1
|
Li L, Jiang C. Electrodeposited coatings for neural electrodes: A review. Biosens Bioelectron 2025; 282:117492. [PMID: 40288311 DOI: 10.1016/j.bios.2025.117492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/27/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
Neural electrodes play a pivotal role in ensuring safe stimulation and high-quality recording for various bioelectronics such as neuromodulation devices and brain-computer interfaces. With the miniaturization of electrodes and the increasing demand for multi-functionality, the incorporation of coating materials via electrodeposition to enhance electrodes performance emerges as a highly effective strategy. These coatings not only substantially improve the stimulation and recording performance of electrodes but also introduce additional functionalities. This review began by outlining the application scenarios and critical requirements of neural electrodes. It then delved into the deposition principles and key influencing factors. Furthermore, the advancements in the electrochemical performance and adhesion stability of these coatings were reviewed. Ultimately, the latest innovative works in the electrodeposited coating applications were highlighted, and future perspectives were summarized.
Collapse
Affiliation(s)
- Linze Li
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, China.
| | - Changqing Jiang
- National Engineering Research Center of Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
2
|
Lutz HM, Wu Y, Eluagu CC, Cogan SF, Otto KJ, Orazem ME. Analysis of electrochemical impedance spectroscopy data for sputtered iridium oxide electrodes. J Neural Eng 2025; 22:036007. [PMID: 40273934 PMCID: PMC12056662 DOI: 10.1088/1741-2552/add090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/25/2025] [Accepted: 04/24/2025] [Indexed: 04/26/2025]
Abstract
Objective. Our objective was to perform a complete analysis ofin-vitroimpedance data for sputtered iridium oxide film (SIROF) micro-electrodes. The analysis included quantification of the stochastic and bias error structure and development of a process model that accounted for the chemistry and physics of the electrode-electrolyte interface.Approach. The measurement model program was used to analyze electrochemical impedance spectroscopy (EIS) data for SIROF micro-electrodes at potentials ranging from -0.4 to +0.6 V(Ag|AgCl). The frequency range used for the analysis was that determined to be consistent with the Kramers-Kronig relations. Interpretation of the data was enabled by truncating frequencies at which the ohmic impedance influenced the impedance.Main results. An interpretation model was developed that considered the impedance of the bare surface and the contribution of a porous component, based on the de Levie model of porous electrodes. The influence of iridium oxidation state on impedance was included. The proposed model fit all 36 EIS spectra well. The effective capacitance of the SIROF system ranged from 32 mF cm-2at -0.4 V(Ag|AgCl) to a maximum of 93 mF cm-2at 0.2 and 0.4 V(Ag|AgCl).Significance. The model developed to interpret the impedance response of neural stimulation electrodesin vitroguides model development forin-vivostudies.
Collapse
Affiliation(s)
- Henry M Lutz
- Department of Chemical Engineering, University of Florida, Gainesville, FL, United States of America
| | - Yupeng Wu
- Department of Material Science Engineering, University of Texas at Dallas, Richardson, TX, United States of America
| | - Cynthia C Eluagu
- Department of Chemical Engineering, University of Florida, Gainesville, FL, United States of America
| | - Stuart F Cogan
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States of America
| | - Kevin J Otto
- Affiliate, J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States of America
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States of America
| | - Mark E Orazem
- Department of Chemical Engineering, University of Florida, Gainesville, FL, United States of America
- Affiliate, J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
3
|
Chen T, Lau KSK, Singh A, Zhang YX, Taromsari SM, Salari M, Naguib HE, Morshead CM. Biodegradable stimulating electrodes for resident neural stem cell activation in vivo. Biomaterials 2025; 315:122957. [PMID: 39541841 DOI: 10.1016/j.biomaterials.2024.122957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/14/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Brain stimulation has been recognized as a clinically effective strategy for treating neurological disorders. Endogenous brain neural precursor cells (NPCs) have been shown to be electrosensitive cells that respond to electrical stimulation by expanding in number, undergoing directed cathodal migration, and differentiating into neural phenotypes in vivo, supporting the application of electrical stimulation to promote neural repair. In this study, we present the design of a flexible and biodegradable brain stimulation electrode for temporally regulated neuromodulation of NPCs. Leveraging the cathodally skewed electrochemical window of molybdenum and the volumetric charge transfer properties of conductive polymer, we engineered the electrodes with high charge injection capacity for the delivery of biphasic monopolar stimulation. We demonstrate that the electrodes are biocompatible and can deliver an electric field sufficient for NPC activation for 7 days post implantation before undergoing resorption in physiological conditions, thereby eliminating the need for surgical extraction. The biodegradable electrode demonstrated its potential to be used for NPC-based neural repair strategies.
Collapse
Affiliation(s)
- Tianhao Chen
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Kylie Sin Ki Lau
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Aryan Singh
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Yi Xin Zhang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Sara Mohseni Taromsari
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Meysam Salari
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Hani E Naguib
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada; Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario, Canada.
| | - Cindi M Morshead
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; CRANIA, University Health Network and University of Toronto, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Ahmed AA, Alegret N, Almeida B, Alvarez-Puebla R, Andrews AM, Ballerini L, Barrios-Capuchino JJ, Becker C, Blick RH, Bonakdar S, Chakraborty I, Chen X, Cheon J, Chilla G, Coelho Conceicao AL, Delehanty J, Dulle M, Efros AL, Epple M, Fedyk M, Feliu N, Feng M, Fernández-Chacón R, Fernandez-Cuesta I, Fertig N, Förster S, Garrido JA, George M, Guse AH, Hampp N, Harberts J, Han J, Heekeren HR, Hofmann UG, Holzapfel M, Hosseinkazemi H, Huang Y, Huber P, Hyeon T, Ingebrandt S, Ienca M, Iske A, Kang Y, Kasieczka G, Kim DH, Kostarelos K, Lee JH, Lin KW, Liu S, Liu X, Liu Y, Lohr C, Mailänder V, Maffongelli L, Megahed S, Mews A, Mutas M, Nack L, Nakatsuka N, Oertner TG, Offenhäusser A, Oheim M, Otange B, Otto F, Patrono E, Peng B, Picchiotti A, Pierini F, Pötter-Nerger M, Pozzi M, Pralle A, Prato M, Qi B, Ramos-Cabrer P, Genger UR, Ritter N, Rittner M, Roy S, Santoro F, Schuck NW, Schulz F, Şeker E, Skiba M, Sosniok M, Stephan H, Wang R, Wang T, Wegner KD, Weiss PS, Xu M, Yang C, Zargarian SS, Zeng Y, Zhou Y, Zhu D, Zierold R, Parak WJ. Interfacing with the Brain: How Nanotechnology Can Contribute. ACS NANO 2025; 19:10630-10717. [PMID: 40063703 PMCID: PMC11948619 DOI: 10.1021/acsnano.4c10525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 03/26/2025]
Abstract
Interfacing artificial devices with the human brain is the central goal of neurotechnology. Yet, our imaginations are often limited by currently available paradigms and technologies. Suggestions for brain-machine interfaces have changed over time, along with the available technology. Mechanical levers and cable winches were used to move parts of the brain during the mechanical age. Sophisticated electronic wiring and remote control have arisen during the electronic age, ultimately leading to plug-and-play computer interfaces. Nonetheless, our brains are so complex that these visions, until recently, largely remained unreachable dreams. The general problem, thus far, is that most of our technology is mechanically and/or electrically engineered, whereas the brain is a living, dynamic entity. As a result, these worlds are difficult to interface with one another. Nanotechnology, which encompasses engineered solid-state objects and integrated circuits, excels at small length scales of single to a few hundred nanometers and, thus, matches the sizes of biomolecules, biomolecular assemblies, and parts of cells. Consequently, we envision nanomaterials and nanotools as opportunities to interface with the brain in alternative ways. Here, we review the existing literature on the use of nanotechnology in brain-machine interfaces and look forward in discussing perspectives and limitations based on the authors' expertise across a range of complementary disciplines─from neuroscience, engineering, physics, and chemistry to biology and medicine, computer science and mathematics, and social science and jurisprudence. We focus on nanotechnology but also include information from related fields when useful and complementary.
