1
|
Wang K, Yang L, Lu X, Cheng M, Gui X, Chen Q, Wang Y, Zhao Y, Li D, Liu G. Construction of Sonosensitizer-Drug Co-Assembly Based on Deep Learning Method. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2502328. [PMID: 40376918 DOI: 10.1002/smll.202502328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/30/2025] [Indexed: 05/18/2025]
Abstract
Drug co-assemblies have attracted extensive attention due to their advantages of easy preparation, adjustable performance and drug component co-delivery. However, the lack of a clear and reasonable co-assembly strategy has hindered the wide application and promotion of drug-co assembly. This paper introduces a deep learning-based sonosensitizer-drug interaction (SDI) model to predict the particle size of the drug mixture. To analyze the factors influencing the particle size after mixing, the graph neural network is employed to capture the atomic, bond, and structural features of the molecules. A multi-scale cross-attention mechanism is designed to integrate the feature representations of different scale substructures of the two drugs, which not only improves prediction accuracy but also allows for the analysis of the impact of molecular structures on the predictions. Ablation experiments evaluate the impact of molecular properties, and comparisons with other machine and deep learning methods show superiority, achieving 90.00% precision, 96.00% recall, and 91.67% F1-score. Furthermore, the SDI predicts the co-assembly of the chemotherapy drug methotrexate (MET) and the sonosensitizer emodin (EMO) to form the nanomedicine NanoME. This prediction is further validated through experiments, demonstrating that NanoME can be used for fluorescence imaging of liver cancer and sonodynamic/chemotherapy anticancer therapy.
Collapse
Affiliation(s)
- Kanqi Wang
- Institute of Artificial Intelligence, Xiamen University, Xiamen, 361102, China
| | - Liuyin Yang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, Fujian Engineering Research Center of Molecular Theranostic Technology, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xiaowei Lu
- Institute of Artificial Intelligence, Xiamen University, Xiamen, 361102, China
| | - Mingtao Cheng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, Fujian Engineering Research Center of Molecular Theranostic Technology, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xiran Gui
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, Fujian Engineering Research Center of Molecular Theranostic Technology, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Qingmin Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Yilin Wang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Yang Zhao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Dong Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Gang Liu
- Institute of Artificial Intelligence, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, Fujian Engineering Research Center of Molecular Theranostic Technology, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
2
|
Wu H, Lu X, Hu Y, Baatarbolat J, Zhang Z, Liang Y, Zhang Y, Liu Y, Lv H, Jin X. Biomimic Nanodrugs Overcome Tumor Immunosuppressive Microenvironment to Enhance Cuproptosis/Chemodynamic-Induced Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411122. [PMID: 39665263 PMCID: PMC11791997 DOI: 10.1002/advs.202411122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/18/2024] [Indexed: 12/13/2024]
Abstract
Elesclomol (ES) as an efficient Cu ionophore can specifically transport Cu into mitochondria and disrupt intracellular Cu homeostasis. Extra intracellular Cu induces cuproptosis and chemodynamic therapy (CDT), which further cascades immunogenic cell death (ICD) and activates antitumor immune responses. However, the tumor immunosuppressive microenvironment (TIM) attenuates the efficiency of the immune response. Herein, a biomimic nanodrug (ECNM) is fabricated, of which ES, Cu2+ and NLG919 (an IDO1 inhibitor) are integrated via a self-assembly process and subsequently coated with 4T1 cell membrane. ECNM can overcome the typical drawbacks of ES, ameliorating the stability and half-life of ES by membrane-coating and enhancing its tumor accumulation and internalization via homotypic targeting. It is worth mentioning that, the addition of NLG919 is also beneficial to the system circulation stability of ES and reduces the non-specific ES release. After internalization, ECNM dissociates via the glutathione-responsive process and exhibits comprehensive antitumor capabilities, including cuproptosis, CDT and TIM reversing, thereby eliciting ICD and optimizing the antitumor immune response. Furthermore, ECNM not only accelerates tumor regression but also gains a strong abscopal effect and displays the potential of tumor vaccination. Overall, ECNM can activate antitumor immunity via cuproptosis and CDT, together with TIM reversing, for cancer treatment.
Collapse
Affiliation(s)
- Hangyi Wu
- Department of PharmaceuticsChina Pharmaceutical UniversityNanjingJiangsu211198China
| | - Xiaoyu Lu
- Phase I clinical trial centerThe Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhouJiangsu215000China
| | - Yuhan Hu
- Department of PharmaceuticsChina Pharmaceutical UniversityNanjingJiangsu211198China
| | - J. Baatarbolat
- Department of PharmaceuticsChina Pharmaceutical UniversityNanjingJiangsu211198China
| | - Zhihao Zhang
- Department of PharmaceuticsChina Pharmaceutical UniversityNanjingJiangsu211198China
| | - Yiping Liang
- Department of PharmaceuticsChina Pharmaceutical UniversityNanjingJiangsu211198China
- Phase I clinical trial centerThe Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhouJiangsu215000China
- Department of PharmaceuticsThe affiliated Suqian First People's Hospital of Nanjing Medical UniversitySuqianJiangsu223800China
| | - Youwen Zhang
- Department of PharmaceuticsThe affiliated Suqian First People's Hospital of Nanjing Medical UniversitySuqianJiangsu223800China
| | - Ye Liu
- Department of PharmaceuticsThe affiliated Suqian First People's Hospital of Nanjing Medical UniversitySuqianJiangsu223800China
| | - Huixia Lv
- Department of PharmaceuticsChina Pharmaceutical UniversityNanjingJiangsu211198China
| | - Xin Jin
- Department of PharmaceuticsThe affiliated Suqian First People's Hospital of Nanjing Medical UniversitySuqianJiangsu223800China
| |
Collapse
|
3
|
Liu X, Liu S, Jin X, Liu H, Sun K, Wang X, Li M, Wang P, Chang Y, Wang T, Wang B, Yu XA. An encounter between metal ions and natural products: natural products-coordinated metal ions for the diagnosis and treatment of tumors. J Nanobiotechnology 2024; 22:726. [PMID: 39574109 PMCID: PMC11580416 DOI: 10.1186/s12951-024-02981-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/04/2024] [Indexed: 11/25/2024] Open
Abstract
Natural products-coordinated metal ions to form the nanomedicines are in the spotlight for cancer therapy. Some natural products could be coordinated with metal ions forming nanomedicines via simple and green environmental self-assembly, which not only improved the bioavailability of natural products, but also conferred multiple therapeutic modalities and multimodal imaging. On the one hand, in the weak acidity, glutathione (GSH) and hydrogen peroxide (H2O2) overexpression of tumor microenvironment (TME), such carrier-free nanomedicines could be further enhanced the therapeutic effect via optimizing the species of metal ions. On the other hand, nanomedicines could exert the precise treatment of tumor under the guidance of multiple imaging. Hence, this review summarized the research progress in recent years on the application of natural product-coordinated metal ions in cancer therapy. In addition, the prospects and challenges for the application of natural product-coordinated metal ions were discussed, especially how to improve targeting ability and stability and assess the safety of metal ions, so as to facilitate the clinical translation and application of natural product-coordinated metal ions nanomedicines.
Collapse
Affiliation(s)
- Xinyue Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Suyi Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xingyue Jin
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Haifan Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Kunhui Sun
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiongqin Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Meifang Li
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Ping Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Yanxu Chang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Tiejie Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China.
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
| | - Bing Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
| | - Xie-An Yu
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
| |
Collapse
|
4
|
Li X, Wang H, Li Z, Liu S, Chen Y, Ruan Z, Yao Z, Wei G, Cao C, Zheng W, Guan W. Full-active pharmaceutical ingredient nanosensitizer for augmented photoimmunotherapy by synergistic mitochondria targeting and immunogenic death inducing. MedComm (Beijing) 2024; 5:e756. [PMID: 39525955 PMCID: PMC11550090 DOI: 10.1002/mco2.756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/29/2024] [Accepted: 09/01/2024] [Indexed: 11/16/2024] Open
Abstract
The precise and effective activation of the immune response is crucial in promising therapy curing cancer. Photoimmunotherapy (PIT) is an emerging strategy for precise regulation and highly spatiotemporal selectivity. However, this approach faces a significant challenge due to the off-target effect and the immunosuppressive microenvironment. To address this challenge, a nanoscale full-active pharmaceutical ingredient (API) photo-immune stimulator was developed. This formulation overcomes the limitations of PIT by strengthening the ability to penetrate tumors deeply and inducing precise and potent mitochondria-targeted dual-mode photodynamic therapy and photothermal therapy. Along with inhibiting overexpressed Hsp90, this nanosensitizer in turn improves the immunosuppressive microenvironment. Ultimately, this mitochondria-targeted PIT demonstrated potent antitumor efficacy, achieving a remarkable inhibition rate of ≥95% for both established primary tumors and distant abscopal tumors. In conclusion, this novel self-delivery full-API nanosystem enhances the efficacy of phototherapy and reprograms the immunosuppressive microenvironment, thereby holding great promise in the development of precise and effective immunotherapy.
Collapse
Affiliation(s)
- Xianghui Li
- Department of Dermatology and VenereologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
- Department of Gastrointestinal SurgeryAffiliated Nanjing Drum Tower HospitalNanjing University Medical SchoolNanjingChina
| | - Haoran Wang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent ManufactureNanjing University of Chinese MedicineNanjingChina
| | - Zhiyan Li
- Department of Gastrointestinal SurgeryAffiliated Nanjing Drum Tower HospitalNanjing University Medical SchoolNanjingChina
| | - Song Liu
- Department of Gastrointestinal SurgeryAffiliated Nanjing Drum Tower HospitalNanjing University Medical SchoolNanjingChina
| | - Yuanyuan Chen
- Department of Dermatology and VenereologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Zhuren Ruan
- Department of Dermatology and VenereologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Zhijian Yao
- Department of Dermatology and VenereologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Gao Wei
- Department of Dermatology and VenereologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Cunwei Cao
- Department of Dermatology and VenereologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Wenjun Zheng
- Department of Dermatology and VenereologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Wenxian Guan
- Department of Gastrointestinal SurgeryAffiliated Nanjing Drum Tower HospitalNanjing University Medical SchoolNanjingChina
| |
Collapse
|
5
|
Yu L, Zhou X, Liu Z, Liu H, Zhang XZ, Luo GF, Shang Z. Carrier-Free Nanoagent Interfering with Cancer-Associated Fibroblasts' Metabolism to Promote Tumor Penetration for Boosted Chemotherapy. NANO LETTERS 2024; 24:11976-11984. [PMID: 39270053 DOI: 10.1021/acs.nanolett.4c03433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Elevated production of extracellular matrix (ECM) in tumor stroma is a critical obstacle for drug penetration. Here we demonstrate that ATP-citrate lyase (ACLY) is significantly upregulated in cancer-associated fibroblasts (CAFs) to produce tumor ECM. Using a self-assembling nanoparticle-design approach, a carrier-free nanoagent (CFNA) is fabricated by simply assembling NDI-091143, a specific ACLY inhibitor, and doxorubicin (DOX) or paclitaxel (PTX), the first-line chemotherapeutic drug, via multiple noncovalent interactions. After arriving at the CAFs-rich tumor site, NDI-091143-mediated ACLY inhibition in CAFs can block the de novo synthesis of fatty acid, thereby dampening the fatty acid-involved energy metabolic process. As the lack of enough energy, the energetic CAFs will be in a dispirited state that is unable to produce abundant ECM, thereby significantly improving drug perfusion in tumors and enhancing the efficacy of chemotherapy. Such a simple drug assembling strategy aimed at CAFs' ACLY-mediated metabolism pathway presents the feasibility of stromal matrix reduction to potentiate chemotherapy.
Collapse
Affiliation(s)
- Lili Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, P. R. China
| | - Xiaocheng Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, P. R. China
| | - Zhenan Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, P. R. China
| | - Hanzhe Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Guo-Feng Luo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, P. R. China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, P. R. China
| | - Zhengjun Shang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, P. R. China
- Taikang Center for Life and Medical Sciences of Wuhan University, Wuhan 430079, P. R. China
| |
Collapse
|
6
|
Duan X, Zhao Y, Hu H, Wang X, Yan J, Li S, Zhang Y, Jiao J, Zhang G. Amino Acid Metabolism-Regulated Nanomedicine for Enhanced Tumor Immunotherapy through Synergistic Regulation of Immune Microenvironment. Biomater Res 2024; 28:0048. [PMID: 38966855 PMCID: PMC11223770 DOI: 10.34133/bmr.0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/13/2024] [Indexed: 07/06/2024] Open
Abstract
The reprogramming of tumor metabolism presents a substantial challenge for effective immunotherapy, playing a crucial role in developing an immunosuppressive microenvironment. In particular, the degradation of the amino acid L-tryptophan (Trp) to kynurenine (Kyn) by indoleamine-pyrrole 2,3-dioxygenase 1 (IDO1) is one of the most clinically validated pathways for immune suppression. Thus, regulating the Trp/Kyn metabolism by IDO1 inhibition represents a promising strategy for enhancing immunotherapy. Herein, metabolism-regulated nanoparticles are prepared through metal coordination-driven assembly of an IDO1 inhibitor (NLG919) and a stimulator of interferon genes (STING) agonist (MSA-2) for enhanced immunotherapy. After intravenous administration, the assembled nanoparticles could efficiently accumulate in tumors, enhancing the bioavailability of NLG919 and down-regulating the metabolism of Trp to Kyn to remodel the immunosuppressive tumor microenvironment. Meanwhile, the released MSA-2 evoked potent STING pathway activation in tumors, triggering an effective immune response. The antitumor immunity induced by nanoparticles significantly inhibited the development of primary and metastatic tumors, as well as B16 melanoma. Overall, this study provided a novel paradigm for enhancing tumor immunotherapy through synergistic amino acid metabolism and STING pathway activation.
