1
|
Cong R, Lu C, Li X, Xu Z, Wang Y, Sun S. Tumor organoids in cancer medicine: from model systems to natural compound screening. PHARMACEUTICAL BIOLOGY 2025; 63:89-109. [PMID: 39893515 PMCID: PMC11789228 DOI: 10.1080/13880209.2025.2458149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/04/2024] [Accepted: 01/17/2025] [Indexed: 02/04/2025]
Abstract
CONTEXT The advent of tissue engineering and biomedical techniques has significantly advanced the development of three-dimensional (3D) cell culture systems, particularly tumor organoids. These self-assembled 3D cell clusters closely replicate the histopathological, genetic, and phenotypic characteristics of primary tissues, making them invaluable tools in cancer research and drug screening. OBJECTIVE This review addresses the challenges in developing in vitro models that accurately reflect tumor heterogeneity and explores the application of tumor organoids in cancer research, with a specific focus on the screening of natural products for antitumor therapies. METHODS This review synthesizes information from major databases, including Chemical Abstracts, Medicinal and Aromatic Plants Abstracts, ScienceDirect, Google Scholar, Scopus, PubMed and Springer Link. Publications were selected without date restrictions, using terms such as 'organoid', 'natural product', 'pharmacological', 'extract', 'nanomaterial' and 'traditional uses'. Articles related to agriculture, ecology, synthetic work or published in languages other than English were excluded. RESULTS AND CONCLUSIONS The review identifies key challenges related to the efficiency and variability of organoid generation and discusses ongoing efforts to enhance their predictive capabilities in drug screening and personalized medicine. Recent studies utilizing patient-derived organoid models for natural compound screening are highlighted, demonstrating the potential of these models in developing new classes of anticancer agents. The integration of natural products with patient-derived organoid models presents a promising approach for discovering novel anticancer compounds and elucidating their mechanisms of action.
Collapse
Affiliation(s)
- Rong Cong
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Can Lu
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xinying Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijie Xu
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yaqin Wang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Shusen Sun
- College of Pharmacy and Health Sciences, Western New England University, Springfield, MA, USA
| |
Collapse
|
2
|
Wu Y, Zhang F, Du F, Huang J, Wei S. Combination of tumor organoids with advanced technologies: A powerful platform for tumor evolution and treatment response (Review). Mol Med Rep 2025; 31:140. [PMID: 40183402 PMCID: PMC11976518 DOI: 10.3892/mmr.2025.13505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/26/2025] [Indexed: 04/05/2025] Open
Abstract
Malignant tumors notably decrease life expectancy. Despite advances in cancer diagnosis and treatment, the mechanisms underlying tumorigenesis, progression and drug resistance have not been fully elucidated. An emerging method to study tumors is tumor organoids, which are a three‑dimensional miniature structure. These retain the patient‑specific tumor heterogeneity while demonstrating the histological, genetic and molecular features of original tumors. Compared with conventional cancer cell lines and animal models, patient‑derived tumor organoids are more advanced at physiological and clinical levels. Their synergistic combination with other technologies, such as organ‑on‑a‑chip, 3D‑bioprinting, tissue‑engineered cell scaffolds and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR‑associated protein 9, may overcome limitations of the conventional 3D organoid culture and result in the development of more appropriate model systems that preserve the complex tumor stroma, inter‑organ and intra‑organ communications. The present review summarizes the evolution of tumor organoids and their combination with advanced technologies, as well as the application of tumor organoids in basic and clinical research.
Collapse
Affiliation(s)
- Ying Wu
- Department of Obstetrics and Gynecology, The 920th Hospital of Joint Logistics Support Force, Kunming, Yunnan 650032, P.R. China
| | - Fan Zhang
- Department of Comprehensive Medicine, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030013, P.R. China
| | - Furong Du
- Department of Medicine, Kingbio Medical Co., Ltd., Chongqing 401123, P.R. China
| | - Juan Huang
- Department of Breast Surgery and Multidisciplinary Breast Cancer Center, Clinical Research Center of Breast Cancer in Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Shuqing Wei
- Department of Comprehensive Medicine, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030013, P.R. China
| |
Collapse
|
3
|
Kuhn MR, Wolcott EA, Langer EM. Developments in gastrointestinal organoid cultures to recapitulate tissue environments. Front Bioeng Biotechnol 2025; 13:1521044. [PMID: 40313639 PMCID: PMC12043594 DOI: 10.3389/fbioe.2025.1521044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 03/21/2025] [Indexed: 05/03/2025] Open
Abstract
Culture platforms that closely mimic the spatial architecture, cellular diversity, and extracellular matrix composition of native tissues can serve as invaluable tools for a range of scientific discovery and biomedical applications. Organoids have emerged as a promising alternative to both traditional 2D cell culture and animal models, offering a physiologically relevant 3D culture system for studying human cell biology. Organoids provide a manipulable platform to investigate organ development and function as well as to model patient-specific phenotypes. This mini review examines various methods used for culturing organoids to model normal and disease conditions in gastrointestinal tissues. We focus on how the matrix composition and media formulations can impact cell signaling, altering the baseline cellular phenotypes as well as response to perturbations. We discuss future directions for optimizing organoid culture conditions to improve basic and translational potential.
Collapse
Affiliation(s)
- Madeline R. Kuhn
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States
- Division of Oncological Sciences, Oregon Health and Science University, Portland, OR, United States
| | - Emma A. Wolcott
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States
- Division of Oncological Sciences, Oregon Health and Science University, Portland, OR, United States
| | - Ellen M. Langer
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States
- Division of Oncological Sciences, Oregon Health and Science University, Portland, OR, United States
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
4
|
Lai W, Geliang H, Bin X, Wang W. Effects of hydrogel stiffness and viscoelasticity on organoid culture: a comprehensive review. Mol Med 2025; 31:83. [PMID: 40033190 DOI: 10.1186/s10020-025-01131-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 02/14/2025] [Indexed: 03/05/2025] Open
Abstract
As an emerging technology, organoids are promising new tools for basic and translational research in disease. Currently, the culture of organoids relies mainly on a type of unknown composition scaffold, namely Matrigel, which may pose problems in studying the effect of mechanical properties on organoids. Hydrogels, a new material with adjustable mechanical properties, can adapt to current studies. In this review, we summarized the synthesis of recent advance in developing definite hydrogel scaffolds for organoid culture and identified the critical parameters for regulating mechanical properties. In addition, classified by different mechanical properties like stiffness and viscoelasticity, we concluded the effect of mechanical properties on the development of organoids and tumor organoids. We hope this review enhances the understanding of the development of organoids by hydrogels and provides more practical approaches to investigating them.
Collapse
Affiliation(s)
- Wei Lai
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hu Geliang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xu Bin
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Wei Wang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
5
|
Wu Y, Sha Y, Guo X, Gao L, Huang J, Liu SB. Organoid models: applications and research advances in colorectal cancer. Front Oncol 2025; 15:1432506. [PMID: 39990692 PMCID: PMC11842244 DOI: 10.3389/fonc.2025.1432506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 01/20/2025] [Indexed: 02/25/2025] Open
Abstract
This review summarizes the applications and research progress of organoid models in colorectal cancer research. First, the high incidence and mortality rates of colorectal cancer are introduced, emphasizing the importance of organoids as a research model. Second, this review provides a detailed introduction to the concept, biological properties, and applications of organoids, including their strengths in mimicking the structural and functional aspects of organs. This article further analyzes the applications of adult stem cell-derived and pluripotent stem cell-derived organoids in colorectal cancer research and discusses advancements in organoids for basic research, drug research and development, personalized treatment evaluation and prediction, and regenerative medicine. Finally, this review summarizes the prospects for applying organoid technology in colorectal cancer research, emphasizing its significant value in improving patient survival rates. In conclusion, this review systematically explains the applications of organoids in colorectal cancer research, highlighting their tremendous potential and promising prospects in basic research, drug research and development, personalized treatment evaluation and prediction, and regenerative medicine.
Collapse
Affiliation(s)
- Yijie Wu
- College of Life Science, North China University of Science and Technology, Tangshan, China
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology, Suzhou Vocational Health College, Suzhou, China
| | - Yu Sha
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology, Suzhou Vocational Health College, Suzhou, China
| | - Xingpo Guo
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ling Gao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian Huang
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology, Suzhou Vocational Health College, Suzhou, China
| | - Song-Bai Liu
- College of Life Science, North China University of Science and Technology, Tangshan, China
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology, Suzhou Vocational Health College, Suzhou, China
| |
Collapse
|
6
|
Chen Y, Wang Y. Innovations in intestinal organoid technology featuring an open apical surface. Eur J Cell Biol 2025; 104:151476. [PMID: 39837176 DOI: 10.1016/j.ejcb.2025.151476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 01/23/2025] Open
Abstract
Since the development of the three-dimensional (3D) "mini-gut" culture system, adult stem cell-derived organoid technology has rapidly advanced, providing in vitro models that replicate key cellular, molecular, and physiological properties of multiple organs. The 3D intestinal organoid system has resolved many long-standing challenges associated with immortalized or cancer cell cultures, offering unparalleled capabilities for modeling gastrointestinal development and diseases. However, significant limitations remain, including restricted accessibility to the epithelial apical surface for studying host-microbe interactions, interruptions in modeling chronic gastrointestinal diseases due to frequent passaging and dissociation, and the absence of mechanical cues such as peristalsis and luminal flow, which are critical for organ development and function. To address these challenges, recent advancements have introduced Transwell-based monolayer cultures and microfluidic device-based technologies including "organ-on-a-chip" and scaffold-guided 'mini-gut' system. This review highlights these innovations, with a focus on adult stem cell-derived intestinal organoid models that feature an open apical surface and discusses their prospects and challenges for advancing basic research and clinical applications.
Collapse
Affiliation(s)
- Ye Chen
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO, USA; Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, Saint Louis, MO, USA
| | - Yi Wang
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO, USA; Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, Saint Louis, MO, USA; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
7
|
Brimmer S, Ji P, Birla RK, Heinle JS, Grande-Allen JK, Keswani SG. Development of Novel 3D Spheroids for Discrete Subaortic Stenosis. Cardiovasc Eng Technol 2024; 15:704-715. [PMID: 39495395 DOI: 10.1007/s13239-024-00746-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 08/07/2024] [Indexed: 11/05/2024]
Abstract
In this study, we propose a new method for bioprinting 3D Spheroids to study complex congenital heart disease known as discrete subaortic stenosis (DSS). The bioprinter allows us to manipulate the extrusion pressure to change the size of the spheroids, and the alginate porosity increases in size over time. The spheroids are composed of human umbilical vein endothelial cells (HUVECs), and we demonstrated that pressure and time during the bioprinting process can modulate the diameter of the spheroids. In addition, we used Pluronic acid to maintain the shape and position of the spheroids. Characterization of HUVECs in the spheroids confirmed their uniform distribution and we demonstrated cell viability as a function of time. Compared to traditional 2D cell cultures, the 3D spheroids model provides more relevant physiological environments, making it valuable for drug testing and therapeutic applications.
Collapse
Affiliation(s)
- Sunita Brimmer
- Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, TX, USA
- Center for Congenital Cardiac Research, Texas Children's Hospital, Houston, TX, USA
- Division of Congenital Heart Surgery, Texas Children's Hospital, Houston, TX, USA
| | - Pengfei Ji
- Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, TX, USA
- Center for Congenital Cardiac Research, Texas Children's Hospital, Houston, TX, USA
- Division of Congenital Heart Surgery, Texas Children's Hospital, Houston, TX, USA
| | - Ravi K Birla
- Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, TX, USA
- Center for Congenital Cardiac Research, Texas Children's Hospital, Houston, TX, USA
- Division of Congenital Heart Surgery, Texas Children's Hospital, Houston, TX, USA
- Department of Surgery, Baylor College of Medicine, Houston, TX, USA
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, USA
| | - Jeffrey S Heinle
- Center for Congenital Cardiac Research, Texas Children's Hospital, Houston, TX, USA
- Division of Congenital Heart Surgery, Texas Children's Hospital, Houston, TX, USA
- Department of Surgery, Baylor College of Medicine, Houston, TX, USA
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, USA
| | | | - Sundeep G Keswani
- Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, TX, USA.
- Center for Congenital Cardiac Research, Texas Children's Hospital, Houston, TX, USA.
- Department of Surgery, Baylor College of Medicine, Houston, TX, USA.
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, USA.