Collapse
Affiliation(s)
- Abdullah
A. A. Ahmed
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- Department
of Physics, Faculty of Applied Science, Thamar University, Dhamar 87246, Yemen
| | - Nuria Alegret
- Biogipuzkoa
HRI, Paseo Dr. Begiristain
s/n, 20014 Donostia-San
Sebastián, Spain
- Basque
Foundation for Science, Ikerbasque, 48013 Bilbao, Spain
| | - Bethany Almeida
- Department
of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, United States
| | - Ramón Alvarez-Puebla
- Universitat
Rovira i Virgili, 43007 Tarragona, Spain
- ICREA, 08010 Barcelona, Spain
| | - Anne M. Andrews
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los
Angeles, California 90095, United States
- Neuroscience
Interdepartmental Program, University of
California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience
& Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, California 90095, United States
- California
Nanosystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Laura Ballerini
- Neuroscience
Area, International School for Advanced
Studies (SISSA/ISAS), Trieste 34136, Italy
| | | | - Charline Becker
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Robert H. Blick
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Shahin Bonakdar
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- National
Cell Bank Department, Pasteur Institute
of Iran, P.O. Box 1316943551, Tehran, Iran
| | - Indranath Chakraborty
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- School
of Nano Science and Technology, Indian Institute
of Technology Kharagpur, Kharagpur 721302, India
| | - Xiaodong Chen
- Innovative
Center for Flexible Devices (iFLEX), Max Planck − NTU Joint
Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jinwoo Cheon
- Institute
for Basic Science Center for Nanomedicine, Seodaemun-gu, Seoul 03722, Korea
- Advanced
Science Institute, Yonsei University, Seodaemun-gu, Seoul 03722, Korea
- Department
of Chemistry, Yonsei University, Seodaemun-gu, Seoul 03722, Korea
| | - Gerwin Chilla
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | | | - James Delehanty
- U.S. Naval
Research Laboratory, Washington, D.C. 20375, United States
| | - Martin Dulle
- JCNS-1, Forschungszentrum
Jülich, 52428 Jülich, Germany
| | | | - Matthias Epple
- Inorganic
Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 45117 Essen, Germany
| | - Mark Fedyk
- Center
for Neuroengineering and Medicine, UC Davis, Sacramento, California 95817, United States
| | - Neus Feliu
- Zentrum
für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
| | - Miao Feng
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Rafael Fernández-Chacón
- Instituto
de Biomedicina de Sevilla (IBiS), Hospital
Universitario Virgen del Rocío/Consejo Superior de Investigaciones
Científicas/Universidad de Sevilla, 41013 Seville, Spain
- Departamento
de Fisiología Médica y Biofísica, Facultad de
Medicina, Universidad de Sevilla, CIBERNED,
ISCIII, 41013 Seville, Spain
| | | | - Niels Fertig
- Nanion
Technologies GmbH, 80339 München, Germany
| | | | - Jose A. Garrido
- ICREA, 08010 Barcelona, Spain
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, 08193 Bellaterra, Spain
| | | | - Andreas H. Guse
- The Calcium
Signaling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Norbert Hampp
- Fachbereich
Chemie, Universität Marburg, 35032 Marburg, Germany
| | - Jann Harberts
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- Drug Delivery,
Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne
Centre for Nanofabrication, Victorian Node
of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Jili Han
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Hauke R. Heekeren
- Executive
University Board, Universität Hamburg, 20148 Hamburg Germany
| | - Ulrich G. Hofmann
- Section
for Neuroelectronic Systems, Department for Neurosurgery, University Medical Center Freiburg, 79108 Freiburg, Germany
- Faculty
of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Malte Holzapfel
- Zentrum
für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
| | | | - Yalan Huang
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Patrick Huber
- Institute
for Materials and X-ray Physics, Hamburg
University of Technology, 21073 Hamburg, Germany
- Center
for X-ray and Nano Science CXNS, Deutsches
Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Taeghwan Hyeon
- Center
for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School
of Chemical and Biological Engineering, and Institute of Chemical
Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Sven Ingebrandt
- Institute
of Materials in Electrical Engineering 1, RWTH Aachen University, 52074 Aachen, Germany
| | - Marcello Ienca
- Institute
for Ethics and History of Medicine, School of Medicine and Health, Technische Universität München (TUM), 81675 München, Germany
| | - Armin Iske
- Fachbereich
Mathematik, Universität Hamburg, 20146 Hamburg, Germany
| | - Yanan Kang
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | | | - Dae-Hyeong Kim
- Center
for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School
of Chemical and Biological Engineering, and Institute of Chemical
Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Kostas Kostarelos
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, 08193 Bellaterra, Spain
- Centre
for Nanotechnology in Medicine, Faculty of Biology, Medicine &
Health and The National Graphene Institute, University of Manchester, Manchester M13 9PL, United
Kingdom
| | - Jae-Hyun Lee
- Institute
for Basic Science Center for Nanomedicine, Seodaemun-gu, Seoul 03722, Korea
- Advanced
Science Institute, Yonsei University, Seodaemun-gu, Seoul 03722, Korea
| | - Kai-Wei Lin
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Sijin Liu
- State Key
Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Liu
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Yang Liu
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Christian Lohr
- Fachbereich
Biologie, Universität Hamburg, 20146 Hamburg, Germany
| | - Volker Mailänder
- Department
of Dermatology, Center for Translational Nanomedicine, Universitätsmedizin der Johannes-Gutenberg,
Universität Mainz, 55131 Mainz, Germany
- Max Planck
Institute for Polymer Research, Ackermannweg 10, 55129 Mainz, Germany
| | - Laura Maffongelli
- Institute
of Medical Psychology, University of Lübeck, 23562 Lübeck, Germany
| | - Saad Megahed
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- Physics
Department, Faculty of Science, Al-Azhar
University, 4434104 Cairo, Egypt
| | - Alf Mews
- Fachbereich
Chemie, Universität Hamburg, 20146 Hamburg, Germany
| | - Marina Mutas
- Zentrum
für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
| | - Leroy Nack
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Nako Nakatsuka
- Laboratory
of Chemical Nanotechnology (CHEMINA), Neuro-X
Institute, École Polytechnique Fédérale de Lausanne
(EPFL), Geneva CH-1202, Switzerland
| | - Thomas G. Oertner
- Institute
for Synaptic Neuroscience, University Medical
Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Andreas Offenhäusser
- Institute
of Biological Information Processing - Bioelectronics, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Martin Oheim
- Université
Paris Cité, CNRS, Saints Pères
Paris Institute for the Neurosciences, 75006 Paris, France
| | - Ben Otange
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Ferdinand Otto
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Enrico Patrono
- Institute
of Physiology, Czech Academy of Sciences, Prague 12000, Czech Republic
| | - Bo Peng
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | | | - Filippo Pierini
- Department
of Biosystems and Soft Matter, Institute
of Fundamental Technological Research, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Monika Pötter-Nerger
- Head and
Neurocenter, Department of Neurology, University
Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Maria Pozzi
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Arnd Pralle
- University
at Buffalo, Department of Physics, Buffalo, New York 14260, United States
| | - Maurizio Prato
- CIC biomaGUNE, Basque Research and Technology
Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Department
of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy
- Basque
Foundation for Science, Ikerbasque, 48013 Bilbao, Spain
| | - Bing Qi
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- School
of Life Sciences, Southern University of
Science and Technology, Shenzhen, 518055, China
| | - Pedro Ramos-Cabrer
- CIC biomaGUNE, Basque Research and Technology
Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Basque
Foundation for Science, Ikerbasque, 48013 Bilbao, Spain
| | - Ute Resch Genger
- Division
Biophotonics, Federal Institute for Materials Research and Testing
(BAM), 12489 Berlin, Germany
| | - Norbert Ritter
- Executive
Faculty Board, Faculty for Mathematics, Informatics and Natural Sciences, Universität Hamburg, 20345 Hamburg, Germany
| | - Marten Rittner
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Sathi Roy
- Zentrum
für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
- Department
of Mechanical Engineering, Indian Institute
of Technology Kharagpur, Kharagpur 721302, India
| | - Francesca Santoro
- Institute
of Biological Information Processing - Bioelectronics, Forschungszentrum Jülich, 52425 Jülich, Germany
- Faculty
of Electrical Engineering and Information Technology, RWTH Aachen, 52074 Aachen, Germany
| | - Nicolas W. Schuck
- Institute
of Psychology, Universität Hamburg, 20146 Hamburg, Germany
- Max Planck
Research Group NeuroCode, Max Planck Institute
for Human Development, 14195 Berlin, Germany
- Max Planck
UCL Centre for Computational Psychiatry and Ageing Research, 14195 Berlin, Germany
| | - Florian Schulz
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Erkin Şeker
- University
of California, Davis, Davis, California 95616, United States
| | - Marvin Skiba
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Martin Sosniok
- Zentrum
für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
| | - Holger Stephan
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiopharmaceutical
Cancer Research, 01328 Dresden, Germany
| | - Ruixia Wang
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- Deutsches
Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Ting Wang
- State Key
Laboratory of Organic Electronics and Information Displays & Jiangsu
Key Laboratory for Biosensors, Institute of Advanced Materials (IAM),
Jiangsu National Synergetic Innovation Center for Advanced Materials
(SICAM), Nanjing University of Posts and
Telecommunications, Nanjing 210023, China
| | - K. David Wegner
- Division
Biophotonics, Federal Institute for Materials Research and Testing
(BAM), 12489 Berlin, Germany
| | - Paul S. Weiss
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los
Angeles, California 90095, United States
- California
Nanosystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Materials Science and Engineering, University
of California, Los Angeles, Los
Angeles, California 90095, United States
| | - Ming Xu
- State Key
Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chenxi Yang
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Seyed Shahrooz Zargarian
- Department
of Biosystems and Soft Matter, Institute
of Fundamental Technological Research, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Yuan Zeng
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Yaofeng Zhou
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Dingcheng Zhu
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
- College
of Material, Chemistry and Chemical Engineering, Key Laboratory of
Organosilicon Chemistry and Material Technology, Ministry of Education,
Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Hangzhou 311121, China
| | - Robert Zierold
- Fachbereich
Physik, Universität Hamburg, 22761 Hamburg, Germany
| | | |
Collapse
|
5
|
Mehta AS, Zhang SL, Xie X, Khanna S, Tropp J, Ji X, Daso RE, Franz CK, Jordan SW, Rivnay J. Decellularized Biohybrid Nerve Promotes Motor Axon Projections. Adv Healthc Mater 2024; 13:e2401875. [PMID: 39219219 PMCID: PMC11616264 DOI: 10.1002/adhm.202401875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Developing nerve grafts with intact mesostructures, superior conductivity, minimal immunogenicity, and improved tissue integration is essential for the treatment and restoration of neurological dysfunctions. A key factor is promoting directed axon growth into the grafts. To achieve this, biohybrid nerves are developed using decellularized rat sciatic nerve modified by in situ polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT). Nine biohybrid nerves are compared with varying polymerization conditions and cycles, selecting the best candidate through material characterization. These results show that a 1:1 ratio of FeCl3 oxidant to ethylenedioxythiophene (EDOT) monomer, cycled twice, provides superior conductivity (>0.2 mS cm-1), mechanical alignment, intact mesostructures, and high compatibility with cells and blood. To test the biohybrid nerve's effectiveness in promoting motor axon growth, human Spinal Cord Spheroids (hSCSs) derived from HUES 3 Hb9:GFP cells are used, with motor axons labeled with green fluorescent protein (GFP). Seeding hSCS onto one end of the conduit allows motor axon outgrowth into the biohybrid nerve. The construct effectively promotes directed motor axon growth, which improves significantly after seeding the grafts with Schwann cells. This study presents a promising approach for reconstructing axonal tracts in humans.
Collapse
Affiliation(s)
- Abijeet Singh Mehta
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - Sophia L. Zhang
- Biologics LaboratoryShirley Ryan Ability LabChicagoIL60611USA
- Division of Plastic SurgeryFeinberg School of MedicineNorthwestern University420 E Superior St.ChicagoIL60611USA
- Section for Injury Repair and Regeneration ResearchStanley Manne Children's Research InstituteAnn & Robert H. Lurie Children's Hospital of ChicagoChicagoIL60611USA
- Department of PediatricsDivision of Critical CareNorthwestern University Feinberg School of MedicineChicagoIL60611USA
| | - Xinran Xie
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - Shreyaa Khanna
- Biologics LaboratoryShirley Ryan Ability LabChicagoIL60611USA
| | - Joshua Tropp
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - Xudong Ji
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - Rachel E. Daso
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - Colin K. Franz
- Biologics LaboratoryShirley Ryan Ability LabChicagoIL60611USA
- Physical Medicine and RehabilitationNorthwestern University Feinberg School of MedicineChicagoIL60611USA
- Ken & Ruth Davee Department of NeurologyNorthwestern University Feinberg School of MedicineChicagoIL60611USA
| | - Sumannas W. Jordan
- Biologics LaboratoryShirley Ryan Ability LabChicagoIL60611USA
- Division of Plastic SurgeryFeinberg School of MedicineNorthwestern University420 E Superior St.ChicagoIL60611USA
| | - Jonathan Rivnay
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIL60208USA
| |
Collapse
|
6
|
Wang Y, Cai L, Fan L, Wang L, Bian F, Sun W, Zhao Y. Electrical Microneedles for Wound Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2409519. [PMID: 39514411 DOI: 10.1002/advs.202409519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/20/2024] [Indexed: 11/16/2024]
Abstract
Electrical stimulation has been hotpot research and provoked extensive interest in a broad application such as wound closure, tissue injury repair, and nerve engineering. In particular, immense efforts have been dedicated to developing electrical microneedles, which demonstrate unique features in terms of controllable drug release, real-time monitoring, and therapy, thus greatly accelerating the process of wound healing. Here, a review of state-of-art research concerning electrical microneedles applied for wound treatment is presented. After a comprehensive analysis of the mechanisms of electrical stimulation on wound healing, the derived three types of electrical microneedles are clarified and summarized. Further, their applications in wound healing are highlighted. Finally, current perspectives and directions for the development of future electrical microneedles in improving wound healing are addressed.
