1
|
Porto Cruz MF, Zucchini E, Vomero M, Pastore A, Vasilaș IG, Delfino E, Di Lauro M, Asplund M, Fadiga L, Stieglitz T. Bridging circuit modeling and signal analysis to understand the risk of crosstalk contamination in brain recordings. Nat Commun 2025; 16:4744. [PMID: 40399305 PMCID: PMC12095702 DOI: 10.1038/s41467-025-59391-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 04/17/2025] [Indexed: 05/23/2025] Open
Abstract
Advancements in the field of implantable neurotechnologies have enabled the integration of hundreds of microelectrodes on ultra-thin and flexible substrates. Besides implantable components, also connectors, headstages and cables have to comply with the high-count demand, resulting in a complex and compact chain with reduced line spacing and smaller safety margins. Here, we show that epicortical recordings acquired from anesthetized rat brains with a state-of-art neural acquisition system are undoubtedly compromised by crosstalk, with signal coherence maps exhibiting a strong dependency to the routing layout. A crosstalk back-correction algorithm is developed, allowing to infer on how signals would look like under a zero-crosstalk scenario. We found that signal coherence between closely routed channels effectively drops after correction, corroborating crosstalk contamination. Our work stresses the importance of validating recorded data against the routing layout as a crucial step of data quality control, helping to come closer to ground truth data.
Collapse
Affiliation(s)
- Maria F Porto Cruz
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany.
- Department of Neuroscience and Rehabilitation, University of Ferrara, via Luigi Borsari 46, 44121, Ferrara, Italy.
| | - Elena Zucchini
- Department of Neuroscience and Rehabilitation, University of Ferrara, via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Maria Vomero
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, 79110, Freiburg, Germany
| | - Aldo Pastore
- Department of Neuroscience and Rehabilitation, University of Ferrara, via Luigi Borsari 46, 44121, Ferrara, Italy
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, via Fossato di Mortara 19, 44121, Ferrara, Italy
| | - Ioana G Vasilaș
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, 79110, Freiburg, Germany
| | - Emanuela Delfino
- Department of Neuroscience and Rehabilitation, University of Ferrara, via Luigi Borsari 46, 44121, Ferrara, Italy
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, via Fossato di Mortara 19, 44121, Ferrara, Italy
| | - Michele Di Lauro
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, via Fossato di Mortara 19, 44121, Ferrara, Italy
| | - Maria Asplund
- BrainLinks-BrainTools Center, University of Freiburg, 79110, Freiburg, Germany
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Luciano Fadiga
- Department of Neuroscience and Rehabilitation, University of Ferrara, via Luigi Borsari 46, 44121, Ferrara, Italy
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, via Fossato di Mortara 19, 44121, Ferrara, Italy
| | - Thomas Stieglitz
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany.
- BrainLinks-BrainTools Center, University of Freiburg, 79110, Freiburg, Germany.
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, Kemivägen 9, 41296, Gothenburg, Sweden.
| |
Collapse
|
2
|
Herron J, Kullmann A, Denison T, Goodman WK, Gunduz A, Neumann WJ, Provenza NR, Shanechi MM, Sheth SA, Starr PA, Widge AS. Challenges and opportunities of acquiring cortical recordings for chronic adaptive deep brain stimulation. Nat Biomed Eng 2025; 9:606-617. [PMID: 39730913 DOI: 10.1038/s41551-024-01314-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/31/2024] [Indexed: 12/29/2024]
Abstract
Deep brain stimulation (DBS), a proven treatment for movement disorders, also holds promise for the treatment of psychiatric and cognitive conditions. However, for DBS to be clinically effective, it may require DBS technology that can alter or trigger stimulation in response to changes in biomarkers sensed from the patient's brain. A growing body of evidence suggests that such adaptive DBS is feasible, it might achieve clinical effects that are not possible with standard continuous DBS and that some of the best biomarkers are signals from the cerebral cortex. Yet capturing those markers requires the placement of cortex-optimized electrodes in addition to standard electrodes for DBS. In this Perspective we argue that the need for cortical biomarkers in adaptive DBS and the unfortunate convergence of regulatory and financial factors underpinning the unavailability of cortical electrodes for chronic uses threatens to slow down or stall research on adaptive DBS and propose public-private partnerships as a potential solution to such a critical technological gap.
Collapse
Affiliation(s)
- Jeffrey Herron
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Aura Kullmann
- NeuroOne Medical Technologies Corporation, Eden Prairie, MN, USA
| | - Timothy Denison
- Department of Engineering Science, University of Oxford, Oxford, UK
| | - Wayne K Goodman
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Aysegul Gunduz
- Department of Biomedical Engineering and Fixel Institute for Neurological Disorders, University of Florida, Gainesville, FL, USA
| | - Wolf-Julian Neumann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité-Universitätsmedizin, Berlin, Germany
| | - Nicole R Provenza
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Maryam M Shanechi
- Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Philip A Starr
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Alik S Widge
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
3
|
Trouillet A, Revol E, Coen FV, Fallegger F, Chanthany A, Delacombaz M, Kolly L, Furfaro I, Lanz F, Kanumuri V, Adenis V, Garcia-Chavez A, Brown MC, Anschuetz L, Bloch J, Lee DJ, Lacour SP. High-resolution prosthetic hearing with a soft auditory brainstem implant in macaques. Nat Biomed Eng 2025:10.1038/s41551-025-01378-9. [PMID: 40251249 DOI: 10.1038/s41551-025-01378-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/17/2025] [Indexed: 04/20/2025]
Abstract
Individuals with compromised cochlear nerves are ineligible for cochlear implants and instead rely on auditory brainstem implants (ABIs). Most users of ABIs experience sound awareness, which aids in lip reading, yet not speech intelligibility. Here we engineered a dual-site (brainstem and cortex) implantable system, scaled to macaque anatomy, for the analysis of auditory perception evoked by electrical stimulation of the cochlear nucleus. A soft multichannel ABI, fabricated using thin-film processing, provided high-resolution auditory percepts, with spatially distinct stimulation sites eliciting cortical responses akin to frequency-specific tuning. Behavioural responses collected over several months were sufficiently precise to distinguish stimulations from adjacent channels. Soft multichannel ABIs may aid the rehabilitation of individuals with profound hearing loss who are ineligible for cochlear implants.
Collapse
Affiliation(s)
- Alix Trouillet
- Laboratory for Soft Bioelectronic Interfaces, Neuro X Institute, School of Engineering, Ecole Polytechnique Fédérale de Lausanne EPFL, Geneva, Switzerland.
| | - Emilie Revol
- Laboratory for Soft Bioelectronic Interfaces, Neuro X Institute, School of Engineering, Ecole Polytechnique Fédérale de Lausanne EPFL, Geneva, Switzerland
| | - Florent-Valéry Coen
- Laboratory for Soft Bioelectronic Interfaces, Neuro X Institute, School of Engineering, Ecole Polytechnique Fédérale de Lausanne EPFL, Geneva, Switzerland
| | - Florian Fallegger
- Laboratory for Soft Bioelectronic Interfaces, Neuro X Institute, School of Engineering, Ecole Polytechnique Fédérale de Lausanne EPFL, Geneva, Switzerland
| | - Aurélie Chanthany
- Department of Neuroscience, Platform of Translational Neuroscience, University of Fribourg, Fribourg, Switzerland
| | - Maude Delacombaz
- Department of Neuroscience, Platform of Translational Neuroscience, University of Fribourg, Fribourg, Switzerland
| | - Laurine Kolly
- Laboratory for Soft Bioelectronic Interfaces, Neuro X Institute, School of Engineering, Ecole Polytechnique Fédérale de Lausanne EPFL, Geneva, Switzerland
| | - Ivan Furfaro
- Laboratory for Soft Bioelectronic Interfaces, Neuro X Institute, School of Engineering, Ecole Polytechnique Fédérale de Lausanne EPFL, Geneva, Switzerland
| | - Florian Lanz
- Department of Neuroscience, Platform of Translational Neuroscience, University of Fribourg, Fribourg, Switzerland
| | - Vivek Kanumuri
- Eaton-Peabody Laboratories, Department of Otolaryngology, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, USA
| | - Victor Adenis
- Eaton-Peabody Laboratories, Department of Otolaryngology, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, USA
| | - Alejandro Garcia-Chavez
- Eaton-Peabody Laboratories, Department of Otolaryngology, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, USA
| | - M Christian Brown
- Eaton-Peabody Laboratories, Department of Otolaryngology, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, USA
| | - Lukas Anschuetz
- Department of Otorhinolaryngology, Lausanne University Hospital, Lausanne, Switzerland
| | - Jocelyne Bloch
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- NeuroRestore, Defitech Center for Interventional Neurotherapies, EPFL/CHUV/UNIL, Lausanne, Switzerland
- Neuro X Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne EPFL, Geneva, Switzerland
| | - Daniel J Lee
- Eaton-Peabody Laboratories, Department of Otolaryngology, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, USA.
| | - Stéphanie P Lacour
- Laboratory for Soft Bioelectronic Interfaces, Neuro X Institute, School of Engineering, Ecole Polytechnique Fédérale de Lausanne EPFL, Geneva, Switzerland.
| |
Collapse
|
4
|
Willaredt R, Grandauer C, De Dorigo D, Wendler D, Kuhl M, Manoli Y. Compact Low-Power Interfacing and Data Reduction for Floating Active Intracortical Neural Probes With Modular Architecture. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2025; 19:270-279. [PMID: 40031267 DOI: 10.1109/tbcas.2025.3532465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Host connectivity for invasive, high-density neural probes that integrate all the circuits needed for in-situ digitization of brain activity in the shank requires a thin and conformal cable. To minimize tissue damage during insertion or from micro-movements during chronic use, the wiring must be constrained in size with a low number of interconnects. Reducing the number of traces results in thinner and more flexible cables and allows the data rate to be increased by using wider traces. Fewer contacts are also less susceptible to reliability issues in long-term applications. This paper presents a modular digital neural probe that embeds a two-wire bidirectional interface for host connectivity minimizing the data overhead for configuration and readout. The presented handshaking allows synchronization of multiple shanks and is designed to adapt to varying line delays caused by different cable lengths or changing environmental conditions. Data reduction based on delta encoding further increases the number of electrodes that can be read out simultaneously. The system is validated in a 192-channel neural probe fabricated in a 180 nm CMOS technology with a supply voltage of 1.2 V.
Collapse
|
5
|
Jung T, Zeng N, Fabbri JD, Eichler G, Li Z, Zabeh E, Das A, Willeke K, Wingel KE, Dubey A, Huq R, Sharma M, Hu Y, Ramakrishnan G, Tien K, Mantovani P, Parihar A, Yin H, Oswalt D, Misdorp A, Uguz I, Shinn T, Rodriguez GJ, Nealley C, Sanborn S, Gonzales I, Roukes M, Knecht J, Yoshor D, Canoll P, Spinazzi E, Carloni LP, Pesaran B, Patel S, Jacobs J, Youngerman B, Cotton RJ, Tolias A, Shepard KL. Stable, chronic in-vivo recordings from a fully wireless subdural-contained 65,536-electrode brain-computer interface device. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.17.594333. [PMID: 38798494 PMCID: PMC11118429 DOI: 10.1101/2024.05.17.594333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Minimally invasive, high-bandwidth brain-computer-interface (BCI) devices can revolutionize human applications. With orders-of-magnitude improvements in volumetric efficiency over other BCI technologies, we developed a 50-μm-thick, mechanically flexible micro-electrocorticography (μECoG) BCI, integrating a 256×256 array of electrodes, signal processing, data telemetry, and wireless powering on a single complementary metal-oxide-semiconductor (CMOS) substrate containing 65,536 recording channels, from which we can simultaneously record a selectable subset of up to 1024 channels at a given time. Fully implanted below the dura, our chip is wirelessly powered, communicating bi-directionally with an external relay station outside the body. We demonstrated chronic, reliable recordings for up to two weeks in pigs and up to two months in behaving non-human primates from somatosensory, motor, and visual cortices, decoding brain signals at high spatiotemporal resolution.
