1
|
Park H, Kim HJ, Kim IG, Kim MJ, Kim Y, Eom SY, Seok J, Oh SH, Chung EJ. Esophageal Reconstruction with Myogenesis-Inducing Gene Transfected Mesenchymal Stem Cell-Seeded Film with Leaf-Stacked Structure. ACS Biomater Sci Eng 2025; 11:2274-2289. [PMID: 40183365 DOI: 10.1021/acsbiomaterials.4c02396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
In the domain of tissue engineering and regenerative medicine, artificial replacements have been developed as viable options for esophageal reconstruction and serve as alternatives to traditional surgical procedures. Restoration of smooth muscle functionality is crucial in esophageal regeneration. We evaluated the efficacy of esophageal reconstructions in an animal model, using tissue-engineered films with a leaf-stacked structure (FLSS), seeded with mesenchymal stem cells (MSCs), which were genetically modified with myogenic genes. Esophageal partial defects were variously reconstructed in animals (n = 8 per group, except the no-implantation group), categorized as (1) normal rats; (2) rats implanted with naked FLSS; (3) rats implanted with FLSS with MSCs; (4) rats implanted using FLSS with myogenesis-inducing gene transfected MSCs; and (5) rats without implantation at the defect site (n = 3). The FLSS exhibited appropriate mechanical characteristics for transplantation. Successful repair of esophageal defects was observed with significantly enhanced epithelial regeneration in the MSC-seeded FLSS group compared to that in the naked FLSS group. Moreover, smooth muscle regeneration was notably higher in the FLSS with myogenesis-inducing gene transfected MSCs than in the group without myogenic gene transfection. The myogenesis-inducing gene-transfected MSC-seeded FLSS group showed a tendency toward increased smooth muscle regeneration, this indicates that FLSS with myogenesis-inducing genes transfected MSC may contribute positively to the maintenance of function in the reconstructed esophagus.
Collapse
Affiliation(s)
- Hanaro Park
- Department of Otorhinolaryngology- Head and Neck Surgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon 51353, Republic of Korea
| | - Hye-Joung Kim
- Institute of Chemical Engineering Convergence System, Korea University, Seoul 02841, Republic of Korea
| | - In Gul Kim
- Department of Otorhinolaryngology- Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Min Ji Kim
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Yewon Kim
- Department of Otorhinolaryngology- Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - So Young Eom
- Institute of Chemical Engineering Convergence System, Korea University, Seoul 02841, Republic of Korea
| | - Jungirl Seok
- Department of Otorhinolaryngology- Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Se Heang Oh
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Eun-Jae Chung
- Department of Otorhinolaryngology- Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| |
Collapse
|
2
|
Gao B. 3D bioprinting for bile duct tissue engineering: current status and prospects. Front Bioeng Biotechnol 2025; 13:1554226. [PMID: 40297285 PMCID: PMC12034648 DOI: 10.3389/fbioe.2025.1554226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 04/03/2025] [Indexed: 04/30/2025] Open
Abstract
Bile duct disorders, including cholangiocarcinoma, primary sclerosing cholangitis, and iatrogenic injuries, pose significant clinical challenges due to limited regenerative capacity and the complexity of the biliary tree. In recent years, 3D bioprinting has emerged as a promising approach for bile duct tissue engineering by providing patient-specific geometries and facilitating the spatial organization of cells, scaffolding materials, and bioactive factors. This review presents a comprehensive overview of 3D bioprinting techniques for bile duct tissue engineering, focusing on fundamental principles, biomaterial selection, current achievements, key challenges, and future perspectives. We systematically discuss the latest technological breakthroughs, highlight emerging innovations such as organoid-based strategies and microfluidic-assisted 3D printing, and evaluate the prospects for clinical translation. Finally, we outline the main challenges-such as biocompatibility of materials, vascularization, immunological barriers, standardization of protocols, and regulatory hurdles-and propose directions for future research, emphasizing multidisciplinary collaboration and translational studies.
Collapse
Affiliation(s)
- Bo Gao
- Department of Hepatobiliary Surgery, Affiliated Hospital of Hebei University, Baoding, China
| |
Collapse
|
3
|
Hao X, Zhang K, Hou Z, Guo J, Yang L, Sun S. Advances in natural polysaccharide/protein-based bioadhesive formulations for the potential application in esophagus: A review. Int J Biol Macromol 2025; 308:142513. [PMID: 40147657 DOI: 10.1016/j.ijbiomac.2025.142513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/10/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
The esophagus is susceptible to various injuries or disorders, which can significantly impact quality of life and pose potentially life-threatening risks. The unique anatomical and physiological characteristics of the esophagus present challenges in achieving optimal bioavailability and efficacy during diagnosis and treatment. To address these challenges, polysaccharide- and protein-based bioadhesive formulations have been developed to adhere to esophageal tissue, thereby prolonging residence time and enhancing diagnostic accuracy and therapeutic outcomes. Natural polysaccharides and proteins have garnered attention in the medical field owing to their exceptional properties, including biocompatibility, bioavailability, biodegradability, and low toxicity. A substantial body of research has demonstrated the significant potential of polysaccharides and proteins in clinical applications for the esophagus. The objective of this review is to discuss the structural characteristics and biological activities of various polysaccharides, including chitosan, hyaluronic acid, alginate, cellulose, guar gum, gellan gum, and xanthan gum, as well as proteins such as gelatin and fibrin, and their utilization in esophageal bioadhesive formulations. The practical challenges and prospects associated with implementing polysaccharide and protein-based bioadhesives on the esophagus are also discussed.