Collapse
Affiliation(s)
- Xiuying Duan
- Medical Science and Technology Innovation Center,
Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
- School of Life Sciences,
Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yilei Zhao
- Medical Science and Technology Innovation Center,
Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Houyang Hu
- Medical Science and Technology Innovation Center,
Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Xuechun Wang
- Medical Science and Technology Innovation Center,
Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Jie Yan
- Medical Science and Technology Innovation Center,
Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Songyan Li
- Medical Science and Technology Innovation Center,
Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yueying Zhang
- School of Clinical and Basic Medical Sciences,
Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Jianwei Jiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology,
Chinese Academy of Sciences, Beijing 100101, China
| | - Guiqiang Zhang
- Medical Science and Technology Innovation Center,
Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| |
Collapse
|
7
|
Yan C, Zhao Y, Liu X, Jiang Y, Li Q, Yang L, Li X, Luo K. Self-Delivery Nanobooster to Enhance Immunogenic Cell Death for Cancer Chemoimmunotherapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33169-33181. [PMID: 38915234 DOI: 10.1021/acsami.4c06149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Inducing immunogenic cell death (ICD) is a promising strategy for cancer immunotherapy. Shikonin (SHK), a naphthoquinone compound from Lithospermum erythrorhizon, can stimulate antitumor immunity by inducing ICD. Nevertheless, the immunogenicity of tumor cells killed by SHK is weak. Endoplasmic reticulum (ER) stress is an important intracellular pathway of the ICD effect. Curcumin (CUR) can directly induce ER stress by disrupting Ca2+ homeostasis, which might enhance SHK-induced ICD effect. A self-delivery ICD effect nanobooster (CS-PEG NPs) was developed by the self-assembly of SHK (ICD inducer) and CUR (ICD enhancer) with the assistance of DSPE-PEG2K for cancer chemoimmunotherapy. CS-PEG NPs possessed effective CT26 tumor cell cellular uptake and tumor accumulation ability. Moreover, enhanced cytotoxicity against tumor cells and apoptosis promotion were achieved due to the synergistic effect of CUR and SHK. Notably, CS-PEG NPs induced obvious Ca2+ homeostasis disruption, ER stress, and ICD effect. Subsequently, the neoantigens produced by the robust ICD effect in vivo promoted dendritic cell maturation, which further recruited and activated cytotoxic T lymphocytes. Superior antitumor efficacy and systemic antitumor immunity were observed in the CT26-bearing BALB/c mouse model without side effects in major organs. This study offers a promising self-delivery nanobooster to induce strong ICD effect and antitumor immunity for cancer chemoimmunotherapy.
Collapse
Affiliation(s)
- Chunmei Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuxin Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaolian Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yingjie Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qiuxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lu Yang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Kaipei Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
8
|
Pan Y, Cheng J, Zhu Y, Zhang J, Fan W, Chen X. Immunological nanomaterials to combat cancer metastasis. Chem Soc Rev 2024; 53:6399-6444. [PMID: 38745455 DOI: 10.1039/d2cs00968d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Metastasis causes greater than 90% of cancer-associated deaths, presenting huge challenges for detection and efficient treatment of cancer due to its high heterogeneity and widespread dissemination to various organs. Therefore, it is imperative to combat cancer metastasis, which is the key to achieving complete cancer eradication. Immunotherapy as a systemic approach has shown promising potential to combat metastasis. However, current clinical immunotherapies are not effective for all patients or all types of cancer metastases owing to insufficient immune responses. In recent years, immunological nanomaterials with intrinsic immunogenicity or immunomodulatory agents with efficient loading have been shown to enhance immune responses to eliminate metastasis. In this review, we would like to summarize various types of immunological nanomaterials against metastasis. Moreover, this review will summarize a series of immunological nanomaterial-mediated immunotherapy strategies to combat metastasis, including immunogenic cell death, regulation of chemokines and cytokines, improving the immunosuppressive tumour microenvironment, activation of the STING pathway, enhancing cytotoxic natural killer cell activity, enhancing antigen presentation of dendritic cells, and enhancing chimeric antigen receptor T cell therapy. Furthermore, the synergistic anti-metastasis strategies based on the combinational use of immunotherapy and other therapeutic modalities will also be introduced. In addition, the nanomaterial-mediated imaging techniques (e.g., optical imaging, magnetic resonance imaging, computed tomography, photoacoustic imaging, surface-enhanced Raman scattering, radionuclide imaging, etc.) for detecting metastasis and monitoring anti-metastasis efficacy are also summarized. Finally, the current challenges and future prospects of immunological nanomaterial-based anti-metastasis are also elucidated with the intention to accelerate its clinical translation.
Collapse
Affiliation(s)
- Yuanbo Pan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore.
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Junjie Cheng
- Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore.
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yang Zhu
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, Fujian, China.
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore.
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, China
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 211198, China.
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore.
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
| |
Collapse
|
9
|
Li J, Zhao Q, Zhang N, Wu L, Wang Q, Li J, Pan Q, Pu Y, Luo K, Gu Z, He B. Triune Nanomodulator Enables Exhausted Cytotoxic T Lymphocyte Rejuvenation for Cancer Epigenetic Immunotherapy. ACS NANO 2024; 18:13226-13240. [PMID: 38712706 DOI: 10.1021/acsnano.4c02337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Oncogene activation and epigenome dysregulation drive tumor initiation and progression, contributing to tumor immune evasion and compromising the clinical response to immunotherapy. Epigenetic immunotherapy represents a promising paradigm in conquering cancer immunosuppression, whereas few relevant drug combination and delivery strategies emerge in the clinic. This study presents a well-designed triune nanomodulator, termed ROCA, which demonstrates robust capabilities in tumor epigenetic modulation and immune microenvironment reprogramming for cancer epigenetic immunotherapy. The nanomodulator is engineered from a nanoscale framework with epigenetic modulation and cascaded catalytic activity, which self-assembles into a nanoaggregate with tumor targeting polypeptide decoration that enables loading of the immunogenic cell death (ICD)-inducing agent. The nanomodulator releases active factors specifically triggered in the tumor microenvironment, represses oncogene expression, and initiates the type 1 T helper (TH1) cell chemokine axis by reversing DNA hypermethylation. This process, together with ICD induction, fundamentally reprograms the tumor microenvironment and significantly enhances the rejuvenation of exhausted cytotoxic T lymphocytes (CTLs, CD8+ T cells), which synergizes with the anti-PD-L1 immune checkpoint blockade and results in a boosted antitumor immune response. Furthermore, this strategy establishes long-term immune memory and effectively prevents orthotopic colon cancer relapse. Therefore, the nanomodulator holds promise as a standalone epigenetic immunotherapy agent or as part of a combination therapy with immune checkpoint inhibitors in preclinical cancer models, broadening the array of combinatorial strategies in cancer immunotherapy.
Collapse
Affiliation(s)
- Junhua Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816, China
| | - Quan Zhao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
| | - Nan Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
| | - Lihuang Wu
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816, China
| | - Qiusheng Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
| | - Jing Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
| | - Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
| | - Kui Luo
- Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhongwei Gu
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816, China
- Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
10
|
Chen Q, Yang Z, Liu H, Man J, Oladejo AO, Ibrahim S, Wang S, Hao B. Novel Drug Delivery Systems: An Important Direction for Drug Innovation Research and Development. Pharmaceutics 2024; 16:674. [PMID: 38794336 PMCID: PMC11124876 DOI: 10.3390/pharmaceutics16050674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
The escalating demand for enhanced therapeutic efficacy and reduced adverse effects in the pharmaceutical domain has catalyzed a new frontier of innovation and research in the field of pharmacy: novel drug delivery systems. These systems are designed to address the limitations of conventional drug administration, such as abbreviated half-life, inadequate targeting, low solubility, and bioavailability. As the disciplines of pharmacy, materials science, and biomedicine continue to advance and converge, the development of efficient and safe drug delivery systems, including biopharmaceutical formulations, has garnered significant attention both domestically and internationally. This article presents an overview of the latest advancements in drug delivery systems, categorized into four primary areas: carrier-based and coupling-based targeted drug delivery systems, intelligent drug delivery systems, and drug delivery devices, based on their main objectives and methodologies. Additionally, it critically analyzes the technological bottlenecks, current research challenges, and future trends in the application of novel drug delivery systems.
Collapse
Affiliation(s)
- Qian Chen
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
| | - Zhen Yang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
| | - Haoyu Liu
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
| | - Jingyuan Man
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
| | - Ayodele Olaolu Oladejo
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
- Department of Animal Health Technology, Oyo State College of Agriculture and Technology, Igboora 201003, Nigeria
| | - Sally Ibrahim
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
- Department of Animal Reproduction and AI, Veterinary Research Institute, National Research Centre, Dokki 12622, Egypt
| | - Shengyi Wang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
| | - Baocheng Hao
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
| |
Collapse
|
11
|
Ran Y, Hu J, Chen Y, Rao Z, Zhao J, Xu Z, Ming J. Morusin-Cu(II)-indocyanine green nanoassembly ignites mitochondrial dysfunction for chemo-photothermal tumor therapy. J Colloid Interface Sci 2024; 662:760-773. [PMID: 38377695 DOI: 10.1016/j.jcis.2024.02.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 02/22/2024]
Abstract
Nanoscale drug delivery systems derived from natural bioactive materials accelerate the innovation and evolution of cancer treatment modalities. Morusin (Mor) is a prenylated flavonoid compound with high cancer chemoprevention activity, however, the poor water solubility, low active pharmaceutical ingredient (API) loading content, and instability compromise its bioavailability and therapeutic effectiveness. Herein, a full-API carrier-free nanoparticle is developed based on the self-assembly of indocyanine green (ICG), copper ions (Cu2+) and Mor, termed as IMCNs, via coordination-driven and π-π stacking for synergistic tumor therapy. The IMCNs exhibits a desirable loading content of Mor (58.7 %) and pH/glutathione (GSH)-responsive motif. Moreover, the photothermal stability and photo-heat conversion efficiency (42.8 %) of IMCNs are improved after coordination with Cu2+ and help to achieve photothermal therapy. Afterward, the released Cu2+ depletes intracellular overexpressed GSH and mediates Fenton-like reactions, and further synergizes with ICG at high temperatures to expand oxidative damage. Furthermore, the released Mor elicits cytoplasmic vacuolation, expedites mitochondrial dysfunction, and exerts chemo-photothermal therapy after being combined with ICG to suppress the migration of residual live tumor cells. In vivo experiments demonstrate that IMCNs under laser irradiation could excellently inhibit tumor growth (89.6 %) through the multi-modal therapeutic performance of self-enhanced chemotherapy/coordinated-drugs/ photothermal therapy (PTT), presenting a great potential for cancer therapy.
Collapse
Affiliation(s)
- Yalin Ran
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China
| | - Junfeng Hu
- School of Materials and Energy, Southwest University, Chongqing 400715, People's Republic of China
| | - Yuanyuan Chen
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China
| | - Zhenan Rao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China
| | - Jichun Zhao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China
| | - Zhigang Xu
- School of Materials and Energy, Southwest University, Chongqing 400715, People's Republic of China.
| | - Jian Ming
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China.
| |
Collapse
|
12
|
Du C, Guo X, Qiu X, Jiang W, Wang X, An H, Wang J, Luo Y, Du Q, Wang R, Cheng C, Guo Y, Teng H, Ran H, Wang Z, Li P, Zhou Z, Ren J. Self-Reinforced Bimetallic Mito-Jammer for Ca 2+ Overload-Mediated Cascade Mitochondrial Damage for Cancer Cuproptosis Sensitization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306031. [PMID: 38342617 PMCID: PMC11022715 DOI: 10.1002/advs.202306031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/21/2024] [Indexed: 02/13/2024]
Abstract
Overproduction of reactive oxygen species (ROS), metal ion accumulation, and tricarboxylic acid cycle collapse are crucial factors in mitochondria-mediated cell death. However, the highly adaptive nature and damage-repair capabilities of malignant tumors strongly limit the efficacy of treatments based on a single treatment mode. To address this challenge, a self-reinforced bimetallic Mito-Jammer is developed by incorporating doxorubicin (DOX) and calcium peroxide (CaO2) into hyaluronic acid (HA) -modified metal-organic frameworks (MOF). After cellular, Mito-Jammer dissociates into CaO2 and Cu2+ in the tumor microenvironment. The exposed CaO2 further yields hydrogen peroxide (H2O2) and Ca2+ in a weakly acidic environment to strengthen the Cu2+-based Fenton-like reaction. Furthermore, the combination of chemodynamic therapy and Ca2+ overload exacerbates ROS storms and mitochondrial damage, resulting in the downregulation of intracellular adenosine triphosphate (ATP) levels and blocking of Cu-ATPase to sensitize cuproptosis. This multilevel interaction strategy also activates robust immunogenic cell death and suppresses tumor metastasis simultaneously. This study presents a multivariate model for revolutionizing mitochondria damage, relying on the continuous retention of bimetallic ions to boost cuproptosis/immunotherapy in cancer.