Collapse
Affiliation(s)
- Taesung Jung
- Department of Electrical Engineering, Columbia University; New York, NY 10027, USA
| | - Nanyu Zeng
- Department of Electrical Engineering, Columbia University; New York, NY 10027, USA
| | - Jason D. Fabbri
- Department of Electrical Engineering, Columbia University; New York, NY 10027, USA
| | - Guy Eichler
- Department of Computer Science, Columbia University; New York, NY 10027, USA
| | - Zhe Li
- Department of Ophthalmology, Byers Eye Institute, Stanford University; Stanford, CA 94305, USA
- Stanford Bio-X, Stanford University, Stanford University; Stanford, CA 94304, USA
- Wu Tsai Neurosciences Institute, Stanford University; Stanford, CA 94304, USA
| | - Erfan Zabeh
- Department of Biomedical Engineering, Columbia University; New York, NY 10027, USA
| | - Anup Das
- Department of Biomedical Engineering, Columbia University; New York, NY 10027, USA
| | - Konstantin Willeke
- Department of Ophthalmology, Byers Eye Institute, Stanford University; Stanford, CA 94305, USA
- Stanford Bio-X, Stanford University, Stanford University; Stanford, CA 94304, USA
- Wu Tsai Neurosciences Institute, Stanford University; Stanford, CA 94304, USA
- Institute of Computer Science and Campus Institute Data Science, University of Göttingen; Germany
| | - Katie E. Wingel
- Center for Neural Science, New York University; New York, NY 10003, USA
- Department of Neurosurgery, University of Pennsylvania; Philadelphia PA 19118, USA
| | - Agrita Dubey
- Center for Neural Science, New York University; New York, NY 10003, USA
- Department of Neurosurgery, University of Pennsylvania; Philadelphia PA 19118, USA
| | - Rizwan Huq
- Department of Electrical Engineering, Columbia University; New York, NY 10027, USA
| | - Mohit Sharma
- Department of Electrical Engineering, Columbia University; New York, NY 10027, USA
| | - Yaoxing Hu
- Department of Electrical Engineering, Columbia University; New York, NY 10027, USA
| | - Girish Ramakrishnan
- Department of Electrical Engineering, Columbia University; New York, NY 10027, USA
| | - Kevin Tien
- Department of Electrical Engineering, Columbia University; New York, NY 10027, USA
| | - Paolo Mantovani
- Department of Computer Science, Columbia University; New York, NY 10027, USA
| | - Abhinav Parihar
- Department of Electrical Engineering, Columbia University; New York, NY 10027, USA
| | - Heyu Yin
- Department of Electrical Engineering, Columbia University; New York, NY 10027, USA
| | - Denise Oswalt
- Department of Neurosurgery, University of Pennsylvania; Philadelphia PA 19118, USA
- Department of Neuroscience, University of Pennsylvania; Philadelphia, PA 19118, USA
- Department of Bioengineering, University of Pennsylvania; Philadelphia, PA 19118, USA
| | - Alexander Misdorp
- Department of Computer Science, Columbia University; New York, NY 10027, USA
| | - Ilke Uguz
- Department of Electrical Engineering, Columbia University; New York, NY 10027, USA
| | - Tori Shinn
- Department of Bioengineering, University of Pennsylvania; Philadelphia, PA 19118, USA
| | - Gabrielle J. Rodriguez
- Department of Ophthalmology, Byers Eye Institute, Stanford University; Stanford, CA 94305, USA
- Stanford Bio-X, Stanford University, Stanford University; Stanford, CA 94304, USA
- Wu Tsai Neurosciences Institute, Stanford University; Stanford, CA 94304, USA
| | - Cate Nealley
- Department of Ophthalmology, Byers Eye Institute, Stanford University; Stanford, CA 94305, USA
- Stanford Bio-X, Stanford University, Stanford University; Stanford, CA 94304, USA
- Wu Tsai Neurosciences Institute, Stanford University; Stanford, CA 94304, USA
| | - Sophia Sanborn
- Stanford Bio-X, Stanford University, Stanford University; Stanford, CA 94304, USA
- Wu Tsai Neurosciences Institute, Stanford University; Stanford, CA 94304, USA
| | - Ian Gonzales
- Department of Neurological Surgery, Columbia University; New York, NY 10032, USA
| | - Michael Roukes
- Departments of Physics, Applied Physics, and Bioengineering, Caltech; Pasadena, CA 91125, USA
| | - Jeffrey Knecht
- Lincoln Laboratory, Massachusetts Institute of Technology; Lexington, MA 02421, USA
| | - Daniel Yoshor
- Department of Neurosurgery, University of Pennsylvania; Philadelphia PA 19118, USA
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University; New York, NY 10032, USA
| | - Eleonora Spinazzi
- Department of Neurological Surgery, Columbia University; New York, NY 10032, USA
| | - Luca P. Carloni
- Department of Computer Science, Columbia University; New York, NY 10027, USA
| | - Bijan Pesaran
- Center for Neural Science, New York University; New York, NY 10003, USA
- Department of Neurosurgery, University of Pennsylvania; Philadelphia PA 19118, USA
- Department of Neuroscience, University of Pennsylvania; Philadelphia, PA 19118, USA
- Department of Bioengineering, University of Pennsylvania; Philadelphia, PA 19118, USA
| | - Saumil Patel
- Department of Ophthalmology, Byers Eye Institute, Stanford University; Stanford, CA 94305, USA
- Stanford Bio-X, Stanford University, Stanford University; Stanford, CA 94304, USA
- Wu Tsai Neurosciences Institute, Stanford University; Stanford, CA 94304, USA
| | - Joshua Jacobs
- Department of Biomedical Engineering, Columbia University; New York, NY 10027, USA
- Department of Neurological Surgery, Columbia University; New York, NY 10032, USA
| | - Brett Youngerman
- Department of Neurological Surgery, Columbia University; New York, NY 10032, USA
| | - R. James Cotton
- Shirley Ryan Ability Labs; Chicago, IL, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University; Chicago, IL, USA
| | - Andreas Tolias
- Department of Ophthalmology, Byers Eye Institute, Stanford University; Stanford, CA 94305, USA
- Stanford Bio-X, Stanford University, Stanford University; Stanford, CA 94304, USA
- Wu Tsai Neurosciences Institute, Stanford University; Stanford, CA 94304, USA
- Center for Neuroscience and Artificial Intelligence, Department of Neuroscience, Baylor College of Medicine; Houston, TX 77030, USA
- Department of Electrical Engineering, Stanford University; Stanford, CA 94304, USA
| | - Kenneth L. Shepard
- Department of Electrical Engineering, Columbia University; New York, NY 10027, USA
- Department of Biomedical Engineering, Columbia University; New York, NY 10027, USA
- Department of Neurological Surgery, Columbia University; New York, NY 10032, USA
| |
Collapse
|
6
|
Konrad P, Gelman KR, Lawrence J, Bhatia S, Jacqueline D, Sharma R, Ho E, Byun YW, Mermel CH, Rapoport BI. First-in-human experience performing high-resolution cortical mapping using a novel microelectrode array containing 1024 electrodes. J Neural Eng 2025; 22:026009. [PMID: 39870041 DOI: 10.1088/1741-2552/adaeed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/27/2025] [Indexed: 01/29/2025]
Abstract
Objective.Localization of function within the brain and central nervous system is an essential aspect of clinical neuroscience. Classical descriptions of functional neuroanatomy provide a foundation for understanding the functional significance of identifiable anatomic structures. However, individuals exhibit substantial variation, particularly in the presence of disorders that alter tissue structure or impact function. Furthermore, functional regions do not always correspond to identifiable structural features. Understanding function at the level of individual patients-and diagnosing and treating such patients-often requires techniques capable of correlating neural activity with cognition, behavior, and experience in anatomically precise ways.Approach. Recent advances in brain-computer interface technology have given rise to a new generation of electrophysiologic tools for scalable, nondestructive functional mapping with spatial precision in the range of tens to hundreds of micrometers, and temporal resolutions in the range of tens to hundreds of microseconds. Here we describe our initial intraoperative experience with novel, thin-film arrays containing 1024 surface microelectrodes for electrocorticographic mapping in a first-in-human study.Main results. Eight patients undergoing standard electrophysiologic cortical mapping during resection of eloquent-region brain tumors consented to brief sessions of concurrent mapping (micro-electrocorticography) using the novel arrays. Four patients underwent motor mapping using somatosensory evoked potentials (SSEPs) while under general anesthesia, and four underwent awake language mapping, using both standard paradigms and the novel microelectrode array. SSEP phase reversal was identified in the region predicted by conventional mapping, but at higher resolution (0.4 mm) and as a contour rather than as a point. In Broca's area (confirmed by direct cortical stimulation), speech planning was apparent in the micro-electrocorticogram as high-amplitude beta-band activity immediately prior to the articulatory event.Significance. These findings support the feasibility and potential clinical utility of incorporating micro-electrocorticography into the intraoperative workflow for systematic cortical mapping of functional brain regions.
Collapse
Affiliation(s)
- Peter Konrad
- Department of Neurosurgery, West Virginia University, Morgantown, WV, United States of America
| | - Kate R Gelman
- Department of Neurosurgery, West Virginia University, Morgantown, WV, United States of America
| | - Jesse Lawrence
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY, United States of America
| | - Sanjay Bhatia
- Department of Neurosurgery, West Virginia University, Morgantown, WV, United States of America
| | - Dister Jacqueline
- Precision Neuroscience Corporation, New York, NY, United States of America
| | - Radhey Sharma
- Department of Neurosurgery, West Virginia University, Morgantown, WV, United States of America
| | - Elton Ho
- Precision Neuroscience Corporation, New York, NY, United States of America
| | - Yoon Woo Byun
- Precision Neuroscience Corporation, New York, NY, United States of America
| | - Craig H Mermel
- Precision Neuroscience Corporation, New York, NY, United States of America
| | | |
Collapse
|
7
|
Xiang Z, Yang L, Yu B, Zeng Q, Huang T, Shi S, Yu H, Zhang Y, Wu J, Zhu M. Recent advances in polymer-based thin-film electrodes for ECoG applications. J Mater Chem B 2025; 13:454-471. [PMID: 39588722 DOI: 10.1039/d4tb02090a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Electrocorticography (ECoG) has garnered widespread attention owing to its superior signal resolution compared to conventional electroencephalogram (EEG). While ECoG signal acquisition entails invasiveness, the invasive rigid electrode used inevitably inflicts damage on brain tissue. Polymer electrodes that combine conductivity and transparency have garnered great interest because they not only facilitate high-quality signal acquisition but also provide additional insights while preserving the health of the brain, positioning them as the future frontier in the brain-computer interface (BCI). This review summarizes the multifaceted functions of polymers in ECoG thin-film electrodes for the BCI. We present the abilities of sensitive and structural polymers focusing on impedance reduction, signal quality improvement, good flexibility, and transparency. Typically, two sensitive polymers and four structural polymers are analyzed in detail in terms of ECoG electrode properties. Moreover, the underlying mechanism of polymer-based electrodes in signal quality enhancement is revealed. Finally, the remaining challenges and perspectives are discussed.
Collapse
Affiliation(s)
- Zhengchen Xiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Liangtao Yang
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, China.
| | - Bin Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Qi Zeng
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, China.
| | - Tao Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Shuo Shi
- School of Fashion and Textiles, The Hong Kong Polytechnic University, 999077, Hong Kong S.A.R, China
| | - Hao Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Yi Zhang
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, China.
| | - Jinglong Wu
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
8
|
Martinelli E, Akouissi O, Liebi L, Furfaro I, Maulà D, Savoia N, Remy A, Nikles L, Roux A, Stoppini L, Lacour SP. The e-Flower: A hydrogel-actuated 3D MEA for brain spheroid electrophysiology. SCIENCE ADVANCES 2024; 10:eadp8054. [PMID: 39413178 PMCID: PMC11482305 DOI: 10.1126/sciadv.adp8054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/12/2024] [Indexed: 10/18/2024]
Abstract
Traditional microelectrode arrays (MEAs) are limited to measuring electrophysiological activity in two dimensions, failing to capture the complexity of three-dimensional (3D) tissues such as neural organoids and spheroids. Here, we introduce a flower-shaped MEA (e-Flower) that can envelop submillimeter brain spheroids following actuation by the sole addition of the cell culture medium. Inspired by soft microgrippers, its actuation mechanism leverages the swelling properties of a polyacrylic acid hydrogel grafted to a polyimide substrate hosting the electrical interconnects. Compatible with standard electrophysiology recording systems, the e-Flower does not require additional equipment or solvents and is ready to use with preformed 3D tissues. We designed an e-Flower achieving a curvature as low as 300 micrometers within minutes, a value tunable by the choice of reswelling media and hydrogel cross-linker concentration. Furthermore, we demonstrate the ability of the e-Flower to detect spontaneous neural activity across the spheroid surface, demonstrating its potential for comprehensive neural signal recording.
Collapse
Affiliation(s)
- Eleonora Martinelli
- Laboratory for Soft Bioelectronic Interfaces, Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Outman Akouissi
- Laboratory for Soft Bioelectronic Interfaces, Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Bertarelli Foundation Chair in Translational NeuroEngineering, Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Luca Liebi
- Laboratory for Soft Bioelectronic Interfaces, Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Ivan Furfaro
- Laboratory for Soft Bioelectronic Interfaces, Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Desirée Maulà
- Laboratory for Soft Bioelectronic Interfaces, Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Nathan Savoia
- Laboratory for Soft Bioelectronic Interfaces, Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Antoine Remy
- Laboratory for Soft Bioelectronic Interfaces, Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Laetitia Nikles
- Tissue Engineering Laboratory, HEPIA HES-SO University of Applied Sciences and Arts Western Switzerland, Geneva, Switzerland
| | - Adrien Roux
- Tissue Engineering Laboratory, HEPIA HES-SO University of Applied Sciences and Arts Western Switzerland, Geneva, Switzerland
| | - Luc Stoppini
- Tissue Engineering Laboratory, HEPIA HES-SO University of Applied Sciences and Arts Western Switzerland, Geneva, Switzerland
| | - Stéphanie P. Lacour
- Laboratory for Soft Bioelectronic Interfaces, Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| |
Collapse
|
9
|
Akamine IR, Garich JV, Gulick DW, Hara SA, Benscoter MA, Kuehn ST, Worrell GA, Raupp GB, Blain Christen JM. Development of a novel, concentric micro-ECoG array enabling simultaneous detection of a single location by multiple electrode sizes. Biomed Phys Eng Express 2024; 10:045040. [PMID: 38744259 DOI: 10.1088/2057-1976/ad4b1c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
Objective.Detection of the epileptogenic zone is critical, especially for patients with drug-resistant epilepsy. Accurately mapping cortical regions exhibiting high activity during spontaneous seizure events while detecting neural activity up to 500 Hz can assist clinicians' surgical decisions and improve patient outcomes.Approach.We designed, fabricated, and tested a novel hybrid, multi-scale micro-electrocorticography (micro-ECoG) array with a unique embedded configuration. This array was compared to a commercially available microelectrode array (Neuronexus) for recording neural activity in rodent sensory cortex elicited by somatosensory evoked potentials and pilocarpine-induced seizures.Main results.Evoked potentials and spatial maps recorded by the multi-scale array ('micros', 'mesos', and 'macros' refering to the relative electrode sizes, 40 micron, 1 mm, and 4 mm respectively) were comparable to the Neuronexus array. The SSEPs recorded with the micros had higher peak amplitudes and greater signal power than those recorded by the larger mesos and macro. Seizure onset events and high-frequency oscillations (∼450 Hz) were detected on the multi-scale, similar to the commercially available array. The micros had greater SNR than the mesos and macro over the 5-1000 Hz frequency range during seizure monitoring. During cortical stimulation experimentation, the mesos successfully elicited motor effects.Significance.Previous studies have compared macro- and microelectrodes for localizing seizure activity in adjacent regions. The multi-scale design validated here is the first to simultaneously measure macro- and microelectrode signals from the same overlapping cortical area. This enables direct comparison of microelectrode recordings to the macroelectrode recordings used in standard neurosurgical practice. Previous studies have also shown that cortical regions generating high-frequency oscillations are at an increased risk for becoming epileptogenic zones. More accurate mapping of these micro seizures may improve surgical outcomes for epilepsy patients.