Collapse
Affiliation(s)
- Xuanyu Hao
- Research Center for Biomedical Materials, Shenyang Key Laboratory of Biomedical Polymers, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 11004, China; Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Kai Zhang
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Zhipeng Hou
- Research Center for Biomedical Materials, Shenyang Key Laboratory of Biomedical Polymers, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 11004, China
| | - Jintao Guo
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Liqun Yang
- Research Center for Biomedical Materials, Shenyang Key Laboratory of Biomedical Polymers, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 11004, China.
| | - Siyu Sun
- Research Center for Biomedical Materials, Shenyang Key Laboratory of Biomedical Polymers, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 11004, China; Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
4
|
Fantini A, Delledonne A, Casula L, Nicoli S, Pescina S, Cardia MC, Lai F, Sissa C, Santi P, Padula C. Application of Microneedles for High-Molecular-Weight Dextran Penetration Across the Buccal Mucosa. Pharmaceuticals (Basel) 2025; 18:158. [PMID: 40005972 PMCID: PMC11860016 DOI: 10.3390/ph18020158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/16/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Objectives: This work aimed at investigating the effect of different microneedle-based strategies on the permeation of high-molecular-weight model molecules (fluorescently labeled dextrans (FDs), 70 and 150 kDa) across the buccal mucosa. Methods: Two different approaches were evaluated: (1) stainless steel microneedles (MNs) of 500 µm height used for tissue pre-treatment; and (2) soluble microneedles of different lengths (150, 500, and 800 µm), made of polyvinylpyrrolidone and FDs, prepared using the solvent casting technique. Porcine esophageal epithelium was used as a model for the buccal mucosa. Results: The application of soluble MNs promoted high-molecular-weight dextran transport across pig esophageal epithelium. The transport was proportional to MN length, with a minimum of 500 µm, regardless of the molecular weight of the FDs. The use of solid MNs of the same length to pre-treat the tissue, followed by the application of a solution of the permeant, did not produce the same effect in terms of onset of permeation, which was found to be much slower. Conclusions: The results obtained show that by applying soluble MNs of appropriate length (500 and 800 µm), the transport of high-molecular-weight dextrans (70 and 150 kDa) across and into the mucosal tissue occurs very rapidly. The multiphoton microscopy analysis confirmed the presence of holes in the tissue and the presence of fluorescein-labeled dextrans.
Collapse
Affiliation(s)
- Adriana Fantini
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy; (A.F.); (S.N.); (S.P.); (P.S.)
| | - Andrea Delledonne
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/a, 43124 Parma, Italy; (A.D.); (C.S.)
| | - Luca Casula
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy; (L.C.); (M.C.C.); (F.L.)
| | - Sara Nicoli
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy; (A.F.); (S.N.); (S.P.); (P.S.)
| | - Silvia Pescina
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy; (A.F.); (S.N.); (S.P.); (P.S.)
| | - Maria Cristina Cardia
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy; (L.C.); (M.C.C.); (F.L.)
| | - Francesco Lai
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy; (L.C.); (M.C.C.); (F.L.)
| | - Cristina Sissa
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/a, 43124 Parma, Italy; (A.D.); (C.S.)
| | - Patrizia Santi
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy; (A.F.); (S.N.); (S.P.); (P.S.)
| | - Cristina Padula
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy; (A.F.); (S.N.); (S.P.); (P.S.)
| |
Collapse
|
5
|
Martinier I, Trichet L, Fernandes FM. Biomimetic tubular materials: from native tissues to a unifying view of new vascular, tracheal, gastrointestinal, oesophageal, and urinary grafts. Chem Soc Rev 2025; 54:790-826. [PMID: 39606835 DOI: 10.1039/d4cs00429a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Repairing tubular tissues-the trachea, the esophagus, urinary and gastrointestinal tracts, and the circulatory system-from trauma or severe pathologies that require resection, calls for new, more effective graft materials. Currently, the relatively narrow family of materials available for these applications relies on synthetic polymers that fail to reproduce the biological and physical cues found in native tissues. Mimicking the structure and the composition of native tubular tissues to elaborate functional grafts is expected to outperform the materials currently in use, but remains one of the most challenging goals in the field of biomaterials. Despite their apparent diversity, tubular tissues share extensive compositional and structural features. Here, we assess the current state of the art through a dual layer model, reducing each tissue to an inner epithelial layer and an outer muscular layer. Based on this model, we examine the current strategies developed to mimic each layer and we underline how each fabrication method stands in providing a biomimetic material for future clinical translation. The analysis provided here, addressed to materials chemists, biomaterials engineers and clinical staff alike, sets new guidelines to foster the elaboration of new biomimetic materials for effective tubular tissue repair.
Collapse
Affiliation(s)
- Isabelle Martinier
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR 7574, Paris 75005, France.
| | - Léa Trichet
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR 7574, Paris 75005, France.
| | - Francisco M Fernandes
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR 7574, Paris 75005, France.
| |
Collapse
|
6
|
Yan J, Ye Z, Wang X, Zhong D, Wang Z, Yan T, Li T, Yuan Y, Liu Y, Wang Y, Cai X. Recent research progresses of bioengineered biliary stents. Mater Today Bio 2024; 29:101290. [PMID: 39444940 PMCID: PMC11497374 DOI: 10.1016/j.mtbio.2024.101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
Bile duct lesion, including benign (eg. occlusion, cholelithiasis, dilatation, malformation) and malignant (cholangiocarcinoma) diseases, is a frequently encountered challenge in hepatobiliary diseases, which can be repaired by interventional or surgical procedures. A viable cure for bile duct lesions is implantation with biliary stents. Despite the placement achieved by current clinical biliary stents, the creation of functional and readily transplantable biliary stents remains a formidable obstacle. Excellent biocompatibility, stable mechanics, and absorbability are just a few benefits of using bioengineered biliary stents, which can also support and repair damaged bile ducts that drain bile. Additionally, cell sources & organoids derived from the biliary system that are loaded onto scaffolds can encourage bile duct regeneration. Therefore, the implantation of bioengineered biliary stent is considered as an ideal treatment for bile duct lesion, holding a broad potential for clinical applications in future. In this review, we look back on the development of conventional biliary stents, biodegradable biliary stents, and bioengineered biliary stents, highlighting the crucial elements of bioengineered biliary stents in promoting bile duct regeneration. After providing an overview of the various types of cell sources & organoids and fabrication methods utilized for the bioengineering process, we present the in vitro and in vivo applications of bioengineered biliary ducts, along with the latest advances in this exciting field. Finally, we also emphasize the ongoing challenges and future development of bioengineered biliary stents.