Collapse
Affiliation(s)
- Yu Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Lijun Cai
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Lu Fan
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Li Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Feika Bian
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Weijian Sun
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
- Shenzhen Research Institute, Southeast University, Shenzhen, 518071, China
| |
Collapse
|
7
|
Huang Y, Yao K, Zhang Q, Huang X, Chen Z, Zhou Y, Yu X. Bioelectronics for electrical stimulation: materials, devices and biomedical applications. Chem Soc Rev 2024; 53:8632-8712. [PMID: 39132912 DOI: 10.1039/d4cs00413b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Bioelectronics is a hot research topic, yet an important tool, as it facilitates the creation of advanced medical devices that interact with biological systems to effectively diagnose, monitor and treat a broad spectrum of health conditions. Electrical stimulation (ES) is a pivotal technique in bioelectronics, offering a precise, non-pharmacological means to modulate and control biological processes across molecular, cellular, tissue, and organ levels. This method holds the potential to restore or enhance physiological functions compromised by diseases or injuries by integrating sophisticated electrical signals, device interfaces, and designs tailored to specific biological mechanisms. This review explains the mechanisms by which ES influences cellular behaviors, introduces the essential stimulation principles, discusses the performance requirements for optimal ES systems, and highlights the representative applications. From this review, we can realize the potential of ES based bioelectronics in therapy, regenerative medicine and rehabilitation engineering technologies, ranging from tissue engineering to neurological technologies, and the modulation of cardiovascular and cognitive functions. This review underscores the versatility of ES in various biomedical contexts and emphasizes the need to adapt to complex biological and clinical landscapes it addresses.
Collapse
Affiliation(s)
- Ya Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Kuanming Yao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Qiang Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xingcan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zhenlin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yu Zhou
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
8
|
Wu Y, Zou J, Tang K, Xia Y, Wang X, Song L, Wang J, Wang K, Wang Z. From electricity to vitality: the emerging use of piezoelectric materials in tissue regeneration. BURNS & TRAUMA 2024; 12:tkae013. [PMID: 38957661 PMCID: PMC11218788 DOI: 10.1093/burnst/tkae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 07/04/2024]
Abstract
The unique ability of piezoelectric materials to generate electricity spontaneously has attracted widespread interest in the medical field. In addition to the ability to convert mechanical stress into electrical energy, piezoelectric materials offer the advantages of high sensitivity, stability, accuracy and low power consumption. Because of these characteristics, they are widely applied in devices such as sensors, controllers and actuators. However, piezoelectric materials also show great potential for the medical manufacturing of artificial organs and for tissue regeneration and repair applications. For example, the use of piezoelectric materials in cochlear implants, cardiac pacemakers and other equipment may help to restore body function. Moreover, recent studies have shown that electrical signals play key roles in promoting tissue regeneration. In this context, the application of electrical signals generated by piezoelectric materials in processes such as bone healing, nerve regeneration and skin repair has become a prospective strategy. By mimicking the natural bioelectrical environment, piezoelectric materials can stimulate cell proliferation, differentiation and connection, thereby accelerating the process of self-repair in the body. However, many challenges remain to be overcome before these concepts can be applied in clinical practice, including material selection, biocompatibility and equipment design. On the basis of the principle of electrical signal regulation, this article reviews the definition, mechanism of action, classification, preparation and current biomedical applications of piezoelectric materials and discusses opportunities and challenges for their future clinical translation.
Collapse
Affiliation(s)
- Yifan Wu
- College of Life Sciences, Tiangong University, Binshuixi Road, Xiqing District, Tianjin 300387, China
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Weijin Road, Nankai District, Tianjin 300071, China
| | - Junwu Zou
- College of Life Sciences, Tiangong University, Binshuixi Road, Xiqing District, Tianjin 300387, China
| | - Kai Tang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiovascular Surgery, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Fuwai Hospital, Beilishi Road, Xicheng District, Beijing 100037, China
| | - Ying Xia
- College of Life Sciences, Tiangong University, Binshuixi Road, Xiqing District, Tianjin 300387, China
| | - Xixi Wang
- College of Life Sciences, Tiangong University, Binshuixi Road, Xiqing District, Tianjin 300387, China
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Baidi Road, Nankai District, Tianjin 300192, China
| | - Lili Song
- College of Life Sciences, Tiangong University, Binshuixi Road, Xiqing District, Tianjin 300387, China
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Baidi Road, Nankai District, Tianjin 300192, China
| | - Jinhai Wang
- College of Life Sciences, Tiangong University, Binshuixi Road, Xiqing District, Tianjin 300387, China
| | - Kai Wang
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Weijin Road, Nankai District, Tianjin 300071, China
| | - Zhihong Wang
- Institute of Transplant Medicine, School of Medicine, Nankai University, Weijin Road, Nankai District, Tianjin 300071, China
| |
Collapse
|
9
|
Matter L, Abdullaeva OS, Shaner S, Leal J, Asplund M. Bioelectronic Direct Current Stimulation at the Transition Between Reversible and Irreversible Charge Transfer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306244. [PMID: 38460180 PMCID: PMC11251568 DOI: 10.1002/advs.202306244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/06/2024] [Indexed: 03/11/2024]
Abstract
Many biological processes rely on endogenous electric fields (EFs), including tissue regeneration, cell development, wound healing, and cancer metastasis. Mimicking these biological EFs by applying external direct current stimulation (DCS) is therefore the key to many new therapeutic strategies. During DCS, the charge transfer from electrode to tissue relies on a combination of reversible and irreversible electrochemical processes, which may generate toxic or bio-altering substances, including metal ions and reactive oxygen species (ROS). Poly(3,4-ethylenedioxythiophene) (PEDOT) based electrodes are emerging as suitable candidates for DCS to improve biocompatibility compared to metals. This work addresses whether PEDOT electrodes can be tailored to favor reversible biocompatible charge transfer. To this end, different PEDOT formulations and their respective back electrodes are studied using cyclic voltammetry, chronopotentiometry, and direct measurements of H2O2 and O2. This combination of electrochemical methods sheds light on the time dynamics of reversible and irreversible charge transfer and the relationship between capacitance and ROS generation. The results presented here show that although all electrode materials investigated generate ROS, the onset of ROS can be delayed by increasing the electrode's capacitance via PEDOT coating, which has implications for future bioelectronic devices that allow longer reversibly driven pulse durations during DCS.