Collapse
Affiliation(s)
- Ian R Akamine
- Biomedical & Health Systems Engineering, Arizona State University, Tempe, AZ, United States of America
| | - Jonathan V Garich
- Biomedical & Health Systems Engineering, Arizona State University, Tempe, AZ, United States of America
- Division of Engineering, Mayo Clinic, Rochester, MN, United States of America
| | - Daniel W Gulick
- Electrical, Computer, & Energy Engineering, Arizona State University, Tempe, AZ, United States of America
| | - Seth A Hara
- Division of Engineering, Mayo Clinic, Rochester, MN, United States of America
| | - Mark A Benscoter
- Division of Engineering, Mayo Clinic, Rochester, MN, United States of America
| | - Stephen T Kuehn
- Division of Engineering, Mayo Clinic, Rochester, MN, United States of America
| | - Gregory A Worrell
- Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
| | - Gregory B Raupp
- Engineering of Matter, Transport, & Energy, Arizona State University, Tempe, AZ, United States of America
| | - Jennifer M Blain Christen
- Electrical, Computer, & Energy Engineering, Arizona State University, Tempe, AZ, United States of America
| |
Collapse
|
10
|
Sun Y, Xiao Z, Chen B, Zhao Y, Dai J. Advances in Material-Assisted Electromagnetic Neural Stimulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400346. [PMID: 38594598 DOI: 10.1002/adma.202400346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/26/2024] [Indexed: 04/11/2024]
Abstract
Bioelectricity plays a crucial role in organisms, being closely connected to neural activity and physiological processes. Disruptions in the nervous system can lead to chaotic ionic currents at the injured site, causing disturbances in the local cellular microenvironment, impairing biological pathways, and resulting in a loss of neural functions. Electromagnetic stimulation has the ability to generate internal currents, which can be utilized to counter tissue damage and aid in the restoration of movement in paralyzed limbs. By incorporating implanted materials, electromagnetic stimulation can be targeted more accurately, thereby significantly improving the effectiveness and safety of such interventions. Currently, there have been significant advancements in the development of numerous promising electromagnetic stimulation strategies with diverse materials. This review provides a comprehensive summary of the fundamental theories, neural stimulation modulating materials, material application strategies, and pre-clinical therapeutic effects associated with electromagnetic stimulation for neural repair. It offers a thorough analysis of current techniques that employ materials to enhance electromagnetic stimulation, as well as potential therapeutic strategies for future applications.
Collapse
Affiliation(s)
- Yuting Sun
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhifeng Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bing Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| |
Collapse
|
11
|
Sporer M, Vasilas IG, Adzemovic A, Graber N, Reich S, Gueli C, Eickenscheidt M, Diester I, Stieglitz T, Ortmanns M. NeuroBus - Architecture for an Ultra-Flexible Neural Interface. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2024; 18:247-262. [PMID: 38227403 DOI: 10.1109/tbcas.2024.3354785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
This article presents the system architecture for an implant concept called NeuroBus. Tiny distributed direct digitizing neural recorder ASICs on an ultra-flexible polyimide substrate are connected in a bus-like structure, allowing short connections between electrode and recording front-end with low wiring effort and high customizability. The small size (344 μm × 294 μm) of the ASICs and the ultraflexible substrate allow a low bending stiffness, enabling the implant to adapt to the curvature of the brain and achieving high structural biocompatibility. We introduce the architecture, the integrated building blocks, and the post-CMOS processes required to realize a NeuroBus, and we characterize the prototyped direct digitizing neural recorder front-end as well as polyimide-based ECoG brain interface. A rodent animal model is further used to validate the joint capability of the recording front-end and thin-film electrode array.
Collapse
|
12
|
Viana D, Walston ST, Masvidal-Codina E, Illa X, Rodríguez-Meana B, Del Valle J, Hayward A, Dodd A, Loret T, Prats-Alfonso E, de la Oliva N, Palma M, Del Corro E, Del Pilar Bernicola M, Rodríguez-Lucas E, Gener T, de la Cruz JM, Torres-Miranda M, Duvan FT, Ria N, Sperling J, Martí-Sánchez S, Spadaro MC, Hébert C, Savage S, Arbiol J, Guimerà-Brunet A, Puig MV, Yvert B, Navarro X, Kostarelos K, Garrido JA. Nanoporous graphene-based thin-film microelectrodes for in vivo high-resolution neural recording and stimulation. NATURE NANOTECHNOLOGY 2024; 19:514-523. [PMID: 38212522 PMCID: PMC11026161 DOI: 10.1038/s41565-023-01570-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 11/07/2023] [Indexed: 01/13/2024]
Abstract
One of the critical factors determining the performance of neural interfaces is the electrode material used to establish electrical communication with the neural tissue, which needs to meet strict electrical, electrochemical, mechanical, biological and microfabrication compatibility requirements. This work presents a nanoporous graphene-based thin-film technology and its engineering to form flexible neural interfaces. The developed technology allows the fabrication of small microelectrodes (25 µm diameter) while achieving low impedance (∼25 kΩ) and high charge injection (3-5 mC cm-2). In vivo brain recording performance assessed in rodents reveals high-fidelity recordings (signal-to-noise ratio >10 dB for local field potentials), while stimulation performance assessed with an intrafascicular implant demonstrates low current thresholds (<100 µA) and high selectivity (>0.8) for activating subsets of axons within the rat sciatic nerve innervating tibialis anterior and plantar interosseous muscles. Furthermore, the tissue biocompatibility of the devices was validated by chronic epicortical (12 week) and intraneural (8 week) implantation. This work describes a graphene-based thin-film microelectrode technology and demonstrates its potential for high-precision and high-resolution neural interfacing.
Collapse
Affiliation(s)
- Damià Viana
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain
| | - Steven T Walston
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain
| | - Eduard Masvidal-Codina
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain
| | - Xavi Illa
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Campus UAB, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
| | - Bruno Rodríguez-Meana
- Institute of Neurosciences, Department of Cell Biology, Physiology and Immunology, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jaume Del Valle
- Institute of Neurosciences, Department of Cell Biology, Physiology and Immunology, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Barcelona, Spain
- Secció de Fisiologia, Department de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Andrew Hayward
- Nanomedicine Lab, National Graphene Institute and Faculty of Biology, Medicine & Health, Manchester, UK
| | - Abbie Dodd
- Nanomedicine Lab, National Graphene Institute and Faculty of Biology, Medicine & Health, Manchester, UK
| | - Thomas Loret
- Nanomedicine Lab, National Graphene Institute and Faculty of Biology, Medicine & Health, Manchester, UK
| | - Elisabet Prats-Alfonso
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Campus UAB, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
| | - Natàlia de la Oliva
- Institute of Neurosciences, Department of Cell Biology, Physiology and Immunology, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marie Palma
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Elena Del Corro
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain
| | - María Del Pilar Bernicola
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain
| | - Elisa Rodríguez-Lucas
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain
- Hospital del Mar Research Institute, Barcelona, Spain
| | - Thomas Gener
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain
- Hospital del Mar Research Institute, Barcelona, Spain
| | - Jose Manuel de la Cruz
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain
| | - Miguel Torres-Miranda
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain
| | - Fikret Taygun Duvan
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain
| | - Nicola Ria
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain
| | - Justin Sperling
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain
| | - Sara Martí-Sánchez
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain
| | - Maria Chiara Spadaro
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain
| | - Clément Hébert
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain
| | - Sinead Savage
- Nanomedicine Lab, National Graphene Institute and Faculty of Biology, Medicine & Health, Manchester, UK
| | - Jordi Arbiol
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Anton Guimerà-Brunet
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Campus UAB, Bellaterra, Spain
| | - M Victoria Puig
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain
- Hospital del Mar Research Institute, Barcelona, Spain
| | - Blaise Yvert
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Xavier Navarro
- Institute of Neurosciences, Department of Cell Biology, Physiology and Immunology, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Kostas Kostarelos
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain.
- Institute of Neurosciences, Department of Cell Biology, Physiology and Immunology, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Barcelona, Spain.
- Nanomedicine Lab, National Graphene Institute and Faculty of Biology, Medicine & Health, Manchester, UK.
| | - Jose A Garrido
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain.
- ICREA, Barcelona, Spain.
| |
Collapse
|
13
|
Harland B, Kow CY, Svirskis D. Spinal intradural electrodes: opportunities, challenges and translation to the clinic. Neural Regen Res 2024; 19:503-504. [PMID: 37721274 PMCID: PMC10581576 DOI: 10.4103/1673-5374.380895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/27/2023] [Accepted: 06/09/2023] [Indexed: 09/19/2023] Open
Affiliation(s)
- Bruce Harland
- School of Pharmacy, University of Auckland, Auckland, New Zealand
| | - Chien Yew Kow
- Department of Neurosurgery, Auckland City Hospital, Auckland, New Zealand
| | - Darren Svirskis
- School of Pharmacy, University of Auckland, Auckland, New Zealand
| |
Collapse
|
14
|
González-González MA, Conde SV, Latorre R, Thébault SC, Pratelli M, Spitzer NC, Verkhratsky A, Tremblay MÈ, Akcora CG, Hernández-Reynoso AG, Ecker M, Coates J, Vincent KL, Ma B. Bioelectronic Medicine: a multidisciplinary roadmap from biophysics to precision therapies. Front Integr Neurosci 2024; 18:1321872. [PMID: 38440417 PMCID: PMC10911101 DOI: 10.3389/fnint.2024.1321872] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/10/2024] [Indexed: 03/06/2024] Open
Abstract
Bioelectronic Medicine stands as an emerging field that rapidly evolves and offers distinctive clinical benefits, alongside unique challenges. It consists of the modulation of the nervous system by precise delivery of electrical current for the treatment of clinical conditions, such as post-stroke movement recovery or drug-resistant disorders. The unquestionable clinical impact of Bioelectronic Medicine is underscored by the successful translation to humans in the last decades, and the long list of preclinical studies. Given the emergency of accelerating the progress in new neuromodulation treatments (i.e., drug-resistant hypertension, autoimmune and degenerative diseases), collaboration between multiple fields is imperative. This work intends to foster multidisciplinary work and bring together different fields to provide the fundamental basis underlying Bioelectronic Medicine. In this review we will go from the biophysics of the cell membrane, which we consider the inner core of neuromodulation, to patient care. We will discuss the recently discovered mechanism of neurotransmission switching and how it will impact neuromodulation design, and we will provide an update on neuronal and glial basis in health and disease. The advances in biomedical technology have facilitated the collection of large amounts of data, thereby introducing new challenges in data analysis. We will discuss the current approaches and challenges in high throughput data analysis, encompassing big data, networks, artificial intelligence, and internet of things. Emphasis will be placed on understanding the electrochemical properties of neural interfaces, along with the integration of biocompatible and reliable materials and compliance with biomedical regulations for translational applications. Preclinical validation is foundational to the translational process, and we will discuss the critical aspects of such animal studies. Finally, we will focus on the patient point-of-care and challenges in neuromodulation as the ultimate goal of bioelectronic medicine. This review is a call to scientists from different fields to work together with a common endeavor: accelerate the decoding and modulation of the nervous system in a new era of therapeutic possibilities.
Collapse
Affiliation(s)
- María Alejandra González-González
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Pediatric Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Silvia V. Conde
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NOVA University, Lisbon, Portugal
| | - Ramon Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Stéphanie C. Thébault
- Laboratorio de Investigación Traslacional en salud visual (D-13), Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Marta Pratelli
- Neurobiology Department, Kavli Institute for Brain and Mind, UC San Diego, La Jolla, CA, United States
| | - Nicholas C. Spitzer
- Neurobiology Department, Kavli Institute for Brain and Mind, UC San Diego, La Jolla, CA, United States
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- International Collaborative Center on Big Science Plan for Purinergic Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Cuneyt G. Akcora
- Department of Computer Science, University of Central Florida, Orlando, FL, United States
| | | | - Melanie Ecker
- Department of Biomedical Engineering, University of North Texas, Denton, TX, United States
| | | | - Kathleen L. Vincent
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, United States
| | - Brandy Ma
- Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
15
|
Pirnat G, Marinčič M, Ravnik M, Humar M. Quantifying local stiffness and forces in soft biological tissues using droplet optical microcavities. Proc Natl Acad Sci U S A 2024; 121:e2314884121. [PMID: 38232279 PMCID: PMC10823245 DOI: 10.1073/pnas.2314884121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/04/2023] [Indexed: 01/19/2024] Open
Abstract
Mechanical properties of biological tissues fundamentally underlie various biological processes and noncontact, local, and microscopic methods can provide fundamental insights. Here, we present an approach for quantifying the local mechanical properties of biological materials at the microscale, based on measuring the spectral shifts of the optical resonances in droplet microcavities. Specifically, the developed method allows for measurements of deformations in dye-doped oil droplets embedded in soft materials or biological tissues with an error of only 1 nm, which in turn enables measurements of anisotropic stress inside tissues as small as a few pN/μm2. Furthermore, by applying an external strain, Young's modulus can be measured in the range from 1 Pa to 35 kPa, which covers most human soft tissues. Using multiple droplet microcavities, our approach could enable mapping of stiffness and forces in inhomogeneous soft tissues and could also be applied to in vivo and single-cell experiments. The developed method can potentially lead to insights into the mechanics of biological tissues.
