1
|
Chen B, Wang L, Xie R, Li B, Peng S, Ou Y, Zhuang R, Zhuang W, Huang H, Wu J, Huang H. Inflammation-Targeted and Antioxidative Poly(Ferulic Acid) Nanoparticles Directly Treat Chronic Nonbacterial Prostatitis via Inhibiting Pyroptosis by Disrupting Nrf2/KEAP1 Multimer Formation and as a Robust Drug Carrier. Adv Healthc Mater 2025:e2500954. [PMID: 40420639 DOI: 10.1002/adhm.202500954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 05/11/2025] [Indexed: 05/28/2025]
Abstract
Chronic nonbacterial prostatitis (CNP) is challenging to treat due to limited options. This study introduces a new approach using natural ferulic acid-based polymer nanoparticles to target CNP. Ferulic acid (FA) is polymerized into poly(ferulic acid) and forms nanoparticles (PFA NPs). Folic acid (Fa) is added for targeting, and celecoxib (Cel) is loaded, creating PFA-Fa@Cel NPs. These nanoparticles, ≈100 nm in size, have a 39% drug encapsulation efficiency, showing good stability, biocompatibility, controlled release, and anti-inflammatory effects, including reduced macrophage chemotaxis. PFA NPs demonstrated strong anti-inflammatory effects and targeted oxidative stress reduction while inhibiting pyroptosis. Mechanistic studies showed that PFA-Fa NPs disrupted the KEAP1/Nrf2 complex, leading to Nrf2 activation, enhanced antioxidant responses, and preservation of prostate epithelium integrity. In summary, PFA-Fa NPs effectively reduce inflammation, oxidative stress, and pyroptosis, while also delivering celecoxib to inflamed tissues, improving treatment efficacy for CNP. This approach shows significant clinical promise for CNP patients.
Collapse
Affiliation(s)
- Bingliang Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Urology Department, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Liying Wang
- Department of Anesthesiology, General Hospital of Southern Theatre Command of PLA, Guangzhou, 510010, China
| | - Ruihui Xie
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Urology Department, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Bingheng Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Urology Department, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Shirong Peng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Urology Department, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yuan Ou
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Urology Department, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Ruilin Zhuang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Urology Department, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Wei Zhuang
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Zhongshan North Road, Licheng District, Quanzhou, Fujian, 362000, China
| | - Hao Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Urology Department, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jun Wu
- Bioscience and Biomedical Engineering Thrust, Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, Guangdong, 511400, China
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, 999077, China
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Urology Department, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, 511518, China
| |
Collapse
|
2
|
Zhang H, Lv J, Wu H, He Y, Li M, Wu C, Lv D, Liu Y, Yang H. Endogenous/exogenous dual-responsive nanozyme for photothermally enhanced ferroptosis-immune reciprocal synergistic tumor therapy. SCIENCE ADVANCES 2025; 11:eadq3870. [PMID: 40367177 PMCID: PMC12077522 DOI: 10.1126/sciadv.adq3870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 04/08/2025] [Indexed: 05/16/2025]
Abstract
Apoptosis resistance and immune evasion of tumor cells substantially increase the risk of cancer treatment failure. Here, a multifunctional nanozyme MET-CMS@FeTA (MCMSFT) formulated to induce nonapoptotic ferroptosis and boost immune recognition/attack, where compensatory mechanisms collectively overcome intrinsic tumor therapeutic limitations and improve medical intervention outcomes. Leveraging the multienzyme-like activity of MCMSFT to achieve oxygen generation, hydroxyl radical production, and glutathione depletion promotes hypoxia relief and triggers apoptosis/ferroptosis. Notably, MCMSFT-mediated photothermal therapy (PTT) facilitates direct tumor thermal ablation and offers exogenous heat to accelerate nanocatalytic reactions. Furthermore, PTT/ferroptosis-caused immunogenic cell death favors antitumor immunity initiation. Simultaneously, metformin administration and hypoxia amelioration down-regulate programmed death ligand 1 alleviating immune evasion. Interferon-γ secretion poses positive feedback to ferroptosis, thereby establishing a ferroptosis-immune mutual amplification loop. Antitumor performances illustrate that MCMSFT eliminates primary tumors and suppresses metastasis/rechallenge tumors. Collectively, MCMSFT surmounts the predicament of apoptosis resistance and immune evasion in cancer treatment to acquire more effective and comprehensive therapy efficacy.
Collapse
Affiliation(s)
- Hanxi Zhang
- Department of Oncology & Cancer Institute, Sichuan Provincial People’s Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Jiazhen Lv
- Department of Oncology & Cancer Institute, Sichuan Provincial People’s Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Hao Wu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan, P. R. China
| | - Yuhan He
- Department of Oncology & Cancer Institute, Sichuan Provincial People’s Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Mengyue Li
- Department of Oncology & Cancer Institute, Sichuan Provincial People’s Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Chunhui Wu
- Department of Oncology & Cancer Institute, Sichuan Provincial People’s Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Dong Lv
- Department of Urology, Deyang People’s Hospital, Deyang 618099, Sichuan, P. R. China
| | - Yiyao Liu
- Department of Oncology & Cancer Institute, Sichuan Provincial People’s Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan, P. R. China
- Department of Urology, Deyang People’s Hospital, Deyang 618099, Sichuan, P. R. China
| | - Hong Yang
- Department of Oncology & Cancer Institute, Sichuan Provincial People’s Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| |
Collapse
|
3
|
Zhu K, Li Z, Cao J, Cao Y, Wang J, Wang S, Chen L, Zhou H, Huang W, Zou H, Li Q, Mu J, Song J. Radio-Activated Selenium-Doped Janus Ag/Ag 2Se xS y Nanoparticles for Precise Cancer NIR-II Fluorescence Imaging and Radiosensitization Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2417828. [PMID: 40244797 DOI: 10.1002/advs.202417828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/12/2025] [Indexed: 04/19/2025]
Abstract
The efficacy of radiotherapy (RT) is often limited by insufficient tumor selectivity and suboptimal therapeutic responses. To overcome these problems, a new kind of selenium-doped Ag/Ag2S Janus nanoparticles (Ag/Ag2SexSy JNPs) is presented as radio-responsive molecular probes for precise tumor imaging and enhanced radiosensitization. By adjusting the selenium precursor input, heterojunction nanoparticles with tunable doping ratios are synthesized, optimizing X-ray absorption and energy storage properties. Upon X-ray irradiation, the Ag/Ag2SexSy JNPs interact with overexpressed hydrogen peroxide (H2O2) in tumor cells, generating highly toxic hydroxyl radicals (·OH), which effectively induce tumor cell apoptosis. Additionally, Selenium incorporation improves electron-hole pair separation efficiency and enhances the photocurrent response, promoting increased electron transfer and ·OH generation, thus amplifying reactive oxygen species (ROS) production and enhancing radiosensitization. Furthermore, the fluorescence "OFF-ON" mechanism, triggered by H2O2-induced etching of silver allows real-time monitoring of H2O2 levels via the second near-infrared window (NIR-II) fluorescence (FL) imaging "Turn On", which delineates tumor boundaries for precise RT and reduce side effects to normal tissue. This dual-functional platform not only enables real-time tracking but also enhances therapeutic outcomes, offering a promising approach to precision cancer treatment.
Collapse
Affiliation(s)
- Kang Zhu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhanyuan Li
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Department of Radiation Oncology, Jinan, 250117, P. R. China
| | - Jingjing Cao
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yixi Cao
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jimei Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shiyu Wang
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Ling Chen
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Huiqin Zhou
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Wei Huang
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Department of Radiation Oncology, Jinan, 250117, P. R. China
| | - Hanxun Zou
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, Key Laboratory of Ecological Environment and Information Atlas, College of Environmental and Biological Engineering, Putian University, Putian, 351100, P. R. China
| | - Qunsheng Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jing Mu
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, P. R. China
| | - Jibin Song
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
4
|
Kuang Y, Chen Y, Liu X, Liu B, Duan Y, Hong C, Yan J, Liu R, Zhuang Y, Chen C, Chen W. Hafnium-Doped Prussian Blue Nanoparticles with Homologous Tumor Targeting and Magnetic Resonance Imaging Ability for Enhanced Tumor Radiotherapy via Photothermal Therapy and Hypoxia Relief. Bioconjug Chem 2025; 36:597-608. [PMID: 40053572 DOI: 10.1021/acs.bioconjchem.5c00064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025]
Abstract
Radiotherapy (RT) continues to encounter significant obstacles such as formidable resistance, potential harm to adjacent healthy cells, and restricted effectiveness against tumors, resulting in a notable recurrence rate. Therefore, combining imaging, other treatments, and suitable enzyme activity in one nanoplatform can enhance the RT effect and reduce the damage to normal tissue. In this study, integrating hafnium in Prussian blue (PB) nanoparticles (PB NPs) provided innovative hafnium-doped PB (HPB) NPs as multifunctional radiosensitizers. The HPB NPs were enveloped by the cancer cell membrane, resulting in cancer cell membrane-camouflaged HPB (CMHPB) NPs that can specifically target homologous tumors. Moreover, owing to the inherent ability of photothermal therapy (PTT), magnetic resonance imaging (MRI), and catalase (CAT)-like activity of PB NPs, CMHPB NPs effectively overcome tumor hypoxia and realize the MRI-guided combined RT and PTT. The prepared HPB NPs possessed uniform and cubic morphology with a monodisperse size of approximately 80 nm and T1 MRI capability (r1 = 0.9309 mM-1 S-1). The HPB NPs showed reliable PTT efficiency and CAT-like activity in vitro and in vivo. Guided by MRI, the CMHPB NPs can be precisely delivered to the tumor region for combined RT and PTT for targeted destruction of tumor cells, significantly inhibiting tumor growth. The innovative multifunctional CMHPB NPs can be used for MRI-guided RT and PTT, which address the key challenges of RT and provide a viable strategy for enhancing tumor treatment.
Collapse
Affiliation(s)
- Ye Kuang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Yufang Chen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Xinying Liu
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Baohui Liu
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Yu Duan
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Chaowei Hong
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Jincong Yan
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Renpin Liu
- Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou 350122, China
| | - Yubin Zhuang
- Laboratory Animal Center, Fujian Medical University, Fuzhou 350122, China
| | - Changmai Chen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Wei Chen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| |
Collapse
|
5
|
Bhiri N, Masquelez N, Nasri M, Nasri R, Hajji M, Li S. Synthesis, Characterization, and Stability Study of Selenium Nanoparticles Coated with Purified Polysaccharides from Ononis natrix. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:435. [PMID: 40137608 PMCID: PMC11946226 DOI: 10.3390/nano15060435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/03/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025]
Abstract
Selenium nanoparticles (SeNPs) attract considerable attention for their promising applications in the biomedical field, driven by their unique properties and antioxidant activities. However, their practical use is often hindered by issues such as instability and aggregation. In this study, a polysaccharide, P2, extracted from Ononis natrix, was used to stabilize SeNPs to address these limitations. P2-SeNPs were prepared through a green synthesis method involving sodium selenite, P2, and ascorbic acid, and characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), Fourier-transform infrared (FT-IR) spectroscopy, and X-ray diffraction (XRD). P2-SeNPs exhibited a smaller particle size and enhanced stability compared to unmodified SeNPs. UV-Vis spectroscopy and X-ray photoelectron spectroscopy (XPS) demonstrated the presence of Se-O bonds, suggesting effective stabilization by covalent bonding between SeNPs and P2. Stability tests revealed that P2-SeNPs maintained good dispersion under various conditions, with optimal stability observed at refrigerated temperatures and neutral pH. Moreover, P2-SeNPs exhibited better antioxidant activities than unmodified SeNPs, as evidenced by higher DPPH radical scavenging, ABTS radical scavenging, and metal chelation ratios. This difference is attributed to both the reduced aggregation and smaller size of P2-SeNPs. Therefore, it is concluded that P2-SeNPs exhibit significant potential as an effective antioxidant agent for biomedical applications.
Collapse
Affiliation(s)
- Nour Bhiri
- Institut Européen des Membranes, IEM, UMR 5635, University of Montpellier, CNRS, ENSCM, 34095 Montpellier, France; (N.B.); (N.M.)