Collapse
Affiliation(s)
- Lukas Matter
- Department of Microtechnology and NanoscienceChalmers University of TechnologyGothenburgSE 41296Sweden
- Department of Microsystems EngineeringUniversity of FreiburgGeorges‐Köhler‐Allee 20179110FreiburgGermany
- Brainlinks‐Braintools CenterUniversity of FreiburgGeorges‐Köhler‐Allee 20179110FreiburgGermany
- Freiburg Institute for Advanced Studies (FRIAS)University of FreiburgAlbertstraße 1979104FreiburgGermany
| | - Oliya S. Abdullaeva
- Division of Nursing and Medical TechnologyLuleå University of TechnologyLuleåSE 97187Sweden
| | - Sebastian Shaner
- Department of Microsystems EngineeringUniversity of FreiburgGeorges‐Köhler‐Allee 20179110FreiburgGermany
- Brainlinks‐Braintools CenterUniversity of FreiburgGeorges‐Köhler‐Allee 20179110FreiburgGermany
| | - José Leal
- Department of Microsystems EngineeringUniversity of FreiburgGeorges‐Köhler‐Allee 20179110FreiburgGermany
- Brainlinks‐Braintools CenterUniversity of FreiburgGeorges‐Köhler‐Allee 20179110FreiburgGermany
| | - Maria Asplund
- Department of Microtechnology and NanoscienceChalmers University of TechnologyGothenburgSE 41296Sweden
- Department of Microsystems EngineeringUniversity of FreiburgGeorges‐Köhler‐Allee 20179110FreiburgGermany
- Brainlinks‐Braintools CenterUniversity of FreiburgGeorges‐Köhler‐Allee 20179110FreiburgGermany
- Freiburg Institute for Advanced Studies (FRIAS)University of FreiburgAlbertstraße 1979104FreiburgGermany
- Division of Nursing and Medical TechnologyLuleå University of TechnologyLuleåSE 97187Sweden
| |
Collapse
|
10
|
Nazari-Vanani R, Vafaiee M, Zamanpour F, Asadian E, Mohammadpour R, Rafii-Tabar H, Sasanpour P. Flexible Triboelectric Nanogenerator for Promoting the Proliferation and Migration of Human Fibroblast Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15773-15782. [PMID: 38526295 DOI: 10.1021/acsami.3c17915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Chronic wound healing is often a prolonged process with the migration and proliferation of fibroblast cells playing crucial roles. Electrical stimulation (ES) has emerged as a promising physical therapy modality to promote these key events. In this study, we address this issue by employing a triboelectric nanogenerator (TENG) as an electrical stimulator for both drug release and the stimulation of fibroblast cells. The flexible TENG with a sandwich structure was fabricated using a PCL nanofibrous layer, Kapton, and silicon rubber. The TENG could be folded to any degree and twisted, and it could return to its original shape when the force was removed. Cultured cells received ES twice and three times daily for 8 days, with a 30 min interval between sessions. By applying current in a safe range and appropriate time (twice daily), fibroblasts demonstrate an accelerated proliferation and migration rate. These observations were confirmed through cell staining. Additionally, in vitro tests demonstrated the TENG's ability to simultaneously provide ES and release vitamin C from the patch. After 2 h, the amount of released drug increased 2 times in comparison to the control group. These findings provide support for the development of a TENG for the treatment of wounds, which underlines the promise of this new technique for developing portable electric stimulation devices.
Collapse
Affiliation(s)
- Razieh Nazari-Vanani
- Center for Nanoscience and Nanotechnology, Institute for Convergence Science & Technology, Sharif University of Technology, Tehran, Iran
| | - Mohaddeseh Vafaiee
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Fahimeh Zamanpour
- Center for Nanoscience and Nanotechnology, Institute for Convergence Science & Technology, Sharif University of Technology, Tehran, Iran
| | - Elham Asadian
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Raheleh Mohammadpour
- Center for Nanoscience and Nanotechnology, Institute for Convergence Science & Technology, Sharif University of Technology, Tehran, Iran
| | - Hashem Rafii-Tabar
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- The Physics Branch of Iran Academy of Sciences, Tehran, Iran
| | - Pezhman Sasanpour
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- School of Nanoscience, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran, Iran
| |
Collapse
|
11
|
Dijk G, Pas J, Markovic K, Scancar J, O'Connor RP. PEDOT:PSS-coated platinum electrodes for neural stimulation. APL Bioeng 2023; 7:046117. [PMID: 38075207 PMCID: PMC10699886 DOI: 10.1063/5.0153094] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 12/07/2023] [Accepted: 11/06/2023] [Indexed: 04/27/2025] Open
Abstract
Safe and long-term electrical stimulation of neurons requires charge injection without damaging the electrode and tissue. A common strategy to diminish adverse effects includes the modification of electrodes with materials that increases the charge injection capacity. Due to its high capacitance, the conducting polymer PEDOT:PSS is a promising coating material; however, the neural stimulation performance in terms of stability and safety remains largely unexplored. Here, PEDOT:PSS-coated platinum (Pt-PEDOT:PSS) microelectrodes are examined for neural stimulation and compared to bare platinum (Pt) electrodes. Microelectrodes in a bipolar configuration are used to deliver current-controlled, biphasic pulses with charge densities ranging from 64 to 255 μC cm-2. Stimulation for 2 h deteriorates bare Pt electrodes through corrosion, whereas the PEDOT:PSS coating prevents dissolution of Pt and shows no degradation. Acute stimulation of primary cortical cells cultured as neurospheres shows similar dependency on charge density for Pt and Pt-PEDOT:PSS electrodes with a threshold of 127 μC cm-2 and increased calcium response for higher charge densities. Continuous stimulation for 2 h results in higher levels of cell survival for Pt-PEDOT:PSS electrodes. Reduced cell survival on Pt electrodes is most profound for neurospheres in proximity of the electrodes. Extending the stimulation duration to 6 h increases cell death for both types of electrodes; however, neurospheres on Pt-PEDOT:PSS devices still show significant viability whereas stimulation is fatal for nearly all cells close to the Pt electrodes. This work demonstrates the protective properties of PEDOT:PSS that can be used as a promising approach to extend electrode lifetime and reduce cell damage for safe and long-term neural stimulation.
Collapse
Affiliation(s)
- Gerwin Dijk
- Author to whom correspondence should be addressed:
| | - Jolien Pas
- Panaxium SAS, Aix-en-Provence 13100, France
| | - Katarina Markovic
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | | | | |
Collapse
|
12
|
Troughton JG, Ansong Snr YO, Duobaite N, Proctor CM. Finite element analysis of electric field distribution during direct current stimulation of the spinal cord: Implications for device design. APL Bioeng 2023; 7:046109. [PMID: 37928641 PMCID: PMC10624505 DOI: 10.1063/5.0163264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/15/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023] Open
Abstract
Spinal cord injury (SCI) arises from damage to the spinal cord, often caused by trauma or disease. The resulting sensorimotor dysfunction is variable and dependent on the extent of the injury. Despite years of research, curative options for SCI remain limited. However, recent advancements in electric field stimulated axonal regrowth have shown promise for neuronal regeneration. One roadblock in the development of therapeutic treatments based on this is a lack of understanding of the exogenous electric field distribution in the injured tissue, and in particular, how this is influenced by electrode geometry and placement. To better understand this electric field, and provide a means by which it can be optimized, we have developed a finite element model of such spinal cord treatment. We investigate the impact of variations in electrode geometry, spinal cord size, and applied current magnitude as well as looking at several injury models in relation to clinically observed outcomes. Through this, we show that electrode shape has little effect on the induced electric field, that the placement of these electrodes has a noticeable influence on the field distribution, and that the magnitude of this field is governed by both the applied current and the spinal cord morphology. We also show that the injury modality influences the induced field distribution and that a stronger understanding of the injury will help decide treatment parameters. This work provides guidance in the design of electrodes for future clinical application in direct current electric field stimulation for axonal regeneration.