Collapse
Affiliation(s)
- Gregor Pirnat
- Condensed Matter Department, J. Stefan Institute, LjubljanaSI-1000, Slovenia
- Faculty of Mathematics and Physics, University of Ljubljana, LjubljanaSI-1000, Slovenia
| | - Matevž Marinčič
- Condensed Matter Department, J. Stefan Institute, LjubljanaSI-1000, Slovenia
- Faculty of Mathematics and Physics, University of Ljubljana, LjubljanaSI-1000, Slovenia
| | - Miha Ravnik
- Condensed Matter Department, J. Stefan Institute, LjubljanaSI-1000, Slovenia
- Faculty of Mathematics and Physics, University of Ljubljana, LjubljanaSI-1000, Slovenia
| | - Matjaž Humar
- Condensed Matter Department, J. Stefan Institute, LjubljanaSI-1000, Slovenia
- Faculty of Mathematics and Physics, University of Ljubljana, LjubljanaSI-1000, Slovenia
- Center of Excellence on Nanoscience and Nanotechnology - Nanocenter, LjubljanaSI-1000, Slovenia
| |
Collapse
|
16
|
Nottelet B, Buwalda S, van Nostrum CF, Zhao X, Deng C, Zhong Z, Cheah E, Svirskis D, Trayford C, van Rijt S, Ménard-Moyon C, Kumar R, Kehr NS, de Barros NR, Khademhosseini A, Kim HJ, Vermonden T. Roadmap on multifunctional materials for drug delivery. JPHYS MATERIALS 2024; 7:012502. [PMID: 38144214 PMCID: PMC10734278 DOI: 10.1088/2515-7639/ad05e8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/29/2023] [Accepted: 10/23/2023] [Indexed: 12/26/2023]
Abstract
This Roadmap on drug delivery aims to cover some of the most recent advances in the field of materials for drug delivery systems (DDSs) and emphasizes the role that multifunctional materials play in advancing the performance of modern DDSs in the context of the most current challenges presented. The Roadmap is comprised of multiple sections, each of which introduces the status of the field, the current and future challenges faced, and a perspective of the required advances necessary for biomaterial science to tackle these challenges. It is our hope that this collective vision will contribute to the initiation of conversation and collaboration across all areas of multifunctional materials for DDSs. We stress that this article is not meant to be a fully comprehensive review but rather an up-to-date snapshot of different areas of research, with a minimal number of references that focus upon the very latest research developments.
Collapse
Affiliation(s)
- Benjamin Nottelet
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
- Department of Pharmacy, Nîmes University Hospital, Univ Montpellier, 30900 Nimes, France
| | - Sytze Buwalda
- MINES Paris, PSL University, Center for Materials Forming, 06904 Sophia Antipolis, France
| | | | - Xiaofei Zhao
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People’s Republic of China
| | - Chao Deng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People’s Republic of China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People’s Republic of China
| | - Ernest Cheah
- School of Pharmacy, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Darren Svirskis
- School of Pharmacy, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Chloe Trayford
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Sabine van Rijt
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Cécilia Ménard-Moyon
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, 67000 Strasbourg, France
| | - Ravi Kumar
- Physikalisches Institute and Center of Soft Nanoscience, University of Münster, Münster, Germany
| | - Nermin Seda Kehr
- Physikalisches Institute and Center of Soft Nanoscience, University of Münster, Münster, Germany
- Department of Chemistry, Izmir Institute of Technology, Izmir, Turkey
| | - Natan Roberto de Barros
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90274, United States of America
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90274, United States of America
| | - Han-Jun Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90274, United States of America
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - Tina Vermonden
- Utrecht Institute for Pharmaceutical Sciences, Utrecht,The Netherlands
| |
Collapse
|
17
|
Dijk G, Pas J, Markovic K, Scancar J, O'Connor RP. PEDOT:PSS-coated platinum electrodes for neural stimulation. APL Bioeng 2023; 7:046117. [PMID: 38075207 PMCID: PMC10699886 DOI: 10.1063/5.0153094] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 12/07/2023] [Accepted: 11/06/2023] [Indexed: 04/27/2025] Open
Abstract
Safe and long-term electrical stimulation of neurons requires charge injection without damaging the electrode and tissue. A common strategy to diminish adverse effects includes the modification of electrodes with materials that increases the charge injection capacity. Due to its high capacitance, the conducting polymer PEDOT:PSS is a promising coating material; however, the neural stimulation performance in terms of stability and safety remains largely unexplored. Here, PEDOT:PSS-coated platinum (Pt-PEDOT:PSS) microelectrodes are examined for neural stimulation and compared to bare platinum (Pt) electrodes. Microelectrodes in a bipolar configuration are used to deliver current-controlled, biphasic pulses with charge densities ranging from 64 to 255 μC cm-2. Stimulation for 2 h deteriorates bare Pt electrodes through corrosion, whereas the PEDOT:PSS coating prevents dissolution of Pt and shows no degradation. Acute stimulation of primary cortical cells cultured as neurospheres shows similar dependency on charge density for Pt and Pt-PEDOT:PSS electrodes with a threshold of 127 μC cm-2 and increased calcium response for higher charge densities. Continuous stimulation for 2 h results in higher levels of cell survival for Pt-PEDOT:PSS electrodes. Reduced cell survival on Pt electrodes is most profound for neurospheres in proximity of the electrodes. Extending the stimulation duration to 6 h increases cell death for both types of electrodes; however, neurospheres on Pt-PEDOT:PSS devices still show significant viability whereas stimulation is fatal for nearly all cells close to the Pt electrodes. This work demonstrates the protective properties of PEDOT:PSS that can be used as a promising approach to extend electrode lifetime and reduce cell damage for safe and long-term neural stimulation.
Collapse
Affiliation(s)
- Gerwin Dijk
- Author to whom correspondence should be addressed:
| | - Jolien Pas
- Panaxium SAS, Aix-en-Provence 13100, France
| | - Katarina Markovic
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | | | | |
Collapse
|
18
|
Koschinski L, Lenyk B, Jung M, Lenzi I, Kampa B, Mayer D, Offenhäusser A, Musall S, Rincón Montes V. Validation of transparent and flexible neural implants for simultaneous electrophysiology, functional imaging, and optogenetics. J Mater Chem B 2023; 11:9639-9657. [PMID: 37610228 DOI: 10.1039/d3tb01191g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The combination of electrophysiology and neuroimaging methods allows the simultaneous measurement of electrical activity signals with calcium dynamics from single neurons to neuronal networks across distinct brain regions in vivo. While traditional electrophysiological techniques are limited by photo-induced artefacts and optical occlusion for neuroimaging, different types of transparent neural implants have been proposed to resolve these issues. However, reproducing proposed solutions is often challenging and it remains unclear which approach offers the best properties for long-term chronic multimodal recordings. We therefore created a streamlined fabrication process to produce, and directly compare, two types of transparent surface micro-electrocorticography (μECoG) implants: nano-mesh gold structures (m-μECoGs) versus a combination of solid gold interconnects and PEDOT:PSS-based electrodes (pp-μECoGs). Both implants allowed simultaneous multimodal recordings but pp-μECoGs offered the best overall electrical, electrochemical, and optical properties with negligible photo-induced artefacts to light wavelengths of interest. Showing functional chronic stability for up to four months, pp-μECoGs also allowed the simultaneous functional mapping of electrical and calcium neural signals upon visual and tactile stimuli during widefield imaging. Moreover, recordings during two-photon imaging showed no visible signal attenuation and enabled the correlation of network dynamics across brain regions to individual neurons located directly below the transparent electrical contacts.
Collapse
Affiliation(s)
- Lina Koschinski
- Institute of Biological Information Processing (IBI-3) - Bioelectronics, Forschungszentrum, Jülich, Germany.
- Helmholtz Nano Facility (HNF), Forschungszentrum, Jülich, Germany
- RWTH Aachen University, Germany
| | - Bohdan Lenyk
- Institute of Biological Information Processing (IBI-3) - Bioelectronics, Forschungszentrum, Jülich, Germany.
| | - Marie Jung
- Institute of Biological Information Processing (IBI-3) - Bioelectronics, Forschungszentrum, Jülich, Germany.
- RWTH Aachen University, Germany
| | - Irene Lenzi
- Institute of Biological Information Processing (IBI-3) - Bioelectronics, Forschungszentrum, Jülich, Germany.
- RWTH Aachen University, Germany
| | - Björn Kampa
- RWTH Aachen University, Germany
- JARA BRAIN Institute of Neuroscience and Medicine (INM-10), Forschungszentrum, Jülich, Germany
| | - Dirk Mayer
- Institute of Biological Information Processing (IBI-3) - Bioelectronics, Forschungszentrum, Jülich, Germany.
| | - Andreas Offenhäusser
- Institute of Biological Information Processing (IBI-3) - Bioelectronics, Forschungszentrum, Jülich, Germany.
| | - Simon Musall
- Institute of Biological Information Processing (IBI-3) - Bioelectronics, Forschungszentrum, Jülich, Germany.
- RWTH Aachen University, Germany
- University of Bonn, Faculty of Medicine, Institute of Experimental Epileptology and Cognition Research, Germany
- University Hospital Bonn, Germany
| | - Viviana Rincón Montes
- Institute of Biological Information Processing (IBI-3) - Bioelectronics, Forschungszentrum, Jülich, Germany.
| |
Collapse
|
19
|
Ji B, Sun F, Guo J, Zhou Y, You X, Fan Y, Wang L, Xu M, Zeng W, Liu J, Wang M, Hu H, Chang H. Brainmask: an ultrasoft and moist micro-electrocorticography electrode for accurate positioning and long-lasting recordings. MICROSYSTEMS & NANOENGINEERING 2023; 9:126. [PMID: 37829160 PMCID: PMC10564857 DOI: 10.1038/s41378-023-00597-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/11/2023] [Accepted: 09/02/2023] [Indexed: 10/14/2023]
Abstract
Bacterial cellulose (BC), a natural biomaterial synthesized by bacteria, has a unique structure of a cellulose nanofiber-weaved three-dimensional reticulated network. BC films can be ultrasoft with sufficient mechanical strength, strong water absorption and moisture retention and have been widely used in facial masks. These films have the potential to be applied to implantable neural interfaces due to their conformality and moisture, which are two critical issues for traditional polymer or silicone electrodes. In this work, we propose a micro-electrocorticography (micro-ECoG) electrode named "Brainmask", which comprises a BC film as the substrate and separated multichannel parylene-C microelectrodes bonded on the top surface. Brainmask can not only guarantee the precise position of microelectrode sites attached to any nonplanar epidural surface but also improve the long-lasting signal quality during acute implantation with an exposed cranial window for at least one hour, as well as the in vivo recording validated for one week. This novel ultrasoft and moist device stands as a next-generation neural interface regardless of complex surface or time of duration.
Collapse
Affiliation(s)
- Bowen Ji
- Unmanned System Research Institute, Northwestern Polytechnical University, Xi’an, 710072 China
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an, 710072 China
- Collaborative Innovation Center of Northwestern Polytechnical University, Shanghai, 201108 China
| | - Fanqi Sun
- Unmanned System Research Institute, Northwestern Polytechnical University, Xi’an, 710072 China
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an, 710072 China
- Collaborative Innovation Center of Northwestern Polytechnical University, Shanghai, 201108 China
| | - Jiecheng Guo
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, 710072 China
| | - Yuhao Zhou
- Unmanned System Research Institute, Northwestern Polytechnical University, Xi’an, 710072 China
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an, 710072 China
- Collaborative Innovation Center of Northwestern Polytechnical University, Shanghai, 201108 China
| | - Xiaoli You
- Unmanned System Research Institute, Northwestern Polytechnical University, Xi’an, 710072 China
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an, 710072 China
- Collaborative Innovation Center of Northwestern Polytechnical University, Shanghai, 201108 China
| | - Ye Fan
- College of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018 China
| | - Longchun Wang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Mengfei Xu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Wen Zeng
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an, 710072 China
| | - Jingquan Liu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Minghao Wang
- College of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018 China
| | - Huijing Hu
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, 710072 China
| | - Honglong Chang
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an, 710072 China
| |
Collapse
|
20
|
Matter L, Harland B, Raos B, Svirskis D, Asplund M. Generation of direct current electrical fields as regenerative therapy for spinal cord injury: A review. APL Bioeng 2023; 7:031505. [PMID: 37736015 PMCID: PMC10511262 DOI: 10.1063/5.0152669] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023] Open
Abstract
Electrical stimulation (ES) shows promise as a therapy to promote recovery and regeneration after spinal cord injury. ES therapy establishes beneficial electric fields (EFs) and has been investigated in numerous studies, which date back nearly a century. In this review, we discuss the various engineering approaches available to generate regenerative EFs through direct current electrical stimulation and very low frequency electrical stimulation. We highlight the electrode-tissue interface, which is important for the appropriate choice of electrode material and stimulator circuitry. We discuss how to best estimate and control the generated field, which is an important measure for comparability of studies. Finally, we assess the methods used in these studies to measure functional recovery after the injury and treatment. This work reviews studies in the field of ES therapy with the goal of supporting decisions regarding best stimulation strategy and recovery assessment for future work.
Collapse
Affiliation(s)
- Lukas Matter
- Author to whom correspondence should be addressed:
| | - Bruce Harland
- School of Pharmacy, The University of Auckland, NZ 1023 Auckland, New Zealand
| | - Brad Raos
- School of Pharmacy, The University of Auckland, NZ 1023 Auckland, New Zealand
| | - Darren Svirskis
- School of Pharmacy, The University of Auckland, NZ 1023 Auckland, New Zealand
| | | |
Collapse
|
21
|
Madarász M, Fedor FZ, Fekete Z, Rózsa B. Immunohistological responses in mice implanted with Parylene HT - ITO ECoG devices. Front Neurosci 2023; 17:1209913. [PMID: 37746144 PMCID: PMC10513038 DOI: 10.3389/fnins.2023.1209913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023] Open
Abstract
Transparent epidural devices that facilitate the concurrent use of electrophysiology and neuroimaging are arising tools for neuroscience. Testing the biocompatibility and evoked immune response of novel implantable devices is essential to lay down the fundamentals of their extensive application. Here we present an immunohistochemical evaluation of a Parylene HT/indium-tin oxide (ITO) based electrocorticography (ECoG) device, and provide long-term biocompatibility data at three chronic implantation lengths. We implanted Parylene HT/ITO ECoG devices epidurally in 5 mice and evaluated the evoked astroglial response, neuronal density and cortical thickness. We found increased astroglial response in the superficial cortical layers of all mice compared to contralateral unimplanted controls. This difference was largest at the first time point and decreased over time. Neuronal density was lower on the implanted side only at the last time point, while cortical thickness was smaller in the first and second time points, but not at the last. In this study, we present data that confirms the feasibility and chronic use of Parylene HT/ITO ECoG devices.