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax (ENIS), University of Sfax, P.O. Box 1173, Sfax 3038, Tunisia; (M.N.); (R.N.)
| | - Nathalie Masquelez
- Institut Européen des Membranes, IEM, UMR 5635, University of Montpellier, CNRS, ENSCM, 34095 Montpellier, France; (N.B.); (N.M.)
| | - Moncef Nasri
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax (ENIS), University of Sfax, P.O. Box 1173, Sfax 3038, Tunisia; (M.N.); (R.N.)
| | - Rim Nasri
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax (ENIS), University of Sfax, P.O. Box 1173, Sfax 3038, Tunisia; (M.N.); (R.N.)
| | - Mohamed Hajji
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax (ENIS), University of Sfax, P.O. Box 1173, Sfax 3038, Tunisia; (M.N.); (R.N.)
| | - Suming Li
- Institut Européen des Membranes, IEM, UMR 5635, University of Montpellier, CNRS, ENSCM, 34095 Montpellier, France; (N.B.); (N.M.)
| |
Collapse
|
6
|
Xu X, Su J, Zhu R, Li K, Zhao X, Fan J, Mao F. From morphology to single-cell molecules: high-resolution 3D histology in biomedicine. Mol Cancer 2025; 24:63. [PMID: 40033282 PMCID: PMC11874780 DOI: 10.1186/s12943-025-02240-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/18/2025] [Indexed: 03/05/2025] Open
Abstract
High-resolution three-dimensional (3D) tissue analysis has emerged as a transformative innovation in the life sciences, providing detailed insights into the spatial organization and molecular composition of biological tissues. This review begins by tracing the historical milestones that have shaped the development of high-resolution 3D histology, highlighting key breakthroughs that have facilitated the advancement of current technologies. We then systematically categorize the various families of high-resolution 3D histology techniques, discussing their core principles, capabilities, and inherent limitations. These 3D histology techniques include microscopy imaging, tomographic approaches, single-cell and spatial omics, computational methods and 3D tissue reconstruction (e.g. 3D cultures and spheroids). Additionally, we explore a wide range of applications for single-cell 3D histology, demonstrating how single-cell and spatial technologies are being utilized in the fields such as oncology, cardiology, neuroscience, immunology, developmental biology and regenerative medicine. Despite the remarkable progress made in recent years, the field still faces significant challenges, including high barriers to entry, issues with data robustness, ambiguous best practices for experimental design, and a lack of standardization across methodologies. This review offers a thorough analysis of these challenges and presents recommendations to surmount them, with the overarching goal of nurturing ongoing innovation and broader integration of cellular 3D tissue analysis in both biology research and clinical practice.
Collapse
Affiliation(s)
- Xintian Xu
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- Department of Biochemistry and Molecular Biology, Beijing, Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jimeng Su
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Rongyi Zhu
- Department of Biochemistry and Molecular Biology, Beijing, Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Kailong Li
- Department of Biochemistry and Molecular Biology, Beijing, Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiaolu Zhao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital)Key Laboratory of Assisted Reproduction (Peking University), Ministry of EducationBeijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing, China.
| | - Jibiao Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Fengbiao Mao
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.
- Cancer Center, Peking University Third Hospital, Beijing, China.
- Beijing Key Laboratory for Interdisciplinary Research in Gastrointestinal Oncology (BLGO), Beijing, China.
| |
Collapse
|
7
|
Liu H, Zhen Z, Chen F, Chen J, Chen W. Advancements in Iron Oxide Nanoparticles for Multimodal Imaging and Tumor Theranostics. Curr Med Chem 2025; 32:301-321. [PMID: 39005127 DOI: 10.2174/0109298673301359240705063544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 07/16/2024]
Abstract
The emergence of nanomedicine offers renewed promise in the diagnosis and treatment of diseases. Due to their unique physical and chemical properties, iron oxide nanoparticles (IONPs) exhibit widespread application in the diagnosis and treatment of various ailments, particularly tumors. IONPs have magnetic resonance (MR) T1/T2 imaging capabilities due to their different sizes. In addition, IONPs also have biocatalytic activity (nanozymes) and magnetocaloric effects. They are widely used in chemodynamic therapy (CDT), magnetic hyperthermia treatment (MHT), photodynamic therapy (PDT), and drug delivery. This review outlines the synthesis, modification, and biomedical applications of IONPs, emphasizing their role in enhancing diagnostic imaging (including single-mode and multimodal imaging) and their potential in cancer therapies (including chemotherapy, radiotherapy, CDT, and PDT). Furthermore, we briefly explore the challenges in the clinical application of IONPs, such as surface modification and protein adsorption, and put forward opinions on the clinical transformation of IONPs.
Collapse
Affiliation(s)
- He Liu
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- 7T Magnetic Resonance Imaging Translational Medical Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhiming Zhen
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- 7T Magnetic Resonance Imaging Translational Medical Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Fengxi Chen
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- 7T Magnetic Resonance Imaging Translational Medical Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiafei Chen
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- 7T Magnetic Resonance Imaging Translational Medical Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wei Chen
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- 7T Magnetic Resonance Imaging Translational Medical Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
8
|
Yin M, Liu L, Yan Y, Wang H, Li W, Dong Y, Kong G. A targeting nanoplatform for chemo-photothermal synergistic therapy of small-cell lung cancer. Int J Cancer 2024; 155:2094-2106. [PMID: 38985144 DOI: 10.1002/ijc.35065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 07/11/2024]
Abstract
The precise delivery of drugs to tumor sites and the thermoresistance of tumors remain major challenges in photothermal therapy (PTT). Somatostatin receptor 2 (SSTR2) is proposed as an ideal target for the precise treatment of SCLC. We developed a targeting nano-drug delivery system comprising anti-SSTR2 monoclonal antibody (MAb) surface-modified nanoparticles co-encapsulating Cypate and gambogic acid (GA). The formed SGCPNs demonstrated excellent monodispersity, physiological stability, preferable biocompatibility, and resultant efficient photothermal conversion efficacy. SGCPNs were quickly internalized by SSTR2-overexpressing SCLC cells, triggering the release of GA under acidic and near-infrared (NIR) laser irradiation environments, leading to their escape from lysosomes to the cytosol and then diffusion into the nucleus. SGCPNs can not only decrease the cell survival rate but also inhibit the activity of heat shock protein 90 (HSP90). SGCPNs can be precisely delivered to xenograft tumors of SSTR2-positive SCLC in vivo. Upon NIR laser irradiation, therapy of SGCPNs showed significant tumor regression. In conclusion, SGCPNs provide a new chemo-photothermal synergistic treatment strategy for targeting SCLC.
Collapse
Affiliation(s)
- Moli Yin
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, China
| | - Lei Liu
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, China
| | - Yu Yan
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Huiyan Wang
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, China
| | - Wenliang Li
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, China
| | - Yuan Dong
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Guangyao Kong
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
9
|
Zou Y, Xu H, Wu X, Liu X, Zhao J. Enhancing Radiotherapy Sensitivity in Prostate Cancer with Lentinan-Functionalized Selenium Nanoparticles: Mechanistic Insights and Therapeutic Potential. Pharmaceutics 2024; 16:1230. [PMID: 39339266 PMCID: PMC11434965 DOI: 10.3390/pharmaceutics16091230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/01/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Radiation therapy is a cornerstone of prostate cancer (PCa) treatment. However, its limited tumor sensitivity and severe side effects restrict its clinical utility. Lentinan-functionalized selenium nanoparticles (LET-SeNPs) have shown promise in enhancing radiotherapy sensitivity and exhibiting antitumor activity. In this study, we investigated the radiotherapy sensitization mechanism of LET-SeNPs in PCa. Our results demonstrate that the combination of LET-SeNPs and X-ray therapy (4 Gy) significantly inhibited the growth and colony formation of PCa cells by inducing apoptosis, surpassing the effects of individual treatments. This combined approach modulated DNA damage through the p53, MAPK (mitogen-activated protein kinase), and AKT pathways. Furthermore, LET-SeNPs increased PC3 cell sensitivity to X-ray-induced apoptosis by downregulating TrxR (Thioredoxin reductase) expression and inducing reactive oxygen species (ROS) overproduction, thereby activating mitochondria-mediated apoptosis signaling pathways. Additionally, LET-SeNPs regulated PARP (poly (ADP-ribose) polymerase) to prevent DNA damage repair. In vivo studies confirmed that the combination treatment inhibited PCa growth by synergistically activating the p53 pathway to induce cell apoptosis. These findings highlight LET-SeNPs' potential as a radiotherapy sensitizer and suggest that combining LET-SeNPs with X-ray therapy could be a promising strategy for clinical application, leveraging selenium-modified nanoparticles' antitumor effects.
Collapse
Affiliation(s)
- Yani Zou
- Department of Oncology of the First Affiliated Hospital, Jinan University, Guangzhou 510660, China
- Research Center of Cancer Diagnosis and Therapy, Jinan University, Guangzhou 510632, China
- Tumor Radiotherapy Center, Fuyang People's Hospital, Fuyang 236012, China
| | - Helin Xu
- Department of Emergency Surgery, Fuyang People's Hospital, Fuyang 236012, China
| | - Xiu Wu
- Department of Clinical Pathology, Linyi Maternal and Child Healthcare Hospital, Linyi 276016, China
| | - Xuesong Liu
- Department of Oncology of the First Affiliated Hospital, Jinan University, Guangzhou 510660, China
- Research Center of Cancer Diagnosis and Therapy, Jinan University, Guangzhou 510632, China
| | - Jianfu Zhao
- Department of Oncology of the First Affiliated Hospital, Jinan University, Guangzhou 510660, China
- Research Center of Cancer Diagnosis and Therapy, Jinan University, Guangzhou 510632, China
| |
Collapse
|
10
|
Chen Y, Li X, Shang H, Sun Y, Wang C, Wang X, Tian H, Yang H, Zhang L, Deng L, Yang K, Wu B, Cheng W. Mechanism exploration of synergistic photo-immunotherapy strategy based on a novel exosome-like nanosystem for remodeling the immune microenvironment of HCC. NANO CONVERGENCE 2024; 11:31. [PMID: 39141072 PMCID: PMC11324638 DOI: 10.1186/s40580-024-00441-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024]
Abstract
The immunosuppressive tumor microenvironment (TME) has become a major challenge in cancer immunotherapy, with abundant tumor-associated macrophages (TAMs) playing a key role in promoting tumor immune escape by displaying an immunosuppressive (M2) phenotype. Recently, it was reported that M1 macrophage-derived nanovesicles (M1NVs) can reprogram TAMs to an anti-tumor M1 phenotype, thereby significantly alleviating the immunosuppressive TME and enhancing the anti-tumor efficacy of immunotherapy. Herein, we developed M1NVs loaded with mesoporous dopamine (MPDA) and indocyanine green (ICG), which facilitated the recruitment of M2 TAMs through synergistic photothermal and photodynamic therapy. Thereafter, M1NVs can induce M1 repolarization of TAMs, resulting in increased infiltration of cytotoxic T lymphocytes within the tumor to promote tumor regression. This study investigated the effect of phototherapy on the immune environment of liver cancer using single-cell RNA sequencing (scRNA-seq) by comparing HCC tissues before and after MPDA/ICG@M1NVs + NIR treatment. The results showed significant shifts in cell composition and gene expression, with decreases in epithelial cells, B cells, and macrophages and increases in neutrophils and myeloid cells. Additionally, gene analysis indicated a reduction in pro-inflammatory signals and immunosuppressive functions, along with enhanced B-cell function and anti-tumor immunity, downregulation of the Gtsf1 gene in the epithelial cells of the MPDA/ICG @M1NVs + NIR group, and decreased expression of the lars2 gene in immune subpopulations. Eno3 expression is reduced in M1 macrophages, whereas Clec4a3 expression is downregulated in M2 macrophages. Notably, the B cell population decreased, whereas Pou2f2 expression increased. These genes regulate cell growth, death, metabolism, and tumor environment, indicating their key role in HCC progression. This study highlights the potential for understanding cellular and molecular dynamics to improve immunotherapy.
Collapse
Affiliation(s)
- Yichi Chen
- Department of Ultrasound, Harbin Medical University Cancer Hospital, No.150, Haping Road, Nangang District, Harbin, 150081, China
| | - Xudong Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Haitao Shang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, No.150, Haping Road, Nangang District, Harbin, 150081, China
| | - Yucao Sun
- Department of Ultrasound, Harbin Medical University Cancer Hospital, No.150, Haping Road, Nangang District, Harbin, 150081, China
| | - Chunyue Wang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, No.150, Haping Road, Nangang District, Harbin, 150081, China
| | - Xiaodong Wang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, No.150, Haping Road, Nangang District, Harbin, 150081, China
| | - Huimin Tian
- Department of Ultrasound, Harbin Medical University Cancer Hospital, No.150, Haping Road, Nangang District, Harbin, 150081, China
| | - Huajing Yang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, No.150, Haping Road, Nangang District, Harbin, 150081, China
| | - Lei Zhang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, No.150, Haping Road, Nangang District, Harbin, 150081, China
| | - Liwen Deng
- Department of Ultrasound, Harbin Medical University Cancer Hospital, No.150, Haping Road, Nangang District, Harbin, 150081, China
| | - Kuikun Yang
- School of Life Science and Technology, Harbin Institute of Technology, No. 92, West Dazhi Street, Nangang District, Harbin, Heilongjiang, 150080, P. R. China.
| | - Bolin Wu
- Department of Ultrasound, Harbin Medical University Cancer Hospital, No.150, Haping Road, Nangang District, Harbin, 150081, China.
| | - Wen Cheng
- Department of Ultrasound, Harbin Medical University Cancer Hospital, No.150, Haping Road, Nangang District, Harbin, 150081, China.
| |
Collapse
|
11
|
Liu Y, Pi F, He L, Yang F, Chen T. Oxygen Vacancy-Rich Manganese Nanoflowers as Ferroptosis Inducers for Tumor Radiotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310118. [PMID: 38506599 DOI: 10.1002/smll.202310118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/20/2023] [Indexed: 03/21/2024]
Abstract
The combination of ferroptosis and innovative tumor therapy methods offers another promising answer to the problem of tumors. In order to generate effective ferroptosis in tumor cells, iron-based nanomaterials are commonly utilized to introduce foreign iron as a trigger for ferroptosis. However, this usually necessitates the injection of larger doses of iron into the body. These exogenous iron increases are likely to create concealed concerns for symptoms such as liver damage and allergy. Herein, an iron-free radiosensitizer is introduced, oxygen-vacancy-rich MnO2 nanoflowers (ovs-MnO2), that promotes ferroptosis and modifies the tumor microenvironment to assist radiotherapy. ovs-MnO2 with enriched oxygen vacancies on the surface induces the release of intracellular free iron (Fe2+), which functions as an activator of Fenton reaction and enhances the accumulation of intracellular reactive oxygen species. On the other hand, Fe2+ also triggers the ferroptosis and promotes the accumulation of lipid peroxides. Subsequently, the depletion of glutathione and accumulation of lipid peroxidation in tumor cells leads to the inactivation of glutathione peroxidase 4 (GPX4) and ferroptosis, thereby enhancing the therapeutic efficacy of radiotherapy. The nanoplatform provides a novel strategy for generating novel nanomedicines for ferroptosis-assisted radiotherapy.