- Feigin Center C.450.06, Texas Children's Hospital, 1102 Bates Ave, Houston, TX, 77030, USA.
| |
Collapse
|
8
|
Gong Z, Mao Y, Liu Y, Hu X, Zhang Y, Zhu L, Guo S, Ding Z, Zhang L. Sono-promoted piezocatalysis and low-dose drug penetration for personalized therapy via tumor organoids. J Colloid Interface Sci 2024; 675:192-206. [PMID: 38968636 DOI: 10.1016/j.jcis.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Chemotherapy is a widely used cancer treatment, however, it can have notable side effects owing to the high-doses of drugs administered. Sonodynamic therapy (SDT) induced by sonosensitizers has emerged as a promising approach to treat cancer, however, there is limited research evaluating its therapeutic effects on human tumors. In this study, we introduced a dual therapy that combines low-dose chemotherapeutic drugs with enhanced sonodynamic therapy, utilizing barium titanate (BaTiO3, BTO) nanoparticles (NPs) as sonosensitizers to treat tumor organoids. We demonstrated that ultrasound could improve the cellular uptake of chemotherapy drugs, while the chemotherapeutic effect of the drugs made it easier for BTO NPs to enter tumor cells, and the dual therapy synergistically inhibited tumor cell viability. Moreover, different patient-derived tumor organoids exhibited different sensitivities to this therapy, highlighting the potential to evaluate individual responses to combination therapies prior to clinical intervention. Furthermore, this dual therapy exhibited therapeutic effects equivalent to those of high-dose chemotherapy drugs on drug-resistant tumor organoids and showed the potential to enhance the efficacy of killing drug-resistant tumors. In addition, the biosafety of the BTO NPs was successfully verified in live mice via oral administration. This evidence confirms the reliable and safe nature of the dual therapy approach, making it a feasible option for precise and personalized therapy in clinical applications.
Collapse
Affiliation(s)
- Zhiyi Gong
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Jiufengshan Laboratory, Wuhan 430206, China; Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Microelectronics, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Yiqian Mao
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Microelectronics, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Yichao Liu
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiao Hu
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yusen Zhang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Lili Zhu
- Hubei Jiufengshan Laboratory, Wuhan 430206, China
| | - Shishang Guo
- Hubei Yangtze Memory Laboratories, Wuhan 430205, China; Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Microelectronics, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| | - Zhao Ding
- Department of Colorectal and Anal Surgery, Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Lingling Zhang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
9
|
Mao Y, Hu H. Establishment of advanced tumor organoids with emerging innovative technologies. Cancer Lett 2024; 598:217122. [PMID: 39029781 DOI: 10.1016/j.canlet.2024.217122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/21/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
Tumor organoids have emerged as a crucial preclinical model for multiple cancer research. Their high establishment rates, stability, and ability to replicate key biological features of original tumor cells in vivo render them invaluable for exploring tumor molecular mechanisms, discovering potential anti-tumor drugs, and predicting clinical drug efficacy. Here, we review the establishment of tumor organoid models and provide an extensive overview of organoid culturing strategies. We also emphasize the significance of integrating cellular components of the tumor microenvironment and physicochemical factors in the organoid culturing system, highlighting the importance of artificial intelligence technology in advancing organoid construction. Moreover, we summarize recent advancements in utilizing organoid systems for novel anti-cancer drug screening and discuss promising trends for enhancing advanced organoids in next-generation disease modeling.
Collapse
Affiliation(s)
- Yunuo Mao
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Systems Biomedicine, School of Basic Medical Sciences, Shandong University, Jinan, 250012, PR China
| | - Huili Hu
- The Key Laboratory of Experimental Teratology, Ministry of Education, Department of Systems Biomedicine, School of Basic Medical Sciences, Shandong University, Jinan, 250012, PR China.
| |
Collapse
|
10
|
Wang B, Hu S, Teng Y, Chen J, Wang H, Xu Y, Wang K, Xu J, Cheng Y, Gao X. Current advance of nanotechnology in diagnosis and treatment for malignant tumors. Signal Transduct Target Ther 2024; 9:200. [PMID: 39128942 PMCID: PMC11323968 DOI: 10.1038/s41392-024-01889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/04/2024] [Accepted: 06/02/2024] [Indexed: 08/13/2024] Open
Abstract
Cancer remains a significant risk to human health. Nanomedicine is a new multidisciplinary field that is garnering a lot of interest and investigation. Nanomedicine shows great potential for cancer diagnosis and treatment. Specifically engineered nanoparticles can be employed as contrast agents in cancer diagnostics to enable high sensitivity and high-resolution tumor detection by imaging examinations. Novel approaches for tumor labeling and detection are also made possible by the use of nanoprobes and nanobiosensors. The achievement of targeted medication delivery in cancer therapy can be accomplished through the rational design and manufacture of nanodrug carriers. Nanoparticles have the capability to effectively transport medications or gene fragments to tumor tissues via passive or active targeting processes, thus enhancing treatment outcomes while minimizing harm to healthy tissues. Simultaneously, nanoparticles can be employed in the context of radiation sensitization and photothermal therapy to enhance the therapeutic efficacy of malignant tumors. This review presents a literature overview and summary of how nanotechnology is used in the diagnosis and treatment of malignant tumors. According to oncological diseases originating from different systems of the body and combining the pathophysiological features of cancers at different sites, we review the most recent developments in nanotechnology applications. Finally, we briefly discuss the prospects and challenges of nanotechnology in cancer.
Collapse
Affiliation(s)
- Bilan Wang
- Department of Pharmacy, Evidence-based Pharmacy Center, Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Shiqi Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yan Teng
- Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, P.R. China
| | - Junli Chen
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Haoyuan Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yezhen Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Kaiyu Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jianguo Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yongzhong Cheng
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
11
|
Vitale S, Calapà F, Colonna F, Luongo F, Biffoni M, De Maria R, Fiori ME. Advancements in 3D In Vitro Models for Colorectal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405084. [PMID: 38962943 PMCID: PMC11348154 DOI: 10.1002/advs.202405084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Indexed: 07/05/2024]
Abstract
The process of drug discovery and pre-clinical testing is currently inefficient, expensive, and time-consuming. Most importantly, the success rate is unsatisfactory, as only a small percentage of tested drugs are made available to oncological patients. This is largely due to the lack of reliable models that accurately predict drug efficacy and safety. Even animal models often fail to replicate human-specific pathologies and human body's complexity. These factors, along with ethical concerns regarding animal use, urge the development of suitable human-relevant, translational in vitro models.
Collapse
Affiliation(s)
- Sara Vitale
- Department of Oncology and Molecular Medicine (OMM)Istituto Superiore di SanitàViale Regina Elena 299Rome00161Italy
| | - Federica Calapà
- Dipartimento di Medicina e Chirurgia traslazionaleUniversità Cattolica del Sacro CuoreLargo F. Vito 1RomeItaly
| | - Francesca Colonna
- Department of Oncology and Molecular Medicine (OMM)Istituto Superiore di SanitàViale Regina Elena 299Rome00161Italy
| | - Francesca Luongo
- Dipartimento di Medicina e Chirurgia traslazionaleUniversità Cattolica del Sacro CuoreLargo F. Vito 1RomeItaly
| | - Mauro Biffoni
- Department of Oncology and Molecular Medicine (OMM)Istituto Superiore di SanitàViale Regina Elena 299Rome00161Italy
| | - Ruggero De Maria
- Dipartimento di Medicina e Chirurgia traslazionaleUniversità Cattolica del Sacro CuoreLargo F. Vito 1RomeItaly
- Fondazione Policlinico Universitario “A. Gemelli” – IRCCSLargo F. Vito 1RomeItaly
| | - Micol E. Fiori
- Department of Oncology and Molecular Medicine (OMM)Istituto Superiore di SanitàViale Regina Elena 299Rome00161Italy
| |
Collapse
|
12
|
Khorsandi D, Yang JW, Foster S, Khosravi S, Hoseinzadeh N, Zarei F, Lee YB, Runa F, Gangrade A, Voskanian L, Adnan D, Zhu Y, Wang Z, Jucaud V, Dokmeci MR, Shen X, Bishehsari F, Kelber JA, Khademhosseini A, de Barros NR. Patient-Derived Organoids as Therapy Screening Platforms in Cancer Patients. Adv Healthc Mater 2024; 13:e2302331. [PMID: 38359321 PMCID: PMC11324859 DOI: 10.1002/adhm.202302331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/28/2023] [Indexed: 02/17/2024]
Abstract
Patient-derived organoids (PDOs) developed ex vivo and in vitro are increasingly used for therapeutic screening. They provide a more physiologically relevant model for drug discovery and development compared to traditional cell lines. However, several challenges remain to be addressed to fully realize the potential of PDOs in therapeutic screening. This paper summarizes recent advancements in PDO development and the enhancement of PDO culture models. This is achieved by leveraging materials engineering and microfabrication technologies, including organs-on-a-chip and droplet microfluidics. Additionally, this work discusses the application of PDOs in therapy screening to meet diverse requirements and overcome bottlenecks in cancer treatment. Furthermore, this work introduces tools for data processing and analysis of organoids, along with their microenvironment. These tools aim to achieve enhanced readouts. Finally, this work explores the challenges and future perspectives of using PDOs in drug development and personalized screening for cancer patients.
Collapse
Affiliation(s)
- Danial Khorsandi
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Jia-Wei Yang
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Samuel Foster
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Safoora Khosravi
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Negar Hoseinzadeh
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Fahimeh Zarei
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Yun Bin Lee
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Farhana Runa
- California State University Northridge, 18111 Nordhoff Street, Northridge, California, USA
| | - Ankit Gangrade
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Leon Voskanian
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Darbaz Adnan
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush Medical College, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Zhaohui Wang
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710 USA
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Mehmet Remzi Dokmeci
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Xiling Shen
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Faraz Bishehsari
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush Medical College, Rush University Medical Center, Chicago, IL, 60612, USA
- Division of Digestive Diseases, Rush Center for Integrated Microbiome & Chronobiology Research, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Jonathan A. Kelber
- California State University Northridge, 18111 Nordhoff Street, Northridge, California, USA
- Baylor University, 101 Bagby Ave, Waco, Texas, USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| | - Natan Roberto de Barros
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California, USA
| |
Collapse
|
13
|
Yu J, Zhang Y, Ran R, Kong Z, Zhao D, Zhao W, Yang Y, Gao L, Zhang Z. Research Progress in the Field of Tumor Model Construction Using Bioprinting: A Review. Int J Nanomedicine 2024; 19:6547-6575. [PMID: 38957180 PMCID: PMC11217009 DOI: 10.2147/ijn.s460387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/11/2024] [Indexed: 07/04/2024] Open
Abstract
The development of therapeutic drugs and methods has been greatly facilitated by the emergence of tumor models. However, due to their inherent complexity, establishing a model that can fully replicate the tumor tissue situation remains extremely challenging. With the development of tissue engineering, the advancement of bioprinting technology has facilitated the upgrading of tumor models. This article focuses on the latest advancements in bioprinting, specifically highlighting the construction of 3D tumor models, and underscores the integration of these two technologies. Furthermore, it discusses the challenges and future directions of related techniques, while also emphasizing the effective recreation of the tumor microenvironment through the emergence of 3D tumor models that resemble in vitro organs, thereby accelerating the development of new anticancer therapies.