Collapse
Affiliation(s)
- Miklós Madarász
- BrainVision Center, Budapest, Hungary
- János Szentágothai PhD Program of Semmelweis University, Budapest, Hungary
| | - Flóra Z. Fedor
- BrainVision Center, Budapest, Hungary
- Laboratory of 3D Functional Network and Dendritic Imaging, Institute of Experimental Medicine, Budapest, Hungary
| | - Zoltán Fekete
- Research Group for Implantable Microsystems, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
- Sleep Oscillation Research Group, Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Budapest, Hungary
| | - Balázs Rózsa
- BrainVision Center, Budapest, Hungary
- Laboratory of 3D Functional Network and Dendritic Imaging, Institute of Experimental Medicine, Budapest, Hungary
- Two-Photon Measurement Technology Research Group, The Faculty of Information Technology, Pázmány Péter Catholic University, Budapest, Hungary
- Femtonics Ltd., Budapest, Hungary
| |
Collapse
|
22
|
Forró C, Musall S, Montes VR, Linkhorst J, Walter P, Wessling M, Offenhäusser A, Ingebrandt S, Weber Y, Lampert A, Santoro F. Toward the Next Generation of Neural Iontronic Interfaces. Adv Healthc Mater 2023; 12:e2301055. [PMID: 37434349 PMCID: PMC11468917 DOI: 10.1002/adhm.202301055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/23/2023] [Indexed: 07/13/2023]
Abstract
Neural interfaces are evolving at a rapid pace owing to advances in material science and fabrication, reduced cost of scalable complementary metal oxide semiconductor (CMOS) technologies, and highly interdisciplinary teams of researchers and engineers that span a large range from basic to applied and clinical sciences. This study outlines currently established technologies, defined as instruments and biological study systems that are routinely used in neuroscientific research. After identifying the shortcomings of current technologies, such as a lack of biocompatibility, topological optimization, low bandwidth, and lack of transparency, it maps out promising directions along which progress should be made to achieve the next generation of symbiotic and intelligent neural interfaces. Lastly, it proposes novel applications that can be achieved by these developments, ranging from the understanding and reproduction of synaptic learning to live-long multimodal measurements to monitor and treat various neuronal disorders.
Collapse
Affiliation(s)
- Csaba Forró
- Institute for Biological Information Processing ‐ Bioelectronics IBI‐3Wilhelm‐Johnen‐Straße52428JülichGermany
- Institute of Materials in Electrical Engineering 1RWTH AachenSommerfeldstr. 2452074AachenGermany
| | - Simon Musall
- Institute for Biological Information Processing ‐ Bioelectronics IBI‐3Wilhelm‐Johnen‐Straße52428JülichGermany
- Institute for ZoologyRWTH Aachen UniversityWorringerweg 352074AachenGermany
| | - Viviana Rincón Montes
- Institute for Biological Information Processing ‐ Bioelectronics IBI‐3Wilhelm‐Johnen‐Straße52428JülichGermany
| | - John Linkhorst
- Chemical Process EngineeringRWTH AachenForckenbeckstr. 5152074AachenGermany
| | - Peter Walter
- Department of OphthalmologyUniversity Hospital RWTH AachenPauwelsstr. 3052074AachenGermany
| | - Matthias Wessling
- Chemical Process EngineeringRWTH AachenForckenbeckstr. 5152074AachenGermany
- DWI Leibniz Institute for Interactive MaterialsRWTH AachenForckenbeckstr. 5052074AachenGermany
| | - Andreas Offenhäusser
- Institute for Biological Information Processing ‐ Bioelectronics IBI‐3Wilhelm‐Johnen‐Straße52428JülichGermany
| | - Sven Ingebrandt
- Institute of Materials in Electrical Engineering 1RWTH AachenSommerfeldstr. 2452074AachenGermany
| | - Yvonne Weber
- Department of EpileptologyNeurology, RWTH AachenPauwelsstr. 3052074AachenGermany
| | - Angelika Lampert
- Institute of NeurophysiologyUniklinik RWTH AachenPauwelsstrasse 3052074AachenGermany
| | - Francesca Santoro
- Institute for Biological Information Processing ‐ Bioelectronics IBI‐3Wilhelm‐Johnen‐Straße52428JülichGermany
- Institute of Materials in Electrical Engineering 1RWTH AachenSommerfeldstr. 2452074AachenGermany
| |
Collapse
|
23
|
Abstract
Soft robotics facilitates the deployment of large radial electrode arrays on the brain cortex through small craniotomies.
Collapse
Affiliation(s)
- Maria Asplund
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, Gothenburg, Sweden
- Department of Health, Education and Technology, Luleå University of Technology, Luleå, Sweden
| |
Collapse
|
24
|
Stieglitz T, Gueli C, Martens J, Floto N, Eickenscheidt M, Sporer M, Ortmanns M. Highly conformable chip-in-foil implants for neural applications. MICROSYSTEMS & NANOENGINEERING 2023; 9:54. [PMID: 37180455 PMCID: PMC10167239 DOI: 10.1038/s41378-023-00527-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/26/2023] [Accepted: 03/24/2023] [Indexed: 05/16/2023]
Abstract
Demands for neural interfaces around functionality, high spatial resolution, and longevity have recently increased. These requirements can be met with sophisticated silicon-based integrated circuits. Embedding miniaturized dice in flexible polymer substrates significantly improves their adaptation to the mechanical environment in the body, thus improving the systems' structural biocompatibility and ability to cover larger areas of the brain. This work addresses the main challenges in developing a hybrid chip-in-foil neural implant. Assessments considered (1) the mechanical compliance to the recipient tissue that allows a long-term application and (2) the suitable design that allows the implant's scaling and modular adaptation of chip arrangement. Finite element model studies were performed to identify design rules regarding die geometry, interconnect routing, and positions for contact pads on dice. Providing edge fillets in the die base shape proved an effective measure to improve die-substrate integrity and increase the area available for contact pads. Furthermore, routing of interconnects in the immediate vicinity of die corners should be avoided, as the substrate in these areas is prone to mechanical stress concentration. Contact pads on dice should be placed with a clearance from the die rim to avoid delamination when the implant conforms to a curvilinear body. A microfabrication process was developed to transfer, align, and electrically interconnect multiple dice into conformable polyimide-based substrates. The process enabled arbitrary die shape and size over independent target positions on the conformable substrate based on the die position on the fabrication wafer.
Collapse
Affiliation(s)
- Thomas Stieglitz
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering - IMTEK, University of Freiburg, D-79110 Freiburg, Germany
- BrainLinks-BrainTools// IMBIT, University of Freiburg, D-79110 Freiburg, Germany
| | - Calogero Gueli
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering - IMTEK, University of Freiburg, D-79110 Freiburg, Germany
| | - Julien Martens
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering - IMTEK, University of Freiburg, D-79110 Freiburg, Germany
- BrainLinks-BrainTools// IMBIT, University of Freiburg, D-79110 Freiburg, Germany
| | - Niklas Floto
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering - IMTEK, University of Freiburg, D-79110 Freiburg, Germany
- BrainLinks-BrainTools// IMBIT, University of Freiburg, D-79110 Freiburg, Germany
| | - Max Eickenscheidt
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering - IMTEK, University of Freiburg, D-79110 Freiburg, Germany
| | - Markus Sporer
- Institute of Microelectronics, University of Ulm, D-89081 Ulm, Germany
| | - Maurits Ortmanns
- Institute of Microelectronics, University of Ulm, D-89081 Ulm, Germany
| |
Collapse
|
25
|
Böhler C, Vomero M, Soula M, Vöröslakos M, Porto Cruz M, Liljemalm R, Buzsaki G, Stieglitz T, Asplund M. Multilayer Arrays for Neurotechnology Applications (MANTA): Chronically Stable Thin-Film Intracortical Implants. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207576. [PMID: 36935361 DOI: 10.1002/advs.202207576] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/07/2023] [Indexed: 05/18/2023]
Abstract
Flexible implantable neurointerfaces show great promise in addressing one of the major challenges of implantable neurotechnology, namely the loss of signal connected to unfavorable probe tissue interaction. The authors here show how multilayer polyimide probes allow high-density intracortical recordings to be combined with a reliable long-term stable tissue interface, thereby progressing toward chronic stability of implantable neurotechnology. The probes could record 10-60 single units over 5 months with a consistent peak-to-peak voltage at dimensions that ensure robust handling and insulation longevity. Probes that remain in intimate contact with the signaling tissue over months to years are a game changer for neuroscience and, importantly, open up for broader clinical translation of systems relying on neurotechnology to interface the human brain.
Collapse
Affiliation(s)
- Christian Böhler
- Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, 79110, Freiburg, Germany
| | - Maria Vomero
- Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, 79110, Freiburg, Germany
| | - Marisol Soula
- Neuroscience Institute, Langone Medical Center, New York University, New York, 10016, USA
| | - Mihály Vöröslakos
- Neuroscience Institute, Langone Medical Center, New York University, New York, 10016, USA
| | - Maria Porto Cruz
- Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, 79110, Freiburg, Germany
| | - Rickard Liljemalm
- Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany
| | - György Buzsaki
- Neuroscience Institute, Langone Medical Center, New York University, New York, 10016, USA
- Department of Physiology and Neuroscience, Langone Medical Center, New York University, New York, 10016, USA
- Department of Neurology, Langone Medical Center, New York University, New York, 10016, USA
| | - Thomas Stieglitz
- Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, 79110, Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, 79110, Freiburg, Germany
| | - Maria Asplund
- Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, 79110, Freiburg, Germany
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, Gothenburg, SE-41296, Sweden
- Division of Nursing and Medical Technology, Luleå University of Technology, Luleå, 97187, Sweden
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, 79110, Freiburg, Germany
| |
Collapse
|
26
|
Hu Z, Niu Q, Hsiao BS, Yao X, Zhang Y. Bioactive polymer-enabled conformal neural interface and its application strategies. MATERIALS HORIZONS 2023; 10:808-828. [PMID: 36597872 DOI: 10.1039/d2mh01125e] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Neural interface is a powerful tool to control the varying neuron activities in the brain, where the performance can directly affect the quality of recording neural signals and the reliability of in vivo connection between the brain and external equipment. Recent advances in bioelectronic innovation have provided promising pathways to fabricate flexible electrodes by integrating electrodes on bioactive polymer substrates. These bioactive polymer-based electrodes can enable the conformal contact with irregular tissue and result in low inflammation when compared to conventional rigid inorganic electrodes. In this review, we focus on the use of silk fibroin and cellulose biopolymers as well as certain synthetic polymers to offer the desired flexibility for constructing electrode substrates for a conformal neural interface. First, the development of a neural interface is reviewed, and the signal recording methods and tissue response features of the implanted electrodes are discussed in terms of biocompatibility and flexibility of corresponding neural interfaces. Following this, the material selection, structure design and integration of conformal neural interfaces accompanied by their effective applications are described. Finally, we offer our perspectives on the evolution of desired bioactive polymer-enabled neural interfaces, regarding the biocompatibility, electrical properties and mechanical softness.
Collapse
Affiliation(s)
- Zhanao Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China.
| | - Qianqian Niu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China.
| | - Benjamin S Hsiao
- Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794-3400, USA
| | - Xiang Yao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China.
| | - Yaopeng Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China.
| |
Collapse
|
27
|
Shur M, Akouissi O, Rizzo O, Colin DJ, Kolinski JM, Lacour SP. Revealing the complexity of ultra-soft hydrogel re-swelling inside the brain. Biomaterials 2023; 294:122024. [PMID: 36716587 DOI: 10.1016/j.biomaterials.2023.122024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/12/2022] [Accepted: 01/20/2023] [Indexed: 01/27/2023]
Abstract
The brain is an ultra-soft viscoelastic matrix. Sub-kPa hydrogels match the brain's mechanical properties but are challenging to manipulate in an implantable format. We propose a simple fabrication and processing sequence, consisting of de-hydration, patterning, implantation, and re-hydration steps, to deliver brain-like hydrogel implants into the nervous tissue. We monitored in real-time the ultra-soft hydrogel re-swelling kinetics in vivo using microcomputed tomography, achieved by embedding gold nanoparticles inside the hydrogel for contrast enhancement. We found that re-swelling in vivo strongly depends on the implant geometry and water availability at the hydrogel-tissue interface. Buckling of the implant inside the brain occurs when the soft implant is tethered to the cranium. Finite-element and analytical models reveal how the shank geometry, modulus and anchoring govern in vivo buckling. Taken together, these considerations on re-swelling kinetics of hydrogel constructs, implant geometry and soft implant-tissue mechanical interplay can guide the engineering of biomimetic brain implants.
Collapse
Affiliation(s)
- Michael Shur
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Neuro-X Institute, École Polytechnique Fedérale de Lausanne (EPFL), 1202, Geneva, Switzerland
| | - Outman Akouissi
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Neuro-X Institute, École Polytechnique Fedérale de Lausanne (EPFL), 1202, Geneva, Switzerland; Bertarelli Foundation Chair in Translational Neuroengineering, Institute of Bioengineering, Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne (EPFL), 1202, Geneva, Switzerland
| | - Olivier Rizzo
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Neuro-X Institute, École Polytechnique Fedérale de Lausanne (EPFL), 1202, Geneva, Switzerland
| | - Didier J Colin
- Preclinical Imaging Platform, Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland
| | - John M Kolinski
- Laboratory of Engineering Mechanics of Soft Interfaces, Institute of Mechanical Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Stéphanie P Lacour
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Neuro-X Institute, École Polytechnique Fedérale de Lausanne (EPFL), 1202, Geneva, Switzerland.
| |
Collapse
|
28
|
Borda E, Medagoda DI, Airaghi Leccardi MJI, Zollinger EG, Ghezzi D. Conformable neural interface based on off-stoichiometry thiol-ene-epoxy thermosets. Biomaterials 2023; 293:121979. [PMID: 36586146 DOI: 10.1016/j.biomaterials.2022.121979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/29/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
Off-stoichiometry thiol-ene-epoxy (OSTE+) thermosets show low permeability to gases and little absorption of dissolved molecules, allow direct low-temperature dry bonding without surface treatments, have a low Young's modulus, and can be manufactured via UV polymerisation. For these reasons, OSTE+ thermosets have recently gained attention for the rapid prototyping of microfluidic chips. Moreover, their compatibility with standard clean-room processes and outstanding mechanical properties make OSTE+ an excellent candidate as a novel material for neural implants. Here we exploit OSTE+ to manufacture a conformable multilayer micro-electrocorticography array with 16 platinum electrodes coated with platinum black. The mechanical properties allow conformability to curved surfaces such as the brain. The low permeability and strong adhesion between layers improve the stability of the device. Acute experiments in mice show the multimodal capacity of the array to record and stimulate the neural tissue by smoothly conforming to the mouse cortex. Devices are not cytotoxic, and immunohistochemistry stainings reveal only modest foreign body reaction after two and six weeks of chronic implantation. This work introduces OSTE+ as a promising material for implantable neural interfaces.