Collapse
Affiliation(s)
- Ying Liu
- Department of Oncology of The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Fen Pi
- Department of Oncology of The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Lizhen He
- Department of Oncology of The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Fang Yang
- Department of Oncology of The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Tianfeng Chen
- Department of Oncology of The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
12
|
Thirumurugan S, Muthiah KS, Lin YC, Dhawan U, Liu WC, Wang AN, Liu X, Hsiao M, Tseng CL, Chung RJ. NIR-Responsive Methotrexate-Modified Iron Selenide Nanorods for Synergistic Magnetic Hyperthermic, Photothermal, and Chemodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25622-25636. [PMID: 38739745 PMCID: PMC11129116 DOI: 10.1021/acsami.3c18450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 05/16/2024]
Abstract
Breast cancer is a malignant tumor with a high mortality rate among women. Therefore, it is necessary to develop novel therapies to effectively treat this disease. In this study, iron selenide nanorods (FeSe2 NRs) were designed for use in magnetic hyperthermic, photothermal, and chemodynamic therapy (MHT/PTT/CDT) for breast cancer. To illustrate their efficacy, FeSe2 NRs were modified with the chemotherapeutic agent methotrexate (MTX). MTX-modified FeSe2 (FeSe2-MTX) exhibited excellent controlled drug release properties. Fe2+ released from FeSe2 NRs induced the release of •OH from H2O2 via a Fenton/Fenton-like reaction, enhancing the efficacy of CDT. Under alternating magnetic field (AMF) stimulation and 808 nm laser irradiation, FeSe2-MTX exerted potent hyperthermic and photothermal effects by suppressing tumor growth in a breast cancer nude mouse model. In addition, FeSe2 NRs can be used for magnetic resonance imaging in vivo by incorporating their superparamagnetic characteristics into a single nanomaterial. Overall, we presented a novel technique for the precise delivery of functional nanosystems to tumors that can enhance the efficacy of breast cancer treatment.
Collapse
Affiliation(s)
- Senthilkumar Thirumurugan
- Department
of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Section 3, Zhongxiao East
Road, Taipei 10608, Taiwan
| | - Kayalvizhi Samuvel Muthiah
- Department
of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Section 3, Zhongxiao East
Road, Taipei 10608, Taiwan
| | - Yu-Chien Lin
- Department
of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Section 3, Zhongxiao East
Road, Taipei 10608, Taiwan
| | - Udesh Dhawan
- Centre
for the Cellular Microenvironment, Division of Biomedical Engineering,
James Watt School of Engineering, Mazumdar-Shaw Advanced Research
Centre, University of Glasgow, Glasgow G116EW, U.K.
| | - Wai-Ching Liu
- Faculty
of Science and Technology, Technological
and Higher Education Institute of Hong Kong, New Territories, Hong Kong 999077, China
| | - An-Ni Wang
- Scrona
AG, Grubenstrasse 9, 8045 Zürich, Switzerland
| | - Xinke Liu
- College
of Materials Science and Engineering, Chinese Engineering and Research
Institute of Microelectronics, Shenzhen
University, Shenzhen 518060, China
- Department
of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Michael Hsiao
- Genomics
Research Center, Academia Sinica, Taipei 115, Taiwan
- Department
and Graduate Institute of Veterinary Medicine, School of Veterinary
Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Ching-Li Tseng
- Graduate
Institute of Biomedical Materials and Tissue Engineering, College
of Biomedical Engineering, Taipei Medical
University, Taipei 11031, Taiwan
- International
Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Research
Center of Biomedical Device, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- International
Ph.D. Program in Cell Therapy and Regenerative Medicine, College of
Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ren-Jei Chung
- Department
of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Section 3, Zhongxiao East
Road, Taipei 10608, Taiwan
- High-Value
Biomaterials Research and Commercialization Center, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| |
Collapse
|
13
|
Xu Y, Lai H, Pan S, Pan L, Liu T, Yang Z, Chen T, Zhu X. Selenium promotes immunogenic radiotherapy against cervical cancer metastasis through evoking P53 activation. Biomaterials 2024; 305:122452. [PMID: 38154440 DOI: 10.1016/j.biomaterials.2023.122452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/06/2023] [Accepted: 12/23/2023] [Indexed: 12/30/2023]
Abstract
Radiotherapy is still the recommended treatment for cervical cancer. However, radioresistance and radiation-induced side effects remain one of the biggest clinical problems. Selenium (Se) has been confirmed to exhibit radiation-enhancing effects for cancer treatment. However, Se species dominate the biological activities and which form of Se possesses better radiosensitizing properties and radiation safety remains elusive. Here, different Se species (the valence state of Se ranged from - 2, 0, +4 to + 6) synergy screen was carried out to identify the potential radiosensitizing effects and radiation safety of Se against cervical cancer. We found that the therapeutic effects varied with the changes in the Se valence state. Sodium selenite (+4) displayed strong cancer-killing effects but also possessed severe cytotoxicity. Sodium selenate (+6) neither enhanced the killing effects of X-ray nor possessed anticancer activity by its alone treatment. Although nano-selenium (0), especially Let-SeNPs, has better radiosensitizing activity, the - 2 organic Se, such as selenadiazole derivative SeD (-2) exhibited more potent anticancer effects and possessed a higher safe index. Overall, the selected Se drugs were able to synergize with X-ray to inhibit cell growth, clone formation, and cell migration by triggering G2/M phase arrest and apoptosis, and SeD (-2) was found to exhibit more potent enhancing capacity. Further mechanism studies showed that SeD mediated p53 pathway activation by inducing DNA damage through promoting ROS production. Additionally, SeD combined with X-ray therapy can induce an anti-tumor immune response in vivo. More importantly, SeD combined with X-ray significantly inhibited the liver metastasis of tumor cells and alleviated the side effects caused by radiation therapy in tumor-bearing mice. Taken together, this study demonstrates the radiosensitization and radiation safety effects of different Se species, which may shed light on the application of such Se-containing drugs serving as side effects-reducing agents for cervical cancer radiation treatment.
Collapse
Affiliation(s)
- Yanchao Xu
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China; Department of Chemistry, Jinan University, China
| | - Haoqiang Lai
- Department of Chemistry, Jinan University, China
| | - Shuya Pan
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China
| | - Liuliu Pan
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China
| | - Ting Liu
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China
| | - Ziyi Yang
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China
| | - Tianfeng Chen
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China; Department of Chemistry, Jinan University, China.
| | - Xueqiong Zhu
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China.
| |
Collapse
|
14
|
Pan S, Sun Z, Zhao B, Miao L, Zhou Q, Chen T, Zhu X. Therapeutic application of manganese-based nanosystems in cancer radiotherapy. Biomaterials 2023; 302:122321. [PMID: 37722183 DOI: 10.1016/j.biomaterials.2023.122321] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/05/2023] [Accepted: 09/09/2023] [Indexed: 09/20/2023]
Abstract
Radiotherapy is an important therapeutic modality in the treatment of cancers. Nevertheless, the characteristics of the tumor microenvironment (TME), such as hypoxia and high glutathione (GSH), limit the efficacy of radiotherapy. Manganese-based (Mn-based) nanomaterials offer a promising prospect for sensitizing radiotherapy due to their good responsiveness to the TME. In this review, we focus on the mechanisms of radiosensitization of Mn-based nanosystems, including alleviating tumor hypoxia, increasing reactive oxygen species production, increasing GSH conversion, and promoting antitumor immunity. We further illustrate the applications of these mechanisms in cancer radiotherapy, including the development and delivery of radiosensitizers, as well as their combination with other therapeutic modalities. Finally, we summarize the application of Mn-based nanosystems as contrast agents in realizing precision therapy. Hopefully, the present review will provide new insights into the biological mechanisms of Mn-based nanosystems, as well as their applications in radiotherapy, in order to address the difficulties and challenges that remain in their clinical application in the future.
Collapse
Affiliation(s)
- Shuya Pan
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China
| | - Zhengwei Sun
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China
| | - Bo Zhao
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China
| | - Liqing Miao
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China
| | - Qingfeng Zhou
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China
| | - Tianfeng Chen
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China; Department of Chemistry, Jinan University, China.
| | - Xueqiong Zhu
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China.
| |
Collapse
|
15
|
Guo S, Gu D, Yang Y, Tian J, Chen X. Near-infrared photodynamic and photothermal co-therapy based on organic small molecular dyes. J Nanobiotechnology 2023; 21:348. [PMID: 37759287 PMCID: PMC10523653 DOI: 10.1186/s12951-023-02111-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Near-infrared (NIR) organic small molecule dyes (OSMDs) are effective photothermal agents for photothermal therapy (PTT) due to their advantages of low cost and toxicity, good biodegradation, and strong NIR absorption over a wide wavelength range. Nevertheless, OSMDs have limited applicability in PTT due to their low photothermal conversion efficiency and inadequate destruction of tumor regions that are nonirradiated by NIR light. However, they can also act as photosensitizers (PSs) to produce reactive oxygen species (ROS), which can be further eradicated by using ROS-related therapies to address the above limitations of PTT. In this review, the synergistic mechanism, composition, and properties of photodynamic therapy (PDT)-PTT nanoplatforms were comprehensively discussed. In addition, some specific strategies for further improving the combined PTT and PDT based on OSMDs for cancer to completely eradicate cancer cells were outlined. These strategies include performing image-guided co-therapy, enhancing tumor infiltration, increasing H2O2 or O2 in the tumor microenvironment, and loading anticancer drugs onto nanoplatforms to enable combined therapy with phototherapy and chemotherapy. Meanwhile, the intriguing prospects and challenges of this treatment modality were also summarized with a focus on the future trends of its clinical application.
Collapse
Affiliation(s)
- Shuang Guo
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Dongyu Gu
- College of Marine Science and Environment, Dalian Ocean University, Dalian, 116023, China
| | - Yi Yang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| | - Jing Tian
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine, Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore.
| |
Collapse
|
16
|
Wang J, Zhang H, Lv J, Zheng Y, Li M, Yang G, Wei X, Li N, Huang H, Li T, Qin X, Li S, Wu C, Zhang W, Liu Y, Yang H. A Tumor-specific ROS Self-supply Enhanced Cascade-responsive Prodrug Activation Nanosystem for Amplified Chemotherapy against Multidrug-Resistant Tumors. Acta Biomater 2023; 164:522-537. [PMID: 37072069 DOI: 10.1016/j.actbio.2023.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/21/2023] [Accepted: 04/09/2023] [Indexed: 04/20/2023]
Abstract
Chemotherapy remains the mainstay of cancer treatment, and doxorubicin (DOX) is recommended as a first-line chemotherapy drug against cancer. However, systemic adverse drug reactions and multidrug resistance limit its clinical applications. Here, a tumor-specific reactive oxygen species (ROS) self-supply enhanced cascade responsive prodrug activation nanosystem (denoted as PPHI@B/L) was developed to optimize multidrug resistance tumor chemotherapy efficacy while minimizing the side effects. PPHI@B/L was constructed by encapsulating the ROS-generating agent β-lapachone (Lap) and the ROS-responsive doxorubicin prodrug (BDOX) in acidic pH-sensitive heterogeneous nanomicelles. PPHI@B/L exhibited particle size decrease and charge increase when it reached the tumor microenvironment due to acid-triggered PEG detachment, to favor its endocytosis efficiency and deep tumor penetration. Furthermore, after PPHI@B/L internalization, rapidly released Lap was catalyzed by the overexpressed quinone oxidoreductase-1 (NQO1) enzyme NAD(P)H in tumor cells to selectively raise intracellular ROS levels. Subsequently, ROS generation further promoted the specific cascade activation of the prodrug BDOX to exert the chemotherapy effects. Simultaneously, Lap-induced ATP depletion reduced drug efflux, synergizing with increased intracellular DOX concentrations to assist in overcoming multidrug resistance. This tumor microenvironment-triggered cascade responsive prodrug activation nanosystem potentiates antitumor effects with satisfactory biosafety, breaking the chemotherapy limitation of multidrug resistance and significantly improving therapy efficiency. STATEMENT OF SIGNIFICANCE: Chemotherapy remains the mainstay of cancer treatment, and doxorubicin (DOX) is recommended as a first-line chemotherapy drug against cancer. However, systemic adverse drug reactions and multidrug resistance limit its clinical applications. Here, a tumor-specific reactive oxygen species (ROS) self-supply enhanced cascade responsive prodrug activation nanosystem (denoted as PPHI@B/L) was developed to optimize multidrug resistance tumor chemotherapy efficacy while minimizing the side effects. The work provides a new sight for simultaneously addressing the molecular mechanisms and physio-pathological disorders to overcome MDR in cancer treatment.