Collapse
Affiliation(s)
- Jianing Yan
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Zhichao Ye
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Xiaofeng Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang Province, China
| | - Danyang Zhong
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Ziyuan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Tingting Yan
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Tianyu Li
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
- Department of Translational Medicine & Clinical Research, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Yuyang Yuan
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
- Department of Translational Medicine & Clinical Research, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Yu Liu
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Yifan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
- Department of Translational Medicine & Clinical Research, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| |
Collapse
|
7
|
Ngwangwa HM, Modungwa D, Pandelani T, Nemavhola FJ. Estimation of the biaxial tensile behavior of ovine esophageal tissue using artificial neural networks. Biomed Eng Online 2024; 23:100. [PMID: 39396034 PMCID: PMC11470611 DOI: 10.1186/s12938-024-01296-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/24/2024] [Indexed: 10/14/2024] Open
Abstract
Diseases of the esophagus affect its function and often lead to replacement of long sections of the organ. Current healing methods involve the use of bioscaffolds processed from other animal models. Although the properties of these animal models are not exactly the same as those of the human esophagus, they nevertheless present a reasonable means of assessing the biomechanical properties of the esophageal tissue. Besides, sheep bear many similarities physiologically to humans and they also suffer from same diseases as humans. The morphology of their esophagus is also comparable to that of humans. Thus, in the study, an ovine esophagus was studied. Studies on the planar biaxial tests of the gross esophageal anatomy are limited. The composite nature of the gross anatomy of the esophagus makes the application of structure-based models such as Holzapfel-type models very difficult. In current studies the tissue is therefore often separated into specific layers with substantial collagen content. The effects of adipose tissue and other non-collagenous tissue often make the mechanical behavior of the esophagus widely diverse and unpredictable using deterministic structure-based models. Thus, it may be very difficult to predict its mechanical behavior. In the study, an NARX neural network was used to predict the stress-strain response of the gross anatomy of the ovine esophagus. The results show that the NARX model was able to achieve a correlation above 99.9% within a fitting error margin of 16%. Therefore, the use of artificial neural networks may provide a more accurate way of predicting the biaxial stress-strain response of the esophageal tissue, and lead to further improvements in the design and development of synthetic replacement materials for esophageal tissue.
Collapse
Affiliation(s)
- H M Ngwangwa
- Department of Mechanical, Bioresources and Biomedical Engineering, School of Engineering and the Built Environment, College of Science, Engineering and Technology, University of South Africa, Private Bag X6, Florida, 1710, South Africa.
| | - D Modungwa
- Department of Mechanical, Bioresources and Biomedical Engineering, School of Engineering and the Built Environment, College of Science, Engineering and Technology, University of South Africa, Private Bag X6, Florida, 1710, South Africa
- Peace, Safety and Security, Council for Scientific and Industrial Research, PO Box 395, Pretoria, 0001, South Africa
| | - T Pandelani
- Department of Mechanical, Bioresources and Biomedical Engineering, School of Engineering and the Built Environment, College of Science, Engineering and Technology, University of South Africa, Private Bag X6, Florida, 1710, South Africa
| | - F J Nemavhola
- Department of Mechanical Engineering, Faculty of Engineering and the Built Environment, Durban University of Technology, Durban, South Africa
| |
Collapse
|
8
|
Luo Y, Hu Z, Ni R, Xu R, Zhao J, Feng P, Zhu T, Chen Y, Yao J, Yao Y, Yang L, Zhang H, Zhu Y. Fabrication of 3D Biomimetic Smooth Muscle Using Magnetic Induction and Bioprinting for Tissue Regeneration. Biomater Res 2024; 28:0076. [PMID: 39253032 PMCID: PMC11382380 DOI: 10.34133/bmr.0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/18/2024] [Accepted: 08/10/2024] [Indexed: 09/11/2024] Open
Abstract
Smooth muscles play a vital role in peristalsis, tissue constriction, and relaxation but lack adequate self-repair capability for addressing extensive muscle defects. Engineering scaffolds have been broadly proposed to repair the muscle tissue. However, efforts to date have shown that those engineered scaffolds focus on cell alignment in 2-dimension (2D) and fail to direct muscle cells to align in 3D area, which is irresolvable to remodel the muscle architecture and restore the muscle functions like contraction and relaxation. Herein, we introduced an iron oxide (Fe3O4) filament-embedded gelatin (Gel)-silk fibroin composite hydrogel in which the oriented Fe3O4 self-assembled and functioned as micro/nanoscale geometric cues to induce cell alignment growth. The hydrogel scaffold can be designed to fabricate aligned or anisotropic muscle by combining embedded 3D bioprinting with magnetic induction to accommodate special architectures of muscular tissues in the body. Particularly, the bioprinted muscle-like matrices effectively promote the self-organization of smooth muscle cells (SMCs) and the directional differentiation of bone marrow mesenchymal stem cells (BMSCs) into SMCs. This biomimetic muscle accelerated tissue regeneration, enhancing intercellular connectivity within the muscular tissue, and the deposition of fibronectin and collagen I. This work provides a novel approach for constructing engineered biomimetic muscles, holding significant promise for clinical treatment of muscle-related diseases in the future.