Collapse
Affiliation(s)
- Chier Du
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imagingthe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010P. R. China
| | - Xun Guo
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imagingthe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010P. R. China
| | - Xiaoling Qiu
- Department of Intensive Care Unitthe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010P. R. China
| | - Weixi Jiang
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imagingthe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010P. R. China
| | - Xiaoting Wang
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imagingthe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010P. R. China
| | - Hongjin An
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imagingthe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010P. R. China
| | - Jingxue Wang
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imagingthe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010P. R. China
| | - Yuanli Luo
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imagingthe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010P. R. China
| | - Qianying Du
- Department of RadiologySecond Affiliated Hospital of Chongqing Medical UniversityChongqing400010P. R. China
| | - Ruoyao Wang
- Department of Breast and Thyroid SurgerySecond Affiliated Hospital of Chongqing Medical UniversityChongqing400010P. R. China
| | - Chen Cheng
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imagingthe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010P. R. China
| | - Yuan Guo
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imagingthe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010P. R. China
| | - Hua Teng
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imagingthe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010P. R. China
| | - Haitao Ran
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imagingthe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010P. R. China
| | - Zhigang Wang
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imagingthe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010P. R. China
| | - Pan Li
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imagingthe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010P. R. China
| | - Zhiyi Zhou
- Department of General PracticeChongqing General HospitalChongqing400010P. R. China
| | - Jianli Ren
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imagingthe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010P. R. China
| |
Collapse
|
13
|
Chang X, Zhu Z, Weng L, Tang X, Liu T, Zhu M, Liu J, Tang W, Zhang Y, Chen X. Selective Manipulation of the Mitochondria Oxidative Stress in Different Cells Using Intelligent Mesoporous Silica Nanoparticles to Activate On-Demand Immunotherapy for Cancer Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307310. [PMID: 38039438 DOI: 10.1002/smll.202307310] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/03/2023] [Indexed: 12/03/2023]
Abstract
Herein, the vitamin K2 (VK2)/maleimide (MA) coloaded mesoporous silica nanoparticles (MSNs), functional molecules including folic acid (FA)/triphenylphosphine (TPP)/tetrapotassium hexacyanoferrate trihydrate (THT), as well as CaCO3 are explored to fabricate a core-shell-corona nanoparticle (VMMFTTC) for on-demand anti-tumor immunotherapy. After application, the tumor-specific acidic environment first decomposed CaCO3 corona, which significantly levitates the pH value of tumor tissue to convert M2 type macrophage to the antitumor M1 type. The resulting VMMFTT would then internalize in both tumor cells and macrophages via FA-assisted endocytosis and free endocytosis, respectively. These distinct processes generate different amount of VMMFTT in above two cells followed by 1) TPP-induced accumulation in the mitochondria, 2) THT-mediated effective capture of various signal ions to cut off signal transmission and further inhibit glutathione (GSH) generation, 3) ions catalyzed reactive oxygen species (ROS) production through Fenton reaction, 4) sustained release of VK2 and MA to further enhance the ROS production and GSH depletion, which caused significant apoptosis of tumor cells and additional M2-to-M1 macrophage polarization via different processes of oxidative stress. Moreover, the primary tumor apoptosis further matures surrounding immature dendritic cells and activates T cells to continuously promote the antitumor immunotherapy.
Collapse
Affiliation(s)
- Xiaowei Chang
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zeren Zhu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Lin Weng
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xiaoyu Tang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Tao Liu
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, P. R. China
| | - Man Zhu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Jie Liu
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Wenjun Tang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Xin Chen
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
14
|
Sandbhor P, Palkar P, Bhat S, John G, Goda JS. Nanomedicine as a multimodal therapeutic paradigm against cancer: on the way forward in advancing precision therapy. NANOSCALE 2024. [PMID: 38470224 DOI: 10.1039/d3nr06131k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Recent years have witnessed dramatic improvements in nanotechnology-based cancer therapeutics, and it continues to evolve from the use of conventional therapies (chemotherapy, surgery, and radiotherapy) to increasingly multi-complex approaches incorporating thermal energy-based tumor ablation (e.g. magnetic hyperthermia and photothermal therapy), dynamic therapy (e.g. photodynamic therapy), gene therapy, sonodynamic therapy (e.g. ultrasound), immunotherapy, and more recently real-time treatment efficacy monitoring (e.g. theranostic MRI-sensitive nanoparticles). Unlike monotherapy, these multimodal therapies (bimodal, i.e., a combination of two therapies, and trimodal, i.e., a combination of more than two therapies) incorporating nanoplatforms have tremendous potential to improve the tumor tissue penetration and retention of therapeutic agents through selective active/passive targeting effects. These combinatorial therapies can correspondingly alleviate drug response against hypoxic/acidic and immunosuppressive tumor microenvironments and promote/induce tumor cell death through various multi-mechanisms such as apoptosis, autophagy, and reactive oxygen-based cytotoxicity, e.g., ferroptosis, etc. These multi-faced approaches such as targeting the tumor vasculature, neoangiogenic vessels, drug-resistant cancer stem cells (CSCs), preventing intra/extravasation to reduce metastatic growth, and modulation of antitumor immune responses work complementary to each other, enhancing treatment efficacy. In this review, we discuss recent advances in different nanotechnology-mediated synergistic/additive combination therapies, emphasizing their underlying mechanisms for improving cancer prognosis and survival outcomes. Additionally, significant challenges such as CSCs, hypoxia, immunosuppression, and distant/local metastasis associated with therapy resistance and tumor recurrences are reviewed. Furthermore, to improve the clinical precision of these multimodal nanoplatforms in cancer treatment, their successful bench-to-clinic translation with controlled and localized drug-release kinetics, maximizing the therapeutic window while addressing safety and regulatory concerns are discussed. As we advance further, exploiting these strategies in clinically more relevant models such as patient-derived xenografts and 3D organoids will pave the way for the application of precision therapy.
Collapse
Affiliation(s)
- Puja Sandbhor
- Institute for NanoBioTechnology, Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
| | - Pranoti Palkar
- Radiobiology, Department of Radiation Oncology & Homi Bhabha National Institute, Mumbai, 400012, India
| | - Sakshi Bhat
- Radiobiology, Department of Radiation Oncology & Homi Bhabha National Institute, Mumbai, 400012, India
| | - Geofrey John
- Radiobiology, Department of Radiation Oncology & Homi Bhabha National Institute, Mumbai, 400012, India
| | - Jayant S Goda
- Radiobiology, Department of Radiation Oncology & Homi Bhabha National Institute, Mumbai, 400012, India
| |
Collapse
|
15
|
Wang S, Jiao W, Yan B, Liu X, Tang Q, Zhang Y, Liang C, Wang X, Lyu Y, Fan H, Liu X. Intracellular Magnetic Hyperthermia Enables Concurrent Down-Regulation of CD47 and SIRPα To Potentiate Antitumor Immunity. NANO LETTERS 2024; 24:2894-2903. [PMID: 38407042 DOI: 10.1021/acs.nanolett.4c00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Harnessing the potential of tumor-associated macrophages (TAMs) to engulf tumor cells offers promising avenues for cancer therapy. Targeting phagocytosis checkpoints, particularly the CD47-signal regulatory protein α (SIRPα) axis, is crucial for modulating TAM activity. However, single checkpoint inhibition has shown a limited efficacy. In this study, we demonstrate that ferrimagnetic vortex-domain iron oxide (FVIO) nanoring-mediated magnetic hyperthermia effectively suppresses the expression of CD47 protein on Hepa1-6 tumor cells and SIRPα receptor on macrophages, which disrupts CD47-SIRPα interaction. FVIO-mediated magnetic hyperthermia also induces immunogenic cell death and polarizes TAMs toward M1 phenotype. These changes collectively bolster the phagocytic ability of macrophages to eliminate tumor cells. Furthermore, FVIO-mediated magnetic hyperthermia concurrently escalates cytotoxic T lymphocyte levels and diminishes regulatory T cell levels. Our findings reveal that magnetic hyperthermia offers a novel approach for dual down-regulation of CD47 and SIRPα, reshaping the tumor microenvironment to stimulate immune responses, culminating in significant antitumor activity.
Collapse
Affiliation(s)
- Siyao Wang
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi 710069, China
| | - Wangbo Jiao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, China
| | - Bin Yan
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Province Center for Regenerative Medicine and Surgery Engineering Research, Shaanxi Provincial Key Laboratory of Magnetic Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xiaofei Liu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Province Center for Regenerative Medicine and Surgery Engineering Research, Shaanxi Provincial Key Laboratory of Magnetic Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Qianqian Tang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Province Center for Regenerative Medicine and Surgery Engineering Research, Shaanxi Provincial Key Laboratory of Magnetic Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yihan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, China
| | - Chen Liang
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi 710069, China
| | - Xun Wang
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yi Lyu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Province Center for Regenerative Medicine and Surgery Engineering Research, Shaanxi Provincial Key Laboratory of Magnetic Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Haiming Fan
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi 710069, China
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, China
| | - Xiaoli Liu
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi 710069, China
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Province Center for Regenerative Medicine and Surgery Engineering Research, Shaanxi Provincial Key Laboratory of Magnetic Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
16
|
Liang W, Han C, Zhang D, Liu C, Zhu M, Xu F, Fang C, Zhang S, Liu C, Li Y. Copper-coordinated nanoassemblies based on photosensitizer-chemo prodrugs and checkpoint inhibitors for enhanced apoptosis-cuproptosis and immunotherapy. Acta Biomater 2024; 175:341-352. [PMID: 38122883 DOI: 10.1016/j.actbio.2023.12.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Cuproptosis is a recently identified copper-dependent form of nonapoptotic cell death and holds great prospect in cancer treatment. One of the most intriguing aspects of cuproptosis is its ability to synergize with apoptosis-based cancer treatments. Herein, we presented a novel approach using copper-coordinated nanoassemblies (CCNAs) that were constructed by incorporating a photosensitizer Zinc Phthalocyanine (ZnPc)-chemotherapeutic (DOX) prodrug with a thioketal (TK) spacer and an IDO inhibitor (1-methyl tryptophan, 1-MT) as building blocks for Cu2+-coordination self-assembly to achieve combinational apoptosis-cuproptosis and immunotherapy. Upon NIR laser irradiation, the ZnPc component of CCNAs exhibited a photodynamic effect that generated reactive oxygen species (ROS). This triggered the release of DOX, leading to enhanced tumor cell apoptosis. Additionally, the presence of Cu2+ in the CCNAs not only enhanced the photodynamic process by catalyzing oxygen generation but also promoted the aggregation of toxic mitochondrial proteins, leading to cell cuproptosis. Importantly, the intensified cuproptosis-apoptosis effect triggered an immunogenic cell death (ICD) response. The released 1-MT complemented this response by reversing the immunosuppressive tumor microenvironment (ITM), synergistically amplifying anti-tumor immunity and suppressing the growth of primary and distant tumors. The findings of this study provide a new perspective on potential cancer treatments based on cuproptosis-apoptosis synergistic immunotherapy and stimulate further research in the design of advanced metal-coordinated nanomedicines. STATEMENT OF SIGNIFICANCE: The combination of cuproptosis and apoptosis that act with different mechanisms holds enormous potential in cancer treatment. Here, copper-coordinated nanoassemblies (CCNAs) based on photosensitizer-chemo prodrugs and checkpoint inhibitors were constructed for mediating cuproptosis-apoptosis and subsequently promoting cancer immunotherapy. CCNAs not only promoted the photodynamic effect and activation of chemotherapy through catalyzing the generation of oxygen but also induced toxic mitochondrial protein aggregation, leading to cell cuproptosis. These synergistic antitumor effects triggered robust immune responses with the aid of immune checkpoint blockade, almost eradicating primary tumors and inhibiting distant tumors by around 83 % without systemic toxicity.
Collapse
Affiliation(s)
- Wenlong Liang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Institute of Biochemical Engineering, The Affiliated Qingdao Central Hospital of Qingdao University, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Chao Han
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Institute of Biochemical Engineering, The Affiliated Qingdao Central Hospital of Qingdao University, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Danlu Zhang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Institute of Biochemical Engineering, The Affiliated Qingdao Central Hospital of Qingdao University, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Chunlei Liu
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Institute of Biochemical Engineering, The Affiliated Qingdao Central Hospital of Qingdao University, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Minghao Zhu
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Institute of Biochemical Engineering, The Affiliated Qingdao Central Hospital of Qingdao University, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Feijie Xu
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Cheng Fang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Institute of Biochemical Engineering, The Affiliated Qingdao Central Hospital of Qingdao University, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Shuo Zhang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Institute of Biochemical Engineering, The Affiliated Qingdao Central Hospital of Qingdao University, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Chunzhao Liu
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Institute of Biochemical Engineering, The Affiliated Qingdao Central Hospital of Qingdao University, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Yongxin Li
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Institute of Biochemical Engineering, The Affiliated Qingdao Central Hospital of Qingdao University, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
17
|
Xu W, Liu W, Yang J, Lu J, Zhang H, Ye D. Stimuli-responsive nanodelivery systems for amplifying immunogenic cell death in cancer immunotherapy. Immunol Rev 2024; 321:181-198. [PMID: 37403660 DOI: 10.1111/imr.13237] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/06/2023]
Abstract
Immunogenic cell death (ICD) is a special pattern of tumor cell death, enabling to elicit tumor-specific immune response via the release of damage-associated molecular patterns and tumor-associated antigens in the tumor microenvironment. ICD-induced immunotherapy holds the promise for completely eliminating tumors and long-term protective antitumor immune response. Increasing ICD inducers have been discovered for boosting antitumor immunity via evoking ICD. Nonetheless, the utilization of ICD inducers remains insufficient owing to serious toxic reactions, low localization efficiency within the tumor microenvironmental niche, etc. For overcoming such limitations, stimuli-responsive multifunctional nanoparticles or nanocomposites with ICD inducers have been developed for improving immunotherapeutic efficiency via lowering toxicity, which represent a prospective scheme for fostering the utilization of ICD inducers in immunotherapy. This review outlines the advances in near-infrared (NIR)-, pH-, redox-, pH- and redox-, or NIR- and tumor microenvironment-responsive nanodelivery systems for ICD induction. Furthermore, we discuss their clinical translational potential. The progress of stimuli-responsive nanoparticles in clinical settings depends upon the development of biologically safer drugs tailored to patient needs. Moreover, an in-depth comprehending of ICD biomarkers, immunosuppressive microenvironment, and ICD inducers may accelerate the advance in smarter multifunctional nanodelivery systems to further amplify ICD.