Collapse
Affiliation(s)
- Jing Wang
- Department of Orthopedics, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
| | - Hanxi Zhang
- Department of Orthopedics, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
| | - Jiazhen Lv
- Department of Orthopedics, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
| | - Yue Zheng
- Department of Orthopedics, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
| | - Mengyue Li
- Department of Orthopedics, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
| | - Geng Yang
- Department of Orthopedics, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
| | - Xiaodan Wei
- Department of Orthopedics, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
| | - Ningxi Li
- Department of Orthopedics, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
| | - Honglin Huang
- Department of Orthopedics, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
| | - Tingting Li
- Department of Orthopedics, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
| | - Xiang Qin
- Department of Orthopedics, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
| | - Shun Li
- Department of Orthopedics, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
| | - Chunhui Wu
- Department of Orthopedics, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
| | - Wei Zhang
- Department of Orthopedics, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China.
| | - Yiyao Liu
- Department of Orthopedics, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan, P.R. China.
| | - Hong Yang
- Department of Orthopedics, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China.
| |
Collapse
|
17
|
Preparation and anti-tumor activity of selenium nanoparticles based on a polysaccharide from Paeonia lactiflora. Int J Biol Macromol 2023; 232:123261. [PMID: 36649870 DOI: 10.1016/j.ijbiomac.2023.123261] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/08/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
The combination of selenium and polysaccharides is one of the significant ways to ameliorate the anti-cancer effects of polysaccharides. PLP50-1, a homogeneous polysaccharide purified from the aqueous extract of Paeonia lactiflora, had a molecular weight of 1.52 × 104 Da and consisted of α-D-Glcp-(1→, →4)-α-D-Glcp-(1→, →6)-α-D-Glcp-(1→, →4,6)-α-D-Glcp-(1→, and →6)-β-D-Fruf-(2→. PLP50-1 showed weak anti-tumor effects against A549 cells. To ameliorate the activity of PLP50-1, the complex nanoparticles combining P. lactiflora polysaccharide with selenium were constructed successfully. Structural properties of the polysaccharide-based selenium nanoparticles (PLP-SeNPs) were clarified using various means. The results displayed that a kind of monodisperse spherical nanoparticles containing high selenium content (39.1 %) with controllable size was constructed and showed satisfactory stability. The cellular anti-tumor assay indicated that PLP-SeNPs had stronger antiproliferative activity against A549 cells than PLP50-1. Additionally, the zebrafish experiments displayed that PLP-SeNPs inhibited the proliferation and migration of A549 cells significantly and blocked the angiogenesis.
Collapse
|
18
|
Zu Y, Wang Z, Yao H, Yan L. Oxygen-generating biocatalytic nanomaterials for tumor hypoxia relief in cancer radiotherapy. J Mater Chem B 2023; 11:3071-3088. [PMID: 36920849 DOI: 10.1039/d2tb02751h] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Radiotherapy (RT), the most commonly used treatment method in clinics, shows unique advantages such as strong penetration, high energy intensity, and low systemic side effects. However, in vivo tumor hypoxia seriously hinders the therapeutic effect of RT. Hypoxia is a common characteristic of locally advanced solid tumor microenvironments, which leads to the proliferation, invasion and metastasis of tumor cells. In addition, oxygen consumption during RT will further aggravate tumor hypoxia, causing a variety of adverse side effects. In recent years, various biocatalytic nanomaterials (BCNs) have been explored to regulate and reverse tumor hypoxia microenvironments during RT. In this review, the most recent efforts toward developing oxygen-generating BCNs in relieving tumor hypoxia in RT are focused upon. The classification, engineering nanocatalytical activity of oxygen-generating BCNs and combined therapy based on these BCNs are systematically introduced and discussed. The challenges and prospects of these oxygen-generating BCNs in RT applications are also summarized.
Collapse
Affiliation(s)
- Yan Zu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Ziyu Wang
- College of Medical and Biological lnformation Engineering, Northeastern University, Shenyang 110170, China
| | - Huiqin Yao
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China.
| | - Liang Yan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
19
|
Yang Y, Jiang Y, Xie B, Shi S, Pi F, Chen M, Sang C, Xu L, Chen T. Selenadiazole derivative-loaded metal azolate frameworks facilitate NK cell immunotherapy by sensitizing tumor cells and shaping immuno-suppressive microenvironments. Biomater Sci 2023; 11:1517-1529. [PMID: 36606484 DOI: 10.1039/d2bm01752k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The low sensitivity of tumor cells and immunosuppressive microenvironments lead to unsatisfactory efficacy of natural killer (NK) cell immunotherapy. In this work, we developed a safe and effective combination treatment strategy by integrating a selenadiazole derivative (PSeD)-loaded metal azolate framework (PSeD@MAF-4(R)) with NK cells derived from cancer patients against a xenograft human breast tumor model. Intriguingly, it was found that only PSeD@MAF-4(R) pretreatment on tumor cells exhibited synergistic effects with NK cells in inhibiting tumor cell growth by up-regulating NKG2D and its ligands to maximize the interactions between NK and MCF-7 cells. Moreover, PSeD@MAF-4(R) pretreatment could significantly enhance the degranulation of NK cells and regulate their secretions of pro- or anti-inflammatory cytokines (e.g. IL-6, IL-10, and TGF-β). Furthermore, PSeD@MAF-4(R) could significantly enhance the penetration capability of NK cells into tumor spheroids. The combination treatment mainly induced G1 phase arrest and activated multiple caspase-mediated apoptosis of tumor cells. In vivo evidence showed that PSeD@MAF-4(R) combined with NK cells could highly efficiently combat breast tumor progression via inducing and activating innate immune cell (DC and NK cell) infiltrations within tumor tissues while shaping the suppressive tumor microenvironment by down-regulating the expression of TGF-β. This developed strategy may provide important information for developing NK cell-based combination cancer immunotherapy with high efficacy and good safety profiles.
Collapse
Affiliation(s)
- Yahui Yang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China.
| | - Yalin Jiang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China.
| | - Bin Xie
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China.
| | - Sujiang Shi
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China.
| | - Fen Pi
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China.
| | - Mingkai Chen
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China.
| | - Chengcheng Sang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China.
| | - Ligeng Xu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China.
| | - Tianfeng Chen
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
20
|
Li G, Wu S, Chen W, Duan X, Sun X, Li S, Mai Z, Wu W, Zeng G, Liu H, Chen T. Designing Intelligent Nanomaterials to Achieve Highly Sensitive Diagnoses and Multimodality Therapy of Bladder Cancer. SMALL METHODS 2023; 7:e2201313. [PMID: 36599700 DOI: 10.1002/smtd.202201313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Bladder cancer (BC) is among the most common malignant tumors of the genitourinary system worldwide. In recent years, the rate of BC incidence has increased, and the recurrence rate is high, resulting in poor quality of life for patients. Therefore, how to develop an effective method to achieve synchronous precise diagnoses and BC therapies is a difficult problem to solve clinically. Previous reports usually focus on the role of nanomaterials as drug delivery carriers, while a summary of the functional design and application of nanomaterials is lacking. Summarizing the application of functional nanomaterials in high-sensitivity diagnosis and multimodality therapy of BC is urgently needed. This review summarizes the application of nanotechnology in BC diagnosis, including the application of nanotechnology in the sensoring of BC biomarkers and their role in monitoring BC. In addition, conventional and combination therapies strategy in potential BC therapy are analyzed. Moreover, different kinds of nanomaterials in BC multimodal therapy according to pathological features of BC are also outlined. The goal of this review is to present an overview of the application of nanomaterials in the theranostics of BC to provide guidance for the application of functional nanomaterials to precisely diagnose and treat BC.
Collapse
Affiliation(s)
- Guanlin Li
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Sicheng Wu
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Wenzhe Chen
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Xiaolu Duan
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Xinyuan Sun
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Shujue Li
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Zanlin Mai
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Wenzheng Wu
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, P. R. China
| | - Guohua Zeng
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Hongxing Liu
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510631, P. R. China
| | - Tianfeng Chen
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510631, P. R. China
| |
Collapse
|
21
|
Zhu H, Zhou Y, Wang Y, Xu S, James TD, Wang L. Stepwise-Enhanced Tumor Targeting of Near-Infrared Emissive Au Nanoclusters with High Quantum Yields and Long-Term Stability. Anal Chem 2022; 94:13189-13196. [PMID: 36106565 PMCID: PMC9591319 DOI: 10.1021/acs.analchem.2c02717] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
We developed an in situ coordination-driven
spatially
confined strategy for preparing near-infrared emissive gold nanoclusters
encapsulated by fluorinated polymers (AuNCs@PF, λmax = 810 nm) with good stability and high quantum yields (27.7%), far
higher than those previously reported for NIR AuNCs (>800 nm).
Based
on the stepwise enhancements including long blood circulation-induced
passive tumor targeting, fluoro-enhanced tumor permeation, and tumor
microenvironment (weak acid)-induced aggregation retention in cells,
these AuNCs demonstrated bright and stable NIR fluorescence imaging
ability in tumors. Additionally, the AuNCs@PF were capable of fluorine
magnetic resonance imaging and computed tomographic imaging. The multimodal
imaging of tumor-bearing mice clearly implied the potential of AuNCs@PF
in biomedical fields.
Collapse
Affiliation(s)
- Hui Zhu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yue Zhou
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yu Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Suying Xu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tony D. James
- Department of Chemistry, University of Bath, Bath BA2 7AY, U.K
| | - Leyu Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
22
|
Chen S, Qiu M, Wang R, Zhang L, Li C, Ye C, Zhou X. Photoactivated Nanohybrid for Dual-Nuclei MR/US/PA Multimodal-Guided Photothermal Therapy. Bioconjug Chem 2022; 33:1729-1740. [PMID: 36053016 DOI: 10.1021/acs.bioconjchem.2c00343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nanohybrids have gained immense popularity for the diagnosis and chemotherapy of lung cancer for their excellent biocompatibility, biodegradability, and targeting ability. However, most of them suffer from limited imaging information, low tumor-to-background ratios, and multidrug resistance, limiting their potential clinical application. Herein, we engineered a photoresponsive nanohybrid by assembling polypyrrole@bovine serum albumin (PPy@BSA) encapsulating perfluoropentane (PFP)/129Xe for selective magnetic resonance (MR)/ultrasonic (US)/photoacoustic (PA) trimodal imaging and photothermal therapy of lung cancer, overcoming these drawbacks of single imaging modality and chemotherapy. The nanohybrid exhibited superior US, PA, and MR multimodal imaging performance for lung cancer detection. The high sensitivity of the nanohybrid to near-infrared light (NIR) resulted in a rapid increase in temperature in a low-intensity laser state, which initiated the phase transition of liquid PFP into the gas. The ultrasound signal inside the tumor, which is almost zero initially, is dramatically increased. Beyond this, it led to the complete depression of 19F/129Xe Hyper-CEST (chemical exchange saturation transfer) MRI during laser irradiation, which can precisely locate lung cancer. In vitro and in vivo results of the nanohybrid exhibited a successful therapeutic effect on lung cancer. Under the guidance of imaging results, a sound effect of photothermal therapy (PTT) for lung cancer was achieved. We expect this nanohybrid and photosensitive behavior will be helpful as fundamental tools to decipher lung cancer in an earlier stage through trimodality imaging methods.
Collapse
Affiliation(s)
- Shizhen Chen
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,Optics Valley Laboratory, Hubei 430074, P.R. China
| | - Maosong Qiu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ruifang Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lei Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,Optics Valley Laboratory, Hubei 430074, P.R. China
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,Optics Valley Laboratory, Hubei 430074, P.R. China
| | - Chaohui Ye
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,Optics Valley Laboratory, Hubei 430074, P.R. China
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,Optics Valley Laboratory, Hubei 430074, P.R. China
| |
Collapse
|
23
|
Zheng S, Huang W, Li N, Shen Y, Wang X, Chen T. Highly specific selenium nanosystems for fluorescent image-guided rapid diagnosis and pathological grading of ovarian malignant tumors. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Wang Y, Zhang H, Liu Y, Younis MH, Cai W, Bu W. Catalytic radiosensitization: Insights from materials physicochemistry. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2022; 57:262-278. [PMID: 36425004 PMCID: PMC9681018 DOI: 10.1016/j.mattod.2022.05.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Radiotherapy is indispensable in clinical cancer treatment, but because both tumor and normal tissues have similar sensitivity to X-rays, their clinical curative effect is intrinsically limited. Advanced nanomaterials and nanotechnologies have been developed for radiotherapy sensitization, typically employing high atomic number (high-Z) materials to enhance the energy deposition of X-rays in tumor tissues, but the efficiency is largely limited by the toxicity of heavy metals. A new and promising approach for radiosensitization is catalytic radiosensitization, which takes advantage of the catalytic activity of nanomaterials triggered by radiation. The efficiency of catalytic radiosensitization can be greatly enhanced by electron modulation and energy conversion of nanocatalysts upon X-ray irradiation, further enhancing the clinical curative effect. In this review, we highlight the challenges and opportunities in cancer radiosensitization, discuss novel approaches to catalytic radiosensitization, and finally describe the development of catalytic radiosensitization based on an in-depth understanding of radio-nano interactions and catalysis-biological interactions.