Collapse
Affiliation(s)
- Yang Luo
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Zeming Hu
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Renhao Ni
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Rong Xu
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Jianmin Zhao
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Peipei Feng
- Ningbo Institute of Innovation for Combined Medicine and Engineering, The Affiliated Lihuili Hospital of Ningbo University, Ningbo 315046, China
| | - Tong Zhu
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Yaoqi Chen
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Jie Yao
- The First Affiliated Hospital of Ningbo University, Ningbo 315010, China
- Research Institute of Smart Medicine and Biological Engineering, Ningbo University, Ningbo 315211, China
| | - Yudong Yao
- Health Science Center, Ningbo University, Ningbo 315211, China
- Research Institute of Smart Medicine and Biological Engineering, Ningbo University, Ningbo 315211, China
| | - Lu Yang
- The First Affiliated Hospital of Ningbo University, Ningbo 315010, China
| | - Hua Zhang
- Health Science Center, Ningbo University, Ningbo 315211, China
- Research Institute of Smart Medicine and Biological Engineering, Ningbo University, Ningbo 315211, China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| | - Yabin Zhu
- Health Science Center, Ningbo University, Ningbo 315211, China
| |
Collapse
|
9
|
Wu H, Chen J, Zhao P, Liu M, Xie F, Ma X. Development and Prospective Applications of 3D Membranes as a Sensor for Monitoring and Inducing Tissue Regeneration. MEMBRANES 2023; 13:802. [PMID: 37755224 PMCID: PMC10535523 DOI: 10.3390/membranes13090802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023]
Abstract
For decades, tissue regeneration has been a challenging issue in scientific modeling and human practices. Although many conventional therapies are already used to treat burns, muscle injuries, bone defects, and hair follicle injuries, there remains an urgent need for better healing effects in skin, bone, and other unique tissues. Recent advances in three-dimensional (3D) printing and real-time monitoring technologies have enabled the creation of tissue-like membranes and the provision of an appropriate microenvironment. Using tissue engineering methods incorporating 3D printing technologies and biomaterials for the extracellular matrix (ECM) containing scaffolds can be used to construct a precisely distributed artificial membrane. Moreover, advances in smart sensors have facilitated the development of tissue regeneration. Various smart sensors may monitor the recovery of the wound process in different aspects, and some may spontaneously give feedback to the wound sites by releasing biological factors. The combination of the detection of smart sensors and individualized membrane design in the healing process shows enormous potential for wound dressings. Here, we provide an overview of the advantages of 3D printing and conventional therapies in tissue engineering. We also shed light on different types of 3D printing technology, biomaterials, and sensors to describe effective methods for use in skin and other tissue regeneration, highlighting their strengths and limitations. Finally, we highlight the value of 3D bioengineered membranes in various fields, including the modeling of disease, organ-on-a-chip, and drug development.
Collapse
Affiliation(s)
| | | | - Pengxiang Zhao
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China (F.X.); (X.M.)
| | | | | | | |
Collapse
|
10
|
Yang Z, Chen L, Liu J, Zhuang H, Lin W, Li C, Zhao X. Short Peptide Nanofiber Biomaterials Ameliorate Local Hemostatic Capacity of Surgical Materials and Intraoperative Hemostatic Applications in Clinics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301849. [PMID: 36942893 DOI: 10.1002/adma.202301849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/12/2023] [Indexed: 06/18/2023]
Abstract
Short designer self-assembling peptide (dSAP) biomaterials are a new addition to the hemostat group. It may provide a diverse and robust toolbox for surgeons to integrate wound microenvironment with much safer and stronger hemostatic capacity than conventional materials and hemostatic agents. Especially in noncompressible torso hemorrhage (NCTH), diffuse mucosal surface bleeding, and internal medical bleeding (IMB), with respect to the optimal hemostatic formulation, dSAP biomaterials are the ingenious nanofiber alternatives to make bioactive neural scaffold, nasal packing, large mucosal surface coverage in gastrointestinal surgery (esophagus, gastric lesion, duodenum, and lower digestive tract), epicardiac cell-delivery carrier, transparent matrix barrier, and so on. Herein, in multiple surgical specialties, dSAP-biomaterial-based nano-hemostats achieve safe, effective, and immediate hemostasis, facile wound healing, and potentially reduce the risks in delayed bleeding, rebleeding, post-operative bleeding, or related complications. The biosafety in vivo, bleeding indications, tissue-sealing quality, surgical feasibility, and local usability are addressed comprehensively and sequentially and pursued to develop useful surgical techniques with better hemostatic performance. Here, the state of the art and all-round advancements of nano-hemostatic approaches in surgery are provided. Relevant critical insights will inspire exciting investigations on peptide nanotechnology, next-generation biomaterials, and better promising prospects in clinics.