Collapse
Affiliation(s)
- Wenhao Xu
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Wangrui Liu
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianfeng Yang
- Department of Surgery, ShangNan Branch of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiahe Lu
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Hailiang Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| |
Collapse
|
18
|
Qiu Z, Lu Z, Huang J, Zhong Y, Yan N, Kong R, Cheng H. Self-reinforced photodynamic immunostimulator to downregulate and block PD-L1 for metastatic breast cancer treatment. Biomaterials 2023; 303:122392. [PMID: 37984245 DOI: 10.1016/j.biomaterials.2023.122392] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/22/2023] [Accepted: 11/04/2023] [Indexed: 11/22/2023]
Abstract
Tumor cells overexpress programmed cell death ligand 1 (PD-L1) to impede immune responses and escape immune elimination. Development of effective combination regimens to sensitize immunotherapy is promising but always challenging. Herein, a self-reinforced photodynamic immunostimulator (designated as PCS) is constructed for metastatic breast cancer treatment through simultaneous downregulation and blockade of PD-L1. Specifically, PCS is prepared by encapsulating signal transducer and activator of transcription 3 (STAT3) inhibitor (Stattic) into photosensitizer (protoporphyrin IX) modified PD-L1 blockade peptide (CVRARTR) through drug self-assembly. PCS can facilitate the targeted drug accumulation in PD-L1 overexpressed breast cancer cells to block PD-L1 and inhibit the phosphorylation of STAT3 to downregulate PD-L1. Moreover, PCS increases intracellular oxidative stress to show a robust anti-proliferation effect through photodynamic therapy (PDT), which also triggers an immunogenic cell death (ICD) to expose the immunostimulatory signals. Consequently, the efficient PD-L1 inhibition and robust PDT of PCS synergistically suppress the malignant growth of breast cancer, and concurrently activate the systemic anti-tumor immunity for metastatic inhibition with no obvious side effects. Such a photodynamic immunostimulator may provide an effective combination regimen for therapies activated immunotherapy against metastatic breast cancer.
Collapse
Affiliation(s)
- Ziwen Qiu
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, PR China
| | - Zhenming Lu
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, PR China
| | - Jiaqi Huang
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, PR China
| | - Yingtao Zhong
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, PR China
| | - Ni Yan
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, PR China
| | - Renjiang Kong
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, PR China
| | - Hong Cheng
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, PR China.
| |
Collapse
|
19
|
Qian Y, Wang M, Xie Y, Sun Q, Gao M, Li C. Rationally Integrated Precise ER-Targeted and Oxygen-Compensated Photodynamic Immunostimulant for Immunogenicity-Boosted Tumor Therapy. Adv Healthc Mater 2023; 12:e2301728. [PMID: 37602576 DOI: 10.1002/adhm.202301728] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/29/2023] [Indexed: 08/22/2023]
Abstract
Notwithstanding that immunotherapy has made eminent clinical breakthroughs, activating the immunogenicity and breaking the immunosuppressive tumor microenvironment (ITME) remains tempting yet challenging. Herein, a customized-designed immunostimulant is engineered for attenuating ITME and eliciting an immune response to address this challenge head-on. This immunostimulant is equipped with dual silica layers coated upconversion nanoparticles (UCNPs) as nanocarriers modified with endoplasmic reticulum (ER)-targeted molecular N-p-Tosylglycine, in which the dense silica for chlorin e6 (Ce6) and the glutathione (GSH)-responsive degradable silica for loading resveratrol (RES) - (UCSMRER ). On the one hand, this precise ER-targeted photodynamic therapy (PDT) can generate reactive oxygen species (ROS) in situ under the 980 nm laser irradiation, which not only induced severe cell death directly but also caused intense ER stress-based immunogenic cell death (ICD). On the other hand, tumor hypoxia aggravated by the PDT is alleviated by RES released on-demand, which reduced oxygen consumption by impairing the mitochondrial electron transport chain (ETC). This integrated precise ER-targeted and oxygen-compensated strategy maximized the PDT effect and potentiated ICD-associated immunotherapy, which availed to attenuate ITME, activate tumor immunogenicity, and further magnify the anti-tumor effect. This innovative concept about PDT and immunotherapy sheds light on cancer-related clinical application.
Collapse
Affiliation(s)
- Yanrong Qian
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Man Wang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Yulin Xie
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Qianqian Sun
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Minghong Gao
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Chunxia Li
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| |
Collapse
|
20
|
Bian Y, Liu B, Ding B, Wang M, Yuan M, Ma P, Lin J. Tumor Microenvironment-Activated Nanocomposite for Self-Amplifying Chemodynamic/Starvation Therapy Enhanced IDO-Blockade Tumor Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303580. [PMID: 37807763 PMCID: PMC10700178 DOI: 10.1002/advs.202303580] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/06/2023] [Indexed: 10/10/2023]
Abstract
Disrupting intracellular redox homeostasis combined with immune checkpoint blockade therapy is considered as an effective way to accelerate tumor cell death. However, suppressed tumor immune microenvironment and lower cargo delivery restrict the efficiency of tumor therapy. In this study, a multifunctional tumor microenvironment (TME)-responsive nanocomposite is constructed using manganese tetroxide (Mn3 O4 )-decorated disulfide-bond-incorporated dendritic mesoporous organosilica nanoparticles (DMONs) to co-deliver indoleamine 2,3-dioxygenase (IDO) inhibitor Epacadostat (IDOi) and glucose oxidase (GOx) following modification with polyethylene glycol. Owing to the responsiveness of Mn3 O4 -decorated DMONs to the mildly acidic and glutathione (GSH) overexpressed TME, the nanocomposite can rapidly decompose and release inner contents, thus substantially improving the cargo release ability. Mn3 O4 can effectively catalyze hydrogen peroxide (H2 O2 ) decomposition to generate oxygen, enhance the ability of GOx to consume glucose to produce H2 O2 , and further promote the generation of hydroxyl radicals (•OH) by Mn2+ . Furthermore, Mn2+ -mediated GSH depletion and the production of •OH can disrupt intracellular redox homeostasis, contributing to immunogenic cell death. Simultaneously, IDOi can inhibit IDO to reverse inhibited immune response. The results show that self-amplifying chemodynamic/starvation therapy combined IDO-blockade immunotherapy synergistically inhibits tumor growth and metastasis in vivo.
Collapse
Affiliation(s)
- Yulong Bian
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Bin Liu
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
| | - Binbin Ding
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
| | - Meifang Wang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
| | - Meng Yuan
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| |
Collapse
|
21
|
Wu H, Wang R, Li S, Chen S, Liu S, Li X, Yang X, Zeng Q, Zhou Y, Zhu X, Zhang K, Tu C, Zhang X. Aspect ratio-dependent dual-regulation of the tumor immune microenvironment against osteosarcoma by hydroxyapatite nanoparticles. Acta Biomater 2023; 170:427-441. [PMID: 37634831 DOI: 10.1016/j.actbio.2023.08.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/03/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
Accumulating studies demonstrated that hydroxyapatite nanoparticles (HANPs) showed a selective anti-tumor effect, making them a good candidate for osteosarcoma (OS) treatment. However, the capacity of HANPs with different aspect ratios to regulate tumor immune microenvironment (TIM) was scarcely reported before. To explore it, the three HANPs with aspect ratios from 1.86 to 6.25 were prepared by wet chemical method. After a 24 or 72 h-exposure of OS UMR106 cells or macrophages to the nanoparticles, the tumor cells exhibited immunogenic cell death (ICD) indicated by the increased production of calreticulin (CRT), adenosine triphosphate (ATP) and high mobility group box 1 (HMGB1), and macrophages were activated with the release of pro-inflammatory cytokines. Next, the beneficial crosstalk between tumor cells and macrophages generated in the presence of HANPs for improved anti-tumor immunity activation. In the OS-bearing cognate rat model, HANPs inhibited OS growth, which was positively correlated with CRT and HMGB1 expression, and macrophage polarization in the tumor tissues. Additionally, HANPs promoted CD8+ T cell infiltration into the tumor and systemic dendritic cell maturation. Particularly, HANPs bearing the highest aspect ratio exhibited the strongest immunomodulatory and anti-tumor function. This study suggested the potential of HANPs to be a safe and effective drug-free nanomaterial to control the TIM for OS therapy. STATEMENT OF SIGNIFICANCE: Emerging studies demonstrated that hydroxyapatite nanoparticles (HANPs) inhibited tumor cell proliferation and tumor growth. However, the underlying anti-tumor mechanism still remains unclear, and the capacity of HANPs without any other additive to regulate tumor immune microenvironment (TIM) was scarcely reported before. Herein, we demonstrated that HANPs, in an aspect ratio-dependent manner, showed the potential to delay the growth of osteosarcoma (OS) and to regulate TIM by promoting the invasion of CD8+ T cells and F4/80+ macrophages, and inducing immunogenic cell death (ICD) in tumors. This work revealed the new molecular mechanism for HANPs against OS, and suggested HANPs might be a novel ICD inducer for OS treatment.
Collapse
Affiliation(s)
- Hongfeng Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China; Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Ruiqi Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan University, Chengdu 610041, China
| | - Shu Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Siyu Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Shuo Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xiangfeng Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; Provincial Engineering Research Center for Biomaterials Genome of Sichuan & Research Center for Materials Genome Engineering, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; Provincial Engineering Research Center for Biomaterials Genome of Sichuan & Research Center for Materials Genome Engineering, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Qin Zeng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Yong Zhou
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; Provincial Engineering Research Center for Biomaterials Genome of Sichuan & Research Center for Materials Genome Engineering, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Kai Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Chongqi Tu
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterials & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu 610064, China; Provincial Engineering Research Center for Biomaterials Genome of Sichuan & Research Center for Materials Genome Engineering, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
22
|
Dai Y, Zhang F, Chen K, Sun Z, Wang Z, Xue Y, Li M, Fan Q, Shen Q, Zhao Q. An Activatable Phototheranostic Nanoplatform for Tumor Specific NIR-II Fluorescence Imaging and Synergistic NIR-II Photothermal-Chemodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206053. [PMID: 36852618 DOI: 10.1002/smll.202206053] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 02/10/2023] [Indexed: 06/02/2023]
Abstract
The phototheranostics in the second near-infrared window (NIR-II) have proven to be promising for the precise cancer theranostics. However, the non-responsive and "always on" imaging mode lacks the selectivity, leading to the poor diagnosis specificity. Herein, a tumor microenvironment (TME) activated NIR-II phototheranostic nanoplatform (Ag2 S-Fe(III)-DBZ Pdots, AFD NPs) is designed based on the principle of Förster resonance energy transfer (FRET). The AFD NPs are fabricated through self-assembly of Ag2 S QDs (NIR-II fluorescence probe) and ultra-small semiconductor polymer dots (DBZ Pdots, NIR-II fluorescence quencher) utilizing Fe(III) as coordination nodes. In normal tissues, the AFD NPs maintain in "off" state, due to the FRET between Ag2 S QDs and DBZ Pdots. However, the NIR-II fluorescence signal of AFD NPs can be rapidly "turn on" by the overexpressed GSH in tumor tissues, achieving a superior tumor-to-normal tissue (T/NT) signal ratio. Moreover, the released Pdots and reduced Fe(II) ions provide NIR-II photothermal therapy (PTT) and chemodynamic therapy (CDT), respectively. The GSH depletion and NIR-II PTT effect further aggravate CDT mediated oxidative damage toward tumors, achieving the synergistic anti-tumor therapeutic effect. The work provides a promising strategy for the development of TME activated NIR-II phototheranostic nanoprobes.
Collapse
Affiliation(s)
- Yeneng Dai
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, China
| | - Fan Zhang
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Kai Chen
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Zhiquan Sun
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Zhihang Wang
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Yuwen Xue
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Meixing Li
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Quli Fan
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Qingming Shen
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Qi Zhao
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, China
| |
Collapse
|
23
|
Li J, Cao Y, Zhang X, An M, Zhang J, Liu Y. Simultaneous assaying of NLG919, tryptophan and kynurenine by ultrahigh performance LC-MS in pharmacokinetics and biodistribution studies. Bioanalysis 2023; 15:315-330. [PMID: 37083471 DOI: 10.4155/bio-2023-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
Background: Indocyanine2,3-dioxygenase (IDO) is an enzyme that can catalyze the metabolism of tryptophan (Trp) into kynurenine (Kyn), thus inhibiting the tumor immune microenvironment. Method: Based on its inhibitor, NLG919(NLG), the authors developed a new immunomodulatory polymer micelle and established and verified an ultrahigh performance liquid chromatography-mass spectrometry method for the simultaneous determination of NLG, Trp and Kyn in mouse tumors through the ratio determination of Trp/Kyn tissue distribution and pharmacokinetics. The linear range of the method was 0.001-10 μg/ml. Results: Compared with NLG solution, the immunomodulatory polymeric drug-loaded micelles based on polystyrene-arginine showed higher Trp/Kyn ratio, more tumor aggregation and good pharmacokinetics. Conclusion: This method has been successfully applied to the simultaneous determination of Trp/Kyn and NLG in tumor tissues of mice.
Collapse
Affiliation(s)
- Juan Li
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China
| | - Yongjing Cao
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China
| | - Xiaojie Zhang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China
| | - Min An
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China
| | - Juntao Zhang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China
| | - Yanhua Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China
| |
Collapse
|
24
|
Du JR, Wang Y, Yue ZH, Zhang HY, Wang H, Sui GQ, Sun ZX. Recent advances in sonodynamic immunotherapy. J Cancer Res Clin Oncol 2023; 149:1645-1656. [PMID: 35831762 DOI: 10.1007/s00432-022-04190-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/06/2022] [Indexed: 12/07/2022]
Abstract
Tumor immunotherapy has become an important means of tumor therapy by enhancing the immune response and triggering the activation of immune cells. However, currently, only a small number of patients respond to immunotherapy alone, and patients may experience immune-related adverse events (irAEs) during the course of treatment. Sonodynamic therapy (SDT) can produce cytotoxic substances to tumor tissue, induce apoptosis and enhance immunity. SDT combined with immunotherapy is considered a promising strategy for cancer treatment. In this mini review, we summarize the role of SDT in immunotherapy in recent years, including the application of SDT-triggered immunotherapy and the combination of SDT and immunotherapy.