Collapse
Affiliation(s)
- Ya Wang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, PR China
| | - Huilin Zhang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, PR China
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Yanyan Liu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, PR China
| | - Muhsin H. Younis
- Department of Radiology and Department of Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Weibo Cai
- Department of Radiology and Department of Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Wenbo Bu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, PR China
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| |
Collapse
|
25
|
Fan Z, Jiang C, Wang Y, Wang K, Marsh J, Zhang D, Chen X, Nie L. Engineered extracellular vesicles as intelligent nanosystems for next-generation nanomedicine. NANOSCALE HORIZONS 2022; 7:682-714. [PMID: 35662310 DOI: 10.1039/d2nh00070a] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Extracellular vesicles (EVs), as natural carriers of bioactive cargo, have a unique micro/nanostructure, bioactive composition, and characteristic morphology, as well as fascinating physical, chemical and biochemical features, which have shown promising application in the treatment of a wide range of diseases. However, native EVs have limitations such as lack of or inefficient cell targeting, on-demand delivery, and therapeutic feedback. Recently, EVs have been engineered to contain an intelligent core, enabling them to (i) actively target sites of disease, (ii) respond to endogenous and/or exogenous signals, and (iii) provide treatment feedback for optimal function in the host. These advances pave the way for next-generation nanomedicine and offer promise for a revolution in drug delivery. Here, we summarise recent research on intelligent EVs and discuss the use of "intelligent core" based EV systems for the treatment of disease. We provide a critique about the construction and properties of intelligent EVs, and challenges in their commercialization. We compare the therapeutic potential of intelligent EVs to traditional nanomedicine and highlight key advantages for their clinical application. Collectively, this review aims to provide a new insight into the design of next-generation EV-based theranostic platforms for disease treatment.
Collapse
Affiliation(s)
- Zhijin Fan
- School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, P. R. China
| | - Cheng Jiang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Yichao Wang
- Department of Clinical Laboratory Medicine, Tai Zhou Central Hospital (Taizhou University Hospital), Taizhou 318000, P. R. China
| | - Kaiyuan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Jade Marsh
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Da Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China.
| | - Xin Chen
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiao Tong University, Xi'an 710049, P. R. China.
| | - Liming Nie
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, P. R. China
- School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
| |
Collapse
|
26
|
Li SS, Wang AJ, Yuan PX, Mei LP, Zhang L, Feng JJ. Heterometallic nanomaterials: activity modulation, sensing, imaging and therapy. Chem Sci 2022; 13:5505-5530. [PMID: 35694355 PMCID: PMC9116289 DOI: 10.1039/d2sc00460g] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/12/2022] [Indexed: 11/23/2022] Open
Abstract
Heterometallic nanomaterials (HMNMs) display superior physicochemical properties and stability to monometallic counterparts, accompanied by wider applications in the fields of catalysis, sensing, imaging, and therapy due to synergistic effects between multi-metals in HMNMs. So far, most reviews have mainly concentrated on introduction of their preparation approaches, morphology control and applications in catalysis, assay of heavy metal ions, and antimicrobial activity. Therefore, it is very important to summarize the latest investigations of activity modulation of HMNMs and their recent applications in sensing, imaging and therapy. Taking the above into consideration, we briefly underline appealing chemical/physical properties of HMNMs chiefly tailored through the sizes, shapes, compositions, structures and surface modification. Then, we particularly emphasize their widespread applications in sensing of targets (e.g. metal ions, small molecules, proteins, nucleic acids, and cancer cells), imaging (frequently involving photoluminescence, fluorescence, Raman, electrochemiluminescence, magnetic resonance, X-ray computed tomography, photoacoustic imaging, etc.), and therapy (e.g. radiotherapy, chemotherapy, photothermal therapy, photodynamic therapy, and chemodynamic therapy). Finally, we present an outlook on their forthcoming directions. This timely review would be of great significance for attracting researchers from different disciplines in developing novel HMNMs.
Collapse
Affiliation(s)
- Shan-Shan Li
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University Jinhua 321004 China
| | - Pei-Xin Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University Jinhua 321004 China
| | - Li-Ping Mei
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University Jinhua 321004 China
| | - Lu Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University Jinhua 321004 China
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University Jinhua 321004 China
| |
Collapse
|
27
|
Li X, Zhang Y, Liu G, Luo Z, Zhou L, Xue Y, Liu M. Recent progress in the applications of gold-based nanoparticles towards tumor-targeted imaging and therapy. RSC Adv 2022; 12:7635-7651. [PMID: 35424775 PMCID: PMC8982448 DOI: 10.1039/d2ra00566b] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/02/2022] [Indexed: 12/13/2022] Open
Abstract
Cancer death rate remains high all over the world, scientists are paying increasing attention to meet the requirements for precise diagnosis and therapy. Therefore, early diagnosis and active treatment can effectively improve the five-year survival rate of patients. In recent years, gold-based nanomaterials have received increasing attention in medical fields due to their excellent biocompatibility, low toxicity and unique properties. In addition, because of the inherent nature of gold nanomaterials including for computed tomography (CT), fluorescence/optical imaging (FI/OI), surface enhanced Raman spectroscopy imaging (SERS), photoacoustic imaging (PAI) and photothermal therapy (PTT), various gold nanomaterials were developed as theranostic nanoplatforms. In this review, we summarized the latest developments of nanomaterials in imaging and combined therapy, and the prospects for the future application of gold-based theranostic nanoplatforms were also proposed.
Collapse
Affiliation(s)
- Xinxin Li
- Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology Wuhan 430205 China
- Institute for Interdisciplinary Research, Jianghan University Wuhan 430056 China
| | - Yiwei Zhang
- Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology Wuhan 430205 China
- Institute for Interdisciplinary Research, Jianghan University Wuhan 430056 China
| | - GuangKuo Liu
- Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology Wuhan 430205 China
- Institute for Interdisciplinary Research, Jianghan University Wuhan 430056 China
| | - Ziyi Luo
- Institute for Interdisciplinary Research, Jianghan University Wuhan 430056 China
| | - Lu Zhou
- Department of Medical Mycology, Shanghai Dermatology Hospital Affiliated to Tongji University Shanghai 200443 China
| | - Yanan Xue
- Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology Wuhan 430205 China
| | - Min Liu
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University Wuhan 430056 China
- Institute for Interdisciplinary Research, Jianghan University Wuhan 430056 China
| |
Collapse
|
28
|
Zhang D, You Y, Xu Y, Cheng Q, Xiao Z, Chen T, Shi C, Luo L. Facile synthesis of near-infrared responsive on-demand oxygen releasing nanoplatform for precise MRI-guided theranostics of hypoxia-induced tumor chemoresistance and metastasis in triple negative breast cancer. J Nanobiotechnology 2022; 20:104. [PMID: 35246149 PMCID: PMC8896283 DOI: 10.1186/s12951-022-01294-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/03/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Hypoxia is an important factor that contributes to chemoresistance and metastasis in triple negative breast cancer (TNBC), and alleviating hypoxia microenvironment can enhance the anti-tumor efficacy and also inhibit tumor invasion. METHODS A near-infrared (NIR) responsive on-demand oxygen releasing nanoplatform (O2-PPSiI) was successfully synthesized by a two-stage self-assembly process to overcome the hypoxia-induced tumor chemoresistance and metastasis. We embedded drug-loaded poly (lactic-co-glycolic acid) cores into an ultrathin silica shell attached with paramagnetic Gd-DTPA to develop a Magnetic Resonance Imaging (MRI)-guided NIR-responsive on-demand drug releasing nanosystem, where indocyanine green was used as a photothermal converter to trigger the oxygen and drug release under NIR irradiation. RESULTS The near-infrared responsive on-demand oxygen releasing nanoplatform O2-PPSiI was chemically synthesized in this study by a two-stage self-assembly process, which could deliver oxygen and release it under NIR irradiation to relieve hypoxia, improving the therapeutic effect of chemotherapy and suppressed tumor metastasis. This smart design achieves the following advantages: (i) the O2 in this nanosystem can be precisely released by an NIR-responsive silica shell rupture; (ii) the dynamic biodistribution process of O2-PPSiI was monitored in real-time and quantitatively analyzed via sensitive MR imaging of the tumor; (iii) O2-PPSiI could alleviate tumor hypoxia by releasing O2 within the tumor upon NIR laser excitation; (iv) The migration and invasion abilities of the TNBC tumor were weakened by inhibiting the process of EMT as a result of the synergistic therapy of NIR-triggered O2-PPSiI. CONCLUSIONS Our work proposes a smart tactic guided by MRI and presents a valid approach for the reasonable design of NIR-responsive on-demand drug-releasing nanomedicine systems for precise theranostics in TNBC.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Medical Imaging Center, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
- The Shunde Affiliated Hospital, Jinan University, Foshan, 528300, China
| | - Yuanyuan You
- Department of Medical Imaging Center, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
- Zhuhai Precision Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Hospital Affiliated With Jinan University, Jinan University, Zhuhai, 519000, Guangdong, People's Republic of China
| | - Yuan Xu
- Department of Medical Imaging Center, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Qingqing Cheng
- Department of Medical Imaging Center, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Zeyu Xiao
- Department of Medical Imaging Center, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Tianfeng Chen
- Department of Medical Imaging Center, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China.
- Zhuhai Precision Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Hospital Affiliated With Jinan University, Jinan University, Zhuhai, 519000, Guangdong, People's Republic of China.
| | - Changzheng Shi
- Department of Medical Imaging Center, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China.
| | - Liangping Luo
- Department of Medical Imaging Center, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China.
| |
Collapse
|
29
|
Zheng N, Fu Y, Liu X, Zhang Z, Wang J, Mei Q, Wang X, Deng G, Lu J, Hu J. Tumor microenvironment responsive self-cascade catalysis for synergistic chemo/chemodynamic therapy by multifunctional biomimetic nanozymes. J Mater Chem B 2022; 10:637-645. [PMID: 34991154 DOI: 10.1039/d1tb01891d] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chemodynamic therapy (CDT) is an emerging approach to treat cancer based on the tumor microenvironment (TME), but its limited content of endogenous hydrogen peroxide (H2O2) weakens the anticancer effects. Herein, a multifunctional biomimetic nanozyme (Se@SiO2-Mn@Au/DOX, named as SSMA/DOX) is fabricated, which undergoes TME responsive self-cascade catalysis to facilitate MRI guided enhanced chemo/chemodynamic therapy. The SSMA/DOX nanocomposites (NCs) responsively degrade in acidic conditions of tumor to release Se, DOX, Au and Mn2+. Mn2+ not only enables MRI to guided therapy, but also catalyzes the endogenous H2O2 into hydroxyl radical (˙OH) for CDT. In addition, the Au NPs continuously catalyze glucose to generate H2O2, enhancing CDT by supplementing a sufficiently reactive material and cutting off the energy supply of the tumor by consuming glucose. Simultaneously, Se enhances the chemotherapy of doxorubicin hydrochloride (DOX) and CDT by upregulating ROS in the tumor cells, achieving remarkable inhibition effect towards tumor. Moreover, SSMA/DOX NCs have good biocompatibility and degradability, which avoid long-term toxicity and side effects. Overall, the degradable SSMA/DOX NCs provide an innovative strategy for tumor microenvironment responsive self-cascade catalysis to enhance tumor therapy.
Collapse
Affiliation(s)
- Nannan Zheng
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China. .,College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China.
| | - Yang Fu
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai 201600, China.,Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 201600, China
| | - Xijian Liu
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Ziwen Zhang
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Jinxia Wang
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Qixiang Mei
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai 201600, China.,Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 201600, China
| | - Xingyan Wang
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Guoying Deng
- Trauma Center, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 201620, China
| | - Jie Lu
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Junqing Hu
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China. .,Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
30
|
Hu H, Zheng S, Hou M, Zhu K, Chen C, Wu Z, Qi L, Ren Y, Wu B, Xu Y, Yan C, Zhao B. Functionalized Au@Cu-Sb-S Nanoparticles for Spectral CT/Photoacoustic Imaging-Guided Synergetic Photo-Radiotherapy in Breast Cancer. Int J Nanomedicine 2022; 17:395-407. [PMID: 35115774 PMCID: PMC8800589 DOI: 10.2147/ijn.s338085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/06/2022] [Indexed: 11/23/2022] Open
Abstract
Background Radiotherapy (RT) is clinically well-established cancer treatment. However, radioresistance remains a significant issue associated with failure of RT. Phototherapy-induced radiosensitization has recently attracted attention in translational cancer research. Methods Cu-Sb-S nanoparticles (NPs) coated with ultra-small Au nanocrystals (Au@Cu-Sb-S) were synthesized and characterized. The biosafety profiles, absorption of near-infrared (NIR) laser and radiation-enhancing effect of the NPs were evaluated. In vitro and in vivo spectral computed tomography (CT) imaging and photoacoustic (PA) imaging were performed in 4T1 breast cancer-bearing mice. The synergetic radio-phototherapy was assessed by in vivo tumor inhibition studies. Results Au@Cu-Sb-S NPs were prepared by in situ growth of Au NCs on the surface of Cu-Sb-S NPs. The cell viability experiments showed that the combination of Au@Cu-Sb-S+NIR+RT was significantly more cytotoxic to tumor cells than the other treatments at concentrations above 25 ppm Sb. In vitro and in vivo spectral CT imaging demonstrated that the X-ray attenuation ability of Au@Cu-Sb-S NPs was superior to that of the clinically used Iodine, particularly at lower KeV levels. Au@Cu-Sb-S NPs showed a concentration-dependent and remarkable PA signal brightening effect. In vivo tumor inhibition studies showed that the prepared Au@Cu-Sb-S NPs significantly suppressed tumor growth in 4T1 breast cancer-bearing mice treated with NIR laser irradiation and an intermediate X-ray dose (4 Gy). Conclusion These results indicate that Au@Cu-Sb-S integrated with spectral CT, PA imaging, and phototherapy-enhanced radiosensitization is a promising multifunctional theranostic nanoplatform for clinical applications.