Collapse
Affiliation(s)
- Jiachen Yu
- Department of Orthopedics, the Fourth Affiliated Hospital of China Medical University, China Medical University, Shen Yang, 110032, People’s Republic of China
| | - Yingchun Zhang
- Department of Orthopedics, the Fourth Affiliated Hospital of China Medical University, China Medical University, Shen Yang, 110032, People’s Republic of China
| | - Rong Ran
- Department of Anesthesia, the Fourth Affiliated Hospital of China Medical University, China Medical University, Shen Yang, 110032, People’s Republic of China
| | - Zixiao Kong
- China Medical University, Shen Yang, 110032, People’s Republic of China
| | - Duoyi Zhao
- Department of Orthopedics, the Fourth Affiliated Hospital of China Medical University, China Medical University, Shen Yang, 110032, People’s Republic of China
| | - Wei Zhao
- Department of Orthopedics, the Fourth Affiliated Hospital of China Medical University, China Medical University, Shen Yang, 110032, People’s Republic of China
| | - Yingxin Yang
- General Hospital of Northern Theater Command, China Medical University, Shen Yang, 110032, People’s Republic of China
| | - Lianbo Gao
- Department of Neurology, the Fourth Affiliated Hospital of China Medical University, China Medical University, Shen Yang, 110032, People’s Republic of China
| | - Zhiyu Zhang
- Department of Orthopedics, the Fourth Affiliated Hospital of China Medical University, China Medical University, Shen Yang, 110032, People’s Republic of China
| |
Collapse
|
14
|
Wyle Y, Lu N, Hepfer J, Sayal R, Martinez T, Wang A. The Role of Biophysical Factors in Organ Development: Insights from Current Organoid Models. Bioengineering (Basel) 2024; 11:619. [PMID: 38927855 PMCID: PMC11200479 DOI: 10.3390/bioengineering11060619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/26/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Biophysical factors play a fundamental role in human embryonic development. Traditional in vitro models of organogenesis focused on the biochemical environment and did not consider the effects of mechanical forces on developing tissue. While most human tissue has a Young's modulus in the low kilopascal range, the standard cell culture substrate, plasma-treated polystyrene, has a Young's modulus of 3 gigapascals, making it 10,000-100,000 times stiffer than native tissues. Modern in vitro approaches attempt to recapitulate the biophysical niche of native organs and have yielded more clinically relevant models of human tissues. Since Clevers' conception of intestinal organoids in 2009, the field has expanded rapidly, generating stem-cell derived structures, which are transcriptionally similar to fetal tissues, for nearly every organ system in the human body. For this reason, we conjecture that organoids will make their first clinical impact in fetal regenerative medicine as the structures generated ex vivo will better match native fetal tissues. Moreover, autologously sourced transplanted tissues would be able to grow with the developing embryo in a dynamic, fetal environment. As organoid technologies evolve, the resultant tissues will approach the structure and function of adult human organs and may help bridge the gap between preclinical drug candidates and clinically approved therapeutics. In this review, we discuss roles of tissue stiffness, viscoelasticity, and shear forces in organ formation and disease development, suggesting that these physical parameters should be further integrated into organoid models to improve their physiological relevance and therapeutic applicability. It also points to the mechanotransductive Hippo-YAP/TAZ signaling pathway as a key player in the interplay between extracellular matrix stiffness, cellular mechanics, and biochemical pathways. We conclude by highlighting how frontiers in physics can be applied to biology, for example, how quantum entanglement may be applied to better predict spontaneous DNA mutations. In the future, contemporary physical theories may be leveraged to better understand seemingly stochastic events during organogenesis.
Collapse
Affiliation(s)
- Yofiel Wyle
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
- Institute for Pediatric Regenerative Medicine, Shriners Children’s, Sacramento, CA 95817, USA
| | - Nathan Lu
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
| | - Jason Hepfer
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
| | - Rahul Sayal
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
| | - Taylor Martinez
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
- Institute for Pediatric Regenerative Medicine, Shriners Children’s, Sacramento, CA 95817, USA
- Department of Biomedical Engineering, University of California-Davis, Davis, CA 95616, USA
- Center for Surgical Bioengineering, Department of Surgery, School of Medicine, University of California, Davis, 4625 2nd Ave., Research II, Suite 3005, Sacramento, CA 95817, USA
| |
Collapse
|
15
|
Ahmad Zawawi SS, Salleh EA, Musa M. Spheroids and organoids derived from colorectal cancer as tools for in vitro drug screening. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:409-431. [PMID: 38745769 PMCID: PMC11090692 DOI: 10.37349/etat.2024.00226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/02/2024] [Indexed: 05/16/2024] Open
Abstract
Colorectal cancer (CRC) is a heterogeneous disease. Conventional two-dimensional (2D) culture employing cell lines was developed to study the molecular properties of CRC in vitro. Although these cell lines which are isolated from the tumor niche in which cancer develop, the translation to human model such as studying drug response is often hindered by the inability of cell lines to recapture original tumor features and the lack of heterogeneous clinical tumors represented by this 2D model, differed from in vivo condition. These limitations which may be overcome by utilizing three-dimensional (3D) culture consisting of spheroids and organoids. Over the past decade, great advancements have been made in optimizing culture method to establish spheroids and organoids of solid tumors including of CRC for multiple purposes including drug screening and establishing personalized medicine. These structures have been proven to be versatile and robust models to study CRC progression and deciphering its heterogeneity. This review will describe on advances in 3D culture technology and the application as well as the challenges of CRC-derived spheroids and organoids as a mode to screen for anticancer drugs.
Collapse
Affiliation(s)
| | - Elyn Amiela Salleh
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| | - Marahaini Musa
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| |
Collapse
|
16
|
Lee ALZ, Balakrishnan N, Ng JY, Liu S, Ong ZY, Wang Y, Gao S, Yang YY. Injectable Hydrogels Prepared Using Novel Synthetic Short Peptides with Defined Structure and Gelatin as Scaffolds to Support Cell and Tissue Growth. Adv Healthc Mater 2024; 13:e2302786. [PMID: 37837308 DOI: 10.1002/adhm.202302786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/06/2023] [Indexed: 10/15/2023]
Abstract
Animal-derived basement-membrane matrices such as Geltrex are used to grow cells and tissues. Particularly, these are commonly applied to support tumor growth in animals for cancer research. However, a material derived from an animal source has an undefined composition, and may thus have unavoidable batch-to-batch variation in properties. To overcome these issues, a series of synthetic short peptides to form hydrogels is designed in combination with gelatin to promote cell adhesion and growth. The peptides have sequences of (X1Y1X2Y2)2 , where X1 and X2 are hydrophobic residues, while Y1 and Y2 are hydrophilic residues. The peptides spontaneously fold and self-assemble into a β-sheet secondary structure upon contact with salts, and then aggregate to form hydrophilic networks of hydrogels. Hybrid hydrogels formed by mixing the peptide IEVEIRVK (IVK8) with gelatin are injectable and enzymatically degradable. The hybrid hydrogels at optimal compositions support SW480 and HepG2 tumor spheroid growth in vitro as effectively as Geltrex. More importantly, the peptide/gelatin hydrogels support tumor growth in a SW480 human colorectal adenocarcinoma xenograft mouse model. Altogether, the results illustrate that the synthetic peptide/gelatin hybrid hydrogel is a promising scaffold that can be used to support cell and tissue growth both in vitro and in vivo.
Collapse
Affiliation(s)
- Ashlynn Ling Zhi Lee
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Singapore, 138669, Singapore
| | - Nithiyaa Balakrishnan
- Bioprocessing Technology Institute, Agency for Science, Technology, and Research (A*STAR), 20 Biopolis Way, Centros #06-01, Singapore, 138668, Singapore
| | - Jian Yao Ng
- Bioprocessing Technology Institute, Agency for Science, Technology, and Research (A*STAR), 20 Biopolis Way, Centros #06-01, Singapore, 138668, Singapore
| | - Shaoqiong Liu
- Institute of Bioengineering and Nanotechnology, Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Singapore, 138669, Singapore
| | - Zhan Yuin Ong
- School of Physics and Astronomy, St. James's University of Leeds, Leeds, LS2 9JT, UK
- Leeds Institute of Medical Research, St. James's University of Leeds, Leeds, LS2 9JT, UK
| | - Yanming Wang
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Singapore, 138669, Singapore
| | - Shujun Gao
- Institute of Bioengineering and Nanotechnology, Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Singapore, 138669, Singapore
| | - Yi Yan Yang
- Bioprocessing Technology Institute, Agency for Science, Technology, and Research (A*STAR), 20 Biopolis Way, Centros #06-01, Singapore, 138668, Singapore
| |
Collapse
|
17
|
Song T, Kong B, Liu R, Luo Y, Wang Y, Zhao Y. Bioengineering Approaches for the Pancreatic Tumor Organoids Research and Application. Adv Healthc Mater 2024; 13:e2300984. [PMID: 37694339 DOI: 10.1002/adhm.202300984] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/29/2023] [Indexed: 09/12/2023]
Abstract
Pancreatic cancer is a highly lethal form of digestive malignancy that poses significant health risks to individuals worldwide. Chemotherapy-based comprehensive treatment is the primary therapeutic approach for midlife and late-life patients. Nevertheless, the heterogeneity of the tumor and individual genetic backgrounds result in substantial variations in drug sensitivity among patients, rendering a single treatment regimen unsuitable for all patients. Conventional pancreatic cancer tumor organoid models are capable of emulating the biological traits of pancreatic cancer and are utilized in drug development and screening. However, these tumor organoids can still not mimic the tumor microenvironment (TME) in vivo, and the poor controllability in the preparation process hinders translation from essential drug screening to clinical pharmacological therapy. In recent years, many engineering methods with remarkable results have been used to develop pancreatic cancer organoid models, including bio-hydrogel, co-culture, microfluidic, and gene editing. Here, this work summarizes and analyzes the recent developments in engineering pancreatic tumor organoid models. In addition, the future direction of improving engineered pancreatic cancer organoids is discussed for their application prospects in clinical treatment.
Collapse
Affiliation(s)
- Taiyu Song
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210002, China
| | - Bin Kong
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210002, China
| | - Rui Liu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210002, China
| | - Yuan Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210002, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
18
|
Lee SY, Koo IS, Hwang HJ, Lee DW. WITHDRAWN: In Vitro three-dimensional (3D) cell culture tools for spheroid and organoid models. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023:100131. [PMID: 38101575 DOI: 10.1016/j.slasd.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 12/17/2023]
Abstract
The Publisher regrets that this article is an accidental duplication of an article previously published at http://dx.doi.org/10.1016/j.slasd.2023.03.006. This duplication was due to an error in the publishing workflow and was not the responsibility of the authors or editors. As a result, the duplicate article has been withdrawn. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Sang-Yun Lee
- Department of Biomedical Engineering, Gachon University, Seongnam, 13120, Republic of Korea; Central R & D Center, Medical & Bio Decision (MBD) Co., Ltd, Suwon, 16229, Republic of Korea
| | - In-Seong Koo
- Department of Biomedical Engineering, Gachon University, Seongnam, 13120, Republic of Korea
| | - Hyun Ju Hwang
- Central R & D Center, Medical & Bio Decision (MBD) Co., Ltd, Suwon, 16229, Republic of Korea
| | - Dong Woo Lee
- Department of Biomedical Engineering, Gachon University, Seongnam, 13120, Republic of Korea.
| |
Collapse
|
19
|
Castellote-Borrell M, Merlina F, Rodríguez AR, Guasch J. Biohybrid Hydrogels for Tumoroid Culture. Adv Biol (Weinh) 2023; 7:e2300118. [PMID: 37505458 DOI: 10.1002/adbi.202300118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/21/2023] [Indexed: 07/29/2023]
Abstract
Tumoroids are 3D in vitro models that recapitulate key features of in vivo tumors, such as their architecture - hypoxic center and oxygenated outer layer - in contrast with traditional 2D cell cultures. Moreover, they may be able to preserve the patient-specific signature in terms of cell heterogeneity and mutations. Tumoroids are, therefore, interesting tools for improving the understanding of cancer biology, developing new drugs, and potentially designing personalized therapeutic plans. Currently, tumoroids are most often established using basement membrane extracts (BME), which provide a multitude of biological cues. However, BME are characterized by a lack of well-defined composition, limited reproducibility, and potential immunogenicity as a consequence of their natural origin. Synthetic polymers can overcome these problems but lack structural and biochemical complexity, which can limit the functional capabilities of organoids. Biohybrid hydrogels consisting of both natural and synthetic components can combine their advantages and offer superior 3D culture systems. In this review, it is summarized efforts devoted to producing tumoroids using different types of biohybrid hydrogels, which are classified according to their crosslinking mechanism.
Collapse
Affiliation(s)
- Miquel Castellote-Borrell
- Dynamic Biomimetics for Cancer Immunotherapy, Max Planck Partner Group, Institute of Materials Science of Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra, 08193, Spain
| | - Francesca Merlina
- Dynamic Biomimetics for Cancer Immunotherapy, Max Planck Partner Group, Institute of Materials Science of Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra, 08193, Spain
| | - Adrián R Rodríguez
- Dynamic Biomimetics for Cancer Immunotherapy, Max Planck Partner Group, Institute of Materials Science of Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra, 08193, Spain
| | - Judith Guasch
- Dynamic Biomimetics for Cancer Immunotherapy, Max Planck Partner Group, Institute of Materials Science of Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra, 08193, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, 28029, Spain
| |
Collapse
|
20
|
Roberto de Barros N, Wang C, Maity S, Peirsman A, Nasiri R, Herland A, Ermis M, Kawakita S, Gregatti Carvalho B, Hosseinzadeh Kouchehbaghi N, Donizetti Herculano R, Tirpáková Z, Mohammad Hossein Dabiri S, Lucas Tanaka J, Falcone N, Choroomi A, Chen R, Huang S, Zisblatt E, Huang Y, Rashad A, Khorsandi D, Gangrade A, Voskanian L, Zhu Y, Li B, Akbari M, Lee J, Remzi Dokmeci M, Kim HJ, Khademhosseini A. Engineered organoids for biomedical applications. Adv Drug Deliv Rev 2023; 203:115142. [PMID: 37967768 PMCID: PMC10842104 DOI: 10.1016/j.addr.2023.115142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/03/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023]
Abstract
As miniaturized and simplified stem cell-derived 3D organ-like structures, organoids are rapidly emerging as powerful tools for biomedical applications. With their potential for personalized therapeutic interventions and high-throughput drug screening, organoids have gained significant attention recently. In this review, we discuss the latest developments in engineering organoids and using materials engineering, biochemical modifications, and advanced manufacturing technologies to improve organoid culture and replicate vital anatomical structures and functions of human tissues. We then explore the diverse biomedical applications of organoids, including drug development and disease modeling, and highlight the tools and analytical techniques used to investigate organoids and their microenvironments. We also examine the latest clinical trials and patents related to organoids that show promise for future clinical translation. Finally, we discuss the challenges and future perspectives of using organoids to advance biomedical research and potentially transform personalized medicine.