Collapse
Affiliation(s)
- Jia-Rui Du
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Street, Changchun and Jilin, 130000, China
| | - Yang Wang
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Street, Changchun and Jilin, 130000, China
| | - Zong-Hua Yue
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Street, Changchun and Jilin, 130000, China
| | - Han-Yu Zhang
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Street, Changchun and Jilin, 130000, China
| | - Hui Wang
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Street, Changchun and Jilin, 130000, China.
| | - Guo-Qing Sui
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Street, Changchun and Jilin, 130000, China.
| | - Zhi-Xia Sun
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Street, Changchun and Jilin, 130000, China.
| |
Collapse
|
25
|
Chen SY, Zhao LP, Chen ZX, Huang CY, Kong RJ, Wang YQ, Zhang DW, Li SY, Ti HH, Cheng H. Self-delivery biomedicine for enhanced photodynamic therapy by feedback promotion of tumor autophagy. Acta Biomater 2023; 158:599-610. [PMID: 36603734 DOI: 10.1016/j.actbio.2022.12.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/16/2022] [Accepted: 12/26/2022] [Indexed: 01/03/2023]
Abstract
Reactive oxygen species (ROS) generated during photodynamic therapy (PDT) can induce autophagy to protect tumor cell from PDT-induced apoptosis. In this work, a self-delivery autophagy regulator (designated as CeCe) is developed for autophagy promotion sensitized PDT against tumor. Briefly, CeCe is prepared by the assembly of a photosensitizer of chlorin e6 (Ce6) and autophagy promoter of celastrol. By virtue of intermolecular interactions, Ce6 and celastrol are able to self-assemble into nanomedicine with great photodynamic performance and autophagy regulation capacity. Under light irradiation, CeCe would produce ROS in tumor cells to amplify the oxidative stress and promote cell autophagy. As a result, CeCe exhibits an enhanced photo toxicity by inducing autophagic cell death. In vivo experiments indicate that CeCe can predominantly accumulate in tumor tissue for a robust PDT. Moreover, CeCe has a superior therapeutic efficiency compared to monotherapy and combined treatment of Ce6 and celastrol, suggesting a synergistic antitumor effect of PDT and autophagy promotion. This self-delivery nanomedicine may advance the development of the co-delivery nanoplatform to improve the antitumor efficacy of PDT by promoting autophagy. STATEMENT OF SIGNIFICANCE: Autophagy is a "double-edged sword" in cellular homeostasis and metabolism, which can promote tumor progression but also induce an unknown impact on tumor inhibition. In this work, a self-delivery autophagy regulator (designated as CeCe) was developed for autophagy promotion sensitized photodynamic therapy (PDT). By virtue of intermolecular interactions, Ce6 and celastrol were found to self-assemble into stable CeCe without drug excipients, which exhibited great photodynamic performance and autophagy regulation capacity. In vitro and in vivo findings demonstrated a superior tumor suppression ability of CeCe over the monotherapy as well as the combined treatment of Ce6 and celastrol, suggesting a synergistic antitumor efficacy by PDT and autophagy promotion.
Collapse
Affiliation(s)
- Shao-Yi Chen
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; Department of pancreatic hepatobiliary Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510650, China
| | - Lin-Ping Zhao
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Zu-Xiao Chen
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Chu-Yu Huang
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Ren-Jiang Kong
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Yu-Qing Wang
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Da-Wei Zhang
- Department of pancreatic hepatobiliary Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510650, China.
| | - Shi-Ying Li
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| | - Hui-Hui Ti
- School of Chinese Medicinal Resource, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Hong Cheng
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
26
|
Jiang W, Cheng C, Qiu X, Chen L, Guo X, Luo Y, Wang J, Wang J, Xie Z, Li P, Wang Z, Ran H, Zhou Z, Ren J. Peptide Supramolecular Assembly-Instructed In Situ Self-Aggregation for Stratified Targeting Sonodynamic Therapy Enhancement of AIE Luminogens. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204989. [PMID: 36494092 PMCID: PMC9896067 DOI: 10.1002/advs.202204989] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/18/2022] [Indexed: 06/01/2023]
Abstract
The emergence of aggregation-induced emission luminogens (AIEgens) has attracted substantial scientific attention. However, their antitumor efficacy in photodynamic therapy (PDT) is significantly restricted by the poor water solubility and limited treatment depth. Therefore, a novel AIEgens-involved therapeutic platform with good permeability and bioavailability is urgently required. Herein, supramolecular chemistry is combined with the AIEgen bis-pyrene (BP) to construct a peptide-AIEgen hybrid nanosystem (PAHN). After intravenous injection, the versatile nanoplatform not only improved the hydrophilicity of BP but also achieved stratified targeting from tumor to mitochondrial and induced mitochondrial dysfunction, thus activating caspase-3 upregulation. Then, sonodynamic therapy (SDT), an alternative modality with high tissue penetrability, is performed to evoke reactive oxygen species (ROS) generation for BP. More importantly, since the hydrophilic shell is separated from the nanosystem by the specific cleavage of caspase-3, the resulting decrease in hydrophilicity induced tight self-aggregation of PAHN residues in situ, further allowing more absorbed energy to be used for ROS generation under ultrasound irradiation and enhancing SDT efficacy. Moreover, severe oxidative stress resulting from ROS imbalance in the mitochondria initiates the immunogenic cell death process, thus evoking antitumor immunogenicity. This PAHN provides prospective ideas into AIE-involved antitumor therapy and design of peptide-AIEgens hybrids.
Collapse
Affiliation(s)
- Weixi Jiang
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imagingthe Second Affiliated Hospital of Chongqing Medical UniversityNo.74 Linjiang Rd, Yuzhong DistrictChongqing400010P. R. China
| | - Chen Cheng
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imagingthe Second Affiliated Hospital of Chongqing Medical UniversityNo.74 Linjiang Rd, Yuzhong DistrictChongqing400010P. R. China
- Department of UltrasoundBishan Hospital of ChongqingBishan Hospital of Chongqing Medical UniversityNo. 9 Shuangxing Avenue, Biquan Street, Bishan DistrictChongqing402760P. R. China
| | - Xiaoling Qiu
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imagingthe Second Affiliated Hospital of Chongqing Medical UniversityNo.74 Linjiang Rd, Yuzhong DistrictChongqing400010P. R. China
- Department of Intensive Care Unitthe Second Affiliated Hospital of Chongqing Medical UniversityNo.74 Linjiang Rd, Yuzhong DistrictChongqing400010P. R. China
| | - Li Chen
- Department of Intensive Care Unitthe Second Affiliated Hospital of Chongqing Medical UniversityNo.74 Linjiang Rd, Yuzhong DistrictChongqing400010P. R. China
| | - Xun Guo
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imagingthe Second Affiliated Hospital of Chongqing Medical UniversityNo.74 Linjiang Rd, Yuzhong DistrictChongqing400010P. R. China
| | - Yuanli Luo
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imagingthe Second Affiliated Hospital of Chongqing Medical UniversityNo.74 Linjiang Rd, Yuzhong DistrictChongqing400010P. R. China
| | - Jingxue Wang
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imagingthe Second Affiliated Hospital of Chongqing Medical UniversityNo.74 Linjiang Rd, Yuzhong DistrictChongqing400010P. R. China
| | - Junrui Wang
- Department of Radiologythe Second Affiliated Hospital of Chongqing Medical UniversityNo.74 Linjiang Rd, Yuzhong DistrictChongqing400010P. R. China
| | - Zhuoyan Xie
- Department of UltrasoundChongqing General HospitalNO. 118 Xingguang Avenue, Liangjiang New AreaChongqing401147P. R. China
| | - Pan Li
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imagingthe Second Affiliated Hospital of Chongqing Medical UniversityNo.74 Linjiang Rd, Yuzhong DistrictChongqing400010P. R. China
| | - Zhigang Wang
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imagingthe Second Affiliated Hospital of Chongqing Medical UniversityNo.74 Linjiang Rd, Yuzhong DistrictChongqing400010P. R. China
| | - Haitao Ran
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imagingthe Second Affiliated Hospital of Chongqing Medical UniversityNo.74 Linjiang Rd, Yuzhong DistrictChongqing400010P. R. China
| | - Zhiyi Zhou
- Department of General practiceChongqing General HospitalNO. 118 Xingguang Avenue, Liangjiang New AreaChongqing401147P. R. China
| | - Jianli Ren
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imagingthe Second Affiliated Hospital of Chongqing Medical UniversityNo.74 Linjiang Rd, Yuzhong DistrictChongqing400010P. R. China
| |
Collapse
|
27
|
Yang T, Zhou M, Gao M, Qin W, Wang Q, Peng H, Yao W, Qiao L, He X. Carrier-Free H 2 O 2 Self-Supplier for Amplified Synergistic Tumor Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205692. [PMID: 36494182 DOI: 10.1002/smll.202205692] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Chemodynamic therapy (CDT) utilizes Fenton or Fenton-like reactions to convert hydrogen peroxide (H2 O2 ) into cytotoxic hydroxyl radicals (•OH) and draws extensive interest in tumor therapy. Nevertheless, high concentrations of glutathione (GSH) and insufficient endogenous H2 O2 often cause unsatisfactory therapeutic efficacy. Herein, a GSH-depleting and H2 O2 self-providing carrier-free nanomedicine that can efficiently load indocyanine green (ICG), β-lapachone (LAP), and copper ion (Cu2+ ) (ICG-Cu2+ -LAP, LICN) to mediate synergetic photothermal and chemotherapy in enhanced chemodynamic therapy is designed. The results show that LICNs successfully enter tumors owing to the enhanced permeability and retention effect. Through the reductive intracellular environment, Cu2+ in LICN can react with intracellular GSH, alleviate the antioxidant capacity of tumor tissues, and trigger the release of drugs. When LICN is subjected to near-infrared (NIR) irradiation, enhanced photothermal effect and upregulated expression of NAD(P)H quinone oxidoreductase-1 (NQO1) are observed. Meanwhile, the released LAP not only supports chemotherapy but also catalyzes NQO1 and produces sufficient endogenous H2 O2 , thereby increasing the efficiency of Cu+ -based Fenton-like reaction. Notably, GSH depletion and H2 O2 self-sufficiency generate sufficient •OH and kill tumor cells with high specificity. Overall, the study provides an innovative strategy to self-regulate GSH and H2 O2 levels for effective anticancer therapy.
Collapse
Affiliation(s)
- Tianhao Yang
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Man Zhou
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Min Gao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Weiji Qin
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Qian Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Hui Peng
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Wanqing Yao
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Lei Qiao
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaoyan He
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
28
|
Mai Z, Zhong J, Zhang J, Chen G, Tang Y, Ma W, Li G, Feng Z, Li F, Liang XJ, Yang Y, Yu Z. Carrier-Free Immunotherapeutic Nano-Booster with Dual Synergistic Effects Based on Glutaminase Inhibition Combined with Photodynamic Therapy. ACS NANO 2023; 17:1583-1596. [PMID: 36595443 DOI: 10.1021/acsnano.2c11037] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The immunotherapeutic effect elicited by photodynamic therapy (PDT) is attenuated by tumor defense mechanisms associated with glutamine metabolism, including the metabolic regulation of redox homeostasis and the limitation of the immunosuppressive tumor microenvironment (ITM). Herein, a carrier-free immunotherapeutic nanobooster C9SN with dual synergistic effects was constructed by the self-assembly of glutaminase (GLS) inhibitor compound 968 (C968) and photosensitizer Chlorin e6. C968-mediated GSH deprivation through inhibiting glutamine metabolism prevented PDT-generated reactive oxygen species from being annihilated by GSH, amplifying intracellular oxidative stress, which caused severe cell death and also enhanced the immunogenic cell death (ICD) effect. In addition, genome-wide analysis was carried out using RNA-sequencing to evaluate the changes in cell transcriptome induced by amplifying oxidative stress. Thereafter, neoantigens generated by the enhanced ICD effect promoted the maturation of dendritic cells, thereby recruiting and activating cytotoxic T lymphocytes (CTLs). Meanwhile, C9SN remodeled the ITM by blocking glutamine metabolism to polarize M2-type tumor-associated macrophages (TAMs) into M1-type TAMs, which further recruited and activated the CTLs. Ultimately, this immunotherapeutic nanobooster suppressed primary and distant tumors. This "kill two birds with one stone" strategy would shed light on enhancing tumor immunogenicity and alleviating tumor immunosuppression to improve the immunotherapeutic effect of PDT.
Collapse
Affiliation(s)
- Ziyi Mai
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan 523018, China
| | - Jing Zhong
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Jiasi Zhang
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan 523018, China
- Department of Galactophore, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong 523059, China
| | - Guimei Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan 523018, China
| | - Yan Tang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan 523018, China
| | - Wen Ma
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan 523018, China
| | - Guang Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhenzhen Feng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan 523018, China
| | - Fangzhou Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan 523018, China
| | - Zhiqiang Yu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan 523018, China
| |
Collapse
|
29
|
Yao D, Wang Y, Bian K, Zhang B, Wang D. A self-cascaded unimolecular prodrug for pH-responsive chemotherapy and tumor-detained photodynamic-immunotherapy of triple-negative breast cancer. Biomaterials 2023; 292:121920. [PMID: 36442436 DOI: 10.1016/j.biomaterials.2022.121920] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 11/10/2022] [Accepted: 11/20/2022] [Indexed: 11/22/2022]
Abstract
Despite the success of immune checkpoint blockade (ICB) therapy in cancer management, ICB-based immunotherapy of triple-negative breast cancer (TNBC) still suffers from immunosuppressive tumor microenvironment (ITM). To break through the bottleneck of TNBC immunotherapy, a self-cascaded unimolecular prodrug consisting of an acidic pH-activatable doxorubicin and an aggregation-induced emission luminogen (AIEgen) photosensitizer coupled to a caspase-3-responsive peptide was engineered. The generated prodrug, could not only release doxorubicin initiatively in acidic tumor microenvironment, but also activate apoptosis-related caspase-3. The activated caspase-3 could in turn trigger release and in situ aggregation of photosensitizers. Importantly, the unimolecular prodrug exhibits a renal clearance pathway similar to small molecules in vivo, while the aggregated AIEgens prolong tumor retention for long-term fluorescence imaging and repeatable photodynamic therapy (PDT) by only one single-dose injection. Furthermore, the tumor-detained PDT boosts both immunogenic cell death of TNBC cells and maturation of dendritic cells. Finally, the combination of repeatable PDT with ICB therapy further promotes the proliferation and intratumoral infiltration of cytotoxic T lymphocytes, and effectively suppresses tumor growth and pulmonary metastasis. This prodrug is a proof-of-concept that confirms the first self-cascaded chemo-PDT strategy to reverse the ITM and boost the ICB-mediated TNBC immunotherapy.
