparticles contains circulating cell-free DNA. NANOSCALE HORIZONS 2020; 5:1476-1486. [PMID: 32853302 DOI: 10.1039/d0nh00333f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The spontaneous adsorption of biomolecules onto the surface of nanoparticles (NPs) in complex physiological biofluids has been widely investigated over the last decade. Characterisation of the protein composition of the 'biomolecule corona' has dominated research efforts, whereas other classes of biomolecules, such as nucleic acids, have received no interest. Scarce, speculative statements exist in the literature about the presence of nucleic acids in the biomolecule corona, with no previous studies attempting to describe the contribution of genomic content to the blood-derived NP corona. Herein, we provide the first experimental evidence of the interaction of circulating cell-free DNA (cfDNA) with lipid-based NPs upon their incubation with human plasma samples, obtained from healthy volunteers and ovarian carcinoma patients. Our results also demonstrate an increased amount of detectable cfDNA in patients with cancer. Proteomic analysis of the same biomolecule coronas revealed the presence of histone proteins, suggesting an indirect, nucleosome-mediated NP-cfDNA interaction. The finding of cfDNA as part of the NP corona, offers a previously unreported new scope regarding the chemical composition of the 'biomolecule corona' and opens up new possibilities for the potential exploitation of the biomolecule corona for the enrichment and analysis of blood-circulating nucleic acids.
Collapse
Affiliation(s)
- Lois Gardner
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, The University of Manchester, AV Hill Building, Manchester, UK.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Implications of Biomolecular Corona for Molecular Imaging. Mol Imaging Biol 2020; 23:1-10. [PMID: 33095421 DOI: 10.1007/s11307-020-01559-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/28/2022]
Abstract
The development of nanoparticle probes has opened up new possibilities for molecular imaging in the era of precision medicine. There are a wide range of nanoprobes that are being used for various modalities that have demonstrated promising potential in early detection, disease monitoring, and theranostics. However, the rate of successful clinical translation of the nanoprobes is very low and is affected by the lack of our understanding about nanoparticle interaction with biological fluids after systemic administration, thus representing an unmet clinical need. One of the poorly understood issues relates to the formation of biomolecular corona, a layer of biomolecules formed on the surface of nanoscale materials during their interactions with biological fluids. The biomolecular corona has several significant effects on the biodistribution of nanoprobes and their imaging ability by (i) reducing their targeting efficacy and (ii) affecting the intrinsic imaging properties (e.g., contrast capacity of magnetic nanoprobes). This review provides insights on the importance of considering biomolecular corona in the development of nanoprobes, which may enable their more efficient utilization for molecular imaging applications.
Collapse
|
50
|
Tang Z, Kong N, Zhang X, Liu Y, Hu P, Mou S, Liljeström P, Shi J, Tan W, Kim JS, Cao Y, Langer R, Leong KW, Farokhzad OC, Tao W. A materials-science perspective on tackling COVID-19. NATURE REVIEWS. MATERIALS 2020; 5:847-860. [PMID: 33078077 PMCID: PMC7556605 DOI: 10.1038/s41578-020-00247-y] [Citation(s) in RCA: 202] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/14/2020] [Indexed: 05/08/2023]
Abstract
The ongoing SARS-CoV-2 pandemic highlights the importance of materials science in providing tools and technologies for antiviral research and treatment development. In this Review, we discuss previous efforts in materials science in developing imaging systems and microfluidic devices for the in-depth and real-time investigation of viral structures and transmission, as well as material platforms for the detection of viruses and the delivery of antiviral drugs and vaccines. We highlight the contribution of materials science to the manufacturing of personal protective equipment and to the design of simple, accurate and low-cost virus-detection devices. We then investigate future possibilities of materials science in antiviral research and treatment development, examining the role of materials in antiviral-drug design, including the importance of synthetic material platforms for organoids and organs-on-a-chip, in drug delivery and vaccination, and for the production of medical equipment. Materials-science-based technologies not only contribute to the ongoing SARS-CoV-2 research efforts but can also provide platforms and tools for the understanding, protection, detection and treatment of future viral diseases.
Collapse
Affiliation(s)
- Zhongmin Tang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Na Kong
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Xingcai Zhang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA USA
| | - Yuan Liu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Ping Hu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Shan Mou
- Institute of Molecular Medicine (IMM), Renji Hospital, State Key Laboratory of Oncogenes and Related Genes, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Peter Liljeström
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Weihong Tan
- Institute of Molecular Medicine (IMM), Renji Hospital, State Key Laboratory of Oncogenes and Related Genes, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, China
- The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | | | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Robert Langer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY USA
| | - Omid C. Farokhzad
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| |
Collapse
|