Collapse
Affiliation(s)
- Honglei Hu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Shuting Zheng
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Meirong Hou
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Kai Zhu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Chuyao Chen
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Zede Wu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Li Qi
- Guangdong Provincial Key Laboratory of Medical Image Processing, Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Yunyan Ren
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Bin Wu
- Institute of Respiratory Diseases, Respiratory Department, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Yikai Xu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Chenggong Yan
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Bingxia Zhao
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People’s Republic of China
- Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, People’s Republic of China
- Correspondence: Bingxia Zhao; Yikai Xu, Tel +86 20 61647272; +86 20 62787333, Email ;
| |
Collapse
|
31
|
Huang W, He L, Zhang Z, Shi S, Chen T. Shape-Controllable Tellurium-Driven Heterostructures with Activated Robust Immunomodulatory Potential for Highly Efficient Radiophotothermal Therapy of Colon Cancer. ACS NANO 2021; 15:20225-20241. [PMID: 34807558 DOI: 10.1021/acsnano.1c08237] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Tellurium (Te)-based semiconductor easily leads to the recombination of photogenerated electron-hole pairs (h+-e-) that severely limits the efficiency of reactive oxygen species (ROS) generation and further hinders its clinical application in biomedicine. With regard to these problems, herein we designed and synthesized a Te heterostructure (BTe-Pd-Au) by incorporating palladium (Pd) and gold (Au) elements to promote its radiosensitivity and photothermal performance, thus realizing highly efficient radiophotothermal tumor elimination by activating robust immunomodulatory potential. This shape-controllable heterostructure that coated by Pd on the surface of Te nanorods and Au in the center of Te nanorods was simply synthesized by using in situ synthesis method, which could promote the generation and separation of h+-e- pairs, thereby exhibiting superior ROS producing ability and photothermal conversion efficiency. Using a mouse model of colon cancer, we proved that BTe-Pd-Au-R-combined radiophotothermal therapy not only eradicated tumor but also elicited to a series of antitumor immune responses by enhancing the cytotoxic T lymphocytes, triggering dendritic cells maturation, and decreasing the percentage of M2 tumor-associated macrophages. In summary, our study highlights a facile strategy to design Te-driven heterostructure with versatile performance in radiosensitization, photothermal therapy, and immunomodulation and offers great promise for clinical translational treatment of colon cancer.
Collapse
Affiliation(s)
- Wei Huang
- Department of Oncology, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Lizhen He
- Department of Oncology, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Zhongyang Zhang
- Department of Oncology, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Sujiang Shi
- Department of Oncology, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Tianfeng Chen
- Department of Oncology, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| |
Collapse
|
32
|
Yang Y, Zhang Z, Chen Q, You Y, Li X, Chen T. Functionalized Selenium Nanoparticles Synergizes With Metformin to Treat Breast Cancer Cells Through Regulation of Selenoproteins. Front Bioeng Biotechnol 2021; 9:758482. [PMID: 34708029 PMCID: PMC8543061 DOI: 10.3389/fbioe.2021.758482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 08/26/2021] [Indexed: 12/19/2022] Open
Abstract
Owing to high blood sugar level and chronic inflammation, diabetes tend to cause the overproduction of free radicals in body, which will damage tissue and cells, reduce autoimmunity, and greatly increase the incidence of tumors. Selenium nanoparticles (SeNPs) exhibit high antioxidant activity with anti-tumor ability. In addition, metformin is considered as a clinical drug commonly for the treatment of stage II diabetes. Therefore, in this study, different functionalized SeNPs combined with metformin were performed to detect the feasibility for cancer therapy. The combination of Tween 80 (TW80)-SeNPs and metformin was found to have a synergistic effect on MCF-7 cells. The mechanism of this synergistic effect involved in the induction of DNA damage by affecting the generation of reactive oxygen species through selenoproteins; the upregulation of DNA-damage-related proteins including p-ATM, p-ATR, and p38; the promotion of p21 expression; and the downregulation of cyclin-dependent kinases and cyclin-related proteins causing cell cycle arrest. Furthermore, the expression of AMPK was affected, which in turn to regulate the mitochondrial membrane potential to achieve the synergistic treatment effect.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoling Li
- Department of Chemistry, and Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Tianfeng Chen
- Department of Chemistry, and Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| |
Collapse
|
33
|
Liu J, Chen J, Liu H, Zhang K, Zeng Q, Yang S, Jiang Z, Zhang X, Chen T, Li D, Shan H. Bi/Se-Based Nanotherapeutics Sensitize CT Image-Guided Stereotactic Body Radiotherapy through Reprogramming the Microenvironment of Hepatocellular Carcinoma. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42473-42485. [PMID: 34474563 DOI: 10.1021/acsami.1c11763] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The particular characteristics of hypoxia, immune suppression in the tumor microenvironment, and the lack of accurate imaging guidance lead to the limited effects of stereotactic body radiotherapy (SBRT) in reducing the recurrence rate and mortality of hepatocellular carcinoma (HCC). This research developed a novel theranostic agent based on Bi/Se nanoparticles (NPs), synthesized by a simple reduction reaction method for in vivo CT image-guided SBRT sensitization in mice. After loading Lenvatinib (Len), the obtained Bi/Se-Len NPs had excellent performance in reversing hypoxia and the immune suppression status of HCC. In vivo CT imaging results uncovered that the radiotherapy (RT) area could be accurately labeled after the injection of Bi/Se-Len NPs. Under Len's unique and robust properties, in vivo treatment was then carried out upon injection of Bi/Se-Len NPs, achieving excellent RT sensitization effects in a mouse HCC model. Comprehensive tests and histological stains revealed that Bi/Se-Len NPs could reshape and normalize tumor blood vessels, reduce the hypoxic situation of the tumor, and upregulate tumor-infiltrating CD4+ and CD8+ T lymphocytes around the tumors. Our work highlights an excellent proposal of Bi/Se-Len NPs as theranostic nanoparticles for image-guided HCC radiotherapy.
Collapse
Affiliation(s)
- Jiani Liu
- Center for Interventional Medicine, The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, Guangdong Province 519000, P. R. China
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, P. R. China
- The Cancer Center of The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, Guangdong Province 519000, P. R. China
| | - Jiayao Chen
- Center for Interventional Medicine, The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, Guangdong Province 519000, P. R. China
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, P. R. China
| | - Hongxing Liu
- Department of Chemistry, Jinan University, Guangzhou, Guangdong Province, 510632, P. R. China
| | - Ke Zhang
- Center for Interventional Medicine, The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, Guangdong Province 519000, P. R. China
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, P. R. China
| | - Qi Zeng
- The Cancer Center of The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, Guangdong Province 519000, P. R. China
| | - Shuai Yang
- The Cancer Center of The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, Guangdong Province 519000, P. R. China
| | - Zebo Jiang
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, P. R. China
| | - Xiaoting Zhang
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, P. R. China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou, Guangdong Province, 510632, P. R. China
| | - Dan Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, P. R. China
| | - Hong Shan
- Center for Interventional Medicine, The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, Guangdong Province 519000, P. R. China
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, P. R. China
| |
Collapse
|
34
|
Xiao Z, You Y, Liu Y, He L, Zhang D, Cheng Q, Wang D, Chen T, Shi C, Luo L. NIR-Triggered Blasting Nanovesicles for Targeted Multimodal Image-Guided Synergistic Cancer Photothermal and Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35376-35388. [PMID: 34313109 DOI: 10.1021/acsami.1c08339] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Escorting therapeutics for malignancies by nano-encapsulation to ameliorate treatment effects and mitigate side effects has been pursued in precision medicine. However, the majority of drug delivery systems suffer from uncontrollable drug release kinetics and thus lead to unsatisfactory triggered-release efficiency along with severe side effects. Herein, we developed a unique nanovesicle delivery system that shows near-infrared (NIR) light-triggered drug release behavior and minimal premature drug release. By co-encapsulation of superparamagnetic iron oxide (SPIO) nanoparticles, the ultrasound contrast agent perfluorohexane (PFH), and cisplatin in a silicate-polyaniline vesicle, we achieved the controllable release of cisplatin in a thermal-responsive manner. Specifically, vaporization of PFH triggered by the heat generated from NIR irradiation imparts high inner vesicle pressure on the nanovesicles, leading to pressure-induced nanovesicle collapse and subsequent cisplatin release. Moreover, the multimodal imaging capability can track tumor engagement of the nanovesicles and assess their therapeutic effects. Due to its precise inherent NIR-triggered drug release, our system shows excellent tumor eradication efficacy and biocompatibility in vivo, empowering it with great prospects for future clinical translation.
Collapse
Affiliation(s)
- Zeyu Xiao
- Medical Imaging Center, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, P. R. China
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou 510632, P. R. China
| | - Yuanyuan You
- Medical Imaging Center, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, P. R. China
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou 510632, P. R. China
| | - Yiyong Liu
- Medical Imaging Center, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, P. R. China
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou 510632, P. R. China
| | - Lizhen He
- Medical Imaging Center, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, P. R. China
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou 510632, P. R. China
| | - Dong Zhang
- Medical Imaging Center, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, P. R. China
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou 510632, P. R. China
| | - Qingqing Cheng
- Medical Imaging Center, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, P. R. China
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou 510632, P. R. China
| | - Dan Wang
- Medical Imaging Center, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, P. R. China
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou 510632, P. R. China
| | - Tianfeng Chen
- Medical Imaging Center, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, P. R. China
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou 510632, P. R. China
| | - Changzheng Shi
- Medical Imaging Center, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, P. R. China
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou 510632, P. R. China
| | - Liangping Luo
- Medical Imaging Center, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, P. R. China
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou 510632, P. R. China
| |
Collapse
|
35
|
Designing highly stable ferrous selenide-black phosphorus nanosheets heteronanostructure via P-Se bond for MRI-guided photothermal therapy. J Nanobiotechnology 2021; 19:201. [PMID: 34229725 PMCID: PMC8262019 DOI: 10.1186/s12951-021-00905-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
Background The design of stable and biocompatible black phosphorus-based theranostic agents with high photothermal conversion efficiency and clear mechanism to realize MRI-guided precision photothermal therapy (PTT) is imminent. Results Herein, black phosphorus nanosheets (BPs) covalently with mono-dispersed and superparamagnetic ferrous selenide (FeSe2) to construct heteronanostructure nanoparticles modified with methoxy poly (Ethylene Glycol) (mPEG-NH2) to obtain good water solubility for MRI-guided photothermal tumor therapy is successfully designed. The mechanism reveals that the enhanced photothermal conversion achieved by BPs-FeSe2-PEG heteronanostructure is attributed to the effective separation of photoinduced carriers. Besides, through the formation of the P-Se bond, the oxidation degree of FeSe2 is weakened. The lone pair electrons on the surface of BPs are occupied, which reduces the exposure of lone pair electrons in air, leading to excellent stability of BPs-FeSe2-PEG. Furthermore, the BPs-FeSe2-PEG heteronanostructure could realize enhanced T2-weighted imaging due to the aggregation of FeSe2 on BPs and the formation of hydrogen bonds, thus providing accurate PTT guidance and generating hyperthermia to inhabit tumor growth under NIR laser with negligible toxicity in vivo. Conclusions Collectively, this work offers an opportunity for fabricating BPs-based heteronanostructure nanomaterials that could simultaneously enhance photothermal conversion efficiency and photostability to realize MRI-guided cancer therapy. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-00905-5.
Collapse
|
36
|
Zhao H, Wang J, Li X, Li Y, Li C, Wang X, Wang J, Guan S, Xu Y, Deng G, Chen Y, Lu J, Liu X. A biocompatible theranostic agent based on stable bismuth nanoparticles for X-ray computed tomography/magnetic resonance imaging-guided enhanced chemo/photothermal/chemodynamic therapy for tumours. J Colloid Interface Sci 2021; 604:80-90. [PMID: 34265694 DOI: 10.1016/j.jcis.2021.06.174] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 11/17/2022]
Abstract
Cancer is a leading cause of death worldwide and seriously threatens the health of humans. The current clinical treatments for cancer are not efficient and always lead to significant side effects. Herein, a biocompatible and powerful theranostic agent (Bi@mSiO2@MnO2/DOX) is fabricated using a facile stepwise reaction method. The Bi nanoparticles (NPs) are coated by mesoporous silica to protect the Bi NPs from oxidation, which guarantees the stable photothermal effect of the Bi NPs. When the Bi@mSiO2@MnO2/DOX nanocomposites (NCs) accumulate in the tumour site, hyperthermia is generated by Bi NPs under near-infrared (NIR) light irradiation for photothermal therapy (PTT), and the generated heat triggers the release of DOX for chemotherapy in the tumour. In addition, the MnO2 of the NCs responsively catalyses endogenous H2O2 to generate O2, raising the oxygen level to enhance the effect of chemotherapy in the tumour microenvironment (TME), and consumes glutathione (GSH) to produce Mn2+ for magnetic resonance (MR) imaging. Under acidic TME conditions, H2O2 and Mn2+ also produce toxic hydroxyl radical (·OH) for chemodynamic therapy (CDT). Furthermore, the Bi NPs can also be used as excellent contrast agents for X-ray computed tomography (CT) imaging of tumours with a high CT value (6.865 HU mM-1). The Bi@mSiO2@MnO2/DOX NCs exhibit a powerful theranostic performance for CT/MR imaging-guided enhanced PTT/CDT/chemotherapy, which opens a new prospect to rationally design theranostic agents for tumour imaging.