Collapse
Affiliation(s)
- Defan Yao
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yanshu Wang
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Kexin Bian
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200065, China
| | - Bingbo Zhang
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200065, China.
| | - Dengbin Wang
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
30
|
Wang M, Chang M, Zheng P, Sun Q, Wang G, Lin J, Li C. A Noble AuPtAg-GOx Nanozyme for Synergistic Tumor Immunotherapy Induced by Starvation Therapy-Augmented Mild Photothermal Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202332. [PMID: 36156451 PMCID: PMC9631081 DOI: 10.1002/advs.202202332] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/14/2022] [Indexed: 06/16/2023]
Abstract
Notwithstanding immune checkpoint blocking (ICB) therapy has made eminent clinical breakthroughs, overcoming immunologically "cold" tumors remains challenging. Here, a cascade potentiated nanomodulator AuPtAg-GOx is engineered for boosting immune responsiveness. Upon 1064 nm laser irradiation, AuPtAg-mediated mild photothermal therapy (PTT) activates cytotoxic T lymphocytes and reverses the immunogenic "cold" tumor microenvironment. Further, to amplify the thermal sensitivity of tumor cells, glucose oxidase (GOx) is introduced to suppress the production of heat shock proteins, thereby promoting mild photothermal therapy. Complementarily, AuPtAg nanozymes with catalase-like activity can ameliorate tumor hypoxia, significantly improving the GOx activity. As a result, the combination of AuPtAg-GOx with self-augmented photothermal ability and PD-L1 antibody can further escalate the antitumor efficacy. The AuPtAg-GOx-based synergistic starvation therapy, mild PTT, and immunotherapy cascade enhancement therapy strategy can be a favorable tool to effectively kill cancer cells.
Collapse
Affiliation(s)
- Man Wang
- Institute of Molecular Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| | - Mengyu Chang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| | - Pan Zheng
- Institute of Molecular Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| | - Qianqian Sun
- Institute of Molecular Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| | - Guangqiang Wang
- Department of Respiratory MedicineQilu HospitalShandong UniversityQingdao266071P. R. China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| | - Chunxia Li
- Institute of Molecular Sciences and EngineeringInstitute of Frontier and Interdisciplinary ScienceShandong UniversityQingdao266237P. R. China
| |
Collapse
|
31
|
Chen Y, Luo X, Liu Y, Zou Y, Yang S, Liu C, Zhao Y. Targeted Nanobubbles of PD-L1 mAb Combined with Doxorubicin as a Synergistic Tumor Repressor in Hepatocarcinoma. Int J Nanomedicine 2022; 17:3989-4008. [PMID: 36105615 PMCID: PMC9464779 DOI: 10.2147/ijn.s376172] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/21/2022] [Indexed: 12/14/2022] Open
Abstract
Purpose Ultrasound nanobubbles (NBs) can kill tumor cells, mediated by their effects of cavitation and acoustic perforation through ultrasound, while as novel drug carriers, biomaterial-modified NBs release drugs at a target region. In this work, the ultrasound NBs bridged by biotin-streptavidin were prepared simultaneously to be loaded with both programmed death ligand 1 monoclonal antibody (PD-L1 mAb) and doxorubicin (DOX), which are immune checkpoint inhibitors (ICIs) and chemotherapeutic agents, to synergize immunotherapy and chemotherapy combined with sonodynamic therapy (SDT). Methods The PD-L1 mAb/DOX NBs, using bridging affinity biotin (BRAB) technology as a bridge, were prepared by thin-film hydration and mechanical oscillation for the targeted delivery of biotinylated PD-L1 mAb and DOX. Characterization and pharmacokinetic studies of PD-L1 mAb/DOX NBs were performed in vitro and in vivo. The antitumor effect of ultrasound-mediated PD-L1 mAb/DOX-NBs was studied in the subcutaneously transplanted tumor of the H22 hepatoma model, and the mechanism of synergistic tumor repression was investigated. Results The data of in vitro targeting experiments, contrast-enhanced ultrasound imaging (CEUS), in vivo imaging of the small animals imaging system (IVIS), and frozen sections showed that PD-L1 mAb/DOX-NBs have well-targeted aggregation in the tumor. By observing tumor inhibition rate, tissue cell apoptosis, and apoptosis-related gene and protein expression, the PD-L1 mAb/DOX-NBs group showed the best immunotherapy effects, and its tumor volume and mass inhibition rates were about 69.64% and 75.97%, respectively (P < 0.01). Therefore, blocking the PD-1/PD-L1 pathway could improve immune cells’ tumor-killing ability. Antitumor immune cytokines were further enhanced when combined with DOX-induced tumor cell apoptosis and immunogenic cell death (ICD). Conclusion In summary, ultrasound-mediated PD-L1 mAb/DOX-NBs showed significant synergistic antitumor effects, providing a potential combined immunotherapy strategy for HCC.
Collapse
Affiliation(s)
- Yezi Chen
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, People's Republic of China.,Medical College of China Three Gorges University, Yichang, People's Republic of China
| | - Xiaoqin Luo
- Medical College of China Three Gorges University, Yichang, People's Republic of China.,Department of Medical Imaging Center, Renmin Hospital Affiliated to Hubei University of Medicine, Shiyan, People's Republic of China
| | - Yun Liu
- Department of Ultrasonography, Yichang Central People's Hospital, Yichang, People's Republic of China
| | - Yunlei Zou
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, People's Republic of China.,Medical College of China Three Gorges University, Yichang, People's Republic of China
| | - Shiqi Yang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, People's Republic of China.,Medical College of China Three Gorges University, Yichang, People's Republic of China
| | - Chaoqi Liu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, People's Republic of China.,Medical College of China Three Gorges University, Yichang, People's Republic of China
| | - Yun Zhao
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, People's Republic of China.,Medical College of China Three Gorges University, Yichang, People's Republic of China
| |
Collapse
|
32
|
Tu Y, Xiao X, Dong Y, Li J, Liu Y, Zong Q, Yuan Y. Cinnamaldehyde-based poly(thioacetal): A ROS-awakened self-amplifying degradable polymer for enhanced cancer immunotherapy. Biomaterials 2022; 289:121795. [PMID: 36108580 DOI: 10.1016/j.biomaterials.2022.121795] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 08/27/2022] [Accepted: 09/02/2022] [Indexed: 11/19/2022]
Abstract
Although stimuli-responsive polymers have emerged as promising strategies for intelligent cancer therapy, limited polymer degradation and insufficient drug release remain a challenge. Here, we report a novel reactive oxygen species (ROS)-awakened self-amplifying degradable cinnamaldehyde (CA)-based poly(thioacetal) polymer. The polymer consists of ROS responsive thioacetal (TA) group and CA as the ROS generation agent. The self-amplified polymer degradation process is triggered by endogenous ROS-induced cleavage of the TA group to release CA. The CA released then promotes the generation of more ROS through mitochondrial dysfunction, resulting in amplified polymer degradation. More importantly, poly(thioacetal) itself can trigger immunogenic cell death (ICD) of the tumor cells and its side chains can be conjugated with indoleamine 2,3-dioxygenase 1 (IDO-1) inhibitor to reverse the immunosuppressive tumor microenvironment for synergistic cancer immunotherapy. The self-amplified degradable poly(thioacetal) developed in this work provides insights into the development of novel stimulus-responsive polymers for enhanced cancer immunotherapy.
Collapse
Affiliation(s)
- Yalan Tu
- School of Medicine, South China University of Technology, Guangzhou, 510006, PR China
| | - Xuan Xiao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China; Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Yansong Dong
- School of Medicine, South China University of Technology, Guangzhou, 510006, PR China
| | - Jisi Li
- School of Medicine, South China University of Technology, Guangzhou, 510006, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, PR China
| | - Ye Liu
- School of Medicine, South China University of Technology, Guangzhou, 510006, PR China
| | - Qingyu Zong
- School of Medicine, South China University of Technology, Guangzhou, 510006, PR China
| | - Youyong Yuan
- School of Medicine, South China University of Technology, Guangzhou, 510006, PR China; School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
33
|
Hu C, Hou B, Xie S. Application of nanosonosensitizer materials in cancer sono-dynamic therapy. RSC Adv 2022; 12:22722-22747. [PMID: 36105955 PMCID: PMC9376763 DOI: 10.1039/d2ra03786f] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/26/2022] [Indexed: 11/21/2022] Open
Abstract
Sonodynamic therapy (SDT) is a novel non-invasive treatment for cancer combining low-intensity ultrasound and sonosensitizers. SDT activates sonosensitizers through ultrasound, releasing energy and generating reactive oxygen species to kill tumor cells. Compared with traditional photodynamic therapy (PDT), SDT is a promising anti-cancer therapy with the advantages of better targeting, deeper tissue penetration, and higher focusing ability. With the development and broad application of nanomaterials, novel sonosensitizers with tumor-targeting specificity can deliver to deep tumors and enhance the tumor microenvironment. In this review, we first review the mechanisms of sonodynamic therapy. In addition, we also focus on the current types of sonosensitizers and the latest design strategies of nanomaterials in sonosensitizers. Finally, we summarize the combined strategy of sonodynamic therapy.
Collapse
Affiliation(s)
- Chaotao Hu
- Department of Hand and Foot Microsurgery, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China China
| | - Biao Hou
- Department of Hand and Foot Microsurgery, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China China
| | - Songlin Xie
- Department of Hand and Foot Microsurgery, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China China
| |
Collapse
|
34
|
Ding F, Li F, Tang D, Wang B, Liu J, Mao X, Yin J, Xiao H, Wang J, Liu Z. Restoration of the Immunogenicity of Tumor Cells for Enhanced Cancer Therapy via Nanoparticle‐Mediated Copper Chaperone Inhibition. Angew Chem Int Ed Engl 2022; 61:e202203546. [DOI: 10.1002/anie.202203546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Indexed: 12/22/2022]
Affiliation(s)
- Feixiang Ding
- Department of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics and National Clinical Research Center for Geriatric Disorders Xiangya Hospital Central South University Changsha 410008 P. R. China
- Institute of Clinical Pharmacology Engineering Research Center for applied Technology of Pharmacogenomics of Ministry of Education Central South University Changsha 410078 P. R. China
| | - Fei Li
- Department of Chemical Biology State Key Laboratory of Natural and Biomimetic Drugs and Department of Chemical Biology School of Pharmaceutical Sciences Peking University Beijing 100191 P. R. China
| | - Dongsheng Tang
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Polymer Physics and Chemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Bin Wang
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Polymer Physics and Chemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Junyan Liu
- Department of Orthopaedics Xiangya Hospital Central South University Changsha 410008 P. R. China
| | - Xiaoyuan Mao
- Department of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics and National Clinical Research Center for Geriatric Disorders Xiangya Hospital Central South University Changsha 410008 P. R. China
- Institute of Clinical Pharmacology Engineering Research Center for applied Technology of Pharmacogenomics of Ministry of Education Central South University Changsha 410078 P. R. China
| | - Jiye Yin
- Department of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics and National Clinical Research Center for Geriatric Disorders Xiangya Hospital Central South University Changsha 410008 P. R. China
- Institute of Clinical Pharmacology Engineering Research Center for applied Technology of Pharmacogenomics of Ministry of Education Central South University Changsha 410078 P. R. China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Polymer Physics and Chemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Jing Wang
- Department of Chemical Biology State Key Laboratory of Natural and Biomimetic Drugs and Department of Chemical Biology School of Pharmaceutical Sciences Peking University Beijing 100191 P. R. China
| | - Zhaoqian Liu
- Department of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics and National Clinical Research Center for Geriatric Disorders Xiangya Hospital Central South University Changsha 410008 P. R. China
- Institute of Clinical Pharmacology Engineering Research Center for applied Technology of Pharmacogenomics of Ministry of Education Central South University Changsha 410078 P. R. China
| |
Collapse
|
35
|
Shi M, Zhang J, Wang Y, Han Y, Zhao X, Hu H, Qiao M, Chen D. Blockage of the IDO1 pathway by charge-switchable nanoparticles amplifies immunogenic cell death for enhanced cancer immunotherapy. Acta Biomater 2022; 150:353-366. [PMID: 35843594 DOI: 10.1016/j.actbio.2022.07.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/15/2022] [Accepted: 07/10/2022] [Indexed: 02/08/2023]
Abstract
Immunosuppressive tumor microenvironment (ITM), poor immunogenicity and low tumor penetration markedly reduce the tumor immunotherapy capability. To address these hurdles, we successfully engineered acidity-triggered nanoparticles (NPs) with size-reduction and charge-switchable to boost tumor immunotherapy based on indoleamine 2,3-dioxygenase 1 siRNA (IDO1 siRNA) and immunogenic cell death (ICD). The NPs significantly augmented tumor penetrating ability and improved cellular uptake via the detachment of 2,3-dimethylmaleic anhydride grafted poly(ethylene glycol)-poly(L-lysine) copolymer (mPEG-PLL-DMA, PLM) from large-sized NPs with a negative charge. Subsequently, the NPs with a positive charge and small size rapidly escaped from the lysosomes and released mitoxantrone (MIT) and IDO1 siRNA. The antitumor immune response of IDO1 siRNA and MIT provided good antitumor capability through enhancing DCs maturation, improving numbers of CTLs and downregulating the level of Tregs in tumor tissues. In summary, the results demonstrated that charge-switchable NPs based on blockage of the IDO1 pathway and ICD activation induce an efficient antitumor immune response, thus showing high potential for treating primary/distant tumor and reducing metastasis. STATEMENT OF SIGNIFICANCE: Acidity-triggered nanoparticles (NPs) with size-reduction and charge-switchable to boost tumor immunotherapy based on indoleamine 2,3-dioxygenase 1 siRNA (IDO1 siRNA) and immunogenic cell death (ICD) were engineered. NPs augmented tumor penetrating ability and improved cellular uptake via the detachment of mPEG-PLL-DMA (PLM) from large-sized MIT/siR-PLM/PPA NPs with negative charge to expose miniature and positively charged MIT/siR-PPA NPs. The NPs rapidly escaped from the lysosome and sequentially released mitoxantrone (MIT) and IDO1 siRNA. The antitumor immune synergistic effect of inhibiting the IDO1 pathway by IDO1 siRNA and inducting ICD by MIT provided dramatic antitumor capability through enhancing DCs maturation, improving numbers of CTLs and downregulating the level of Tregs in tumor tissues. And the NPs revealed a promising pathway against aggressive and difficult-to-treat cancers.