Collapse
Affiliation(s)
- Zehong Yang
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
- Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lihong Chen
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ji Liu
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hua Zhuang
- Department of Ultrasonography, West China Hospital of Sichuan University, No. 37 Guoxue Road, Wuhou District, Chengdu, Sichuan, 610041, China
| | - Wei Lin
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Women and Children Diseases of the Ministry of Education, Sichuan University, No. 17 People's South Road, Chengdu, Sichuan, 610041, China
| | - Changlong Li
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaojun Zhao
- Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
11
|
Feng L, Liu Y, Chen Y, Xiang Q, Huang Y, Liu Z, Xue W, Guo R. Injectable Antibacterial Hydrogel with Asiaticoside-Loaded Liposomes and Ultrafine Silver Nanosilver Particles Promotes Healing of Burn-Infected Wounds. Adv Healthc Mater 2023; 12:e2203201. [PMID: 37195780 DOI: 10.1002/adhm.202203201] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/15/2023] [Indexed: 05/18/2023]
Abstract
Post-injury infection and wound healing are recurrent daily life problems. Therefore, the necessity of developing a biomaterial with antibacterial and wound-healing properties is paramount. Based on the special porous structure of hydrogel, this work modifies recombinant collagen and quaternary ammonium chitosan and fused them with silver nanoparticles (Ag@mental-organic framework (Ag@MOF)) with antibacterial properties, and asiaticoside-loaded liposomes (Lip@AS) with anti-inflammatory/vascularization effects to form the rColMA/QCSG/LIP@AS/Ag@MOF (RQLAg) hydrogel. The prepared hydrogel possesses good sustainable release capabilities of Ag+ and AS and exhibits concentration-dependent swelling properties, pore size, and compressive strength. Cellular experiments show that the hydrogel exhibits good cell compatibility and promote cell migration, angiogenesis, and M1 macrophage polarization. Additionally, the hydrogels exhibit excellent antibacterial activity against Escherichia coli and Staphylococcus aureus in vitro. In vivo, Sprague Dawley rats burn-wound infection model showed that the RQLAg hydrogel could efficiently promote wound healing and has stronger healing promoting abilities than those of Aquacel Ag. In summary, the RQLAg hydrogel is expected to be an excellent material for accelerating open wound healing and preventing bacterial infections.
Collapse
Affiliation(s)
- Longbao Feng
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Yu Liu
- Research and Development Department, Guangzhou Beogene Biotech Co., Ltd, 510663, Guangzhou, China
| | - Yini Chen
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510663, China
| | - Qi Xiang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510663, China
| | - Yadong Huang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510663, China
| | - Zonghua Liu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
12
|
Yaneva A, Shopova D, Bakova D, Mihaylova A, Kasnakova P, Hristozova M, Semerdjieva M. The Progress in Bioprinting and Its Potential Impact on Health-Related Quality of Life. Bioengineering (Basel) 2023; 10:910. [PMID: 37627795 PMCID: PMC10451845 DOI: 10.3390/bioengineering10080910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/18/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
The intensive development of technologies related to human health in recent years has caused a real revolution. The transition from conventional medicine to personalized medicine, largely driven by bioprinting, is expected to have a significant positive impact on a patient's quality of life. This article aims to conduct a systematic review of bioprinting's potential impact on health-related quality of life. A literature search was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A comprehensive literature search was undertaken using the PubMed, Scopus, Google Scholar, and ScienceDirect databases between 2019 and 2023. We have identified some of the most significant potential benefits of bioprinting to improve the patient's quality of life: personalized part production; saving millions of lives; reducing rejection risks after transplantation; accelerating the process of skin tissue regeneration; homocellular tissue model generation; precise fabrication process with accurate specifications; and eliminating the need for organs donor, and thus reducing patient waiting time. In addition, these advances in bioprinting have the potential to greatly benefit cancer treatment and other research, offering medical solutions tailored to each individual patient that could increase the patient's chance of survival and significantly improve their overall well-being. Although some of these advancements are still in the research stage, the encouraging results from scientific studies suggest that they are on the verge of being integrated into personalized patient treatment. The progress in bioprinting has the power to revolutionize medicine and healthcare, promising to have a profound impact on improving the quality of life and potentially transforming the field of medicine and healthcare.
Collapse
Affiliation(s)
- Antoniya Yaneva
- Department of Medical Informatics, Biostatistics and eLearning, Faculty of Public Health, Medical University, 4000 Plovdiv, Bulgaria;
| | - Dobromira Shopova
- Department of Prosthetic Dentistry, Faculty of Dental Medicine, Medical University, 4000 Plovdiv, Bulgaria
| | - Desislava Bakova
- Department of Healthcare Management, Faculty of Public Health, Medical University, 4000 Plovdiv, Bulgaria; (D.B.); (A.M.); (P.K.); (M.H.); (M.S.)
| | - Anna Mihaylova
- Department of Healthcare Management, Faculty of Public Health, Medical University, 4000 Plovdiv, Bulgaria; (D.B.); (A.M.); (P.K.); (M.H.); (M.S.)
| | - Petya Kasnakova
- Department of Healthcare Management, Faculty of Public Health, Medical University, 4000 Plovdiv, Bulgaria; (D.B.); (A.M.); (P.K.); (M.H.); (M.S.)
| | - Maria Hristozova
- Department of Healthcare Management, Faculty of Public Health, Medical University, 4000 Plovdiv, Bulgaria; (D.B.); (A.M.); (P.K.); (M.H.); (M.S.)
| | - Maria Semerdjieva
- Department of Healthcare Management, Faculty of Public Health, Medical University, 4000 Plovdiv, Bulgaria; (D.B.); (A.M.); (P.K.); (M.H.); (M.S.)