Collapse
Affiliation(s)
- Eleonora Borda
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Switzerland
| | - Danashi Imani Medagoda
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Switzerland
| | - Marta Jole Ildelfonsa Airaghi Leccardi
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Switzerland
| | - Elodie Geneviève Zollinger
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Switzerland
| | - Diego Ghezzi
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Switzerland.
| |
Collapse
|
29
|
Fekete Z, Zátonyi A, Kaszás A, Madarász M, Slézia A. Transparent neural interfaces: challenges and solutions of microengineered multimodal implants designed to measure intact neuronal populations using high-resolution electrophysiology and microscopy simultaneously. MICROSYSTEMS & NANOENGINEERING 2023; 9:66. [PMID: 37213820 PMCID: PMC10195795 DOI: 10.1038/s41378-023-00519-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 02/03/2023] [Accepted: 03/01/2023] [Indexed: 05/23/2023]
Abstract
The aim of this review is to present a comprehensive overview of the feasibility of using transparent neural interfaces in multimodal in vivo experiments on the central nervous system. Multimodal electrophysiological and neuroimaging approaches hold great potential for revealing the anatomical and functional connectivity of neuronal ensembles in the intact brain. Multimodal approaches are less time-consuming and require fewer experimental animals as researchers obtain denser, complex data during the combined experiments. Creating devices that provide high-resolution, artifact-free neural recordings while facilitating the interrogation or stimulation of underlying anatomical features is currently one of the greatest challenges in the field of neuroengineering. There are numerous articles highlighting the trade-offs between the design and development of transparent neural interfaces; however, a comprehensive overview of the efforts in material science and technology has not been reported. Our present work fills this gap in knowledge by introducing the latest micro- and nanoengineered solutions for fabricating substrate and conductive components. Here, the limitations and improvements in electrical, optical, and mechanical properties, the stability and longevity of the integrated features, and biocompatibility during in vivo use are discussed.
Collapse
Affiliation(s)
- Z. Fekete
- Research Group for Implantable Microsystems, Faculty of Information Technology & Bionics, Pázmány Péter Catholic University, Budapest, Hungary
- Institute of Cognitive Neuroscience & Psychology, Eotvos Lorand Research Network, Budapest, Hungary
| | - A. Zátonyi
- Research Group for Implantable Microsystems, Faculty of Information Technology & Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - A. Kaszás
- Mines Saint-Etienne, Centre CMP, Département BEL, F - 13541 Gardanne, France
- Institut de Neurosciences de la Timone, CNRS UMR 7289 & Aix-Marseille Université, 13005 Marseille, France
| | - M. Madarász
- János Szentágothai PhD Program of Semmelweis University, Budapest, Hungary
- BrainVision Center, Budapest, Hungary
| | - A. Slézia
- Institut de Neurosciences de la Timone, CNRS UMR 7289 & Aix-Marseille Université, 13005 Marseille, France
| |
Collapse
|
30
|
Saghir S, Imenes K, Schiavone G. Integration of hydrogels in microfabrication processes for bioelectronic medicine: Progress and outlook. Front Bioeng Biotechnol 2023; 11:1150147. [PMID: 37034261 PMCID: PMC10079906 DOI: 10.3389/fbioe.2023.1150147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
Recent research aiming at the development of electroceuticals for the treatment of medical conditions such as degenerative diseases, cardiac arrhythmia and chronic pain, has given rise to microfabricated implanted bioelectronic devices capable of interacting with host biological tissues in synergistic modalities. Owing to their multimodal affinity to biological tissues, hydrogels have emerged as promising interface materials for bioelectronic devices. Here, we review the state-of-the-art and forefront in the techniques used by research groups for the integration of hydrogels into the microfabrication processes of bioelectronic devices, and present the manufacturability challenges to unlock their further clinical deployment.
Collapse
|
31
|
A flexible implantable microelectrode array for recording electrocorticography signals from rodents. Biomed Microdevices 2022; 24:31. [PMID: 36138255 DOI: 10.1007/s10544-022-00632-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2022] [Indexed: 11/27/2022]
Abstract
Electrocorticography signals, the intracranial recording of electrical signatures of the brain, are recorded by non-penetrating planar electrode arrays placed on the cortical surface. Flexible electrode arrays minimize the tissue damage upon implantation. This work shows the design and development of a 32-channel flexible microelectrode array to record electrocorticography signals from the rat's brain. The array was fabricated on a biocompatible flexible polyimide substrate. A titanium/gold layer was patterned as electrodes, and a thin polyimide layer was used for insulation. The fabricated microelectrode array was mounted on the exposed somatosensory cortex of the right hemisphere of a rat after craniotomy and incision of the dura. The signals were recorded using OpenBCI Cyton Daisy Biosensing Boards. The array faithfully recorded the baseline electrocorticography signals, the induced epileptic activities after applying a convulsant, and the recovered baseline signals after applying an antiepileptic drug. The signals recorded by such fabricated microelectrode array from anesthetized rats demonstrate its potential to monitor electrical signatures corresponding to epilepsy. Finally, the time-frequency analyses highlight the difference in spatiotemporal features of baseline and evoked epileptic discharges.
Collapse
|
32
|
Dijk G, Kaszas A, Pas J, O’Connor RP. Fabrication and in vivo 2-photon microscopy validation of transparent PEDOT:PSS microelectrode arrays. MICROSYSTEMS & NANOENGINEERING 2022; 8:90. [PMID: 36051746 PMCID: PMC9424218 DOI: 10.1038/s41378-022-00434-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/02/2022] [Accepted: 06/22/2022] [Indexed: 05/04/2023]
Abstract
Transparent microelectrode arrays enable simultaneous electrical recording and optical imaging of neuronal networks in the brain. Electrodes made of the conducting polymer poly(3,4-ethylenedioxythiophene) doped with polystyrene sulfonate (PEDOT:PSS) are transparent; however, device fabrication necessitates specific processes to avoid deterioration of the organic material. Here, we present an innovative fabrication scheme for a neural probe that consists of transparent PEDOT:PSS electrodes and demonstrate its compatibility with 2-photon microscopy. The electrodes show suitable impedance to record local field potentials from the cortex of mice and sufficient transparency to visualize GCaMP6f-expressing neurons underneath the PEDOT:PSS features. The results validate the performance of the neural probe, which paves the way to study the complex dynamics of in vivo neuronal activity with both a high spatial and temporal resolution to better understand the brain.
Collapse
Affiliation(s)
- Gerwin Dijk
- Mines Saint-Etienne, Centre CMP, Department of Bioelectronics, Gardanne, 13541 France
- Panaxium SAS, Aix-en-Provence, 13100 France
| | - Attila Kaszas
- Mines Saint-Etienne, Centre CMP, Department of Bioelectronics, Gardanne, 13541 France
| | - Jolien Pas
- Panaxium SAS, Aix-en-Provence, 13100 France
| | | |
Collapse
|
33
|
Kaewmanee R, Wang F, Pan Y, Mei S, Meesane J, Li F, Wu Z, Wei J. Microporous surface containing flower-like molybdenum disulfide submicro-spheres of sulfonated polyimide with antibacterial effect and promoting bone regeneration and osteointegration. Biomater Sci 2022; 10:4243-4256. [PMID: 35762466 DOI: 10.1039/d2bm00622g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Implanted materials with both osteogenic and antibacterial functions are promising for facilitating osteointegration and preventing infection for orthopedic applications. In this work, we synthesized flower-like molybdenum disulfide (fMD) submicro-spheres containing nanosheets, which were incorporated onto the microporous surface of polyimide (PI) via concentrated sulfuric acid, suspending fMD contents of 5 wt% (SPM1) and 10 wt% (SPM2). Compared with sulfonated polyimide (SPM0), both SPM1 and SPM2 with microporous surfaces containing fMD exhibited nano-submicro-microporous surfaces, which improved the surface roughness, wettability, and surface energy. Due to there being more fMD submicro-spheres on the microporous surface, SPM2 revealed a better antibacterial effect than SPM1. In addition, compared with SPM1 and SPM0, SPM2 with more fMD significantly promoted rat bone marrow-derived stromal cell response in vitro. Moreover, SPM2 remarkably enhanced new bone formation and osteointegration in vivo. In summary, the combination of fMD with the microporous surface of SPM2 resulted in a nano-submicro-microporous surface with optimized surface performance, which possessed not only osteogenic bioactivity but also an antibacterial effect. As a bone implant, SPM2 with osteogenic and antibacterial functions may have enormous potential as a bone tissue substitute.
Collapse
Affiliation(s)
- Rames Kaewmanee
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Fan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Yongkang Pan
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Shiqi Mei
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Jirut Meesane
- Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkla, Thailand
| | - Fengqian Li
- Shanghai Eighth People's Hospital, Shanghai 200235, China.
| | - Zhaoying Wu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| | - Jie Wei
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
34
|
Harland B, Aqrawe Z, Vomero M, Boehler C, Cheah E, Raos B, Asplund M, O'Carroll SJ, Svirskis D. A Subdural Bioelectronic Implant to Record Electrical Activity from the Spinal Cord in Freely Moving Rats. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105913. [PMID: 35499184 PMCID: PMC9284137 DOI: 10.1002/advs.202105913] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/06/2022] [Indexed: 05/28/2023]
Abstract
Bioelectronic devices have found use at the interface with neural tissue to investigate and treat nervous system disorders. Here, the development and characterization of a very thin flexible bioelectronic implant inserted along the thoracic spinal cord in rats directly in contact with and conformable to the dorsal surface of the spinal cord are presented. There is no negative impact on hind-limb functionality nor any change in the volume or shape of the spinal cord. The bioelectronic implant is maintained in rats for a period of 12 weeks. The first subdural recordings of spinal cord activity in freely moving animals are presented; rats are plugged in via a recording cable and allowed to freely behave and move around on a raised platform. Recordings contained multiple distinct voltage waveforms spatially localize to individual electrodes. This device has great potential to monitor electrical signaling in the spinal cord after an injury and in the future, this implant will facilitate the identification of biomarkers in spinal cord injury and recovery, while enabling the delivery of localized electroceutical and chemical treatments.
Collapse
Affiliation(s)
- Bruce Harland
- School of PharmacyThe University of AucklandAuckland1023New Zealand
| | - Zaid Aqrawe
- School of PharmacyThe University of AucklandAuckland1023New Zealand
| | - Maria Vomero
- Department of Microsystems Engineering (IMTEK)BrainLinks‐BrainTools CenterUniversity of FreiburgFreiburg79110Germany
| | - Christian Boehler
- Department of Microsystems Engineering (IMTEK)BrainLinks‐BrainTools CenterUniversity of FreiburgFreiburg79110Germany
| | - Ernest Cheah
- School of PharmacyThe University of AucklandAuckland1023New Zealand
| | - Brad Raos
- School of PharmacyThe University of AucklandAuckland1023New Zealand
| | - Maria Asplund
- Department of Microsystems Engineering (IMTEK)BrainLinks‐BrainTools Center and Freiburg Institute for Advanced Studies (FRIAS)University of FreiburgFreiburg79110Germany
- Division of Nursing and Medical TechnologyLuleå University of TechnologyLuleå971 87Sweden
| | - Simon J. O'Carroll
- Department of Anatomy & Medical ImagingSchool of Medical SciencesThe University of AucklandAuckland1023New Zealand
| | - Darren Svirskis
- School of PharmacyThe University of AucklandAuckland1023New Zealand
| |
Collapse
|
35
|
Bhaskara S, Sakorikar T, Chatterjee S, Shabari Girishan K, Pandya HJ. Recent advancements in Micro-engineered devices for surface and deep brain animal studies: A review. SENSING AND BIO-SENSING RESEARCH 2022. [DOI: 10.1016/j.sbsr.2022.100483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
36
|
Eickenscheidt M, Herrmann T, Weisshap M, Mittnacht A, Rudmann L, Zeck G, Stieglitz T. An optoelectronic neural interface approach for precise superposition of optical and electrical stimulation in flexible array structures. Biosens Bioelectron 2022; 205:114090. [DOI: 10.1016/j.bios.2022.114090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 11/27/2022]
|
37
|
Kullmann A, Kridner D, Mertens S, Christianson M, Rosa D, Diaz-Botia CA. First Food and Drug Administration Cleared Thin-Film Electrode for Intracranial Stimulation, Recording, and Monitoring of Brain Activity—Part 1: Biocompatibility Testing. Front Neurosci 2022; 16:876877. [PMID: 35573282 PMCID: PMC9100917 DOI: 10.3389/fnins.2022.876877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/28/2022] [Indexed: 11/16/2022] Open
Abstract
Subdural strip and grid invasive electroencephalography electrodes are routinely used for surgical evaluation of patients with drug-resistant epilepsy (DRE). Although these electrodes have been in the United States market for decades (first FDA clearance 1985), their fabrication, materials, and properties have hardly changed. Existing commercially available electrodes are made of silicone, are thick (>0.5 mm), and do not optimally conform to brain convolutions. New thin-film polyimide electrodes (0.08 mm) have been manufactured to address these issues. While different thin-film electrodes are available for research use, to date, only one electrode is cleared by Food and Drug Administration (FDA) for use in clinical practice. This study describes the biocompatibility tests that led to this clearance. Biocompatibility was tested using standard methods according to International Organization for Standardization (ISO) 10993. Electrodes and appropriate control materials were bent, folded, and placed in the appropriate extraction vehicles, or implanted. The extracts were used for in vitro and in vivo tests, to assess the effects of any potential extractable and leachable materials that may be toxic to the body. In vitro studies included cytotoxicity tested in L929 cell line, genotoxicity tested using mouse lymphoma assay (MLA) and Ames assay, and hemolysis tested in rabbit whole blood samples. The results indicated that the electrodes were non-cytotoxic, non-mutagenic, non-clastogenic, and non-hemolytic. In vivo studies included sensitization tested in guinea pigs, irritation tested in rabbits, acute systemic toxicity testing in mice, pyrogenicity tested in rabbits, and a prolonged 28-day subdural implant in sheep. The results indicated that the electrodes induced no sensitization and irritation, no weight loss, and no temperature increase. Histological examination of the sheep brain tissue showed no or minimal immune cell accumulation, necrosis, neovascularization, fibrosis, and astrocyte infiltration, with no differences from the control material. In summary, biocompatibility studies indicated that these new thin-film electrodes are appropriate for human use. As a result, the electrodes were cleared by the FDA for use in clinical practice [510(k) K192764], making it the first thin-film subdural electrode to progress from research to clinic. Its readiness as a commercial product ensures availability to all patients undergoing surgical evaluation for DRE.