Collapse
Affiliation(s)
- Menghao Shi
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Jiulong Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Yu Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Yanyan Han
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Xiuli Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Haiyang Hu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Mingxi Qiao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Dawei Chen
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, Liaoning 110016, PR China.
| |
Collapse
|
36
|
Deng F, Yan M, Liu Y, Wang R, He H, Chen A, Wang J, Xu L, Yang B, Cheng H, Li S. Self-delivery of metal-coordinated mitochondria protonophore uncoupler for O2-exhausting enhanced bioreductive therapy. Biomaterials 2022; 286:121576. [DOI: 10.1016/j.biomaterials.2022.121576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 11/02/2022]
|
37
|
Ding X, Wang T, Bai S, Wan Y, Zhu S, Li T, Peng N, Qiu T, Liu Y. Multifunction in One Nanoparticle for Anticancer Therapy: Bowl-Shaped Au@PDA Yolk-Shell NPs. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27733-27742. [PMID: 35675694 DOI: 10.1021/acsami.2c07671] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Multifunctional nanoparticles (NPs) with simultaneous multimodal therapeutic and imaging capabilities are very necessary for biomedical applications. We successfully prepared bowl-shaped gold@polydopamine yolk-shell NPs (bowl-shaped Au@PDA YNPs) by a novel and facile method. The unique bowl-like structure enables a drug loading rate of 92% (920 μg mg-1). The bowl-shaped Au@PDA YNPs are biocompatible, have good photothermal conversion and strong near-infrared (NIR) absorption, and can control drug release under pH/NIR dual response. Bowl-shaped Au@PDA YNPs can also be employed as contrast agents for computed tomography/photoacoustic imaging for dual-modal imaging-guided chemotherapy and photothermal therapy due to the presence of Au NPs.
Collapse
Affiliation(s)
- Xin Ding
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province & Institute of Advanced Technology and Nanomaterials, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Tianyu Wang
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan 430060, P. R. China
| | - Shiwei Bai
- Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Yunfeng Wan
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province & Institute of Advanced Technology and Nanomaterials, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Shuai Zhu
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province & Institute of Advanced Technology and Nanomaterials, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Tao Li
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province & Institute of Advanced Technology and Nanomaterials, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Na Peng
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province & Institute of Advanced Technology and Nanomaterials, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Tao Qiu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan 430060, P. R. China
| | - Yi Liu
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province & Institute of Advanced Technology and Nanomaterials, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry, Tiangong University, Tianjin 300387, P. R. China
| |
Collapse
|
38
|
Ding F, Li F, Tang D, Wang B, Liu J, Mao X, Yin J, Xiao H, Wang J, Liu Z. Restoration of the Immunogenicity of Tumor Cells for Enhanced Cancer Therapy via Nanoparticle‐Mediated Copper Chaperone Inhibition. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Feixiang Ding
- Department of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics and National Clinical Research Center for Geriatric Disorders Xiangya Hospital Central South University Changsha 410008 P. R. China
- Institute of Clinical Pharmacology Engineering Research Center for applied Technology of Pharmacogenomics of Ministry of Education Central South University Changsha 410078 P. R. China
| | - Fei Li
- Department of Chemical Biology State Key Laboratory of Natural and Biomimetic Drugs and Department of Chemical Biology School of Pharmaceutical Sciences Peking University Beijing 100191 P. R. China
| | - Dongsheng Tang
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Polymer Physics and Chemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Bin Wang
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Polymer Physics and Chemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Junyan Liu
- Department of Orthopaedics Xiangya Hospital Central South University Changsha 410008 P. R. China
| | - Xiaoyuan Mao
- Department of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics and National Clinical Research Center for Geriatric Disorders Xiangya Hospital Central South University Changsha 410008 P. R. China
- Institute of Clinical Pharmacology Engineering Research Center for applied Technology of Pharmacogenomics of Ministry of Education Central South University Changsha 410078 P. R. China
| | - Jiye Yin
- Department of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics and National Clinical Research Center for Geriatric Disorders Xiangya Hospital Central South University Changsha 410008 P. R. China
- Institute of Clinical Pharmacology Engineering Research Center for applied Technology of Pharmacogenomics of Ministry of Education Central South University Changsha 410078 P. R. China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Polymer Physics and Chemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Jing Wang
- Department of Chemical Biology State Key Laboratory of Natural and Biomimetic Drugs and Department of Chemical Biology School of Pharmaceutical Sciences Peking University Beijing 100191 P. R. China
| | - Zhaoqian Liu
- Department of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics and National Clinical Research Center for Geriatric Disorders Xiangya Hospital Central South University Changsha 410008 P. R. China
- Institute of Clinical Pharmacology Engineering Research Center for applied Technology of Pharmacogenomics of Ministry of Education Central South University Changsha 410078 P. R. China
| |
Collapse
|
39
|
Zhang D, Meng Y, Song Y, Cui P, Hu Z, Zheng X. Precision therapy through breaking the intracellular redox balance with an MOF-based hydrogel intelligent nanobot for enhancing ferroptosis and activating immunotherapy. NANOSCALE 2022; 14:8441-8453. [PMID: 35647731 DOI: 10.1039/d2nr00950a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With the advancement and development of nanomedicine, tumor precision therapy provides technical support for effective accumulation and targeted drug delivery, and reduces toxic side effects. In cancer cells, breaking the redox balance could induce cancer cell death. Herein, a novel iron-containing intelligent hydrogel nanobot (FeSe2-Ce6/MOF@HA/PEI/CpG@HHPA NPs, abbreviated as FSMH) is proposed to break the intracellular redox balance and trigger the immune response. The as-fabricated multifunctional FSMH could not only exert Fenton reactions in the acidic tumor microenvironment, converting hydrogen peroxide (H2O2) into highly toxic hydroxyl radicals (˙OH), but also effectively consume GSH to attenuate the intracellular oxidative stress. The negative charge of the FSMH nanohydrogel system guarantees its superexcellent stabilization in blood circulation and optimal tumor collection. Subsequently, the surface charge of the endocytosed FSMH was transformed to a positive charge after exposure to the acidic tumor environment, further improving its tumor collection and locally releasing Fe ions and immune adjuvants. Furthermore, Ce6 was released in a pH-responsive manner in the acidic microenvironment. In the presence of near-infrared light, singlet oxygen was produced by the FSMH nanohydrogel system, to ablate tumors and promote the maturation of dendritic cells, achieving the precision-combined strategies effect of CDT, PDT, and immunotherapy.
Collapse
Affiliation(s)
- Dongsheng Zhang
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi 276000, Shandong, P.R. China.
| | - Yanfei Meng
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi 276000, Shandong, P.R. China.
- College of Chemistry & Chemical Engineering, Linyi University, Linyi 276000, Shandong, P.R. China
| | - Yingzi Song
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi 276000, Shandong, P.R. China.
- College of Chemistry & Chemical Engineering, Linyi University, Linyi 276000, Shandong, P.R. China
| | - Ping Cui
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi 276000, Shandong, P.R. China.
- College of Chemistry & Chemical Engineering, Linyi University, Linyi 276000, Shandong, P.R. China
| | - Zunfu Hu
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi 276000, Shandong, P.R. China.
- School of Material Science and Engineering, Linyi University, Linyi 276000, Shandong, P.R. China
| | - Xiuwen Zheng
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, Linyi University, Linyi 276000, Shandong, P.R. China.
- College of Chemistry & Chemical Engineering, Linyi University, Linyi 276000, Shandong, P.R. China
| |
Collapse
|
40
|
Xu Q, Chen G, Chen G, Wu H, Yang Y, Mai Z, Sun R, Luan P, Guo C, Yu M, Peng Z, Yu Z. NO-dependent vasodilation and deep tumor penetration for cascade-amplified antitumor performance. J Control Release 2022; 347:389-399. [PMID: 35569586 DOI: 10.1016/j.jconrel.2022.05.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 04/22/2022] [Accepted: 05/09/2022] [Indexed: 01/02/2023]
Abstract
Nonspecific biodistribution and poor permeability of conventional therapeutic agents in solid tumors severely compromised the antitumor efficacy. Herein, we report a cascade tumor therapeutic nanoplatform consisting of docosahexaenoic acid (DHA) and nicorandil (NI), namely DNP, to specifically produce cytotoxic agents in tumor cells as well as dilating blood vessels to increase the intratumoral oxidative stress levels. The DHA embedded in the membrane could generate reactive oxygen species (ROS) meanwhile NI produced nitric oxide (NO) in response to intracellular glutathione (GSH) in tumors. Notably, the two functional species could further react in situ to form a more tumoricidal reactive nitrogen species (RNS), causing selectively cascade amplification of antitumor performance. In addition, NO-induced vasodilation could consequently result in a series of functions, including hypoxia relief and deep tumor transportation. In general, we anticipate that the DNP could show great potential for tumor-specific treatment by selectively producing RNS precursors in response to the interior environment of tumor cells for hypoxia normalization and tumor inhibition.
Collapse
Affiliation(s)
- Qing Xu
- Guangdong Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Gui Chen
- Guangdong Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Guimei Chen
- Guangdong Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hualan Wu
- The First Clinical Medical School, Southern Medical University, Guangzhou 510515, China
| | - Yuanyuan Yang
- Guangdong Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ziyi Mai
- Guangdong Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Rui Sun
- Guangdong Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ping Luan
- Guangdong Second Provincial General Hospital & Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Chaowan Guo
- Guangdong Marubi Biotechnology Co., Ltd. No 92 Banhe Road, Huangpu District, Guangzhou 510700, China
| | - Meng Yu
- Guangdong Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Zhenwei Peng
- Department of Radiation Oncology, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China.
| | - Zhiqiang Yu
- Guangdong Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
41
|
Zhang J, Sun X, Zhao X, Liu L, Cheng X, Yang C, Hu H, Qiao M, Chen D, Zhao X. Watson-Crick Base Pairing-Inspired Laser/GSH Activatable miRNA-Coordination Polymer Nanoplexes for Combined Cancer Chemo-Immuno-Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20762-20777. [PMID: 35476413 DOI: 10.1021/acsami.2c03523] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The tumor immunosuppressive microenvironment (TIM) greatly hindered the efficacy of cancer immunotherapy. Overexpressed indoleamine 2,3-dioxygenase-1 (IDO1) in tumor tissues plays a vital role in TIM generation, and downregulation of IDO1 expression may reverse TIM. Inspired by the Watson-Crick base-pairing rule, a versatile noncationic miRNA vector (miDAC@PDA) is developed for cancer immunotherapy. Doxorubicin (DOX), adenosine triphosphate (ATP), and copper ions (Cu2+) are coassembled into coordination polymer nanoparticles (DAC) and bind miRNA via the hydrogen bond interaction (miDAC) between adenine residues (ATP) and uracil residues (miRNA). Polydopamine (PDA) is deposited onto the surface of miDAC for photothermal therapy. miDAC@PDA can efficiently accumulate into tumor tissues for cellular uptake. Under laser irradiation and high intracellular GSH levels, the PDA shell of miDAC@PDA can dissociate from miDAC for miRNA release due to local hyperthermia. Cu2+-mediated GSH consumption and intracellular ATP release can amplify the DOX-based immunogenic cell death (ICD) cascade, together with miR-448-mediated IDO1 inhibition, and these versatile nanoplexes will not only restrain primary tumor growth but also display a remarkable abscopal effect on distant tumors. Collectively, our study provides a unique strategy for intracellular gene delivery and an inspirational approach for multimechanism cancer management.
Collapse
Affiliation(s)
- Jiulong Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Xiaoyan Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Xiufeng Zhao
- Department of Oncology, Affiliated Hongqi Hospital of Mudanjiang Medical College, Mudanjiang 157011, P. R. China
| | - Lin Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Xin Cheng
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Chunrong Yang
- Department of Pharmacy, Shantou University Medical College, Xinling Road, No. 22, Shantou 515041, P. R. China
| | - Haiyang Hu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Mingxi Qiao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Dawei Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Xiuli Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| |
Collapse
|
42
|
Liu Y, Deng F, Zheng R, Chen X, Zhao L, Yu B, Chen A, Jiang X, Cheng H, Li S. Self-delivery nanomedicine for vascular disruption-supplemented chemo-photodynamic tumor therapy. J Colloid Interface Sci 2022; 612:562-571. [PMID: 35026565 DOI: 10.1016/j.jcis.2021.12.128] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/09/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022]
Abstract
Tumor vascular blockade is a promising strategy for adjuvant cancer treatment. In this work, a self-delivery nanomedicine is developed based on a vascular disruptor and photosensitizer for tumor synergistic therapy. Specifically, this nanomedicine (designated as CeCA) is comprised of combretastatin A4 (CA4) and chlorine e6 (Ce6) by self-assembly technique. Among which, CA4 could not only induce tubulin inhibition for chemotherapy but also disrupt the vasculature to cause tumor hemorrhage. Moreover, Ce6 is able to generate lots of singlet oxygen (1O2) for synergistic photodynamic therapy (PDT) under light irradiation. It is interesting that the carrier-free CeCA possessed a favorable stability and an improved cellular uptake behavior. After intravenous administration, CeCA prefers to accumulate at tumor site for vascular disruption-supplemented chemo-photodynamic therapy. Notably, CeCA is prepared without additional carriers, which avoids the system toxicity raised by excipients. Consequently, CeCA greatly inhibits the tumor growth and leads to a low side effect in vivo. It might open a window in the development of self-supplementary nanomedicine for synergistic tumor treatment.