Collapse
Affiliation(s)
- Hang Zhao
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Jiaqi Wang
- Otorhinolaryngology, EYE & ENT Hospital of Fudan University, Shanghai Medical College of Fudan University, Shanghai 200031, PR China
| | - Xi Li
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yinwen Li
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Chunlin Li
- Trauma Center, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, NO. 650 Xin Songjiang Road, Shanghai 201620, China
| | - Xiang Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Jinxia Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Shaoqi Guan
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Yupeng Xu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China.
| | - Guoying Deng
- Trauma Center, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, NO. 650 Xin Songjiang Road, Shanghai 201620, China
| | - Ying Chen
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111, Xianxia Road, Shanghai 200336, China.
| | - Jie Lu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Xijian Liu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| |
Collapse
|
37
|
Lu J, Guo Z, Xie W, Chi Y, Zhang J, Xu W, Guo X, Ye J, Wei Y, Wu H, Yu J, Huang YF, Zhao L. Gold-iron selenide nanocomposites for amplified tumor oxidative stress-augmented photo-radiotherapy. Biomater Sci 2021; 9:3979-3988. [PMID: 34085077 DOI: 10.1039/d1bm00306b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The radio-resistance of tumor tissues has been considered a great challenge for cancer radiotherapy (RT).The development of nanoparticle (NP)-based radio-sensitizers can enhance the radio-sensitization of tumor tissues while reducing the side effects to surrounding tissues. However, most of the nano-radiosensitizers show increased radiation deposition with a high-Z element but achieve limited enhancement. Herein, we investigated polyethylene glycol (PEG)-modified gold-iron selenide nanocomposites (Au-FeSe2 NCs) for simultaneously enhancing therapeutic effects in multiple ways. In this study, the high-Z element Au (Z = 79) endows Au-FeSe2 NCs with enhanced X-ray deposition and thus causes more DNA damage. On the other hand, Au-FeSe2 exhibits the ability to produce reactive oxygen species (ROS) by catalyzing endogenous hydrogen peroxide in tumor sites as well as improve the hydrogen peroxide level during ionizing irradiation. Finally, combined with photothermal therapy (PTT), Au-FeSe2 NCs could exhibit a remarkable RT/PTT synergistic effect on tumor treatment.
Collapse
Affiliation(s)
- Jingsong Lu
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China. and State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China and Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhenhu Guo
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China. and State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China and State Key Laboratory of Powder Metallurgy, Powder Metallurgy Research Institute, Central South University, Changsha 410083, China
| | - Wensheng Xie
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yongjie Chi
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China. and State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Junxin Zhang
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China. and State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Wanling Xu
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China. and State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaoxiao Guo
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China. and State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Jielin Ye
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China. and State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Yen Wei
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Hong Wu
- State Key Laboratory of Powder Metallurgy, Powder Metallurgy Research Institute, Central South University, Changsha 410083, China
| | - Jing Yu
- Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yu-Fen Huang
- Institute of Analytical and Environmental Sciences, National Tsinghua University, Hsinchu 300044, Taiwan and Department of Biomedical Engineering and Environmental Sciences, National Tsinghua University, Hsinchu 300044, Taiwan and School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Lingyun Zhao
- Key Laboratory of Advanced Materials, Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China. and State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
38
|
Liu CP, Chen ZD, Ye ZY, He DY, Dang Y, Li ZW, Wang L, Ren M, Fan ZJ, Liu HX. Therapeutic Applications of Functional Nanomaterials for Prostatitis. Front Pharmacol 2021; 12:685465. [PMID: 34140892 PMCID: PMC8205439 DOI: 10.3389/fphar.2021.685465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/10/2021] [Indexed: 01/02/2023] Open
Abstract
Prostatitis is a common disease in adult males, with characteristics of a poor treatment response and easy recurrence, which seriously affects the patient's quality of life. The prostate is located deep in the pelvic cavity, and thus a traditional infusion or other treatment methods are unable to easily act directly on the prostate, leading to poor therapeutic effects. Therefore, the development of new diagnostic and treatment strategies has become a research hotspot in the field of prostatitis treatment. In recent years, nanomaterials have been widely used in the diagnosis and treatment of various infectious diseases. Nanotechnology is a promising tool for 1) the accurate diagnosis of diseases; 2) improving the targeting of drug delivery systems; 3) intelligent, controlled drug release; and 4) multimode collaborative treatment, which is expected to be applied in the diagnosis and treatment of prostatitis. Nanotechnology is attracting attention in the diagnosis, prevention and treatment of prostatitis. However, as a new research area, systematic reviews on the application of nanomaterials in the diagnosis and treatment of prostatitis are still lacking. In this mini-review, we will highlight the treatment approaches for and challenges associated with prostatitis and describe the advantages of functional nanoparticles in improving treatment effectiveness and overcoming side effects.
Collapse
Affiliation(s)
- Chun-Ping Liu
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zi-De Chen
- Department of Interventional Radiology, Cancer Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, South China University of Technology, Guangzhou, China
| | - Zi-Yan Ye
- Department of Interventional Radiology, Cancer Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, South China University of Technology, Guangzhou, China
| | - Dong-Yue He
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yue Dang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhe-Wei Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Lei Wang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Miao Ren
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhi-Jin Fan
- Guangdong Provincial People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Hong-Xing Liu
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
39
|
Liu CP, Chen ZD, Ye ZY, He DY, Dang Y, Li ZW, Wang L, Ren M, Fan ZJ, Liu HX. Therapeutic Applications of Functional Nanomaterials for Prostatitis. Front Pharmacol 2021. [DOI: 10.3389/fphar.2021.685465
expr 881861845 + 830625731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Prostatitis is a common disease in adult males, with characteristics of a poor treatment response and easy recurrence, which seriously affects the patient’s quality of life. The prostate is located deep in the pelvic cavity, and thus a traditional infusion or other treatment methods are unable to easily act directly on the prostate, leading to poor therapeutic effects. Therefore, the development of new diagnostic and treatment strategies has become a research hotspot in the field of prostatitis treatment. In recent years, nanomaterials have been widely used in the diagnosis and treatment of various infectious diseases. Nanotechnology is a promising tool for 1) the accurate diagnosis of diseases; 2) improving the targeting of drug delivery systems; 3) intelligent, controlled drug release; and 4) multimode collaborative treatment, which is expected to be applied in the diagnosis and treatment of prostatitis. Nanotechnology is attracting attention in the diagnosis, prevention and treatment of prostatitis. However, as a new research area, systematic reviews on the application of nanomaterials in the diagnosis and treatment of prostatitis are still lacking. In this mini-review, we will highlight the treatment approaches for and challenges associated with prostatitis and describe the advantages of functional nanoparticles in improving treatment effectiveness and overcoming side effects.
Collapse
|
40
|
Mai X, Chang Y, You Y, He L, Chen T. Designing intelligent nano-bomb with on-demand site-specific drug burst release to synergize with high-intensity focused ultrasound cancer ablation. J Control Release 2021; 331:270-281. [DOI: 10.1016/j.jconrel.2020.09.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/29/2022]
|
41
|
Chan L, Chen X, Gao P, Xie J, Zhang Z, Zhao J, Chen T. Coordination-Driven Enhancement of Radiosensitization by Black Phosphorus via Regulating Tumor Metabolism. ACS NANO 2021; 15:3047-3060. [PMID: 33507069 DOI: 10.1021/acsnano.0c09454] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Coordination-driven surface modification is an effective strategy to achieve nanosystem functionalization and improved physicochemical performance. Black phosphorus (BP)-based nanomaterials demonstrate great potential in cancer therapy, but their poor stability, low X-ray mass attenuation coefficient, and nonselectivity limit the application in radiotherapy. Herein, we used unsaturated iridium complex to coordinate with BP nanosheets to synthesize a two-dimensional layered nanosystem (RGD-Ir@BP) with higher biostability. Ir complex improves the photoelectric properties and photoinduced charge carrier dynamics of BP, hence Ir@BP generated more singlet oxygen after X-ray irradiation. In in vivo experiments, with X-ray irradiation, RGD-Ir@BP effectively inhibited nasopharyngeal carcinoma tumor growth but with minor side effects. Additionally, based on untargeted metabolomics analysis, the combined treatment specifically down-regulated the tumor proliferative mark of prostaglandin E2 in cancer cells. In general, this study provides a design strategy of high-performance coordination-driven BP-based nanosensitizer in cancer radiotherapy.
Collapse
Affiliation(s)
- Leung Chan
- Department of Oncology, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, P. R. China
| | - Xiaodan Chen
- Department of Oncology, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, P. R. China
| | - Pan Gao
- Department of Oncology, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, P. R. China
| | - Jun Xie
- Department of Oncology, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, P. R. China
| | - Zhongyang Zhang
- Department of Oncology, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, P. R. China
| | - Jianfu Zhao
- Department of Oncology, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, P. R. China
| | - Tianfeng Chen
- Department of Oncology, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, P. R. China
| |
Collapse
|
42
|
Ding Y, Zeng L, Xiao X, Chen T, Pan Y. Multifunctional Magnetic Nanoagents for Bioimaging and Therapy. ACS APPLIED BIO MATERIALS 2021; 4:1066-1076. [PMID: 35014468 DOI: 10.1021/acsabm.0c01099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Multifunctional magnetic nanoagents (MMNs) have drawn increasing attention in cancer precision therapy, attributed to their good biocompatibility and the potential applications for multimodal imaging and multidisciplinary therapy. The noble metal or isotopes contained in MMNs could not only perform superparamagnetism, providing an outstanding magnetic targeting property for drug delivery, but also endow the MMNs with a magnetocaloric effect, photothermal performance, and radiotherapy sensitization, arriving at a multimode combination therapy for cancer. Also, the composite component can endow MMNs with various imaging performance, such as magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), and single-photon emission computed tomography (SPECT), thereby achieving accurate image-guided therapy for cancer. However, the joint function of MMNs is closely correlated with their functional nanocomponents and nanostructures. In this article, we will systematically discuss the design, synthesis, and structure optimization of MMNs, as well as their potential in multimodal diagnosis and therapy, scientifically providing an integrated diagnosis and treatment of nanomedicine for the future cancer therapy.