Collapse
Affiliation(s)
| | - Canran Wang
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Surjendu Maity
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Arne Peirsman
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA; Plastic and Reconstructive Surgery, Ghent University Hospital, Ghent, Belgium
| | - Rohollah Nasiri
- Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, KTH Royal Institute of Technology, 17165 Solna, Sweden
| | - Anna Herland
- Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, KTH Royal Institute of Technology, 17165 Solna, Sweden
| | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Satoru Kawakita
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Bruna Gregatti Carvalho
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA; Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), 13083-970 Campinas, Brazil
| | - Negar Hosseinzadeh Kouchehbaghi
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA; Department of Textile Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Avenue, 1591634311 Tehran, Iran
| | - Rondinelli Donizetti Herculano
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA; São Paulo State University (UNESP), Bioengineering and Biomaterials Group, School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Zuzana Tirpáková
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA; Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 04181 Kosice, Slovakia
| | - Seyed Mohammad Hossein Dabiri
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Jean Lucas Tanaka
- Butantan Institute, Viral Biotechnology Laboratory, São Paulo, SP Brazil; University of São Paulo (USP), São Paulo, SP Brazil
| | - Natashya Falcone
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Auveen Choroomi
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - RunRun Chen
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA
| | - Shuyi Huang
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA
| | - Elisheva Zisblatt
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Yixuan Huang
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Ahmad Rashad
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Danial Khorsandi
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Ankit Gangrade
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Leon Voskanian
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Bingbing Li
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA
| | - Mohsen Akbari
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Junmin Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | | | - Han-Jun Kim
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA; College of Pharmacy, Korea University, Sejong 30019, Republic of Korea.
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA.
| |
Collapse
|
21
|
Xin Y, Li K, Huang M, Liang C, Siemann D, Wu L, Tan Y, Tang X. Biophysics in tumor growth and progression: from single mechano-sensitive molecules to mechanomedicine. Oncogene 2023; 42:3457-3490. [PMID: 37864030 PMCID: PMC10656290 DOI: 10.1038/s41388-023-02844-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 10/22/2023]
Abstract
Evidence from physical sciences in oncology increasingly suggests that the interplay between the biophysical tumor microenvironment and genetic regulation has significant impact on tumor progression. Especially, tumor cells and the associated stromal cells not only alter their own cytoskeleton and physical properties but also remodel the microenvironment with anomalous physical properties. Together, these altered mechano-omics of tumor tissues and their constituents fundamentally shift the mechanotransduction paradigms in tumorous and stromal cells and activate oncogenic signaling within the neoplastic niche to facilitate tumor progression. However, current findings on tumor biophysics are limited, scattered, and often contradictory in multiple contexts. Systematic understanding of how biophysical cues influence tumor pathophysiology is still lacking. This review discusses recent different schools of findings in tumor biophysics that have arisen from multi-scale mechanobiology and the cutting-edge technologies. These findings range from the molecular and cellular to the whole tissue level and feature functional crosstalk between mechanotransduction and oncogenic signaling. We highlight the potential of these anomalous physical alterations as new therapeutic targets for cancer mechanomedicine. This framework reconciles opposing opinions in the field, proposes new directions for future cancer research, and conceptualizes novel mechanomedicine landscape to overcome the inherent shortcomings of conventional cancer diagnosis and therapies.
Collapse
Grants
- R35 GM150812 NIGMS NIH HHS
- This work was financially supported by National Natural Science Foundation of China (Project no. 11972316, Y.T.), Shenzhen Science and Technology Innovation Commission (Project no. JCYJ20200109142001798, SGDX2020110309520303, and JCYJ20220531091002006, Y.T.), General Research Fund of Hong Kong Research Grant Council (PolyU 15214320, Y. T.), Health and Medical Research Fund (HMRF18191421, Y.T.), Hong Kong Polytechnic University (1-CD75, 1-ZE2M, and 1-ZVY1, Y.T.), the Cancer Pilot Research Award from UF Health Cancer Center (X. T.), the National Institute of General Medical Sciences of the National Institutes of Health under award number R35GM150812 (X. T.), the National Science Foundation under grant number 2308574 (X. T.), the Air Force Office of Scientific Research under award number FA9550-23-1-0393 (X. T.), the University Scholar Program (X. T.), UF Research Opportunity Seed Fund (X. T.), the Gatorade Award (X. T.), and the National Science Foundation REU Site at UF: Engineering for Healthcare (Douglas Spearot and Malisa Sarntinoranont). We are deeply grateful for the insightful discussions with and generous support from all members of Tang (UF)’s and Tan (PolyU)’s laboratories and all staff members of the MAE/BME/ECE/Health Cancer Center at UF and BME at PolyU.
- National Natural Science Foundation of China (National Science Foundation of China)
- Shenzhen Science and Technology Innovation Commission
Collapse
Affiliation(s)
- Ying Xin
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Keming Li
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Miao Huang
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Chenyu Liang
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Dietmar Siemann
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Lizi Wu
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Youhua Tan
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China.
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
- Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Xin Tang
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA.
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA.
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
22
|
Naderi-Meshkin H, Cornelius VA, Eleftheriadou M, Potel KN, Setyaningsih WAW, Margariti A. Vascular organoids: unveiling advantages, applications, challenges, and disease modelling strategies. Stem Cell Res Ther 2023; 14:292. [PMID: 37817281 PMCID: PMC10566155 DOI: 10.1186/s13287-023-03521-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/26/2023] [Indexed: 10/12/2023] Open
Abstract
Understanding mechanisms and manifestations of cardiovascular risk factors, including diabetes, on vascular cells such as endothelial cells, pericytes, and vascular smooth muscle cells, remains elusive partly due to the lack of appropriate disease models. Therefore, here we explore different aspects for the development of advanced 3D in vitro disease models that recapitulate human blood vessel complications using patient-derived induced pluripotent stem cells, which retain the epigenetic, transcriptomic, and metabolic memory of their patient-of-origin. In this review, we highlight the superiority of 3D blood vessel organoids over conventional 2D cell culture systems for vascular research. We outline the key benefits of vascular organoids in both health and disease contexts and discuss the current challenges associated with organoid technology, providing potential solutions. Furthermore, we discuss the diverse applications of vascular organoids and emphasize the importance of incorporating all relevant cellular components in a 3D model to accurately recapitulate vascular pathophysiology. As a specific example, we present a comprehensive overview of diabetic vasculopathy, demonstrating how the interplay of different vascular cell types is critical for the successful modelling of complex disease processes in vitro. Finally, we propose a strategy for creating an organ-specific diabetic vasculopathy model, serving as a valuable template for modelling other types of vascular complications in cardiovascular diseases by incorporating disease-specific stressors and organotypic modifications.
Collapse
Affiliation(s)
- Hojjat Naderi-Meshkin
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Victoria A Cornelius
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Magdalini Eleftheriadou
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Koray Niels Potel
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Wiwit Ananda Wahyu Setyaningsih
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
- Department of Anatomy, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Sleman, D.I. Yogyakarta, 55281, Indonesia
| | - Andriana Margariti
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| |
Collapse
|
23
|
Gan Z, Qin X, Liu H, Liu J, Qin J. Recent advances in defined hydrogels in organoid research. Bioact Mater 2023; 28:386-401. [PMID: 37334069 PMCID: PMC10273284 DOI: 10.1016/j.bioactmat.2023.06.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/11/2023] [Accepted: 06/07/2023] [Indexed: 06/20/2023] Open
Abstract
Organoids are in vitro model systems that mimic the complexity of organs with multicellular structures and functions, which provide great potential for biomedical and tissue engineering. However, their current formation heavily relies on using complex animal-derived extracellular matrices (ECM), such as Matrigel. These matrices are often poorly defined in chemical components and exhibit limited tunability and reproducibility. Recently, the biochemical and biophysical properties of defined hydrogels can be precisely tuned, offering broader opportunities to support the development and maturation of organoids. In this review, the fundamental properties of ECM in vivo and critical strategies to design matrices for organoid culture are summarized. Two typically defined hydrogels derived from natural and synthetic polymers for their applicability to improve organoids formation are presented. The representative applications of incorporating organoids into defined hydrogels are highlighted. Finally, some challenges and future perspectives are also discussed in developing defined hydrogels and advanced technologies toward supporting organoid research.
Collapse
Affiliation(s)
- Zhongqiao Gan
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Xinyuan Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Haitao Liu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jiayue Liu
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China
| | - Jianhua Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Science, Beijing, 100049, China
- Beijing Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China
| |
Collapse
|
24
|
Landon‐Brace N, Li NT, McGuigan AP. Exploring New Dimensions of Tumor Heterogeneity: The Application of Single Cell Analysis to Organoid-Based 3D In Vitro Models. Adv Healthc Mater 2023; 12:e2300903. [PMID: 37589373 PMCID: PMC11468421 DOI: 10.1002/adhm.202300903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/28/2023] [Indexed: 08/18/2023]
Abstract
Modeling the heterogeneity of the tumor microenvironment (TME) in vitro is essential to investigating fundamental cancer biology and developing novel treatment strategies that holistically address the factors affecting tumor progression and therapeutic response. Thus, the development of new tools for both in vitro modeling, such as patient-derived organoids (PDOs) and complex 3D in vitro models, and single cell omics analysis, such as single-cell RNA-sequencing, represents a new frontier for investigating tumor heterogeneity. Specifically, the integration of PDO-based 3D in vitro models and single cell analysis offers a unique opportunity to explore the intersecting effects of interpatient, microenvironmental, and tumor cell heterogeneity on cell phenotypes in the TME. In this review, the current use of PDOs in complex 3D in vitro models of the TME is discussed and the emerging directions in the development of these models are highlighted. Next, work that has successfully applied single cell analysis to PDO-based models is examined and important experimental considerations are identified for this approach. Finally, open questions are highlighted that may be amenable to exploration using the integration of PDO-based models and single cell analysis. Ultimately, such investigations may facilitate the identification of novel therapeutic targets for cancer that address the significant influence of tumor-TME interactions.
Collapse
Affiliation(s)
- Natalie Landon‐Brace
- Institute of Biomedical EngineeringUniversity of Toronto200 College StreetTorontoM5S3E5Canada
| | - Nancy T. Li
- Department of Chemical Engineering and Applied ChemistryUniversity of Toronto200 College StTorontoM5S3E5Canada
| | - Alison P. McGuigan
- Department of Chemical Engineering and Applied ChemistryInstitute of Biomedical EngineeringUniversity of Toronto200 College StTorontoM5S3E5Canada
| |
Collapse
|
25
|
Zhao B, Lv Y. A biomechanical view of epigenetic tumor regulation. J Biol Phys 2023; 49:283-307. [PMID: 37004697 PMCID: PMC10397176 DOI: 10.1007/s10867-023-09633-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/12/2023] [Indexed: 04/04/2023] Open
Abstract
The occurrence and development of tumors depend on a complex regulation by not only biochemical cues, but also biomechanical factors in tumor microenvironment. With the development of epigenetic theory, the regulation of biomechanical stimulation on tumor progress genetically is not enough to fully illustrate the mechanism of tumorigenesis. However, biomechanical regulation on tumor progress epigenetically is still in its infancy. Therefore, it is particularly important to integrate the existing relevant researches and develop the potential exploration. This work sorted out the existing researches on the regulation of tumor by biomechanical factors through epigenetic means, which contains summarizing the tumor epigenetic regulatory mode by biomechanical factors, exhibiting the influence of epigenetic regulation under mechanical stimulation, illustrating its existing applications, and prospecting the potential. This review aims to display the relevant knowledge through integrating the existing studies on epigenetic regulation in tumorigenesis under mechanical stimulation so as to provide theoretical basis and new ideas for potential follow-up research and clinical applications. Mechanical factors under physiological conditions stimulate the tumor progress through epigenetic ways, and new strategies are expected to be found with the development of epidrugs and related delivery systems.