Collapse
Affiliation(s)
| | - Yaw O. Ansong Snr
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, United Kingdom
| | - Nida Duobaite
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, United Kingdom
| | - Christopher M. Proctor
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
13
|
Shaner S, Lu H, Lenz M, Garg S, Vlachos A, Asplund M. Brain stimulation-on-a-chip: a neuromodulation platform for brain slices. LAB ON A CHIP 2023; 23:4967-4985. [PMID: 37909911 PMCID: PMC10661668 DOI: 10.1039/d3lc00492a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/15/2023] [Indexed: 11/03/2023]
Abstract
Electrical stimulation of ex vivo brain tissue slices has been a method used to understand mechanisms imparted by transcranial direct current stimulation (tDCS), but there are significant direct current electric field (dcEF) dosage and electrochemical by-product concerns in conventional experimental setups that may impact translational findings. Therefore, we developed an on-chip platform with fluidic, electrochemical, and magnetically-induced spatial control. Fluidically, the chamber geometrically confines precise dcEF delivery to the enclosed brain slice and allows for tissue recovery in order to monitor post-stimulation effects. Electrochemically, conducting hydrogel electrodes mitigate stimulation-induced faradaic reactions typical of commonly-used metal electrodes. Magnetically, we applied ferromagnetic substrates beneath the tissue and used an external permanent magnet to enable in situ rotational control in relation to the dcEF. By combining the microfluidic chamber with live-cell calcium imaging and electrophysiological recordings, we showcased the potential to study the acute and lasting effects of dcEFs with the potential of providing multi-session stimulation. This on-chip bioelectronic platform presents a modernized yet simple solution to electrically stimulate explanted tissue by offering more environmental control to users, which unlocks new opportunities to conduct thorough brain stimulation mechanistic investigations.
Collapse
Affiliation(s)
- Sebastian Shaner
- Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg im Breisgau, Germany
- BrainLinks-BrainTools Center, University of Freiburg, Georges-Köhler-Allee 201, 79110 Freiburg im Breisgau, Germany
| | - Han Lu
- BrainLinks-BrainTools Center, University of Freiburg, Georges-Köhler-Allee 201, 79110 Freiburg im Breisgau, Germany
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Albertstraße 17, 79104 Freiburg im Breisgau, Germany.
| | - Maximilian Lenz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Albertstraße 17, 79104 Freiburg im Breisgau, Germany.
- Hannover Medical School, Institute of Neuroanatomy and Cell Biology, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Shreyash Garg
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Albertstraße 17, 79104 Freiburg im Breisgau, Germany.
- MSc Neuroscience Program, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg im Breisgau, Germany
| | - Andreas Vlachos
- BrainLinks-BrainTools Center, University of Freiburg, Georges-Köhler-Allee 201, 79110 Freiburg im Breisgau, Germany
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Albertstraße 17, 79104 Freiburg im Breisgau, Germany.
- Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Maria Asplund
- Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg im Breisgau, Germany
- BrainLinks-BrainTools Center, University of Freiburg, Georges-Köhler-Allee 201, 79110 Freiburg im Breisgau, Germany
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, Chalmersplatsen 4, 41258 Gothenburg, Sweden.
- Division of Nursing and Medical Technology, Luleå University of Technology, 79187 Luleå, Sweden
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Albertstraße 19, 79104 Freiburg im Breisgau, Germany
| |
Collapse
|
14
|
Chen T, Lau KSK, Hong SH, Shi HTH, Iwasa SN, Chen JXM, Li T, Morrison T, Kalia SK, Popovic MR, Morshead CM, Naguib HE. Cryogel-based neurostimulation electrodes to activate endogenous neural precursor cells. Acta Biomater 2023; 171:392-405. [PMID: 37683963 DOI: 10.1016/j.actbio.2023.08.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
The delivery of electrical pulses to the brain via penetrating electrodes, known as brain stimulation, has been recognized as an effective clinical approach for treating neurological disorders. Resident brain neural precursor cells (NPCs) are electrosensitive cells that respond to electrical stimulation by expanding in number, migrating and differentiating which are important characteristics that support neural repair. Here, we report the design of a conductive cryogel brain stimulation electrode specifically developed for NPC activation. The cryogel electrode has a modulus switching mechanism permitting facile penetration and reducing the mechanical mismatch between brain tissue and the penetrating electrode. The cryogel demonstrated good in vivo biocompatibility and reduced the interfacial impedance to deliver the stimulating electric field with lower voltage under charge-balanced current controlled stimulation. An ex vivo assay reveals that electrical stimulation using the cryogel electrodes results in significant expansion in the size of NPC pool. Hence, the cryogel electrodes have the potential to be used for NPC activation to support endogenous neural repair. STATEMENT OF SIGNIFICANCE: The objective of this study is to develop a cryogel-based stimulation electrode as an alternative to traditional electrode materials to be used in regenerative medicine applications for enhancing neural regeneration in brain. The electrode offers benefits such as adaptive modulus for implantation, high charge storage and injection capacities, and modulus matching with brain tissue, allowing for stable delivery of electric field for long-term neuromodulation. The electrochemical properties of cryogel electrodes were characterized in living tissue with an ex vivo set-up, providing a deeper understanding of stimulation capacity in brain environments. The cryogel electrode is biocompatible and enables low voltage, current-controlled stimulation for effective activation of endogenous neural precursor cells, revealing their potential utility in neural stem cell-mediated brain repair.
Collapse
Affiliation(s)
- Tianhao Chen
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Kylie Sin Ki Lau
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Sung Hwa Hong
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Hao Tian Harvey Shi
- Department of Mechanical and Materials Engineering, Western University, London, Ontario, Canada
| | - Stephanie N Iwasa
- The KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada; CRANIA, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Jia Xi Mary Chen
- Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Terek Li
- Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Taylor Morrison
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Suneil K Kalia
- The KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada; CRANIA, University Health Network and University of Toronto, Toronto, Ontario, Canada; Department of Neurosurgery, University Health Network, University of Toronto, Toronto, Ontario, Canada; Krembil Research Institute, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Milos R Popovic
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; The KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada; CRANIA, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Cindi M Morshead
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; The KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada; CRANIA, University Health Network and University of Toronto, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
| | - Hani E Naguib
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada; Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
15
|
Yu C, Ying X, Shahbazi MA, Yang L, Ma Z, Ye L, Yang W, Sun R, Gu T, Tang R, Fan S, Yao S. A nano-conductive osteogenic hydrogel to locally promote calcium influx for electro-inspired bone defect regeneration. Biomaterials 2023; 301:122266. [PMID: 37597298 DOI: 10.1016/j.biomaterials.2023.122266] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 07/05/2023] [Accepted: 08/03/2023] [Indexed: 08/21/2023]
Abstract
Conductive nano-materials and electrical stimulation (ES) have been recognized as a synergetic therapy for ordinary excitable tissue repair. It is worth noting that hard tissues, such as bone tissue, possess bioelectrical properties as well. However, insufficient attention is paid to the synergetic therapy for bone defect regeneration via conductive biomaterials with ES. Here, a novel nano-conductive hydrogel comprising calcium phosphate-PEDOT:PSS-magnesium titanate-methacrylated alginate (CPM@MA) was synthesized for electro-inspired bone tissue regeneration. The nano-conductive CPM@MA hydrogel has demonstrated excellent electroactivity, biocompatibility, and osteoinductivity. Additionally, it has the potential to enhance cellular functionality by increasing endogenous transforming growth factor-beta1 (TGF-β1) and activating TGF-β/Smad2 signaling pathway. The synergetic therapy could facilitate intracellular calcium enrichment, resulting in a 5.8-fold increase in calcium concentration compared to the control group in the CPM@MA ES + group. The nano-conductive CPM@MA hydrogel with ES could significantly promote electro-inspired bone defect regeneration in vivo, uniquely allowing a full repair of rat femoral defect within 4 weeks histologically and mechanically. These results demonstrate that our synergistic strategy effectively promotes bone restoration, thereby offering potential advancements in the field of electro-inspired hard tissue regeneration using novel nano-materials with ES.