| |
Collapse
|
13
|
Lei N, Peng X, Hu M, Wan C, Yu X. Research on essential performance of oxidized chitosan-crosslinked acellular porcine aorta modified with bioactive SCPP/DOPA for esophageal scaffold with enhanced mechanical strength, biocompatibility and anti-inflammatory. Int J Biol Macromol 2023; 241:124522. [PMID: 37100332 DOI: 10.1016/j.ijbiomac.2023.124522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/06/2023] [Accepted: 04/15/2023] [Indexed: 04/28/2023]
Abstract
Acellular porcine aorta (APA) is an excellent candidate for an implanted scaffold but needs to be modified with appropriate cross-linking agent to increase its mechanical property and storage time in vitro as well as to give itself some bioactivities and eliminate its antigenicity for acting as a novel esophageal prosthesis. In this paper, a polysaccharide crosslinker (oxidized chitosan, OCS) was prepared by oxidizing chitosan using NaIO4 and further used to fix APA to prepare a novel esophageal prosthesis (scaffold). And then the surface modification with dopamine (DOPA) and strontium-doped calcium polyphosphate (SCPP) were performed one after another to prepare DOPA/OCS-APA and SCPP-DOPA/OCS-APA to improve the biocompatibility and inhibit inflammation of the scaffolds. The results showed that the OCS with a feeding ratio of 1.5:1.0 and a reaction time of 24 h had a suitable molecular weight and oxidation degree, almost no cytotoxicity and good cross-linking effect. Compared with glutaraldehyde (GA) and genipin (GP), OCS-fixed APA could provide a more suitable microenvironment for cell proliferation. The vital cross-linking characteristics and cytocompatibility of SCPP-DOPA/OCS-APA were evaluated. Results suggested that SCPP-DOPA/OCS-APA exhibited suitable mechanical properties, excellent resistance to enzymatic degradation/acid degradation, suitable hydrophilicity, and the ability to promote the proliferation of Human normal esophageal epithelial cells (HEECs) and inhibit inflammation in vitro. In vivo tests also confirmed that SCPP-DOPA/OCS-APA could diminish the immunological response to samples and had a positive impact on bioactivity and anti-inflammatory. In conclusion, SCPP-DOPA/OCS-APA could act as an effective, bioactive artificial esophageal scaffold and be expected to be used for clinical in the future.
Collapse
Affiliation(s)
- Ningning Lei
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Xu Peng
- Experimental and Research Animal Institute, Sichuan University, Chengdu 610065, PR China
| | - Mengyue Hu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Chang Wan
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Xixun Yu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
14
|
Mahmoud DB, Schulz‐Siegmund M. Utilizing 4D Printing to Design Smart Gastroretentive, Esophageal, and Intravesical Drug Delivery Systems. Adv Healthc Mater 2023; 12:e2202631. [PMID: 36571721 PMCID: PMC11468531 DOI: 10.1002/adhm.202202631] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/16/2022] [Indexed: 12/27/2022]
Abstract
The breakthrough of 3D printing in biomedical research has paved the way for the next evolutionary step referred to as four dimensional (4D) printing. This new concept utilizes the time as the fourth dimension in addition to the x, y, and z axes with the idea to change the configuration of a printed construct with time usually in response to an external stimulus. This can be attained through the incorporation of smart materials or through a preset smart design. The 4D printed constructs may be designed to exhibit expandability, flexibility, self-folding, self-repair or deformability. This review focuses on 4D printed devices for gastroretentive, esophageal, and intravesical delivery. The currently unmet needs and challenges for these application sites are tried to be defined and reported on published solution concepts involving 4D printing. In addition, other promising application sites that may similarly benefit from 4D printing approaches such as tracheal and intrauterine drug delivery are proposed.
Collapse
Affiliation(s)
- Dina B. Mahmoud
- Pharmaceutical TechnologyInstitute of PharmacyFaculty of MedicineLeipzig University04317LeipzigGermany
- Department of PharmaceuticsEgyptian Drug Authority12311GizaEgypt
| | - Michaela Schulz‐Siegmund
- Pharmaceutical TechnologyInstitute of PharmacyFaculty of MedicineLeipzig University04317LeipzigGermany
| |
Collapse
|
15
|
Farhat W, Yeung V, Kahale F, Parekh M, Cortinas J, Chen L, Ross AE, Ciolino JB. Doxorubicin-Loaded Extracellular Vesicles Enhance Tumor Cell Death in Retinoblastoma. Bioengineering (Basel) 2022; 9:bioengineering9110671. [PMID: 36354582 PMCID: PMC9687263 DOI: 10.3390/bioengineering9110671] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022] Open
Abstract
Chemotherapy is often used to treat retinoblastoma; however, this treatment method has severe systemic adverse effects and inadequate therapeutic effectiveness. Extracellular vesicles (EVs) are important biological information carriers that mediate local and systemic cell-to-cell communication under healthy and pathological settings. These endogenous vesicles have been identified as important drug delivery vehicles for a variety of therapeutic payloads, including doxorubicin (Dox), with significant benefits over traditional techniques. In this work, EVs were employed as natural drug delivery nanoparticles to load Dox for targeted delivery to retinoblastoma human cell lines (Y-79). Two sub-types of EVs were produced from distinct breast cancer cell lines (4T1 and SKBR3) that express a marker that selectively interacts with retinoblastoma cells and were loaded with Dox, utilizing the cells’ endogenous loading machinery. In vitro, we observed that delivering Dox with both EVs increased cytotoxicity while dramatically lowering the dosage of the drug. Dox-loaded EVs, on the other hand, inhibited cancer cell growth by activating caspase-3/7. Direct interaction of EV membrane moieties with retinoblastoma cell surface receptors resulted in an effective drug delivery to cancer cells. Our findings emphasize the intriguing potential of EVs as optimum methods for delivering Dox to retinoblastoma.
Collapse
Affiliation(s)
- Wissam Farhat
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
- Correspondence: (W.F.); (J.B.C.)
| | - Vincent Yeung
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Francesca Kahale
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Mohit Parekh
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - John Cortinas
- Division of Newborn Medicine, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lin Chen
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
- Department of Ophthalmology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Amy E. Ross
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Joseph B. Ciolino
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
- Correspondence: (W.F.); (J.B.C.)
| |
Collapse
|
16
|
3D Bioprinting Technology and Hydrogels Used in the Process. J Funct Biomater 2022; 13:jfb13040214. [PMID: 36412855 PMCID: PMC9680466 DOI: 10.3390/jfb13040214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022] Open
Abstract
3D bioprinting has gained visibility in regenerative medicine and tissue engineering due to its applicability. Over time, this technology has been optimized and adapted to ensure a better printability of bioinks and biomaterial inks, contributing to developing structures that mimic human anatomy. Therefore, cross-linked polymeric materials, such as hydrogels, have been highly targeted for the elaboration of bioinks, as they guarantee cell proliferation and adhesion. Thus, this short review offers a brief evolution of the 3D bioprinting technology and elucidates the main hydrogels used in the process.