Collapse
Affiliation(s)
- Boyuan Zhao
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Yonggang Lv
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, No. 1 Sunshine Avenue, Jiangxia District, Wuhan, Hubei Province, 430200, People's Republic of China.
| |
Collapse
|
26
|
Yang Q, Li M, Yang X, Xiao Z, Tong X, Tuerdi A, Li S, Lei L. Flourishing tumor organoids: History, emerging technology, and application. Bioeng Transl Med 2023; 8:e10559. [PMID: 37693042 PMCID: PMC10487342 DOI: 10.1002/btm2.10559] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/16/2023] [Accepted: 05/25/2023] [Indexed: 09/12/2023] Open
Abstract
Malignant tumors are one of the leading causes of death which impose an increasingly heavy burden on all countries. Therefore, the establishment of research models that closely resemble original tumor characteristics is crucial to further understanding the mechanisms of malignant tumor development, developing safer and more effective drugs, and formulating personalized treatment plans. Recently, organoids have been widely used in tumor research owing to their advantages including preserving the structure, heterogeneity, and cellular functions of the original tumor, together with the ease of manipulation. This review describes the history and characteristics of tumor organoids and the synergistic combination of three-dimensional (3D) culture approaches for tumor organoids with emerging technologies, including tissue-engineered cell scaffolds, microfluidic devices, 3D bioprinting, rotating wall vessels, and clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9 (CRISPR-Cas9). Additionally, the progress in research and the applications in basic and clinical research of tumor organoid models are summarized. This includes studies of the mechanism of tumor development, drug development and screening, precision medicine, immunotherapy, and simulation of the tumor microenvironment. Finally, the existing shortcomings of tumor organoids and possible future directions are discussed.
Collapse
Affiliation(s)
- Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Mengmeng Li
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Xinming Yang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Zian Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Xinying Tong
- Department of Hemodialysis, the Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Ayinuer Tuerdi
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Lanjie Lei
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| |
Collapse
|
27
|
Luo L, Liu L, Ding Y, Dong Y, Ma M. Advances in biomimetic hydrogels for organoid culture. Chem Commun (Camb) 2023; 59:9675-9686. [PMID: 37455615 DOI: 10.1039/d3cc01274c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
An organoid is a 3-dimensional (3D) cell culture system that mimics the structural and functional characteristics of organs, and it has promising applications in regenerative medicine, precision drug screening and personalised therapy. However, current culture techniques of organoids usually use mouse tumour-derived scaffolds (Matrigel) or other animal-derived decellularised extracellular matrices as culture systems with poorly defined components and undefined chemical and physical properties, which limit the growth of organoids and the reproducibility of culture conditions. In contrast, some synthetic culture materials have emerged in recent years with well-defined compositions, and flexible adjustment and optimisation of physical and chemical properties, which can effectively support organoid growth and development and prolong survival time of organoid in vitro. In this review, we will introduce the challenge of animal-derived decellularised extracellular matrices in organoid culture, and summarise the categories of biomimetic hydrogels currently used for organoid culture, and then discuss the future opportunities and perspectives in the development of advanced hydrogels in organoids. We hope that this review can promote academic communication in the field of organoid research and provide some assistance in advancing the development of organoid cultivation technology.
Collapse
Affiliation(s)
- Lili Luo
- Department of Nutrition and Health, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian, Beijing, 100193, P. R. China.
| | - Libing Liu
- Department of Nutrition and Health, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian, Beijing, 100193, P. R. China.
| | - Yuxuan Ding
- Department of Nutrition and Health, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian, Beijing, 100193, P. R. China.
| | - Yixuan Dong
- Department of Nutrition and Health, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian, Beijing, 100193, P. R. China.
| | - Min Ma
- Department of Nutrition and Health, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian, Beijing, 100193, P. R. China.
| |
Collapse
|
28
|
Yang C, Xiao W, Wang R, Hu Y, Yi K, Sun X, Wang G, Xu X. Tumor organoid model of colorectal cancer (Review). Oncol Lett 2023; 26:328. [PMID: 37415635 PMCID: PMC10320425 DOI: 10.3892/ol.2023.13914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/01/2023] [Indexed: 07/08/2023] Open
Abstract
The establishment of self-organizing 'mini-gut' organoid models has brought about a significant breakthrough in biomedical research. Patient-derived tumor organoids have emerged as valuable tools for preclinical studies, offering the retention of genetic and phenotypic characteristics of the original tumor. These organoids have applications in various research areas, including in vitro modelling, drug discovery and personalized medicine. The present review provided an overview of intestinal organoids, focusing on their unique characteristics and current understanding. The progress made in colorectal cancer (CRC) organoid models was then delved into, discussing their role in drug development and personalized medicine. For instance, it has been indicated that patient-derived tumor organoids are able to predict response to irinotecan-based neoadjuvant chemoradiotherapy. Furthermore, the limitations and challenges associated with current CRC organoid models were addressed, along with proposed strategies for enhancing their utility in future basic and translational research.
Collapse
Affiliation(s)
- Chi Yang
- Department of Gastroenterology, The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Soochow Medical College of Soochow University, Suzhou, Jiangsu 215400, P.R. China
| | - Wangwen Xiao
- Central Laboratory, The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Soochow Medical College of Soochow University, Suzhou, Jiangsu 215400, P.R. China
| | - Rui Wang
- School of Pharmacy, Soochow Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Yan Hu
- Central Laboratory, The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Soochow Medical College of Soochow University, Suzhou, Jiangsu 215400, P.R. China
| | - Ke Yi
- Central Laboratory, The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Soochow Medical College of Soochow University, Suzhou, Jiangsu 215400, P.R. China
| | - Xuan Sun
- Department of Gastroenterology, The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Soochow Medical College of Soochow University, Suzhou, Jiangsu 215400, P.R. China
| | - Guanghui Wang
- School of Pharmacy, Soochow Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Xiaohui Xu
- Department of Gastroenterology, The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Soochow Medical College of Soochow University, Suzhou, Jiangsu 215400, P.R. China
- Central Laboratory, The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Soochow Medical College of Soochow University, Suzhou, Jiangsu 215400, P.R. China
| |
Collapse
|
29
|
Li W, Zhou Z, Zhou X, Khoo BL, Gunawan R, Chin YR, Zhang L, Yi C, Guan X, Yang M. 3D Biomimetic Models to Reconstitute Tumor Microenvironment In Vitro: Spheroids, Organoids, and Tumor-on-a-Chip. Adv Healthc Mater 2023; 12:e2202609. [PMID: 36917657 PMCID: PMC11468819 DOI: 10.1002/adhm.202202609] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/22/2023] [Indexed: 03/16/2023]
Abstract
Decades of efforts in engineering in vitro cancer models have advanced drug discovery and the insight into cancer biology. However, the establishment of preclinical models that enable fully recapitulating the tumor microenvironment remains challenging owing to its intrinsic complexity. Recent progress in engineering techniques has allowed the development of a new generation of in vitro preclinical models that can recreate complex in vivo tumor microenvironments and accurately predict drug responses, including spheroids, organoids, and tumor-on-a-chip. These biomimetic 3D tumor models are of particular interest as they pave the way for better understanding of cancer biology and accelerating the development of new anticancer therapeutics with reducing animal use. Here, the recent advances in developing these in vitro platforms for cancer modeling and preclinical drug screening, focusing on incorporating hydrogels are reviewed to reconstitute physiologically relevant microenvironments. The combination of spheroids/organoids with microfluidic technologies is also highlighted to better mimic in vivo tumors and discuss the challenges and future directions in the clinical translation of such models for drug screening and personalized medicine.
Collapse
Affiliation(s)
- Wenxiu Li
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhen518000China
- Department of Biomedical SciencesTung Biomedical Sciences CentreCity University of Hong KongHong KongSAR999077China
| | - Zhihang Zhou
- Department of Biomedical SciencesTung Biomedical Sciences CentreCity University of Hong KongHong KongSAR999077China
- Department of Gastroenterologythe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Xiaoyu Zhou
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhen518000China
- Department of Biomedical SciencesTung Biomedical Sciences CentreCity University of Hong KongHong KongSAR999077China
| | - Bee Luan Khoo
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhen518000China
- Department of Biomedical EngineeringCity University of Hong KongHong Kong999077China
| | - Renardi Gunawan
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhen518000China
- Department of Biomedical SciencesTung Biomedical Sciences CentreCity University of Hong KongHong KongSAR999077China
| | - Y. Rebecca Chin
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhen518000China
- Department of Biomedical SciencesTung Biomedical Sciences CentreCity University of Hong KongHong KongSAR999077China
| | - Liang Zhang
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhen518000China
- Department of Biomedical SciencesTung Biomedical Sciences CentreCity University of Hong KongHong KongSAR999077China
| | - Changqing Yi
- Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical DevicesSchool of Biomedical EngineeringSun Yat‐sen UniversityGuangzhou518107China
| | - Xinyuan Guan
- Department of Clinical OncologyState Key Laboratory for Liver ResearchThe University of Hong KongHong KongSAR999077China
| | - Mengsu Yang
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhen518000China
- Department of Biomedical SciencesTung Biomedical Sciences CentreCity University of Hong KongHong KongSAR999077China
| |
Collapse
|
30
|
Ferreira T, Gama A, Seixas F, Faustino-Rocha AI, Lopes C, Gaspar VM, Mano JF, Medeiros R, Oliveira PA. Mammary Glands of Women, Female Dogs and Female Rats: Similarities and Differences to Be Considered in Breast Cancer Research. Vet Sci 2023; 10:379. [PMID: 37368765 DOI: 10.3390/vetsci10060379] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
Breast cancer is one of the most common and well-known types of cancer among women worldwide and is the most frequent neoplasm in intact female dogs. Female dogs are considered attractive models or studying spontaneous breast cancer, whereas female rats are currently the most widely used animal models for breast cancer research in the laboratory context. Both female dogs and female rats have contributed to the advancement of scientific knowledge in this field, and, in a "One Health" approach, they have allowed broad understanding of specific biopathological pathways, influence of environmental factors and screening/discovery of candidate therapies. This review aims to clearly showcase the similarities and differences among woman, female dog and female rat concerning to anatomical, physiological and histological features of the mammary gland and breast/mammary cancer epidemiology, in order to better portray breast tumorigenesis, and to ensure appropriate conclusions and extrapolation of results among species. We also discuss the major aspects that stand out in these species. The mammary glands of female dogs and women share structural similarities, especially with respect to the lactiferous ducts and lymphatic drainage. In contrast, female rats have only one lactiferous duct per nipple. A comprehensive comparison between humans and dogs is given a special focus, as these species share several aspects in terms of breast/mammary cancer epidemiology, such as age of onset, hormonal etiology, risk factors, and the clinical course of the disease. Holistically, it is clear that each species has advantages and limitations that researchers must consider during the development of experimental designs and data analysis.
Collapse
Affiliation(s)
- Tiago Ferreira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Adelina Gama
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Fernanda Seixas
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Ana I Faustino-Rocha
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Zootechnics, School of Sciences and Technology, University of Évora, 7004-516 Évora, Portugal
- Comprehensive Health Research Center, 7004-516 Évora, Portugal
| | - Carlos Lopes
- Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal
| | - Vítor M Gaspar
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - João F Mano
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), 4200-319 Porto, Portugal
- Research Department of the Portuguese League against Cancer-Regional Nucleus of the North (Liga Portuguesa Contra o Cancro-Núcleo Regional do Norte), 4200-177 Porto, Portugal
- Virology Service, Portuguese Institute of Oncology (IPO), 4200-072 Porto, Portugal
- Biomedical Research Center (CEBIMED), Faculty of Health Sciences of the Fernando Pessoa University, 4249-004 Porto, Portugal
| | - Paula A Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
31
|
Lee SY, Koo IS, Hwang HJ, Lee DW. In Vitro Three-dimensional (3D) Cell Culture Tools for Spheroid and Organoid Models. SLAS DISCOVERY 2023:S2472-5552(23)00028-X. [PMID: 36997090 DOI: 10.1016/j.slasd.2023.03.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023]
Abstract
Three-dimensional (3D) cell culture technology has been steadily studied since the 1990's due to its superior biocompatibility compared to the conventional two-dimensional (2D) cell culture technology, and has recently developed into an organoid culture technology that further improved biocompatibility. Since the 3D culture of human cell lines in artificial scaffolds was demonstrated in the early 90's, 3D cell culture technology has been actively developed owing to various needs in the areas of disease research, precision medicine, new drug development, and some of these technologies have been commercialized. In particular, 3D cell culture technology is actively being applied and utilized in drug development and cancer-related precision medicine research. Drug development is a long and expensive process that involves multiple steps-from target identification to lead discovery and optimization, preclinical studies, and clinical trials for approval for clinical use. Cancer ranks first among life-threatening diseases owing to intra-tumoral heterogeneity associated with metastasis, recurrence, and treatment resistance, ultimately contributing to treatment failure and adverse prognoses. Therefore, there is an urgent need for the development of efficient drugs using 3D cell culture techniques that can closely mimic in vivo cellular environments and customized tumor models that faithfully represent the tumor heterogeneity of individual patients. This review discusses 3D cell culture technology focusing on research trends, commercialization status, and expected effects developed until recently. We aim to summarize the great potential of 3D cell culture technology and contribute to expanding the base of this technology.