Collapse
Affiliation(s)
- Congcong Yu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province Hangzhou, Zhejiang, 310016, China
| | - Xiaozhang Ying
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province Hangzhou, Zhejiang, 310016, China; Department of Orthopaedics, Zhejiang Integrated Traditional Chinese and Western Medicine Hospital, Hangzhou, 310003, Zhejiang, China
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713, AV, Groningen, the Netherlands; W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713, AV, Groningen, the Netherlands
| | - Linjun Yang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province Hangzhou, Zhejiang, 310016, China
| | - Zaiqiang Ma
- Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Lin Ye
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province Hangzhou, Zhejiang, 310016, China
| | - Wentao Yang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province Hangzhou, Zhejiang, 310016, China
| | - Rongtai Sun
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province Hangzhou, Zhejiang, 310016, China
| | - Tianyuan Gu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province Hangzhou, Zhejiang, 310016, China
| | - Ruikang Tang
- Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province Hangzhou, Zhejiang, 310016, China.
| | - Shasha Yao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province Hangzhou, Zhejiang, 310016, China.
| |
Collapse
|
16
|
Matter L, Harland B, Raos B, Svirskis D, Asplund M. Generation of direct current electrical fields as regenerative therapy for spinal cord injury: A review. APL Bioeng 2023; 7:031505. [PMID: 37736015 PMCID: PMC10511262 DOI: 10.1063/5.0152669] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023] Open
Abstract
Electrical stimulation (ES) shows promise as a therapy to promote recovery and regeneration after spinal cord injury. ES therapy establishes beneficial electric fields (EFs) and has been investigated in numerous studies, which date back nearly a century. In this review, we discuss the various engineering approaches available to generate regenerative EFs through direct current electrical stimulation and very low frequency electrical stimulation. We highlight the electrode-tissue interface, which is important for the appropriate choice of electrode material and stimulator circuitry. We discuss how to best estimate and control the generated field, which is an important measure for comparability of studies. Finally, we assess the methods used in these studies to measure functional recovery after the injury and treatment. This work reviews studies in the field of ES therapy with the goal of supporting decisions regarding best stimulation strategy and recovery assessment for future work.
Collapse
Affiliation(s)
- Lukas Matter
- Author to whom correspondence should be addressed:
| | - Bruce Harland
- School of Pharmacy, The University of Auckland, NZ 1023 Auckland, New Zealand
| | - Brad Raos
- School of Pharmacy, The University of Auckland, NZ 1023 Auckland, New Zealand
| | - Darren Svirskis
- School of Pharmacy, The University of Auckland, NZ 1023 Auckland, New Zealand
| | | |
Collapse
|
17
|
Leal J, Shaner S, Jedrusik N, Savelyeva A, Asplund M. Electrotaxis evokes directional separation of co-cultured keratinocytes and fibroblasts. Sci Rep 2023; 13:11444. [PMID: 37454232 PMCID: PMC10349865 DOI: 10.1038/s41598-023-38664-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023] Open
Abstract
Bioelectric communication plays a significant role in several cellular processes and biological mechanisms, such as division, differentiation, migration, cancer metastasis, and wound healing. Ion flow across cellular walls leads to potential gradients and subsequent formation of constant or time-varying electric fields(EFs), which regulate cellular processes. An EF is natively generated towards the wound center during epithelial wound healing, aiming to align and guide cell migration, particularly of macrophages, fibroblasts, and keratinocytes. While this phenomenon, known as electrotaxis or galvanotaxis, has been extensively investigated across many cell types, it is typically explored one cell type at a time, which does not accurately represent cellular interactions during complex biological processes. Here we show the co-cultured electrotaxis of epidermal keratinocytes and dermal fibroblasts with a salt-bridgeless microfluidic approach for the first time. The electrotactic response of these cells was first assessed in mono-culture to establish a baseline, resulting in the characteristic cathodic migration for keratinocytes and anodic for fibroblasts. Both cell types retained their electrotactic properties in co-culture leading to clear cellular partition even in the presence of cellular collisions. The methods leveraged here pave the way for future co-culture electrotaxis experiments where the concurrent influence of cell types can be thoroughly investigated.
Collapse
Affiliation(s)
- José Leal
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany.
- BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Germany.
| | - Sebastian Shaner
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Germany
| | - Nicole Jedrusik
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Germany
| | - Anna Savelyeva
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Germany
| | - Maria Asplund
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany.
- BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Germany.
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany.
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, Gothenburg, Sweden.
- Division of Nursing and Medical Technology, Luleå University of Technology, 97187, Luleå, Sweden.
| |
Collapse
|
18
|
Shaner S, Savelyeva A, Kvartuh A, Jedrusik N, Matter L, Leal J, Asplund M. Bioelectronic microfluidic wound healing: a platform for investigating direct current stimulation of injured cell collectives. LAB ON A CHIP 2023; 23:1531-1546. [PMID: 36723025 PMCID: PMC10013350 DOI: 10.1039/d2lc01045c] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/14/2023] [Indexed: 06/18/2023]
Abstract
Upon cutaneous injury, the human body naturally forms an electric field (EF) that acts as a guidance cue for relevant cellular and tissue repair and reorganization. However, the direct current (DC) flow imparted by this EF can be impacted by a variety of diseases. This work delves into the impact of DC stimulation on both healthy and diabetic in vitro wound healing models of human keratinocytes, the most prevalent cell type of the skin. The culmination of non-metal electrode materials and prudent microfluidic design allowed us to create a compact bioelectronic platform to study the effects of different sustained (12 hours galvanostatic DC) EF configurations on wound closure dynamics. Specifically, we compared if electrotactically closing a wound's gap from one wound edge (i.e., uni-directional EF) is as effective as compared to alternatingly polarizing both the wound's edges (i.e., pseudo-converging EF) as both of these spatial stimulation strategies are fundamental to the eventual translational electrode design and strategy. We found that uni-directional electric guidance cues were superior in group keratinocyte healing dynamics by enhancing the wound closure rate nearly three-fold for both healthy and diabetic-like keratinocyte collectives, compared to their non-stimulated respective controls. The motility-inhibited and diabetic-like keratinocytes regained wound closure rates with uni-directional electrical stimulation (increase from 1.0 to 2.8% h-1) comparable to their healthy non-stimulated keratinocyte counterparts (3.5% h-1). Our results bring hope that electrical stimulation delivered in a controlled manner can be a viable pathway to accelerate wound repair, and also by providing a baseline for other researchers trying to find an optimal electrode blueprint for in vivo DC stimulation.