Collapse
|
17
|
Farhat W, Yeung V, Ross A, Kahale F, Boychev N, Kuang L, Chen L, Ciolino JB. Advances in biomaterials for the treatment of retinoblastoma. Biomater Sci 2022; 10:5391-5429. [PMID: 35959730 DOI: 10.1039/d2bm01005d] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Retinoblastoma is the most common primary intraocular malignancy in children. Although traditional chemotherapy has shown some success in retinoblastoma management, there are several shortcomings to this approach, including inadequate pharmacokinetic parameters, multidrug resistance, low therapeutic efficiency, nonspecific targeting, and the need for adjuvant therapy, among others. The revolutionary developments in biomaterials for drug delivery have enabled breakthroughs in cancer management. Today, biomaterials are playing a crucial role in developing more efficacious retinoblastoma treatments. The key goal in the evolution of drug delivery biomaterials for retinoblastoma therapy is to resolve delivery-associated obstacles and lower nonlocal exposure while ameliorating certain adverse effects. In this review, we will first delve into the historical perspective of retinoblastoma with a focus on the classical treatments currently used in clinics to enhance patients' quality of life and survival rate. As we move along, we will discuss biomaterials for drug delivery applications. Various aspects of biomaterials for drug delivery will be dissected, including their features and recent advances. In accordance with the current advances in biomaterials, we will deliver a synopsis on the novel chemotherapeutic drug delivery strategies and evaluate these approaches to gain new insights into retinoblastoma treatment.
Collapse
Affiliation(s)
- Wissam Farhat
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA.
| | - Vincent Yeung
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA.
| | - Amy Ross
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA.
| | - Francesca Kahale
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA.
| | - Nikolay Boychev
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA.
| | - Liangju Kuang
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA.
| | - Lin Chen
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA. .,Department of Ophthalmology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.,Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Joseph B Ciolino
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
18
|
Guimarães CF, Soto F, Wang J, Akin D, Reis RL, Demirci U. Engineered living bioassemblies for biomedical and functional material applications. Curr Opin Biotechnol 2022; 77:102756. [PMID: 35930844 DOI: 10.1016/j.copbio.2022.102756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 11/03/2022]
Abstract
Recent breakthroughs in biofabrication of bioasemblies, consisting of the engineered structures composed of biological or biosynthetic components into a single construct, have found a wide range of practical applications in medicine and engineering. This review presents an overview of how the bottom-up assembly of living entities could drive advances in medicine, by developing tunable biological models and more precise methods for quantifying biological events. Moreover, we delve into advances beyond biomedical applications, where bioassemblies can be manipulated as functional robots and construction materials. Finally, we address the potential challenges and opportunities in the field of engineering living bioassemblies, toward building new design principles for the next generation of bioengineering applications.
Collapse
Affiliation(s)
- Carlos F Guimarães
- 3B's Research Group, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal; ICVS/3B's, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal; Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Department of Radiology, School of Medicine Stanford University, Palo Alto, CA 94304-5427, USA
| | - Fernando Soto
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Department of Radiology, School of Medicine Stanford University, Palo Alto, CA 94304-5427, USA
| | - Jie Wang
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Department of Radiology, School of Medicine Stanford University, Palo Alto, CA 94304-5427, USA
| | - Demir Akin
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Department of Radiology, School of Medicine Stanford University, Palo Alto, CA 94304-5427, USA; Center for Cancer Nanotechnology Excellence for Translational Diagnostics, Department of Radiology, School of Medicine, Stanford University, Stanford, CA 94305, USA.
| | - Rui L Reis
- 3B's Research Group, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal; ICVS/3B's, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal.
| | - Utkan Demirci
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Department of Radiology, School of Medicine Stanford University, Palo Alto, CA 94304-5427, USA
| |
Collapse
|
19
|
Xu R, Fang X, Wu S, Wang Y, Zhong Y, Hou R, Zhang L, Shao L, Pang Q, Zhang J, Cui X, Zuo R, Yao L, Zhu Y. Development and Prospect of Esophageal Tissue Engineering. Front Bioeng Biotechnol 2022; 10:853193. [PMID: 35252159 PMCID: PMC8892191 DOI: 10.3389/fbioe.2022.853193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Currently, patients with esophageal cancer, especially advanced patients, usually use autologous tissue for esophageal alternative therapy. However, an alternative therapy is often accompanied by serious complications such as ischemia and leakage, which seriously affect the prognosis of patients. Tissue engineering has been widely studied as one of the ideal methods for the treatment of esophageal cancer. In view of the complex multi-layer structure of the natural esophagus, how to use the tissue engineering method to design the scaffold with structure and function matching with the natural tissue is the principle that the tissue engineering method must follow. This article will analyze and summarize the construction methods, with or without cells, and repair effects of single-layer scaffold and multi-layer scaffold. Especially in the repair of full-thickness and circumferential esophageal defects, the flexible design method and the binding force between the layers of the scaffold are very important. In short, esophageal tissue engineering technology has broad prospects and plays a more and more important role in the treatment of esophageal diseases.