Collapse
|
32
|
van Tienderen GS, Rosmark O, Lieshout R, Willemse J, de Weijer F, Elowsson Rendin L, Westergren-Thorsson G, Doukas M, Groot Koerkamp B, van Royen ME, van der Laan LJ, Verstegen MM. Extracellular matrix drives tumor organoids toward desmoplastic matrix deposition and mesenchymal transition. Acta Biomater 2023; 158:115-131. [PMID: 36427688 DOI: 10.1016/j.actbio.2022.11.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/31/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022]
Abstract
Patient-derived tumor organoids have been established as promising tools for in vitro modelling of multiple tumors, including cholangiocarcinoma (CCA). However, organoids are commonly cultured in basement membrane extract (BME) which does not recapitulate the intricacies of the extracellular matrix (ECM). We combined CCA organoids (CCAOs) with native tumor and liver scaffolds, obtained by decellularization, to effectuate a model to study the interaction between epithelial tumor cells and their surrounding ECM. Decellularization resulted in removal of cells while preserving ECM structure and retaining important characteristics of the tissue origin, including stiffness and presence of desmoplasia. The transcriptome of CCAOs in a tumor scaffold much more resembled that of patient-paired CCA tissue in vivo compared to CCAOs cultured in BME or liver scaffolds. This was accompanied by an increase in chemoresistance to clinically-relevant chemotherapeutics. CCAOs in decellularized scaffolds revealed environment-dependent proliferation dynamics, driven by the occurrence of epithelial-mesenchymal transition. Furthermore, CCAOs initiated an environment-specific desmoplastic reaction by increasing production of multiple collagen types. In conclusion, convergence of organoid-based models with native ECM scaffolds will lead to better understanding of the in vivo tumor environment. STATEMENT OF SIGNIFICANCE: The extracellular matrix (ECM) influences various facets of tumor behavior. Understanding the exact role of the ECM in controlling tumor cell fate is pertinent to understand tumor progression and develop novel therapeutics. This is particularly the case for cholangiocarcinoma (CCA), whereby the ECM displays a distinct tumor environment, characterized by desmoplasia. However, current models to study the interaction between epithelial tumor cells and the environment are lacking. We have developed a fully patient-derived model encompassing CCA organoids (CCAOs) and human decellularized tumor and tumor-free liver ECM. The tumor ECM induced recapitulation of various aspects of CCA, including migration dynamics, transcriptome and proteome profiles, and chemoresistance. Lastly, we uncover that epithelial tumor cells contribute to matrix deposition, and that this phenomenon is dependent on the level of desmoplasia already present.
Collapse
Affiliation(s)
- Gilles S van Tienderen
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Oskar Rosmark
- Lung Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Ruby Lieshout
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Jorke Willemse
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Floor de Weijer
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Linda Elowsson Rendin
- Lung Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Michail Doukas
- Department of Pathology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Bas Groot Koerkamp
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Martin E van Royen
- Department of Pathology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Luc Jw van der Laan
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Monique Ma Verstegen
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| |
Collapse
|
33
|
Bi W, Cai S, Lei T, Wang L. Implementation of blood-brain barrier on microfluidic chip: recent advance and future prospects. Ageing Res Rev 2023; 87:101921. [PMID: 37004842 DOI: 10.1016/j.arr.2023.101921] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/02/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
The complex structure of the blood-brain barrier (BBB) hinders its modeling and the treatment of brain diseases. The microfluidic technology promotes the development of BBB-on-a-chip platforms, which can be used to reproduce the complex brain microenvironment and physiological reactions. Compared with traditional transwell technology, microfluidic BBB-on-a-chip shows great technical advantages in terms of flexible control of fluid shear stress in the chip and fabrication efficiency of the chip system, which can be enhanced by the development of lithography and three-dimensional (3D) printing. It is convenient to accurately monitor the dynamic changes of biochemical parameters of individual cells in the model by integrating an automatic super-resolution imaging sensing platform. In addition, biomaterials, especially hydrogels and conductive polymers, solve the limitations of microfluidic BBB-on-a-chip by compounding onto microfluidic chip to provide a 3D space and special performance on the microfluidic chip. The microfluidic BBB-on-a-chip promotes the development of basic research, including cell migration, mechanism exploration of neurodegenerative diseases, drug barrier permeability, SARS-CoV-2 pathology. This study summarizes the recent advances, challenges and future prospects of microfluidic BBB-on-a-chip, which can help to promote the development of personalized medicine and drug discovery.
Collapse
|
34
|
Meng Z, Niu X, Xia L, Chen Y, Wang Z, Wang H, Ji P, Cui W, Wang Y, Lu S. A 3D Ex Vivo Tumor-Immune Coculture System Mimicking In Vivo Tumor Environmental Stress on CD8+ T Cells Exhaustion. Adv Biol (Weinh) 2023:e2200264. [PMID: 36658782 DOI: 10.1002/adbi.202200264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/11/2022] [Indexed: 01/21/2023]
Abstract
Dissection of exhaustion trajectories of immune cells under tumor selection pressure in the tumor microenvironment (TME) elucidates the underlying machinery in anti-tumor immunity, which still lacks easy-to-use models to decipher. Herein, gelatin methacryloyl (GelMA)-poly (ethylene oxide) (PEO) based 3D hydrogel microspheroids are constructed with non-immunogenicity and controllable macroporous structure to establish a tumor-immune cell coculture (3D-HyGTIC) system. In 3D-HyGTIC system, when immune cells embarked, stepwise up-regulation of main immune checkpoints (ICs) molecules is observed with compromised cytokine production in CD8+ T cells, the trajectory of which is in lineage correlation with in vivo grafted tumors. Reinvigoration of CD8+ T cells is more obvious with the addition of an anti-PD-1 regimen at the early time point, which is recapitulated during the coculture of patient-derived tumor fragments (PDTF) and autologous T cells. Moreover, the upregulation of LAG-3 on CD8+ T cells after anti-PD-1 treatment is uncovered. Sequential addition of anti-LAG-3 successfully rescues the otherwise failed reactivation of CD8+ T cells. Therefore, the 3D-HyGTIC system is not only inclined to mimic the early differentiation trajectories of tumor-infiltrating CD8+ T cells but also may facilitate an evaluation of the efficacy of IC blockades and guide the designing of combination immunotherapy.
Collapse
Affiliation(s)
- Zhouwenli Meng
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
| | - Xiaomin Niu
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
| | - Liliang Xia
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
| | - Yingying Chen
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Zhen Wang
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai, 200025, P. R. China
| | - Hui Wang
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
| | - Ping Ji
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Wenguo Cui
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai, 200025, P. R. China
| | - Ying Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Shun Lu
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P. R. China
| |
Collapse
|
35
|
Londoño-Berrio M, Castro C, Cañas A, Ortiz I, Osorio M. Advances in Tumor Organoids for the Evaluation of Drugs: A Bibliographic Review. Pharmaceutics 2022; 14:pharmaceutics14122709. [PMID: 36559203 PMCID: PMC9784359 DOI: 10.3390/pharmaceutics14122709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/11/2022] Open
Abstract
Tumor organoids are defined as self-organized three-dimensional assemblies of heterogeneous cell types derived from patient samples that mimic the key histopathological, genetic, and phenotypic characteristics of the original tumor. This technology is proposed as an ideal candidate for the evaluation of possible therapies against cancer, presenting advantages over other models which are currently used. However, there are no reports in the literature that relate the techniques and material development of tumor organoids or that emphasize in the physicochemical and biological properties of materials that intent to biomimicry the tumor extracellular matrix. There is also little information regarding the tools to identify the correspondence of native tumors and tumoral organoids (tumoroids). Moreover, this paper relates the advantages of organoids compared to other models for drug evaluation. A growing interest in tumoral organoids has arisen from 2009 to the present, aimed at standardizing the process of obtaining organoids, which more accurately resemble patient-derived tumor tissue. Likewise, it was found that the characteristics to consider for the development of organoids, and therapeutic responses of them, are cell morphology, physiology, the interaction between cells, the composition of the cellular matrix, and the genetic, phenotypic, and epigenetic characteristics. Currently, organoids have been used for the evaluation of drugs for brain, lung, and colon tumors, among others. In the future, tumor organoids will become closer to being considered a better model for studying cancer in clinical practice, as they can accurately mimic the characteristics of tumors, in turn ensuring that the therapeutic response aligns with the clinical response of patients.
Collapse
Affiliation(s)
- Maritza Londoño-Berrio
- Systems Biology Research Group, Pontifical Bolivarian University (Universidad Pontificia Bolivariana), Carrera 78B No. 72a-109, Medellin 050034, Colombia
| | - Cristina Castro
- New Materials Research Group, School of Engineering, Pontifical Bolivarian University, Circular 1 No. 70-01, Medellin 050031, Colombia
| | - Ana Cañas
- Corporation for Biological Research, Medical, and Experimental Research Group, Carrera 72A # 78b-141, Medellin 050034, Colombia
| | - Isabel Ortiz
- Systems Biology Research Group, Pontifical Bolivarian University (Universidad Pontificia Bolivariana), Carrera 78B No. 72a-109, Medellin 050034, Colombia
| | - Marlon Osorio
- Systems Biology Research Group, Pontifical Bolivarian University (Universidad Pontificia Bolivariana), Carrera 78B No. 72a-109, Medellin 050034, Colombia
- New Materials Research Group, School of Engineering, Pontifical Bolivarian University, Circular 1 No. 70-01, Medellin 050031, Colombia
- Correspondence:
| |
Collapse
|
36
|
Meng F, Shen C, Yang L, Ni C, Huang J, Lin K, Cao Z, Xu S, Cui W, Wang X, Zhou B, Xiong C, Wang J, Zhao B. Mechanical stretching boosts expansion and regeneration of intestinal organoids through fueling stem cell self-renewal. CELL REGENERATION 2022; 11:39. [DOI: 10.1186/s13619-022-00137-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/23/2022] [Indexed: 11/05/2022]
Abstract
AbstractIntestinal organoids, derived from intestinal stem cell self-organization, recapitulate the tissue structures and behaviors of the intestinal epithelium, which hold great potential for the study of developmental biology, disease modeling, and regenerative medicine. The intestinal epithelium is exposed to dynamic mechanical forces which exert profound effects on gut development. However, the conventional intestinal organoid culture system neglects the key role of mechanical microenvironments but relies solely on biological factors. Here, we show that adding cyclic stretch to intestinal organoid cultures remarkably up-regulates the signature gene expression and proliferation of intestinal stem cells. Furthermore, mechanical stretching stimulates the expansion of SOX9+ progenitors by activating the Wnt/β-Catenin signaling. These data demonstrate that the incorporation of mechanical stretch boosts the stemness of intestinal stem cells, thus benefiting organoid growth. Our findings have provided a way to optimize an organoid generation system through understanding cross-talk between biological and mechanical factors, paving the way for the application of mechanical forces in organoid-based models.
Collapse
|
37
|
Li Y, Wong IY, Guo M. Reciprocity of Cell Mechanics with Extracellular Stimuli: Emerging Opportunities for Translational Medicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107305. [PMID: 35319155 PMCID: PMC9463119 DOI: 10.1002/smll.202107305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Human cells encounter dynamic mechanical cues in healthy and diseased tissues, which regulate their molecular and biophysical phenotype, including intracellular mechanics as well as force generation. Recent developments in bio/nanomaterials and microfluidics permit exquisitely sensitive measurements of cell mechanics, as well as spatiotemporal control over external mechanical stimuli to regulate cell behavior. In this review, the mechanobiology of cells interacting bidirectionally with their surrounding microenvironment, and the potential relevance for translational medicine are considered. Key fundamental concepts underlying the mechanics of living cells as well as the extracelluar matrix are first introduced. Then the authors consider case studies based on 1) microfluidic measurements of nonadherent cell deformability, 2) cell migration on micro/nano-topographies, 3) traction measurements of cells in three-dimensional (3D) matrix, 4) mechanical programming of organoid morphogenesis, as well as 5) active mechanical stimuli for potential therapeutics. These examples highlight the promise of disease diagnosis using mechanical measurements, a systems-level understanding linking molecular with biophysical phenotype, as well as therapies based on mechanical perturbations. This review concludes with a critical discussion of these emerging technologies and future directions at the interface of engineering, biology, and medicine.