Collapse
Affiliation(s)
- Sebastian Shaner
- Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 201, 79110, Freiburg, Germany
- Brainlinks-Braintools Center, Georges-Köhler-Allee 201, 79110, Freiburg, Germany.
| | - Anna Savelyeva
- Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 201, 79110, Freiburg, Germany
- Brainlinks-Braintools Center, Georges-Köhler-Allee 201, 79110, Freiburg, Germany.
| | - Anja Kvartuh
- Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 201, 79110, Freiburg, Germany
| | - Nicole Jedrusik
- Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 201, 79110, Freiburg, Germany
- Brainlinks-Braintools Center, Georges-Köhler-Allee 201, 79110, Freiburg, Germany.
| | - Lukas Matter
- Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 201, 79110, Freiburg, Germany
| | - José Leal
- Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 201, 79110, Freiburg, Germany
- Brainlinks-Braintools Center, Georges-Köhler-Allee 201, 79110, Freiburg, Germany.
| | - Maria Asplund
- Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 201, 79110, Freiburg, Germany
- Brainlinks-Braintools Center, Georges-Köhler-Allee 201, 79110, Freiburg, Germany.
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Albertstr. 19, 79104, Freiburg, Germany
- Division of Nursing and Medical Technology, Luleå University of Technology, 971 87, Luleå, Sweden
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, Kemivägen 9, 412 58, Gothenburg, Sweden.
| |
Collapse
|
19
|
A microfluidic perspective on conventional in vitro transcranial direct current stimulation methods. J Neurosci Methods 2023; 385:109761. [PMID: 36470469 PMCID: PMC9884911 DOI: 10.1016/j.jneumeth.2022.109761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/20/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Transcranial direct current stimulation (tDCS) is a promising non-invasive brain stimulation method to treat neurological and psychiatric diseases. However, its underlying neural mechanisms warrant further investigation. Indeed, dose-response interrelations are poorly understood. Placing explanted brain tissue, mostly from mice or rats, into a uniform direct current electric field (dcEF) is a well-established in vitro system to elucidate the neural mechanism of tDCS. Nevertheless, we will show that generating a defined, uniform, and constant dcEF throughout a brain slice is challenging. This article critically reviews the methods used to generate and calibrate a uniform dcEF. We use finite element analysis (FEA) to evaluate the widely used parallel electrode configuration and show that it may not reliably generate uniform dcEF within a brain slice inside an open interface or submerged chamber. Moreover, equivalent circuit analysis and measurements inside a testing chamber suggest that calibrating the dcEF intensity with two recording electrodes can inaccurately capture the true EF magnitude in the targeted tissue when specific criteria are not met. Finally, we outline why microfluidic chambers are an effective and calibration-free approach of generating spatiotemporally uniform dcEF for DCS in vitro studies, facilitating accurate and fine-scale dcEF adjustments. We are convinced that improving the precision and addressing the limitations of current experimental platforms will substantially improve the reproducibility of in vitro experimental results. A better mechanistic understanding of dose-response relations will ultimately facilitate more effective non-invasive stimulation therapies in patients.
Collapse
|
20
|
Bianchi M, De Salvo A, Asplund M, Carli S, Di Lauro M, Schulze‐Bonhage A, Stieglitz T, Fadiga L, Biscarini F. Poly(3,4-ethylenedioxythiophene)-Based Neural Interfaces for Recording and Stimulation: Fundamental Aspects and In Vivo Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104701. [PMID: 35191224 PMCID: PMC9036021 DOI: 10.1002/advs.202104701] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/04/2022] [Indexed: 05/29/2023]
Abstract
Next-generation neural interfaces for bidirectional communication with the central nervous system aim to achieve the intimate integration with the neural tissue with minimal neuroinflammatory response, high spatio-temporal resolution, very high sensitivity, and readout stability. The design and manufacturing of devices for low power/low noise neural recording and safe and energy-efficient stimulation that are, at the same time, conformable to the brain, with matched mechanical properties and biocompatibility, is a convergence area of research where neuroscientists, materials scientists, and nanotechnologists operate synergically. The biotic-abiotic neural interface, however, remains a formidable challenge that prompts for new materials platforms and innovation in device layouts. Conductive polymers (CP) are attractive materials to be interfaced with the neural tissue and to be used as sensing/stimulating electrodes because of their mixed ionic-electronic conductivity, their low contact impedance, high charge storage capacitance, chemical versatility, and biocompatibility. This manuscript reviews the state-of-the-art of poly(3,4-ethylenedioxythiophene)-based neural interfaces for extracellular recording and stimulation, focusing on those technological approaches that are successfully demonstrated in vivo. The aim is to highlight the most reliable and ready-for-clinical-use solutions, in terms of materials technology and recording performance, other than spot major limitations and identify future trends in this field.
Collapse
Affiliation(s)
- Michele Bianchi
- Center for Translational Neurophysiology of Speech and CommunicationFondazione Istituto Italiano di Tecnologiavia Fossato di Mortara 17Ferrara44121Italy
| | - Anna De Salvo
- Center for Translational Neurophysiology of Speech and CommunicationFondazione Istituto Italiano di Tecnologiavia Fossato di Mortara 17Ferrara44121Italy
- Sezione di FisiologiaUniversità di Ferraravia Fossato di Mortara 17Ferrara44121Italy
| | - Maria Asplund
- Division of Nursing and Medical TechnologyLuleå University of TechnologyLuleå971 87Sweden
- Department of Microsystems Engineering‐IMTEKUniversity of FreiburgFreiburg79110Germany
- BrainLinks‐BrainTools CenterUniversity of FreiburgFreiburg79110Germany
| | - Stefano Carli
- Center for Translational Neurophysiology of Speech and CommunicationFondazione Istituto Italiano di Tecnologiavia Fossato di Mortara 17Ferrara44121Italy
- Present address:
Department of Environmental and Prevention SciencesUniversità di FerraraFerrara44121Italy
| | - Michele Di Lauro
- Center for Translational Neurophysiology of Speech and CommunicationFondazione Istituto Italiano di Tecnologiavia Fossato di Mortara 17Ferrara44121Italy
| | - Andreas Schulze‐Bonhage
- BrainLinks‐BrainTools CenterUniversity of FreiburgFreiburg79110Germany
- Epilepsy CenterFaculty of MedicineUniversity of FreiburgFreiburg79110Germany
| | - Thomas Stieglitz
- Department of Microsystems Engineering‐IMTEKUniversity of FreiburgFreiburg79110Germany
- BrainLinks‐BrainTools CenterUniversity of FreiburgFreiburg79110Germany
| | - Luciano Fadiga
- Center for Translational Neurophysiology of Speech and CommunicationFondazione Istituto Italiano di Tecnologiavia Fossato di Mortara 17Ferrara44121Italy
- Sezione di FisiologiaUniversità di Ferraravia Fossato di Mortara 17Ferrara44121Italy
| | - Fabio Biscarini
- Center for Translational Neurophysiology of Speech and CommunicationFondazione Istituto Italiano di Tecnologiavia Fossato di Mortara 17Ferrara44121Italy
- Life Science DepartmentUniversità di Modena e Reggio EmiliaVia Campi 103Modena41125Italy
| |
Collapse
|