Collapse
Affiliation(s)
- Rui Xu
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
- School of Medicine, Ningbo University, Ningbo, China
| | - Xinnan Fang
- School of Medicine, Ningbo University, Ningbo, China
| | - Shengqian Wu
- School of Medicine, Ningbo University, Ningbo, China
| | - Yiyin Wang
- School of Medicine, Ningbo University, Ningbo, China
| | - Yi Zhong
- School of Medicine, Ningbo University, Ningbo, China
| | - Ruixia Hou
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
- School of Medicine, Ningbo University, Ningbo, China
- *Correspondence: Ruixia Hou,
| | - Libing Zhang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Lei Shao
- School of Medicine, Ningbo University, Ningbo, China
| | - Qian Pang
- School of Medicine, Ningbo University, Ningbo, China
| | - Jian Zhang
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Xiang Cui
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Rongyue Zuo
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Liwei Yao
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Yabin Zhu
- School of Medicine, Ningbo University, Ningbo, China
| |
Collapse
|
20
|
Influence of Culture Period on Osteoblast Differentiation of Tissue-Engineered Bone Constructed by Apatite-Fiber Scaffolds Using Radial-Flow Bioreactor. Int J Mol Sci 2021; 22:ijms222313080. [PMID: 34884885 PMCID: PMC8657963 DOI: 10.3390/ijms222313080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 01/17/2023] Open
Abstract
With the limitation of autografts, the development of alternative treatments for bone diseases to alleviate autograft-related complications is highly demanded. In this study, a tissue-engineered bone was formed by culturing rat bone marrow cells (RBMCs) onto porous apatite-fiber scaffolds (AFSs) with three-dimensional (3D) interconnected pores using a radial-flow bioreactor (RFB). Using the optimized flow rate, the effect of different culturing periods on the development of tissue-engineered bone was investigated. The 3D cell culture using RFB was performed for 0, 1 or 2 weeks in a standard medium followed by 0, 1 or 2 weeks in a differentiation medium. Osteoblast differentiation in the tissue-engineered bone was examined by alkaline phosphatase (ALP) and osteocalcin (OC) assays. Furthermore, the tissue-engineered bone was histologically examined by hematoxylin and eosin and alizarin red S stains. We found that the ALP activity and OC content of calcified cells tended to increase with the culture period, and the differentiation of tissue-engineered bone could be controlled by varying the culture period. In addition, the employment of RFB and AFSs provided a favorable 3D environment for cell growth and differentiation. Overall, these results provide valuable insights into the design of tissue-engineered bone for clinical applications.
Collapse
|
21
|
Cao L, Su H, Si M, Xu J, Chang X, Lv J, Zhai Y. Tissue Engineering in Stomatology: A Review of Potential Approaches for Oral Disease Treatments. Front Bioeng Biotechnol 2021; 9:662418. [PMID: 34820359 PMCID: PMC8606749 DOI: 10.3389/fbioe.2021.662418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 10/01/2021] [Indexed: 01/09/2023] Open
Abstract
Tissue engineering is an emerging discipline that combines engineering and life sciences. It can construct functional biological structures in vivo or in vitro to replace native tissues or organs and minimize serious shortages of donor organs during tissue and organ reconstruction or transplantation. Organ transplantation has achieved success by using the tissue-engineered heart, liver, kidney, and other artificial organs, and the emergence of tissue-engineered bone also provides a new approach for the healing of human bone defects. In recent years, tissue engineering technology has gradually become an important technical method for dentistry research, and its application in stomatology-related research has also obtained impressive achievements. The purpose of this review is to summarize the research advances of tissue engineering and its application in stomatology. These aspects include tooth, periodontal, dental implant, cleft palate, oral and maxillofacial skin or mucosa, and oral and maxillofacial bone tissue engineering. In addition, this article also summarizes the commonly used cells, scaffolds, and growth factors in stomatology and discusses the limitations of tissue engineering in stomatology from the perspective of cells, scaffolds, and clinical applications.
Collapse
Affiliation(s)
- Lilan Cao
- School of Stomatology, Henan University, Kaifeng, China
| | - Huiying Su
- School of Stomatology, Henan University, Kaifeng, China
| | - Mengying Si
- School of Stomatology, Henan University, Kaifeng, China
| | - Jing Xu
- School of Stomatology, Henan University, Kaifeng, China
| | - Xin Chang
- School of Stomatology, Henan University, Kaifeng, China
| | - Jiajia Lv
- School of Stomatology, Henan University, Kaifeng, China.,Henan International Joint Laboratory for Nuclear Protein Regulation, Kaifeng, China
| | - Yuankun Zhai
- School of Stomatology, Henan University, Kaifeng, China.,Henan International Joint Laboratory for Nuclear Protein Regulation, Kaifeng, China
| |
Collapse
|
22
|
Guo J, Yu Y, Zhang H, Sun L, Zhao Y. Elastic MXene Hydrogel Microfiber-Derived Electronic Skin for Joint Monitoring. ACS APPLIED MATERIALS & INTERFACES 2021; 13:47800-47806. [PMID: 34590841 DOI: 10.1021/acsami.1c10311] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Effective and timely joint monitoring has been a significantly vital research direction in human healthcare. As an emerging technology, flexible electronics provides more possibilities and applicabilities for practical sensing and signal transmission. Here, we provide novel elastic MXene microfibers of controllable morphologies at a microscale through microfluidic technology for actual joint motion monitoring. Double-network hydrogels including covalently cross-linking polyacrylamide and ionically cross-linking alginate were chosen for superelasticity. For the improvement of the electrical conductivity of superelastic hydrogel microfibers, MXene was selected to mix with them. By introducing the cross-linker to the outer channel, microfibers with controllable diameters along with high electrical conductivities and tensile properties could be fabricated successfully. The practical value of the synthesized microfibers in joint movement sensing has been demonstrated by acting as the element of new motion sensors. Based on these features, it is believed that these elastic MXene hydrogel microfibers have high potential for rapid sensing and diagnosis of joint diseases.
Collapse
Affiliation(s)
- Jiahui Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Department of Clinical Laboratory, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yunru Yu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Han Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Department of Clinical Laboratory, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Lingyu Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Department of Clinical Laboratory, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Department of Clinical Laboratory, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| |
Collapse
|