Collapse
Affiliation(s)
- Yiwei Li
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Ian Y Wong
- School of Engineering, Center for Biomedical Engineering, Joint Program in Cancer Biology, Brown University, 184 Hope St Box D, Providence, RI, 02912, USA
| | - Ming Guo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
38
|
Iman H, Benjamin A, Peyton K, Habbit NL, Ahmed B, Heslin MJ, Mobley JA, Greene MW, Lipke EA. Engineered colorectal cancer tissue recapitulates key attributes of a patient-derived xenograft tumor line. Biofabrication 2022; 14:10.1088/1758-5090/ac73b6. [PMID: 35617932 PMCID: PMC9822569 DOI: 10.1088/1758-5090/ac73b6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/26/2022] [Indexed: 01/11/2023]
Abstract
The development of physiologically relevantin vitrocolorectal cancer (CRC) models is vital for advancing understanding of tumor biology. Although CRC patient-derived xenografts (PDXs) recapitulate key patient tumor characteristics and demonstrate high concordance with clinical outcomes, the use of thisin vivomodel is costly and low-throughput. Here we report the establishment and in-depth characterization of anin vitrotissue-engineered CRC model using PDX cells. To form the 3D engineered CRC-PDX (3D-eCRC-PDX) tissues, CRC PDX tumors were expandedin vivo, dissociated, and the isolated cells encapsulated within PEG-fibrinogen hydrogels. Following PEG-fibrinogen encapsulation, cells remain viable and proliferate within 3D-eCRC-PDX tissues. Tumor cell subpopulations, including human cancer and mouse stromal cells, are maintained in long-term culture (29 days); cellular subpopulations increase ratiometrically over time. The 3D-eCRC-PDX tissues mimic the mechanical stiffness of originating tumors. Extracellular matrix protein production by cells in the 3D-eCRC-PDX tissues resulted in approximately 57% of proteins observed in the CRC-PDX tumors also being present in the 3D-eCRC-PDX tissues on day 22. Furthermore, we show congruence in enriched gene ontology molecular functions and Hallmark gene sets in 3D-eCRC-PDX tissues and CRC-PDX tumors compared to normal colon tissue, while prognostic Kaplan-Meier plots for overall and relapse free survival did not reveal significant differences between CRC-PDX tumors and 3D-eCRC-PDX tissues. Our results demonstrate high batch-to-batch consistency and strong correlation between ourin vitrotissue-engineered PDX-CRC model and the originatingin vivoPDX tumors, providing a foundation for future studies of disease progression and tumorigenic mechanisms.
Collapse
Affiliation(s)
- Hassani Iman
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA
| | - Anbiah Benjamin
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA
| | - Kuhlers Peyton
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| | - Nicole L. Habbit
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA
| | - Bulbul Ahmed
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| | - Martin J. Heslin
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - James A. Mobley
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35205-3703, USA
- Division of Molecular and Translational Biomedicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35205-3703, USA
| | - Michael W. Greene
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| | - Elizabeth A. Lipke
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
39
|
Xie X, Lee J, Fuson JA, Liu H, Iwase T, Yun K, Margain C, Tripathy D, Ueno NT. Emerging drug targets for triple-negative breast cancer: a guided tour of the preclinical landscape. Expert Opin Ther Targets 2022; 26:405-425. [PMID: 35574694 PMCID: PMC11972560 DOI: 10.1080/14728222.2022.2077188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 05/10/2022] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) is the most fatal molecular subtype of breast cancer because of its aggressiveness and resistance to chemotherapy. FDA-approved therapies for TNBC are limited to poly(ADP-ribose) polymerase inhibitors, immune checkpoint inhibitors, and trophoblast cell surface antigen 2-targeted antibody-drug conjugate. Therefore, developing a novel effective targeted therapy for TNBC is an urgent unmet need. AREAS COVERED In this narrative review, we discuss emerging targets for TNBC treatment discovered in early translational studies. We focus on cancer cell membrane molecules, hyperactive intracellular signaling pathways, and the tumor microenvironment (TME) based on their druggability, therapeutic potency, specificity to TNBC, and application in immunotherapy. EXPERT OPINION The significant challenges in the identification and validation of TNBC-associated targets are 1) application of appropriate genetic, molecular, and immunological approaches for modulating the target, 2) establishment of a proper mouse model that accurately represents the human immune TME, 3) TNBC molecular heterogeneity, and 4) failure translation of preclinical findings to clinical practice. To overcome those difficulties, future research needs to apply novel technology, such as single-cell RNA sequencing, thermostable group II intron reverse transcriptase sequencing, and humanized mouse models. Further, combination treatment targeting multiple pathways in both the TNBC tumor and its TME is essential for effective disease control.
Collapse
Affiliation(s)
- Xuemei Xie
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jangsoon Lee
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jon A. Fuson
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Huey Liu
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Toshiaki Iwase
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kyuson Yun
- Research Institute at Houston Methodist, Weill Cornell Medical College, Houston, TX 77030, USA
| | | | - Debu Tripathy
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Naoto T. Ueno
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Cancer Biology and Therapeutics, University of Hawai’i Cancer Center, Honolulu, HI 96813, USA
| |
Collapse
|
40
|
Chrisnandy A, Blondel D, Rezakhani S, Broguiere N, Lutolf MP. Synthetic dynamic hydrogels promote degradation-independent in vitro organogenesis. NATURE MATERIALS 2022; 21:479-487. [PMID: 34782747 DOI: 10.1038/s41563-021-01136-7] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Epithelial organoids are most efficiently grown from mouse-tumour-derived, reconstituted extracellular matrix hydrogels, whose poorly defined composition, batch-to-batch variability and immunogenicity limit clinical applications. Efforts to replace such ill-defined matrices for organoid culture have largely focused on non-adaptable hydrogels composed of covalently crosslinked hydrophilic macromolecules. However, the excessive forces caused by tissue expansion in such elastic gels severely restrict organoid growth and morphogenesis. Chemical or enzymatic degradation schemes can partially alleviate this problem, but due to their irreversibility, long-term applicability is limited. Here we report a family of synthetic hydrogels that promote extensive organoid morphogenesis through dynamic rearrangements mediated by reversible hydrogen bonding. These tunable matrices are stress relaxing and thus promote efficient crypt budding in intestinal stem-cell epithelia through increased symmetry breaking and Paneth cell formation dependent on yes-associated protein 1. As such, these well-defined gels provide promising versatile matrices for fostering elaborate in vitro morphogenesis.
Collapse
Affiliation(s)
- Antonius Chrisnandy
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences (SV) and School of Engineering (STI), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Delphine Blondel
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences (SV) and School of Engineering (STI), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Saba Rezakhani
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences (SV) and School of Engineering (STI), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Nicolas Broguiere
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences (SV) and School of Engineering (STI), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Matthias P Lutolf
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences (SV) and School of Engineering (STI), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Institute of Chemical Sciences and Engineering, School of Basic Science (SB), EPFL, Lausanne, Switzerland.
- Roche Institute for Translational Bioengineering (ITB), Pharma Research and Early Development (pRED), F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| |
Collapse
|
41
|
Biomimetic hydrogel supports initiation and growth of patient-derived breast tumor organoids. Nat Commun 2022; 13:1466. [PMID: 35304464 PMCID: PMC8933543 DOI: 10.1038/s41467-022-28788-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/01/2022] [Indexed: 12/15/2022] Open
Abstract
Patient-derived tumor organoids (PDOs) are a highly promising preclinical model that recapitulates the histology, gene expression, and drug response of the donor patient tumor. Currently, PDO culture relies on basement-membrane extract (BME), which suffers from batch-to-batch variability, the presence of xenogeneic compounds and residual growth factors, and poor control of mechanical properties. Additionally, for the development of new organoid lines from patient-derived xenografts, contamination of murine host cells poses a problem. We propose a nanofibrillar hydrogel (EKGel) for the initiation and growth of breast cancer PDOs. PDOs grown in EKGel have histopathologic features, gene expression, and drug response that are similar to those of their parental tumors and PDOs in BME. In addition, EKGel offers reduced batch-to-batch variability, a range of mechanical properties, and suppressed contamination from murine cells. These results show that EKGel is an improved alternative to BME matrices for the initiation, growth, and maintenance of breast cancer PDOs. Patient-derived tumour organoids are important preclinical models but suffer from variability from the use of basement-membrane extract and cell contamination. Here, the authors report on the development of mimetic nanofibrilar hydrogel which supports tumour organoid growth with reduced batch variability and cell contamination.
Collapse
|
42
|
Luo L, Ma Y, Zheng Y, Su J, Huang G. Application Progress of Organoids in Colorectal Cancer. Front Cell Dev Biol 2022; 10:815067. [PMID: 35273961 PMCID: PMC8902504 DOI: 10.3389/fcell.2022.815067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/31/2022] [Indexed: 12/24/2022] Open
Abstract
Currently, colorectal cancer is still the third leading cause of cancer-related mortality, and the incidence is rising. It is a long time since the researchers used cancer cell lines and animals as the study subject. However, these models possess various limitations to reflect the cancer progression in the human body. Organoids have more clinical significance than cell lines, and they also bridge the gap between animal models and humans. Patient-derived organoids are three-dimensional cultures that simulate the tumor characteristics in vivo and recapitulate tumor cell heterogeneity. Therefore, the emergence of colorectal cancer organoids provides an unprecedented opportunity for colorectal cancer research. It retains the molecular and cellular composition of the original tumor and has a high degree of homology and complexity with patient tissues. Patient-derived colorectal cancer organoids, as personalized tumor organoids, can more accurately simulate colorectal cancer patients’ occurrence, development, metastasis, and predict drug response in colorectal cancer patients. Colorectal cancer organoids show great potential for application, especially preclinical drug screening and prediction of patient response to selected treatment options. Here, we reviewed the application of colorectal cancer organoids in disease model construction, basic biological research, organoid biobank construction, drug screening and personalized medicine, drug development, drug toxicity and safety, and regenerative medicine. In addition, we also displayed the current limitations and challenges of organoids and discussed the future development direction of organoids in combination with other technologies. Finally, we summarized and analyzed the current clinical trial research of organoids, especially the clinical trials of colorectal cancer organoids. We hoped to lay a solid foundation for organoids used in colorectal cancer research.
Collapse
Affiliation(s)
- Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China.,The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Yucui Ma
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Yilin Zheng
- Clinical Research Center, Shantou Central Hospital, Shantou, China
| | - Jiating Su
- The First Clinical College, Guangdong Medical University, Zhanjiang, China
| | - Guoxin Huang
- Clinical Research Center, Shantou Central Hospital, Shantou, China
| |
Collapse
|
43
|
Jia Y, Wei Z, Zhang S, Yang B, Li Y. Instructive Hydrogels for Primary Tumor Cell Culture: Current Status and Outlook. Adv Healthc Mater 2022; 11:e2102479. [PMID: 35182456 DOI: 10.1002/adhm.202102479] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/07/2022] [Indexed: 02/06/2023]
Abstract
Primary tumor organoids (PTOs) growth in hydrogels have emerged as an important in vitro model that recapitulates many characteristics of the native tumor tissue, and have important applications in fundamental cancer research and for the development of useful therapeutic treatment. This paper begins with reviewing the methods of isolation of primary tumor cells. Then, recent advances on the instructive hydrogels as biomimetic extracellular matrix for primary tumor cell culture and construction of PTO models are summarized. Emerging microtechnology for growth of PTOs in microscale hydrogels and the applications of PTOs are highlighted. This paper concludes with an outlook on the future directions in the investigation of instructive hydrogels for PTO growth.