Collapse
Affiliation(s)
- Yibin Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Fuan Deng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Rongrong Zheng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Xiayun Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Linping Zhao
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Baixue Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Ali Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Xueyan Jiang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Hong Cheng
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, PR China.
| | - Shiying Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China.
| |
Collapse
|
43
|
Zhang J, Lin Y, Lin Z, Wei Q, Qian J, Ruan R, Jiang X, Hou L, Song J, Ding J, Yang H. Stimuli-Responsive Nanoparticles for Controlled Drug Delivery in Synergistic Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103444. [PMID: 34927373 PMCID: PMC8844476 DOI: 10.1002/advs.202103444] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/28/2021] [Indexed: 05/10/2023]
Abstract
Cancer immunotherapy has achieved promising clinical progress over the recent years for its potential to treat metastatic tumors and inhibit their recurrences effectively. However, low patient response rates and dose-limiting toxicity remain as major dilemmas for immunotherapy. Stimuli-responsive nanoparticles (srNPs) combined with immunotherapy offer the possibility to amplify anti-tumor immune responses, where the weak acidity, high concentration of glutathione, overexpressions of enzymes, and reactive oxygen species, and external stimuli in tumors act as triggers for controlled drug release. This review highlights the design of srNPs based on tumor microenvironment and/or external stimuli to combine with different anti-tumor drugs, especially the immunoregulatory agents, which eventually realize synergistic immunotherapy of malignant primary or metastatic tumors and acquire a long-term immune memory to prevent tumor recurrence. The authors hope that this review can provide theoretical guidance for the construction and clinical transformation of smart srNPs for controlled drug delivery in synergistic cancer immunotherapy.
Collapse
Affiliation(s)
- Jin Zhang
- Qingyuan Innovation LaboratoryCollege of Chemical EngineeringFuzhou University2 Xueyuan RoadFuzhou350108P. R. China
| | - Yandai Lin
- Qingyuan Innovation LaboratoryCollege of Chemical EngineeringFuzhou University2 Xueyuan RoadFuzhou350108P. R. China
| | - Zhe Lin
- Ruisi (Fujian) Biomedical Engineering Research Center Co LtdFuzhou350100P. R. China
| | - Qi Wei
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
- State Key Laboratory of Molecular Engineering of PolymersFudan University220 Handan RoadShanghai200433P. R. China
| | - Jiaqi Qian
- Qingyuan Innovation LaboratoryCollege of Chemical EngineeringFuzhou University2 Xueyuan RoadFuzhou350108P. R. China
| | - Renjie Ruan
- Qingyuan Innovation LaboratoryCollege of Chemical EngineeringFuzhou University2 Xueyuan RoadFuzhou350108P. R. China
| | - Xiancai Jiang
- Qingyuan Innovation LaboratoryCollege of Chemical EngineeringFuzhou University2 Xueyuan RoadFuzhou350108P. R. China
| | - Linxi Hou
- Qingyuan Innovation LaboratoryCollege of Chemical EngineeringFuzhou University2 Xueyuan RoadFuzhou350108P. R. China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyState Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou University2 Xueyuan RoadFuzhou350108P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
- State Key Laboratory of Molecular Engineering of PolymersFudan University220 Handan RoadShanghai200433P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyState Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou University2 Xueyuan RoadFuzhou350108P. R. China
| |
Collapse
|
44
|
Zhao LP, Zheng RR, Kong RJ, Huang CY, Rao XN, Yang N, Chen AL, Yu XY, Cheng H, Li SY. Self-Delivery Ternary Bioregulators for Photodynamic Amplified Immunotherapy by Tumor Microenvironment Reprogramming. ACS NANO 2022; 16:1182-1197. [PMID: 35023720 DOI: 10.1021/acsnano.1c08978] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Abnormal metabolism of cancer cells results in complex tumor microenvironments (TME), which play a dominant role in tumor metastasis. Herein, self-delivery ternary bioregulators (designated as TerBio) are constructed for photodynamic amplified immunotherapy against colorectal cancer by TME reprogramming. Specifically, carrier-free TerBio are prepared by the self-assembly of chlorine e6, SB505124 (SB), and lonidamine (Lon), which exhibit improved tumor accumulation, tumor penetration, and cellular uptake behaviors. Interestingly, TerBio-mediated photodynamic therapy (PDT) could not only inhibit the primary tumor growth but also induce immunogenic cell death of tumors to activate the cascade immune response. Furthermore, TerBio are capable of TME reprograming by SB-triggered transforming growth factor (TGF)-β blockage and Lon-induced lactic acid efflux inhibition. As a consequence, TerBio significantly suppresses distant and metastatic tumor growth by PDT-amplified immunotherapy. This study might advance the development of self-delivery nanomedicine against malignant tumor growth and metastasis.
Collapse
Affiliation(s)
- Lin-Ping Zhao
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Rong-Rong Zheng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Ren-Jiang Kong
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, P.R. China
| | - Chu-Yu Huang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Xiao-Na Rao
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Ni Yang
- The First Affiliated Hospital of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou 510080, P.R. China
| | - A-Li Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
- The First Affiliated Hospital of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou 510080, P.R. China
| | - Xi-Yong Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Hong Cheng
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, P.R. China
| | - Shi-Ying Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| |
Collapse
|
45
|
Wu W, Pu Y, Shi J. Nanomedicine-enabled chemotherapy-based synergetic cancer treatments. J Nanobiotechnology 2022; 20:4. [PMID: 34983555 PMCID: PMC8725296 DOI: 10.1186/s12951-021-01181-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
Chemotherapy remains one of the most prevailing regimens hitherto in the fight against cancer, but its development has been being suffering from various fatal side effects associated with the non-specific toxicity of common chemical drugs. Advances in biomedical application of nanomedicine have been providing alternative but promising approaches for cancer therapy, by leveraging its excellent intrinsic physicochemical properties to address these critical concerns. In particular, nanomedicine-enabled chemotherapy has been established as a safer and promising therapeutic modality, especially the recently proposed nanocatalytic medicine featuring the capabilities to generate toxic substances by initiating diverse catalytic reactions within the tumor without directly relying on highly toxic but non-selective chemotherapeutic agents. Of special note, under exogenous/endogenous stimulations, nanomedicine can serve as a versatile platform that allows additional therapeutic modalities (photothermal therapy (PTT), photodynamic therapy (PDT), chemodynamic therapy (CDT), etc.) to be seamlessly integrated with chemotherapy for efficacious synergistic treatments of tumors. Here, we comprehensively review and summarize the representative studies of multimodal synergistic cancer treatments derived from nanomedicine and nanocatalytic medicine-enabled chemotherapy in recent years, and their underlying mechanisms are also presented in detail. A number of existing challenges and further perspectives for nanomedicine-synergized chemotherapy for malignant solid tumor treatments are also highlighted for understanding this booming research area as comprehensively as possible. ![]()
Collapse
Affiliation(s)
- Wencheng Wu
- The State Key Lab of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yinying Pu
- Department of Medical Ultrasound, School of Medicine, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University, Shanghai, 200072, People's Republic of China
| | - Jianlin Shi
- The State Key Lab of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China. .,Platform of Nanomedicine Translation, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, People's Republic of China.
| |
Collapse
|
46
|
Yang N, Zheng RR, Chen ZY, Wang RX, Zhao LP, Chen XY, Chen L, Xu L, Li SY, Chen AL. Carrier free photodynamic oxidizer for enhanced tumor therapy by redox homeostasis disruption. Biomater Sci 2022; 10:1575-1581. [PMID: 35179530 DOI: 10.1039/d1bm01876k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abnormal tumor microenvironments play important roles in cancer progression. In general, tumor cells are capable of upregulating glutathione (GSH) levels to keep aberrant redox homeostasis and cause a resistance to...
Collapse
Affiliation(s)
- Ni Yang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
| | - Rong-Rong Zheng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China.
| | - Zi-Ying Chen
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
| | - Rui-Xin Wang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
| | - Lin-Ping Zhao
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China.
| | - Xia-Yun Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China.
| | - Lei Chen
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, P. R. China
| | - Lin Xu
- Department of Geriatric Cardiology, General Hospital of the Southern Theatre Command, People's Liberation Army (PLA) and Guangdong Pharmaceutical University, Guangzhou 510016, P. R. China.
| | - Shi-Ying Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China.
| | - A-Li Chen
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
| |
Collapse
|
47
|
Cui R, Shi J, Liu Z. Metal-organic framework-encapsulated nanoparticles for synergetic chemo/chemodynamic therapy with targeted H 2O 2 self-supply. Dalton Trans 2021; 50:15870-15877. [PMID: 34709256 DOI: 10.1039/d1dt03110d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Nanocatalytic cancer therapy based on chemodynamic therapy, which converts hydrogen peroxide (H2O2) into toxic reactive oxygen species via the Fenton-like reaction, is regarded as a promising therapeutic strategy due to its specific response toward the tumor microenvironment (TME). However, the H2O2 concentration in TME (100 μM to 1 mM) is insufficient and introducing enough H2O2 or H2O2-generating agents is challenging. In view of this, we report a drug delivery system, CaO2/DOX@Cu/ZIF-8@HA (CDZH), which is capable of targeted H2O2 self-supply and exhibits outstanding chemo/chemodynamic synergetic therapy capability. CaO2/DOX@Cu/ZIF-8@HA is synthesized by fabricating biodegradable Cu/ZIF-8 shell-encapsulated CaO2 nanoparticles, loading chemotherapy drug doxorubicin, and coating a hyaluronic acid shell. In an acidic tumor microenvironment, the CDZH nanostructures targeted the release of doxorubicin, Cu2+, and CaO2. Doxorubicin affects chemotherapy and bioimaging, and CaO2 supplies H2O2 through a Cu-Fenton-like reaction to generate hydroxyl radicals with high oxidation activity for chemodynamic therapy. In brief, the drug delivery system combined targeted H2O2 self-supply and targeted bioimaging possess the potential of an efficient synergistic strategy for chemodynamic therapy and chemotherapy.
Collapse
Affiliation(s)
- Ruixue Cui
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010000, P.R. China.
| | - Jing Shi
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010000, P.R. China.
| | - Zhiliang Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010000, P.R. China.
| |
Collapse
|
48
|
Cheng D, Wang X, Zhou X, Li J. Nanosonosensitizers With Ultrasound-Induced Reactive Oxygen Species Generation for Cancer Sonodynamic Immunotherapy. Front Bioeng Biotechnol 2021; 9:761218. [PMID: 34660560 PMCID: PMC8514668 DOI: 10.3389/fbioe.2021.761218] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 08/30/2021] [Indexed: 12/19/2022] Open
Abstract
Immunotherapy is a promising therapeutic strategy for cancer, while it has been demonstrated to encounter the issues of low immune responses and underlying immune-related adverse events. The sonodynamic therapy (SDT) that utilizes sonosensitizers to produce reactive oxygen species (ROS) triggered by ultrasound (US) stimulation can be used to ablate tumors, which also leads to the induction of immunogenic cell death (ICD), thus achieving SDT-induced immunotherapy. Further combination of SDT with immunotherapy is able to afford enhanced antitumor immunity for tumor regression. In this mini review, we summarize the recent development of nanosonosensitizers with US-induced ROS generation for cancer SDT immunotherapy. The uses of nanosonosensitizers to achieve SDT-induced immunotherapy, combinational therapy of SDT with immunotherapy, and combinational therapy of SDT with multiple immunotherapies are briefly introduced. Furthermore, the current concerns and perspectives for the development and further clinical applications of these nanosonosensitizers for SDT-combined immunotherapy of cancer are discussed.
Collapse
Affiliation(s)
- Danling Cheng
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Xiaoying Wang
- Xuhui District Center for Disease Control and Prevention, Shanghai, China
| | - Xiaojun Zhou
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Jingchao Li
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| |
Collapse
|
49
|
Liu X, Li Y, Wang K, Chen Y, Shi M, Zhang X, Pan W, Li N, Tang B. GSH-Responsive Nanoprodrug to Inhibit Glycolysis and Alleviate Immunosuppression for Cancer Therapy. NANO LETTERS 2021; 21:7862-7869. [PMID: 34494442 DOI: 10.1021/acs.nanolett.1c03089] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Blocking energy metabolism of cancer cells and simultaneously stimulating the immune system to perform immune attack are significant for cancer treatment. However, how to potently deliver different drugs with these functions remains a challenge. Herein, we synthesized a nanoprodrug formed by a F127-coated drug dimer to inhibit glycolysis of cancer cells and alleviate the immunosuppressive microenvironment. The dimer was delicately constructed to connect lonidamine (LND) and NLG919 by a disulfide bond which can be cleaved by excess GSH to release two drugs. LND can decrease the expression of hexokinase II and destroy mitochondria to restrain glycolysis for energy supply. NLG919 can reduce the accumulation of kynurenine and the number of regulatory T cells, thus alleviating the immunosuppressive microenvironment. Notably, the consumption of GSH by disulfide bond increased the intracellular oxidative stress and triggered immunogenic cell death of cancer cells. This strategy can offer more possibilities to explore dimeric prodrugs for synergistic cancer therapy.
Collapse
Affiliation(s)
- Xiaohan Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Yanhua Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Kaiye Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Yuanyuan Chen
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Mingwan Shi
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Xia Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|