Collapse
Affiliation(s)
- Yuxun Ding
- Longgang E.N.T. Hospital and Shenzhen Key Laboratory of E.N.T., Institute of E.N.T., Shenzhen, Guangdong 518116, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Lingli Zeng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xiaohui Xiao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yue Pan
- Longgang E.N.T. Hospital and Shenzhen Key Laboratory of E.N.T., Institute of E.N.T., Shenzhen, Guangdong 518116, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Center for Precision Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| |
Collapse
|
43
|
Fan Z, Liu H, Xue Y, Lin J, Fu Y, Xia Z, Pan D, Zhang J, Qiao K, Zhang Z, Liao Y. Reversing cold tumors to hot: An immunoadjuvant-functionalized metal-organic framework for multimodal imaging-guided synergistic photo-immunotherapy. Bioact Mater 2021; 6:312-325. [PMID: 32954050 PMCID: PMC7475520 DOI: 10.1016/j.bioactmat.2020.08.005] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 12/11/2022] Open
Abstract
Immunotherapy assays using immunoadjuvants and tumor antigens could greatly increase the survival rates of patients with malignant tumors. As effective carriers, metal-organic frameworks (MOFs) have been widely utilized in cancer therapy due to their remarkable histocompatibility and low toxicity. Herein, we constructed a multimodal imaging-guided synergistic cancer photoimmunotherapy by employing a specific MOF (MIL101-NH2) as the core carrier; the MOF was dual-dressed with photoacoustic and fluorescent signal donors (indocyanine green, ICG) and immune adjuvants (cytosine-phosphate-guanine sequence, CpG) and named ICG-CpG@MOF. This nanocarrier could passively target the tumor site through the EPR effect and achieve multimodal imaging (fluorescence, photoacoustic, photothermal and magnetic resonance imaging) of the tumor. Synergistic cancer photoimmunotherapy was achieved via simultaneous photodynamic and photothermal methods with 808 nm laser irradiation. ICG-CpG@MOF achieved the GSH-controlled release of immunoadjuvant into the tumor microenvironment. Furthermore, the released tumor-associated antigen along with CpG could induce the transformation of tumor cells from cold to hot by activating the immune system, which significantly enhanced tumor cytotoxicity and achieved high cure rates with minimal side-effects. This strategy utilizing multimodal imaging and synergistic cancer photoimmunotherapy provides a promising approach for the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Zhijin Fan
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Hongxing Liu
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510230, China
| | - Yaohua Xue
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Jingyan Lin
- Department of Thoracic Surgery, Shenzhen Third People's Hospital, Shenzhen, 518110, China
| | - Yu Fu
- Department of Thoracic Surgery, Shenzhen Third People's Hospital, Shenzhen, 518110, China
| | - Zhaohua Xia
- Department of Thoracic Surgery, Shenzhen Third People's Hospital, Shenzhen, 518110, China
| | - Dongming Pan
- Department of Thoracic Surgery, Shenzhen Third People's Hospital, Shenzhen, 518110, China
| | - Jian Zhang
- Department of Biomedical Engineering, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Kun Qiao
- Department of Thoracic Surgery, Shenzhen Third People's Hospital, Shenzhen, 518110, China
| | - Zhenzhen Zhang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Yuhui Liao
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| |
Collapse
|
44
|
Substituent-regulated highly X-ray sensitive Os(VI) nitrido complex for low-toxicity radiotherapy. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
45
|
Darwesh R, Aboushoushah SF, Almarhabi S, Aldahlawi AM, Elbialy NS. TurboBeads magnetic nanoparticles functionalized with gold as a promising nano-radiosensitizer for potential breast cancer radiotherapy: In vitro study. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2020.108348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
46
|
Zhu Q, Fan Z, Zuo W, Chen Y, Hou Z, Zhu X. Self-Distinguishing and Stimulus-Responsive Carrier-Free Theranostic Nanoagents for Imaging-Guided Chemo-Photothermal Therapy in Small-Cell Lung Cancer. ACS APPLIED MATERIALS & INTERFACES 2020; 12:51314-51328. [PMID: 33156622 DOI: 10.1021/acsami.0c18273] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Lack of tumor targeting and low drug payload severely impedes various nanoagents further employed in small-cell lung cancer (SCLC). Therefore, how to develop a new targeting ligand and enhance drug payload has been an urgent need for SCLC therapy. Herein, we first sift and verify that capreomycin (Cm) has a high affinity toward CD56 receptors overexpressed on SCLC cells. Motivated by the concept of self-targeted drug delivery, Cm is selected as the specific targeting ligand toward CD56 receptors and chemodrug doxorubicin (Dox) is adopted to be covalently linked via the redox-responsive disulfide linkage. The synthesized self-distinguishing prodrug (Dox-ss-Cm) and FDA-approved photosensitizer indocyanine green (ICG) as structural motifs can be self-assembled into theranostic nanoagents (ICG@Dox-ss-Cm NPs) within an aqueous solution. Such carrier-free nanoagents with high drug payload can exert targeted on-demand drug release under multiple stimuli of intracellular lysosomal acidity, glutathione (GSH), and an external near-infrared (NIR) laser. Besides, our nanoagents can be specifically self-targeted to SCLC sites in vivo and self-distinguishing via SCLC cells in vitro; thus, they decrease the undesirable effects on normal tissues and organs. Further in vitro and in vivo studies uniformly confirm that such nanoagents show highly synergistic effects for SCLC chemo-photothermal therapy (PTT) under the precise guidance of NIR fluorescence (NIRF)/photoacoustic (PA) imaging. Taken together, our work can provide a novel and promising strategy for the targeted treatment of SCLC.
Collapse
Affiliation(s)
- Qixin Zhu
- School of Pharmaceutical Science & College of Materials, Fujian Provincial Key Laboratory of Innovative Drug Target Research & Key Laboratory of Biomedical Engineering of Fujian Province, Xiamen University, Xiamen 361005, China
| | - Zhongxiong Fan
- School of Pharmaceutical Science & College of Materials, Fujian Provincial Key Laboratory of Innovative Drug Target Research & Key Laboratory of Biomedical Engineering of Fujian Province, Xiamen University, Xiamen 361005, China
| | - Wenbao Zuo
- School of Pharmaceutical Science & College of Materials, Fujian Provincial Key Laboratory of Innovative Drug Target Research & Key Laboratory of Biomedical Engineering of Fujian Province, Xiamen University, Xiamen 361005, China
| | - Yilin Chen
- School of Pharmaceutical Science & College of Materials, Fujian Provincial Key Laboratory of Innovative Drug Target Research & Key Laboratory of Biomedical Engineering of Fujian Province, Xiamen University, Xiamen 361005, China
| | - Zhenqing Hou
- School of Pharmaceutical Science & College of Materials, Fujian Provincial Key Laboratory of Innovative Drug Target Research & Key Laboratory of Biomedical Engineering of Fujian Province, Xiamen University, Xiamen 361005, China
| | - Xuan Zhu
- School of Pharmaceutical Science & College of Materials, Fujian Provincial Key Laboratory of Innovative Drug Target Research & Key Laboratory of Biomedical Engineering of Fujian Province, Xiamen University, Xiamen 361005, China
| |
Collapse
|
47
|
Hu R, Chen Z, Dai C, Guo X, Feng W, Liu Z, Lin H, Chen Y, Wu R. Engineering two-dimensional silicene composite nanosheets for dual-sensitized and photonic hyperthermia-augmented cancer radiotherapy. Biomaterials 2020; 269:120455. [PMID: 33162174 DOI: 10.1016/j.biomaterials.2020.120455] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/07/2020] [Accepted: 10/15/2020] [Indexed: 02/08/2023]
Abstract
The rapid development of nanotechnology has triggered the emerging of tremendous theranostic nanoplatforms for combating cancers. Silicene, as an emerging two-dimensional (2D) material, has been recently explored as therapeutic agent due to their desirable biodegradation and strong photothermal-conversion performance. However, the rational design of silicene-based composites for further exerting multifunctional medical applications is still highly challenging. Herein, we report on the construction of silicene-based silicene@Pt composite nanosheets for computed tomography (CT)/photoacoustic (PA) imaging-guided dual-sensitized radiotherapy combined with photonic tumor hyperthermia, which has been achieved by a seed-growth approach to in situ grow Pt components onto silicene nanosheets' surface. Especially, by functionalization of Pt components, these nanosheets could act as both contrast agents for CT imaging and dual radio-sensitizing agents for radiotherapy, which could deposit Pt-involved radiation energy (sensitized therapeutic process I) and overcome hypoxia-associated radio-resistance by Pt-catalytic O2 generation from overexpressed H2O2 within the tumor microenvironment (sensitized therapeutic process II). The strong photothermal-conversion performance of silicene nanosheets not only endowed silicene@Pt composite nanosheets with photoacoustic imaging property, but also realized the photonic tumor hyperthermia and achieved a combined therapeutic effect with radiotherapy. This work not only broadens the biomedical applications of silicene, but also develops functionalization strategies of silicene for versatile biomedical applications.
Collapse
Affiliation(s)
- Ruizhi Hu
- Department of Ultrasound in Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
| | - Zhixin Chen
- State Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Chen Dai
- Department of Ultrasound in Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
| | - Xiang Guo
- Department of Orthopedics, The Second Affiliated Hospital, The Navy Medical University, Shanghai, 200003, China.
| | - Wei Feng
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Zhuang Liu
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Han Lin
- State Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Yu Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, China; State Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.
| | - Rong Wu
- Department of Ultrasound in Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China; Department of Ultrasound in Medicine, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
48
|
Liu H, Mei C, Deng X, Lin W, He L, Chen T. Rapid visualizing and pathological grading of bladder tumor tissues by simple nanodiagnostics. Biomaterials 2020; 264:120434. [PMID: 33070001 DOI: 10.1016/j.biomaterials.2020.120434] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/24/2020] [Accepted: 10/04/2020] [Indexed: 12/17/2022]
Abstract
Developing a tissue diagnosis technology to avoid the complicated processes and the usage of expensive reagents while achieving rapid pathological grading diagnosis to provide a better strategy for clinical treatment is an important strategy of tumor diagnose. Herein, we selected the integrin αvβ3 as target based on the analysis of clinical data, and then designed a stable and cancer-targeted selenium nanosystem (RGD@SeNPs) by using RGD polypeptide as the targeting modifier. In vitro experiments showed that RGD@SeNPs could specifically recognized tumor cells, especially in co-culture cells model. The RGD@SeNPs can be used for clinical samples staining without the use of primary and secondary antibody. Fluorescence difference of the tissue specimens staining with RGD@SeNPs could be used to distinguish normal tissues and tumor tissues or estimate different pathological grades of cancer at tissue level. 132 clinical tumor specimens with three types of tumor and 76 non-tumor specimens were examined which verified that the nanoparticles could specific and sensitive distinguish tumor tissue from normal tissue with a specificity of 92% and sensitivity of 96%. These results demonstrate the potential of cancer-targeted RGD@SeNPs as translational nanodiagnostics for rapid visualizing and pathological grading of bladder tumor tissues in clinical specimens.
Collapse
Affiliation(s)
- Hongxing Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Chaoming Mei
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Xuanru Deng
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Weiqiang Lin
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Lizhen He
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Tianfeng Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Department of Chemistry, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
49
|
Huang W, Chen Z, Hou L, Feng P, Li Y, Chen T. Adjusting the lipid-water distribution coefficient of iridium(III) complexes to enhance the cellular penetration and treatment efficacy to antagonize cisplatin resistance in cervical cancer. Dalton Trans 2020; 49:11556-11564. [PMID: 32716436 DOI: 10.1039/d0dt02064h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The effective design of metal complexes to manipulate their lipid-water distribution coefficient is an appealing strategy for improving their cellular penetration and treatment efficacy. Here, we conveniently synthesized three iridium (Ir) complexes with red fluorescence via the simple non-conjugate modification of the side arm of the ligand. Bio-evaluation revealed that upon adding non-conjugate selenium (Se) arene derivatives, the lipid-water distribution coefficient of Ir-Se was found to be suitable, not only decreasing the toxic side effects of complexes to normal cells, but also effectively improving their anticancer activity via enhancing their penetration into tumor cells. Moreover, mechanistic investigations demonstrated that Ir-Se entered R-HeLa cells through endocytosis, and triggered apoptosis via the down-regulation of the mitochondrial membrane potential and excessive production of singlet oxygen, thereby possessing a highly effective cytotoxicity to antagonize cisplatin resistance. Therefore, we developed a convenient strategy to derive functional metal complexes and revealed that the introduction of Se on the side arm of the ligand provided the complexes with the capacity to reverse multidrug resistance.
Collapse
Affiliation(s)
- Wei Huang
- Department of Chemistry, Jinan University, Guangzhou 510632, China.
| | - Zhen Chen
- Department of Chemistry, Jinan University, Guangzhou 510632, China.
| | - Liyuan Hou
- Department of Chemistry, Jinan University, Guangzhou 510632, China.
| | - Pengju Feng
- Department of Chemistry, Jinan University, Guangzhou 510632, China.
| | - Yiqun Li
- Department of Chemistry, Jinan University, Guangzhou 510632, China.
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
50
|
Yang F, Huang J, Liu H, Lin W, Li X, Zhu X, Chen T. Lentinan-functionalized selenium nanosystems with high permeability infiltrate solid tumors by enhancing transcellular transport. NANOSCALE 2020; 12:14494-14503. [PMID: 32614349 DOI: 10.1039/d0nr02171g] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The delivery of nanomedicines into internal areas of solid tumors is a great challenge for the design of chemotherapeutic drugs and the realization of their successful application. Herein, we synthesized stable and efficient selenium nanoparticles (SeNPs) with an ideal size and a transcellular transport capability for the penetration and treatment of a solid tumor, utilizing Tw-80 as a dispersing agent and mushroom polysaccharide lentinan (LET) as a decorator. In vitro cellular experiments demonstrated that this nanosystem, LET-Tw-SeNPs, renders significant cellular uptake of HepG2 by receptor-mediated endocytosis and exhibits predominant transcellular transport and penetration capacity towards HepG2 tumor spheroids. Moreover, this therapeutic agent simultaneously inhibits the proliferation and migration of HepG2 cells via a cell cycle arrest pathway. Internalized LET-Tw-SeNPs give rise to the overproduction of intracellular reactive oxygen species (ROS), thus inducing mitochondrial rupture. Meanwhile, pharmacokinetic analysis showed that LET-Tw-SeNPs displayed a long half-life in blood. Altogether, this study demonstrates an inventive strategy for designing nanosystems with high permeability and low blood clearance, in order to achieve efficient in-depth tumor drug delivery and future clinical treatment of solid tumors.
Collapse
Affiliation(s)
- Fan Yang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China and Department of Chemistry, Jinan University, Guangzhou 510632, P. R. China.
| | - Jiarun Huang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China and Department of Chemistry, Jinan University, Guangzhou 510632, P. R. China.
| | - Hongxing Liu
- Department of Chemistry, Jinan University, Guangzhou 510632, P. R. China. and Shenzhen Agricultural Product Quality and Safety Inspection and Testing Center (Guangdong Provincial Key Laboratory of Supervision and Administration of Edible Agricultural Products, Market Supervision Administration), Shenzhen, China
| | - Weiqiang Lin
- Department of Chemistry, Jinan University, Guangzhou 510632, P. R. China.
| | - Xiaoling Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China and Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China.
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Tianfeng Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China and Department of Chemistry, Jinan University, Guangzhou 510632, P. R. China.
| |
Collapse
|