Collapse
Affiliation(s)
- Yiyang Jia
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 China
| | - Zhentong Wei
- Department of Oncologic Gynecology The First Hospital of Jilin University Changchun 130021 China
| | - Songling Zhang
- Department of Oncologic Gynecology The First Hospital of Jilin University Changchun 130021 China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 China
- Joint Laboratory of Opto‐Functional Theranostics in Medicine and Chemistry The First Hospital of Jilin University Changchun 130021 China
| | - Yunfeng Li
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 China
- Joint Laboratory of Opto‐Functional Theranostics in Medicine and Chemistry The First Hospital of Jilin University Changchun 130021 China
| |
Collapse
|
44
|
Huang Y, Huang Z, Tang Z, Chen Y, Huang M, Liu H, Huang W, Ye Q, Jia B. Research Progress, Challenges, and Breakthroughs of Organoids as Disease Models. Front Cell Dev Biol 2021; 9:740574. [PMID: 34869324 PMCID: PMC8635113 DOI: 10.3389/fcell.2021.740574] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/28/2021] [Indexed: 01/14/2023] Open
Abstract
Traditional cell lines and xenograft models have been widely recognized and used in research. As a new research model, organoids have made significant progress and development in the past 10 years. Compared with traditional models, organoids have more advantages and have been applied in cancer research, genetic diseases, infectious diseases, and regenerative medicine. This review presented the advantages and disadvantages of organoids in physiological development, pathological mechanism, drug screening, and organ transplantation. Further, this review summarized the current situation of vascularization, immune microenvironment, and hydrogel, which are the main influencing factors of organoids, and pointed out the future directions of development.
Collapse
Affiliation(s)
- Yisheng Huang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Zhijie Huang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Zhengming Tang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yuanxin Chen
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Mingshu Huang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Hongyu Liu
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Weibo Huang
- Department of stomatology, Guangdong Provincial Corps Hospital, Chinese People's Armed Police Force, Guangzhou, China
| | - Qingsong Ye
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.,School of Stomatology and Medicine, Foshan University, Foshan, China
| | - Bo Jia
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
45
|
Three-Dimensional Culture Systems for Dissecting Notch Signalling in Health and Disease. Int J Mol Sci 2021; 22:ijms222212473. [PMID: 34830355 PMCID: PMC8618738 DOI: 10.3390/ijms222212473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
Three-dimensional (3D) culture systems opened up new horizons in studying the biology of tissues and organs, modelling various diseases, and screening drugs. Producing accurate in vitro models increases the possibilities for studying molecular control of cell–cell and cell–microenvironment interactions in detail. The Notch signalling is linked to cell fate determination, tissue definition, and maintenance in both physiological and pathological conditions. Hence, 3D cultures provide new accessible platforms for studying activation and modulation of the Notch pathway. In this review, we provide an overview of the recent advances in different 3D culture systems, including spheroids, organoids, and “organ-on-a-chip” models, and their use in analysing the crucial role of Notch signalling in the maintenance of tissue homeostasis, pathology, and regeneration.
Collapse
|
46
|
Yi SA, Zhang Y, Rathnam C, Pongkulapa T, Lee KB. Bioengineering Approaches for the Advanced Organoid Research. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007949. [PMID: 34561899 PMCID: PMC8682947 DOI: 10.1002/adma.202007949] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 06/09/2021] [Indexed: 05/09/2023]
Abstract
Recent advances in 3D cell culture technology have enabled scientists to generate stem cell derived organoids that recapitulate the structural and functional characteristics of native organs. Current organoid technologies have been striding toward identifying the essential factors for controlling the processes involved in organoid development, including physical cues and biochemical signaling. There is a growing demand for engineering dynamic niches characterized by conditions that resemble in vivo organogenesis to generate reproducible and reliable organoids for various applications. Innovative biomaterial-based and advanced engineering-based approaches have been incorporated into conventional organoid culture methods to facilitate the development of organoid research. The recent advances in organoid engineering, including extracellular matrices and genetic modulation, are comprehensively summarized to pinpoint the parameters critical for organ-specific patterning. Moreover, perspective trends in developing tunable organoids in response to exogenous and endogenous cues are discussed for next-generation developmental studies, disease modeling, and therapeutics.
Collapse
Affiliation(s)
- Sang Ah Yi
- Epigenome Dynamics Control Research Center, School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ, 08854, USA
| | - Yixiao Zhang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ, 08854, USA
| | - Christopher Rathnam
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ, 08854, USA
| | - Thanapat Pongkulapa
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ, 08854, USA
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ, 08854, USA
| |
Collapse
|
47
|
Criss ZK, Bhasin N, Di Rienzi SC, Rajan A, Deans-Fielder K, Swaminathan G, Kamyabi N, Zeng XL, Doddapaneni H, Menon VK, Chakravarti D, Estrella C, Yu X, Patil K, Petrosino JF, Fleet JC, Verzi MP, Christakos S, Helmrath MA, Arimura S, DePinho RA, Britton RA, Maresso AW, Grande-Allen KJ, Blutt SE, Crawford SE, Estes MK, Ramani S, Shroyer NF. Drivers of transcriptional variance in human intestinal epithelial organoids. Physiol Genomics 2021; 53:486-508. [PMID: 34612061 DOI: 10.1152/physiolgenomics.00061.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Human intestinal epithelial organoids (enteroids and colonoids) are tissue cultures used for understanding the physiology of the human intestinal epithelium. Here, we explored the effect on the transcriptome of common variations in culture methods, including extracellular matrix substrate, format, tissue segment, differentiation status, and patient heterogeneity. RNA-sequencing datasets from 276 experiments performed on 37 human enteroid and colonoid lines from 29 patients were aggregated from several groups in the Texas Medical Center. DESeq2 and gene set enrichment analysis (GSEA) were used to identify differentially expressed genes and enriched pathways. PERMANOVA, Pearson's correlation, and dendrogram analysis of the data originally indicated three tiers of influence of culture methods on transcriptomic variation: substrate (collagen vs. Matrigel) and format (3-D, transwell, and monolayer) had the largest effect; segment of origin (duodenum, jejunum, ileum, colon) and differentiation status had a moderate effect; and patient heterogeneity and specific experimental manipulations (e.g., pathogen infection) had the smallest effect. GSEA identified hundreds of pathways that varied between culture methods, such as IL1 cytokine signaling enriched in transwell versus monolayer cultures and E2F target genes enriched in collagen versus Matrigel cultures. The transcriptional influence of the format was furthermore validated in a synchronized experiment performed with various format-substrate combinations. Surprisingly, large differences in organoid transcriptome were driven by variations in culture methods such as format, whereas experimental manipulations such as infection had modest effects. These results show that common variations in culture conditions can have large effects on intestinal organoids and should be accounted for when designing experiments and comparing results between laboratories. Our data constitute the largest RNA-seq dataset interrogating human intestinal epithelial organoids.
Collapse
Affiliation(s)
- Zachary K Criss
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Nobel Bhasin
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Sara C Di Rienzi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Anubama Rajan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Kali Deans-Fielder
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | | | | | - Xi-Lei Zeng
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Harsha Doddapaneni
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Vipin K Menon
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Deepavali Chakravarti
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Clarissa Estrella
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Xiaomin Yu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Ketki Patil
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Joseph F Petrosino
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - James C Fleet
- Department of Nutrition Sciences, The University of Texas, Austin, Texas
| | - Michael P Verzi
- Department of Genetics, Rutgers University, Piscataway, New Jersey
| | - Sylvia Christakos
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, Newark, New Jersey
| | - Michael A Helmrath
- Department of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Sumimasa Arimura
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert A Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Anthony W Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | | | - Sarah E Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Sue E Crawford
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Sasirekha Ramani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Noah F Shroyer
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
48
|
Hydrogel-based colorectal cancer organoid co-culture models. Acta Biomater 2021; 132:461-472. [PMID: 33388439 DOI: 10.1016/j.actbio.2020.12.037] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/22/2020] [Accepted: 12/16/2020] [Indexed: 12/24/2022]
Abstract
The lack of cancer-associated fibroblasts (CAFs) in patient-derived organoid (PDO) models is a major limitation as CAFs contribute to tumor progression and drug resistance. In the present study, we addressed this problem by establishing in vitro conditions that enable the co-culture of colorectal cancer (CRC) PDO with patient-derived CAFs. Considering that the CRC extracellular matrix is high in hyaluronan and collagen I, we hypothesized that hyaluronan-gelatin hydrogels may serve as a suitable alternative 3D matrix to traditionally used basement membrane extracts to support the co-culture of CRC PDO and CAFs. We report the development of in vitro models consisting of CRC PDO encapsulated within a well-defined three-dimensional (3D) hyaluronan-gelatin hydrogel and co-cultured with patient-derived CAFs. Through RNA- and whole -exome sequencing, we first show that these hydrogels are capable of maintaining key molecular characteristics of the original patient tumors in CRC PDO but not support the culture of CAFs. Further, based on our findings that CRC PDO culture medium poorly supports CAF viability, we developed a co-culture strategy that maintains the viability of both CRC PDO and CAFs. We found that even in the absence of growth factors conventionally used to support CRC PDO culture, CAFs were able to maintain the proliferation of the cultured CRC PDO in the hydrogels and restore distinct biological pathways absent in the PDO culture alone but present in patient tissues. Lastly, we demonstrate that these CRC PDO-CAFs co-culture models are suitable for evaluating standard-of-care drugs, making them potentially very useful for realizing personalized cancer medicine. STATEMENT OF SIGNIFICANCE: We report the development of an engineered tumor microenvironment consisting of colorectal cancer patient-derived organoids (CRC PDO) encapsulated within a well-defined three-dimensional (3D) hyaluronan-gelatin hydrogel and co-cultured with patient-derived cancer-associated fibroblasts (CAFs). Through sequential culture, we found that in the absence of growth factors added to the co-culture, CAFs were able to maintain the proliferation of the cultured CRC PDO in the hydrogels and restore distinct biological pathways absent in the PDO culture alone but present in patient tissues. Lastly, we demonstrate that these CRC PDO-CAFs models are suitable for evaluating standard-of-care drugs, making them potentially very useful for realizing personalized cancer medicine.
Collapse
|
49
|
Kim SK, Kim YH, Park S, Cho SW. Organoid engineering with microfluidics and biomaterials for liver, lung disease, and cancer modeling. Acta Biomater 2021; 132:37-51. [PMID: 33711526 DOI: 10.1016/j.actbio.2021.03.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/14/2021] [Accepted: 03/01/2021] [Indexed: 02/08/2023]
Abstract
As life expectancy improves and the number of people suffering from various diseases increases, the need for developing effective personalized disease models is rapidly rising. The development of organoid technology has led to better recapitulation of the in vivo environment of organs, and can overcome the constraints of existing disease models. However, for more precise disease modeling, engineering approaches such as microfluidics and biomaterials, that aid in mimicking human physiology, need to be integrated with the organoid models. In this review, we introduce key elements for disease modeling and recent engineering advances using both liver and lung organoids. Due to the importance of personalized medicine, we also emphasize patient-derived cancer organoid models and their engineering approaches. These organoid-based disease models combined with microfluidics, biomaterials, and co-culture systems will provide a powerful research platform for understanding disease mechanisms and developing precision medicine; enabling preclinical drug screening and drug development. STATEMENT OF SIGNIFICANCE: The development of organoid technology has led to better recapitulation of the in vivo environment of organs, and can overcome the constraints of existing disease models. However, for more precise disease modeling, engineering approaches such as microfluidics and biomaterials, that aid in mimicking human physiology, need to be integrated with the organoid models. In this review, we introduce liver, lung, and cancer organoids integrated with various engineering approaches as a novel platform for personalized disease modeling. These engineered organoid-based disease models will provide a powerful research platform for understanding disease mechanisms and developing precision medicine.
Collapse
|
50
|
Luo Z, Zhou X, Mandal K, He N, Wennerberg W, Qu M, Jiang X, Sun W, Khademhosseini A. Reconstructing the tumor architecture into organoids. Adv Drug Deliv Rev 2021; 176:113839. [PMID: 34153370 PMCID: PMC8560135 DOI: 10.1016/j.addr.2021.113839] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023]
Abstract
Cancer remains a leading health burden worldwide. One of the challenges hindering cancer therapy development is the substantial discrepancies between the existing cancer models and the tumor microenvironment (TME) of human patients. Constructing tumor organoids represents an emerging approach to recapitulate the pathophysiological features of the TME in vitro. Over the past decade, various approaches have been demonstrated to engineer tumor organoids as in vitro cancer models, such as incorporating multiple cellular populations, reconstructing biophysical and chemical traits, and even recapitulating structural features. In this review, we focus on engineering approaches for building tumor organoids, including biomaterial-based, microfabrication-assisted, and synthetic biology-facilitated strategies. Furthermore, we summarize the applications of engineered tumor organoids in basic cancer research, cancer drug discovery, and personalized medicine. We also discuss the challenges and future opportunities in using tumor organoids for broader applications.
Collapse
Affiliation(s)
- Zhimin Luo
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA 90095, USA; School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xingwu Zhou
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kalpana Mandal
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Na He
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Wally Wennerberg
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Moyuan Qu
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, and Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Xing Jiang
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA 90095, USA; School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wujin Sun
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA.
| | - Ali Khademhosseini
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA; Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, Department of Radiology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|