Collapse
|
38
|
Bianchi M, De Salvo A, Asplund M, Carli S, Di Lauro M, Schulze‐Bonhage A, Stieglitz T, Fadiga L, Biscarini F. Poly(3,4-ethylenedioxythiophene)-Based Neural Interfaces for Recording and Stimulation: Fundamental Aspects and In Vivo Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104701. [PMID: 35191224 PMCID: PMC9036021 DOI: 10.1002/advs.202104701] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/04/2022] [Indexed: 05/29/2023]
Abstract
Next-generation neural interfaces for bidirectional communication with the central nervous system aim to achieve the intimate integration with the neural tissue with minimal neuroinflammatory response, high spatio-temporal resolution, very high sensitivity, and readout stability. The design and manufacturing of devices for low power/low noise neural recording and safe and energy-efficient stimulation that are, at the same time, conformable to the brain, with matched mechanical properties and biocompatibility, is a convergence area of research where neuroscientists, materials scientists, and nanotechnologists operate synergically. The biotic-abiotic neural interface, however, remains a formidable challenge that prompts for new materials platforms and innovation in device layouts. Conductive polymers (CP) are attractive materials to be interfaced with the neural tissue and to be used as sensing/stimulating electrodes because of their mixed ionic-electronic conductivity, their low contact impedance, high charge storage capacitance, chemical versatility, and biocompatibility. This manuscript reviews the state-of-the-art of poly(3,4-ethylenedioxythiophene)-based neural interfaces for extracellular recording and stimulation, focusing on those technological approaches that are successfully demonstrated in vivo. The aim is to highlight the most reliable and ready-for-clinical-use solutions, in terms of materials technology and recording performance, other than spot major limitations and identify future trends in this field.
Collapse
Affiliation(s)
- Michele Bianchi
- Center for Translational Neurophysiology of Speech and CommunicationFondazione Istituto Italiano di Tecnologiavia Fossato di Mortara 17Ferrara44121Italy
| | - Anna De Salvo
- Center for Translational Neurophysiology of Speech and CommunicationFondazione Istituto Italiano di Tecnologiavia Fossato di Mortara 17Ferrara44121Italy
- Sezione di FisiologiaUniversità di Ferraravia Fossato di Mortara 17Ferrara44121Italy
| | - Maria Asplund
- Division of Nursing and Medical TechnologyLuleå University of TechnologyLuleå971 87Sweden
- Department of Microsystems Engineering‐IMTEKUniversity of FreiburgFreiburg79110Germany
- BrainLinks‐BrainTools CenterUniversity of FreiburgFreiburg79110Germany
| | - Stefano Carli
- Center for Translational Neurophysiology of Speech and CommunicationFondazione Istituto Italiano di Tecnologiavia Fossato di Mortara 17Ferrara44121Italy
- Present address:
Department of Environmental and Prevention SciencesUniversità di FerraraFerrara44121Italy
| | - Michele Di Lauro
- Center for Translational Neurophysiology of Speech and CommunicationFondazione Istituto Italiano di Tecnologiavia Fossato di Mortara 17Ferrara44121Italy
| | - Andreas Schulze‐Bonhage
- BrainLinks‐BrainTools CenterUniversity of FreiburgFreiburg79110Germany
- Epilepsy CenterFaculty of MedicineUniversity of FreiburgFreiburg79110Germany
| | - Thomas Stieglitz
- Department of Microsystems Engineering‐IMTEKUniversity of FreiburgFreiburg79110Germany
- BrainLinks‐BrainTools CenterUniversity of FreiburgFreiburg79110Germany
| | - Luciano Fadiga
- Center for Translational Neurophysiology of Speech and CommunicationFondazione Istituto Italiano di Tecnologiavia Fossato di Mortara 17Ferrara44121Italy
- Sezione di FisiologiaUniversità di Ferraravia Fossato di Mortara 17Ferrara44121Italy
| | - Fabio Biscarini
- Center for Translational Neurophysiology of Speech and CommunicationFondazione Istituto Italiano di Tecnologiavia Fossato di Mortara 17Ferrara44121Italy
- Life Science DepartmentUniversità di Modena e Reggio EmiliaVia Campi 103Modena41125Italy
| |
Collapse
|
39
|
Balakrishnan G, Song J, Mou C, Bettinger CJ. Recent Progress in Materials Chemistry to Advance Flexible Bioelectronics in Medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106787. [PMID: 34751987 PMCID: PMC8917047 DOI: 10.1002/adma.202106787] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/15/2021] [Indexed: 05/09/2023]
Abstract
Designing bioelectronic devices that seamlessly integrate with the human body is a technological pursuit of great importance. Bioelectronic medical devices that reliably and chronically interface with the body can advance neuroscience, health monitoring, diagnostics, and therapeutics. Recent major efforts focus on investigating strategies to fabricate flexible, stretchable, and soft electronic devices, and advances in materials chemistry have emerged as fundamental to the creation of the next generation of bioelectronics. This review summarizes contemporary advances and forthcoming technical challenges related to three principal components of bioelectronic devices: i) substrates and structural materials, ii) barrier and encapsulation materials, and iii) conductive materials. Through notable illustrations from the literature, integration and device fabrication strategies and associated challenges for each material class are highlighted.
Collapse
Affiliation(s)
| | - Jiwoo Song
- Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Chenchen Mou
- Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | | |
Collapse
|
40
|
Maoz BM, Asplund M, Maggio N, Vlachos A. Technology-based approaches toward a better understanding of neuro-coagulation in brain homeostasis. Cell Tissue Res 2022; 387:493-498. [PMID: 34850274 PMCID: PMC8975761 DOI: 10.1007/s00441-021-03560-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/12/2021] [Indexed: 12/30/2022]
Abstract
Blood coagulation factors can enter the brain under pathological conditions that affect the blood-brain interface. Besides their contribution to pathological brain states, such as neural hyperexcitability, neurodegeneration, and scar formation, coagulation factors have been linked to several physiological brain functions. It is for example well established that the coagulation factor thrombin modulates synaptic plasticity; it affects neural excitability and induces epileptic seizures via activation of protease-activated receptors in the brain. However, major limitations of current experimental and clinical approaches have prevented us from obtaining a profound mechanistic understanding of "neuro-coagulation" in health and disease. Here, we present how novel human relevant models, i.e., Organ-on-Chips equipped with advanced sensors, can help overcoming some of the limitations in the field, thus providing a perspective toward a better understanding of neuro-coagulation in brain homeostasis.
Collapse
Affiliation(s)
- Ben M Maoz
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Maria Asplund
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
- Division of Nursing and Medical Technology, Luleå University of Technology, Lulea, Sweden
| | - Nicola Maggio
- Department of Neurology, The Chaim Sheba Medical Center, Tel Hashomer, Israel
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Israel
| | - Andreas Vlachos
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany.
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
41
|
Vomero M, Schiavone G. Biomedical Microtechnologies Beyond Scholarly Impact. MICROMACHINES 2021; 12:mi12121471. [PMID: 34945320 PMCID: PMC8709221 DOI: 10.3390/mi12121471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022]
Abstract
The recent tremendous advances in medical technology at the level of academic research have set high expectations for the clinical outcomes they promise to deliver. To the demise of patient hopes, however, the more disruptive and invasive a new technology is, the bigger the gap is separating the conceptualization of a medical device and its adoption into healthcare systems. When technology breakthroughs are reported in the biomedical scientific literature, news focus typically lies on medical implications rather than engineering progress, as the former are of higher appeal to a general readership. While successful therapy and diagnostics are indeed the ultimate goals, it is of equal importance to expose the engineering thinking needed to achieve such results and, critically, identify the challenges that still lie ahead. Here, we would like to provoke thoughts on the following questions, with particular focus on microfabricated medical devices: should research advancing the maturity and reliability of medical technology benefit from higher accessibility and visibility? How can the scientific community encourage and reward academic work on the overshadowed engineering aspects that will facilitate the evolution of laboratory samples into clinical devices?
Collapse
Affiliation(s)
- Maria Vomero
- BioEE Laboratory, Electrical Engineering Department, Columbia University, New York, NY 10027, USA;
| | - Giuseppe Schiavone
- Research Management & Innovation Directorate, King’s College London, Tower Wing, Guy’s Hospital, London SE1 9RT, UK
- Correspondence:
| |
Collapse
|
42
|
Joseph K, Kirsch M, Johnston M, Münkel C, Stieglitz T, Haas CA, Hofmann UG. Transcriptional characterization of the glial response due to chronic neural implantation of flexible microprobes. Biomaterials 2021; 279:121230. [PMID: 34736153 DOI: 10.1016/j.biomaterials.2021.121230] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/20/2021] [Accepted: 10/24/2021] [Indexed: 01/13/2023]
Abstract
Long term implantation of (micro-)probes into neural tissue causes unique and disruptive responses. In this study, we investigate the transcriptional trajectory of glial cells responding to chronic implantation of 380 μm flexible micro-probes for up to 18 weeks. Transcriptomic analysis shows a rapid activation of microglial cells and a strong reactive astrocytic polarization, both of which are lost over the chronic of the implant duration. Animals that were implanted for 18 weeks show a transcriptional profile similar to non-implanted controls, with increased expression of genes associated with wound healing and angiogenesis, which raises hope of a normalization of the neuropil to the pre-injury state when using flexible probes. Nevertheless, our data shows that a subset of genes upregulated after 18 weeks belong to the family of immediate early genes, which indicates that structural and functional remodeling is not complete at this time point. Our results confirm and extend previous work on the molecular changes resulting from the presence of neural probes and provide a rational basis for developing interventional strategies to control them.
Collapse
Affiliation(s)
- Kevin Joseph
- Neuroelectronic Systems, Department of Neurosurgery, Medical Center, University of Freiburg, Germany; Department of Neurosurgery, Medical Center University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany; BrainLinks-BrainTools, University of Freiburg, Germany.
| | - Matthias Kirsch
- BrainLinks-BrainTools, University of Freiburg, Germany; Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Midori Johnston
- Faculty of Medicine, University of Freiburg, Germany; BrainLinks-BrainTools, University of Freiburg, Germany; Experimental Epilepsy Research, Dept. of Neurosurgery, Medical Center- University of Freiburg, Germany
| | - Christian Münkel
- Neuroelectronic Systems, Department of Neurosurgery, Medical Center, University of Freiburg, Germany; Department of Neurosurgery, Medical Center University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany
| | - Thomas Stieglitz
- BrainLinks-BrainTools, University of Freiburg, Germany; Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering-IMTEK, Faculty of Engineering, University of Freiburg, Germany
| | - Carola A Haas
- Faculty of Medicine, University of Freiburg, Germany; Experimental Epilepsy Research, Dept. of Neurosurgery, Medical Center- University of Freiburg, Germany
| | - Ulrich G Hofmann
- Neuroelectronic Systems, Department of Neurosurgery, Medical Center, University of Freiburg, Germany; Department of Neurosurgery, Medical Center University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany; BrainLinks-BrainTools, University of Freiburg, Germany
| |
Collapse
|
43
|
Gueli C, Martens J, Eickenscheidt M, Stieglitz T. Scalable Batch Transfer of Individual Silicon Dice for Ultra-Flexible Polyimide-Based Bioelectronic Devices. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:6880-6883. [PMID: 34892687 DOI: 10.1109/embc46164.2021.9630832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Demands on flexible neural interfaces in terms of functionality, spatial resolution and longevity have increased in the past years. These requirements can be met by sophisticated integrated circuits developed in CMOS (complementary metal oxide semiconductor) technology. Embedding such fabricated dice into flexible polymeric substrates greatly enhances the adaption to the mechanical environment in the body. With the process developed here, 100 % of individual dice (n = 34, 390 x 390 μm2) could be transferred simultaneously into polyimide (PI) substrates with simple and exact positioning (0.2° rotational and 5 μm translational error). Levelled layer build-up and standard microfabrication technologies could be used for CMOS-post-processing in order to manufacture metal interconnections between contact pads of 100 μm thin dice and PI insulation as selectively patterned device substrate. The process allows for individual positioning according to desired shape of the final chip-in-foil-system and for upscaling the number of dice to be transferred. Furthermore, final distribution and embedding of dice on the flexible substrate is independent from their distribution on the CMOS fabrication wafer the and does not require additional adhesion promoters. During fabrication the transfer method is insensitive to high temperatures (450 °C in this study) and hence enables a wide range of post-processes. Shear strength between dice and PI substrate was characterized by shear tests and results (58.1 ± 13.7 MPa) are in the range achieved with the adhesive benzocyclobutene (BCB).
Collapse
|
44
|
Schander A, Gancz JM, Tintelott M, Lang W. Towards Long-Term Stable Polyimide-Based Flexible Electrical Insulation for Chronically Implanted Neural Electrodes. MICROMACHINES 2021; 12:mi12111279. [PMID: 34832690 PMCID: PMC8619170 DOI: 10.3390/mi12111279] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 01/03/2023]
Abstract
For chronic applications of flexible neural implants, e.g., intracortical probes, the flexible substrate material has to encapsulate the electrical conductors with a long-term stability against the saline environment of the neural tissue. The biocompatible polymer polyimide is often used for this purpose. Due to its chemical inertness, the adhesion between two polyimide layers is, however, a challenge, which can lead to delamination and, finally, to short circuits. The state-of-the-art method to improve the adhesion strength is activating the polyimide surface using oxygen reactive ion etching (O2 RIE). However, the influence of the process variations (etching time, bias power) on the long-term stability is still unclear. Therefore, we establish a test method, where the aging of a gold interdigital structure embedded in two polyimide layers and immersed in saline solution is accelerated using an elevated temperature, mechanical stress and an electrical field. A continuous measurement of a leakage current is used to define the failure state. The results show that the variation of the O2 RIE plasma process has a significant effect on the long-term stability of the test samples. Comparing the two different plasma treatments 0.5 min at 25 W and 1 min at 50 W, the long-term stability could be increased from 20.9 ± 19.1 days to 44.9 ± 18.9 days. This corresponds to more than a doubled lifetime. An ideal solution for the delamination problem is still not available; however, the study shows that the fine-tuning of the fabrication processes can improve the long-term stability of chronically implanted neural electrodes.
Collapse
Affiliation(s)
- Andreas Schander
- Institute for Microsensors, -Actuators and -Systems (IMSAS), University of Bremen, 28359 Bremen, Germany; (J.M.G.); (M.T.); (W.L.)
- Correspondence: ; Tel.: +49-421-218-62590
| | - Julia M. Gancz
- Institute for Microsensors, -Actuators and -Systems (IMSAS), University of Bremen, 28359 Bremen, Germany; (J.M.G.); (M.T.); (W.L.)
| | - Marcel Tintelott
- Institute for Microsensors, -Actuators and -Systems (IMSAS), University of Bremen, 28359 Bremen, Germany; (J.M.G.); (M.T.); (W.L.)
- Institute of Materials in Electrical Engineering 1, RWTH Aachen University, 52074 Aachen, Germany
| | - Walter Lang
- Institute for Microsensors, -Actuators and -Systems (IMSAS), University of Bremen, 28359 Bremen, Germany; (J.M.G.); (M.T.); (W.L.)
| |
Collapse
|
45
|
Asadullah S, Mei S, Yang K, Hu X, Wang F, Yu B, Wu Z, Wei J. Tantalum oxide submicro-particles into microporous coating on polyimide possessing antibacterial property and inducing cellular response for orthopedic application. J Mech Behav Biomed Mater 2021; 124:104800. [PMID: 34507034 DOI: 10.1016/j.jmbbm.2021.104800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/22/2021] [Accepted: 08/25/2021] [Indexed: 11/19/2022]
Abstract
Surface characteristics of the biomaterials have significant effects on response of osteoblast and formation of new bone tissue. In this study, to improve the bio-performance of polyimide (PI) as an implantable material for bone substitute, concentrated sulfuric acid suspension with tantalum (V) oxide (vTO) submicro-particles of 10w% (PIST10) and 15w% (PIST15) was utilized to modify PI surface. After sulfonation, microporous coatings including vTO particles were created on PI (PIST10 and PIST15) while microporous coating without vTO particles was also created on PI (PIS). Results showed that surface roughness, hydrophilicity and protein adsorption of PIST15 was remarkably higher than PIST10 and PIS. Furthermore, after soaking into simulated body fluid (SBF), no apatite mineralization on PIS was found, while PIST15 with high vTO content exhibited better apatite mineralization compared with PIST10. Moreover, PIS showed low antibacterial property, while PIST15 with high vTO content revealed better antibacterial property compared with PIST10. In addition, cellular response (such as adhesion, proliferation and alkaline phosphatase activity) of bone marrow stromal cells (BMSC) of rat to PIST15 was higher than PIST10 and PIS. In conclusion, the microporous coating of PIST15 including vTO submicro-particles possessed good antibacterial property and bioactivity, which significantly promoted the responses of BMSC. Therefore, PIST15 has potential application prospects for bone substitute.
Collapse
Affiliation(s)
- Syed Asadullah
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Shiqi Mei
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Kong Yang
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, 610064, China.
| | - Xinglong Hu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Fan Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Baoqing Yu
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China.
| | - Zhaoying Wu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Jie Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
46
|
Devi M, Vomero M, Fuhrer E, Castagnola E, Gueli C, Nimbalkar S, Hirabayashi M, Kassegne S, Stieglitz T, Sharma S. Carbon-based neural electrodes: promises and challenges. J Neural Eng 2021; 18. [PMID: 34404037 DOI: 10.1088/1741-2552/ac1e45] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/17/2021] [Indexed: 01/01/2023]
Abstract
Neural electrodes are primary functional elements of neuroelectronic devices designed to record neural activity based on electrochemical signals. These electrodes may also be utilized for electrically stimulating the neural cells, such that their response can be simultaneously recorded. In addition to being medically safe, the electrode material should be electrically conductive and electrochemically stable under harsh biological environments. Mechanical flexibility and conformability, resistance to crack formation and compatibility with common microfabrication techniques are equally desirable properties. Traditionally, (noble) metals have been the preferred for neural electrode applications due to their proven biosafety and a relatively high electrical conductivity. Carbon is a recent addition to this list, which is far superior in terms of its electrochemical stability and corrosion resistance. Carbon has also enabled 3D electrode fabrication as opposed to the thin-film based 2D structures. One of carbon's peculiar aspects is its availability in a wide range of allotropes with specialized properties that render it highly versatile. These variations, however, also make it difficult to understand carbon itself as a unique material, and thus, each allotrope is often regarded independently. Some carbon types have already shown promising results in bioelectronic medicine, while many others remain potential candidates. In this topical review, we first provide a broad overview of the neuroelectronic devices and the basic requirements of an electrode material. We subsequently discuss the carbon family of materials and their properties that are useful in neural applications. Examples of devices fabricated using bulk and nano carbon materials are reviewed and critically compared. We then summarize the challenges, future prospects and next-generation carbon technology that can be helpful in the field of neural sciences. The article aims at providing a common platform to neuroscientists, electrochemists, biologists, microsystems engineers and carbon scientists to enable active and comprehensive efforts directed towards carbon-based neuroelectronic device fabrication.
Collapse
Affiliation(s)
- Mamta Devi
- School of Engineering, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh 175075, India
| | - Maria Vomero
- Bioelectronic Systems Laboratory, Columbia University, 500 West 120th Street, New York, NY 10027, United States of America
| | - Erwin Fuhrer
- School of Computing and Electrical Engineering, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh 175075 India
| | - Elisa Castagnola
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Calogero Gueli
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering-IMTEK, University of Freiburg, Georges-Koehler-Allee 080, 79110 Freiburg, Germany
| | - Surabhi Nimbalkar
- NanoFAB.SDSU Research Lab, Department of Mechanical Engineering, San Diego State University and NSF-ERC Center for Neurotechnology (CNT), 5500 Campanile Drive, San Diego, CA 92182, United States of America
| | - Mieko Hirabayashi
- NanoFAB.SDSU Research Lab, Department of Mechanical Engineering, San Diego State University and NSF-ERC Center for Neurotechnology (CNT), 5500 Campanile Drive, San Diego, CA 92182, United States of America
| | - Sam Kassegne
- NanoFAB.SDSU Research Lab, Department of Mechanical Engineering, San Diego State University and NSF-ERC Center for Neurotechnology (CNT), 5500 Campanile Drive, San Diego, CA 92182, United States of America
| | - Thomas Stieglitz
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering-IMTEK, University of Freiburg, Georges-Koehler-Allee 080, 79110 Freiburg, Germany.,BrainLinks-BrainTools Center, University of Freiburg, Georges-Koehler-Allee 080, 79110 Freiburg, Germany.,Bernstein Center Freiburg, University of Freiburg, Hansastr. 9a, 79104 Freiburg, Germany
| | - Swati Sharma
- School of Engineering, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh 175075, India
| |
Collapse
|
47
|
Schweigmann M, Caudal LC, Stopper G, Scheller A, Koch KP, Kirchhoff F. Versatile Surface Electrodes for Combined Electrophysiology and Two-Photon Imaging of the Mouse Central Nervous System. Front Cell Neurosci 2021; 15:720675. [PMID: 34447299 PMCID: PMC8383317 DOI: 10.3389/fncel.2021.720675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/19/2021] [Indexed: 11/23/2022] Open
Abstract
Understanding and modulating CNS function in physiological as well as pathophysiological contexts remains a significant ambition in research and clinical applications. The investigation of the multifaceted CNS cell types including their interactions and contributions to neural function requires a combination of the state-of-the-art in vivo electrophysiology and imaging techniques. We developed a novel type of liquid crystal polymer (LCP) surface micro-electrode manufactured in three customized designs with up to 16 channels for recording and stimulation of brain activity. All designs include spare central spaces for simultaneous 2P-imaging. Nanoporous platinum-plated contact sites ensure a low impedance and high current transfer. The epidural implantation of the LCP micro-electrodes could be combined with standard cranial window surgery. The epidurally positioned electrodes did not only display long-term biocompatibility, but we also observed an additional stabilization of the underlying CNS tissue. We demonstrate the electrode’s versatility in combination with in vivo 2P-imaging by monitoring anesthesia-awake cycles of transgenic mice with GCaMP3 expression in neurons or astrocytes. Cortical stimulation and simultaneous 2P Ca2+ imaging in neurons or astrocytes highlighted the astrocytes’ integrative character in neuronal activity processing. Furthermore, we confirmed that spontaneous astroglial Ca2+ signals are dampened under anesthesia, while evoked signals in neurons and astrocytes showed stronger dependency on stimulation intensity rather than on various levels of anesthesia. Finally, we show that the electrodes provide recordings of the electrocorticogram (ECoG) with a high signal-to noise ratio and spatial signal differences which help to decipher brain activity states during experimental procedures. Summarizing, the novel LCP surface micro-electrode is a versatile, convenient, and reliable tool to investigate brain function in vivo.
Collapse
Affiliation(s)
- Michael Schweigmann
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany.,Department of Electrical Engineering, Trier University of Applied Sciences, Trier, Germany
| | - Laura C Caudal
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Gebhard Stopper
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Anja Scheller
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Klaus P Koch
- Department of Electrical Engineering, Trier University of Applied Sciences, Trier, Germany
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| |
Collapse
|
48
|
Mian SY, Honey JR, Carnicer-Lombarte A, Barone DG. Large Animal Studies to Reduce the Foreign Body Reaction in Brain-Computer Interfaces: A Systematic Review. BIOSENSORS 2021; 11:275. [PMID: 34436077 PMCID: PMC8392711 DOI: 10.3390/bios11080275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 01/08/2023]
Abstract
Brain-computer interfaces (BCI) are reliant on the interface between electrodes and neurons to function. The foreign body reaction (FBR) that occurs in response to electrodes in the brain alters this interface and may pollute detected signals, ultimately impeding BCI function. The size of the FBR is influenced by several key factors explored in this review; namely, (a) the size of the animal tested, (b) anatomical location of the BCI, (c) the electrode morphology and coating, (d) the mechanics of electrode insertion, and (e) pharmacological modification (e.g., drug eluting electrodes). Trialing methods to reduce FBR in vivo, particularly in large models, is important to enable further translation in humans, and we systematically reviewed the literature to this effect. The OVID, MEDLINE, EMBASE, SCOPUS and Scholar databases were searched. Compiled results were analysed qualitatively. Out of 8388 yielded articles, 13 were included for analysis, with most excluded studies experimenting on murine models. Cats, rabbits, and a variety of breeds of minipig/marmoset were trialed. On average, over 30% reduction in inflammatory cells of FBR on post mortem histology was noted across intervention groups. Similar strategies to those used in rodent models, including tip modification and flexible and sinusoidal electrode configurations, all produced good effects in histology; however, a notable absence of trials examining the effect on BCI end-function was noted. Future studies should assess whether the reduction in FBR correlates to an improvement in the functional effect of the intended BCI.
Collapse
Affiliation(s)
- Shan Yasin Mian
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2BX, UK
| | - Jonathan Roy Honey
- School of Clinical Medicine, University of Cambridge, Cambridge CB3 0DF, UK;
| | | | - Damiano Giuseppe Barone
- Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB3 0DF, UK;
| |
Collapse
|
49
|
Shokur S, Mazzoni A, Schiavone G, Weber DJ, Micera S. A modular strategy for next-generation upper-limb sensory-motor neuroprostheses. MED 2021; 2:912-937. [DOI: 10.1016/j.medj.2021.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/28/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023]
|
50
|
Wang D, Tan J, Zhu H, Mei Y, Liu X. Biomedical Implants with Charge-Transfer Monitoring and Regulating Abilities. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004393. [PMID: 34166584 PMCID: PMC8373130 DOI: 10.1002/advs.202004393] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/12/2021] [Indexed: 05/06/2023]
Abstract
Transmembrane charge (ion/electron) transfer is essential for maintaining cellular homeostasis and is involved in many biological processes, from protein synthesis to embryonic development in organisms. Designing implant devices that can detect or regulate cellular transmembrane charge transfer is expected to sense and modulate the behaviors of host cells and tissues. Thus, charge transfer can be regarded as a bridge connecting living systems and human-made implantable devices. This review describes the mode and mechanism of charge transfer between organisms and nonliving materials, and summarizes the strategies to endow implants with charge-transfer regulating or monitoring abilities. Furthermore, three major charge-transfer controlling systems, including wired, self-activated, and stimuli-responsive biomedical implants, as well as the design principles and pivotal materials are systematically elaborated. The clinical challenges and the prospects for future development of these implant devices are also discussed.
Collapse
Affiliation(s)
- Donghui Wang
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institutes of CeramicsChinese Academy of SciencesShanghai200050China
- School of Materials Science and EngineeringHebei University of TechnologyTianjin300130China
| | - Ji Tan
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institutes of CeramicsChinese Academy of SciencesShanghai200050China
| | - Hongqin Zhu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institutes of CeramicsChinese Academy of SciencesShanghai200050China
- Department of Materials ScienceFudan UniversityShanghai200433China
| | - Yongfeng Mei
- Department of Materials ScienceFudan UniversityShanghai200433China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institutes of CeramicsChinese Academy of SciencesShanghai200050China
- School of Chemistry and Materials ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
| |
Collapse
|