1
|
Wu Y, Sha Y, Guo X, Gao L, Huang J, Liu SB. Organoid models: applications and research advances in colorectal cancer. Front Oncol 2025; 15:1432506. [PMID: 39990692 PMCID: PMC11842244 DOI: 10.3389/fonc.2025.1432506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 01/20/2025] [Indexed: 02/25/2025] Open
Abstract
This review summarizes the applications and research progress of organoid models in colorectal cancer research. First, the high incidence and mortality rates of colorectal cancer are introduced, emphasizing the importance of organoids as a research model. Second, this review provides a detailed introduction to the concept, biological properties, and applications of organoids, including their strengths in mimicking the structural and functional aspects of organs. This article further analyzes the applications of adult stem cell-derived and pluripotent stem cell-derived organoids in colorectal cancer research and discusses advancements in organoids for basic research, drug research and development, personalized treatment evaluation and prediction, and regenerative medicine. Finally, this review summarizes the prospects for applying organoid technology in colorectal cancer research, emphasizing its significant value in improving patient survival rates. In conclusion, this review systematically explains the applications of organoids in colorectal cancer research, highlighting their tremendous potential and promising prospects in basic research, drug research and development, personalized treatment evaluation and prediction, and regenerative medicine.
Collapse
Affiliation(s)
- Yijie Wu
- College of Life Science, North China University of Science and Technology, Tangshan, China
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology, Suzhou Vocational Health College, Suzhou, China
| | - Yu Sha
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology, Suzhou Vocational Health College, Suzhou, China
| | - Xingpo Guo
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ling Gao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian Huang
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology, Suzhou Vocational Health College, Suzhou, China
| | - Song-Bai Liu
- College of Life Science, North China University of Science and Technology, Tangshan, China
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology, Suzhou Vocational Health College, Suzhou, China
| |
Collapse
|
2
|
Shan H, Chen M, Zhao S, Wei X, Zheng M, Li Y, Lin Q, Jiang Z, Chen Z, Fei C, Li Z, Chen Z, Chen X. Acoustic virtual 3D scaffold for direct-interacting tumor organoid-immune cell coculture systems. SCIENCE ADVANCES 2024; 10:eadr4831. [PMID: 39576870 PMCID: PMC11584020 DOI: 10.1126/sciadv.adr4831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/22/2024] [Indexed: 11/24/2024]
Abstract
Three-dimensional (3D) cell culture has revolutionized life sciences, particularly in organoid technologies. Traditional bioscaffold materials, however, complicate the detachment of tumor organoids and hamper the routine use of organoid-immune cell cocultures. Here, we show an acoustic virtual 3D scaffold (AV-Scaf) method to achieve 3D tumor organoid culture, enabling a direct-interacting tumor organoid-immune cell coculture system. The self-organization process of tumor cells is facilitated by a vortex acoustic field, which enables the cell bioassembly and ion channel activation. This approach can significantly enhance the influx of calcium ions, thereby accelerating intercellular interactions of cellular assemblies. We established scaffold-free melanoma and breast cancer organoids using AV-Scaf and cocultured melanoma organoids with T cells. We found that our coculture system resulted in a high activation state of T cells, characterized by notable up-regulation of granzyme B (2.82 to 17.5%) and interferon-γ (1.36 to 16%). AV-Scaf offers an efficient method for tumor organoid-immune cell studies, advancing cancer research and immunotherapy development.
Collapse
Affiliation(s)
- Han Shan
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China
- Furong Laboratory, Changsha 410008, China
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Maike Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China
- Furong Laboratory, Changsha 410008, China
| | - Shuang Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China
- Furong Laboratory, Changsha 410008, China
| | - Xiongwei Wei
- The School of Integrated Circuit, Xidian University, Xi'an 710071, China
| | - Mingde Zheng
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Yixin Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China
- Furong Laboratory, Changsha 410008, China
| | - Qibo Lin
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Zixi Jiang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China
- Furong Laboratory, Changsha 410008, China
| | - Ziyan Chen
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Chunlong Fei
- The School of Integrated Circuit, Xidian University, Xi'an 710071, China
| | - Zhaoxi Li
- The School of Integrated Circuit, Xidian University, Xi'an 710071, China
| | - Zeyu Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China
- Furong Laboratory, Changsha 410008, China
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, China
- Furong Laboratory, Changsha 410008, China
| |
Collapse
|
3
|
Kim D, Lim H, Youn J, Park TE, Kim DS. Scalable production of uniform and mature organoids in a 3D geometrically-engineered permeable membrane. Nat Commun 2024; 15:9420. [PMID: 39482314 PMCID: PMC11528013 DOI: 10.1038/s41467-024-53073-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
The application of organoids has been limited by the lack of methods for producing uniformly mature organoids at scale. This study introduces an organoid culture platform, called UniMat, which addresses the challenges of uniformity and maturity simultaneously. UniMat is designed to not only ensure consistent organoid growth but also facilitate an unrestricted supply of soluble factors by a 3D geometrically-engineered, permeable membrane-based platform. Using UniMat, we demonstrate the scalable generation of kidney organoids with enhanced uniformity in both structure and function compared to conventional methods. Notably, kidney organoids within UniMat show improved maturation, showing increased expression of nephron transcripts, more in vivo-like cell-type balance, enhanced vascularization, and better long-term stability. Moreover, UniMat's design offers a more standardized organoid model for disease modeling and drug testing, as demonstrated by polycystic-kidney disease and acute kidney injury modeling. In essence, UniMat presents a valuable platform for organoid technology, with potential applications in organ development, disease modeling, and drug screening.
Collapse
Affiliation(s)
- Dohui Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Hyeonji Lim
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Jaeseung Youn
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Tae-Eun Park
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea.
| | - Dong Sung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea.
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea.
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea.
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, South Korea.
| |
Collapse
|
4
|
Mei J, Liu X, Tian H, Chen Y, Cao Y, Zeng J, Liu Y, Chen Y, Gao Y, Yin J, Wang P. Tumour organoids and assembloids: Patient-derived cancer avatars for immunotherapy. Clin Transl Med 2024; 14:e1656. [PMID: 38664597 PMCID: PMC11045561 DOI: 10.1002/ctm2.1656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Organoid technology is an emerging and rapidly growing field that shows promise in studying organ development and screening therapeutic regimens. Although organoids have been proposed for a decade, concerns exist, including batch-to-batch variations, lack of the native microenvironment and clinical applicability. MAIN BODY The concept of organoids has derived patient-derived tumour organoids (PDTOs) for personalized drug screening and new drug discovery, mitigating the risks of medication misuse. The greater the similarity between the PDTOs and the primary tumours, the more influential the model will be. Recently, 'tumour assembloids' inspired by cell-coculture technology have attracted attention to complement the current PDTO technology. High-quality PDTOs must reassemble critical components, including multiple cell types, tumour matrix, paracrine factors, angiogenesis and microorganisms. This review begins with a brief overview of the history of organoids and PDTOs, followed by the current approaches for generating PDTOs and tumour assembloids. Personalized drug screening has been practised; however, it remains unclear whether PDTOs can predict immunotherapies, including immune drugs (e.g. immune checkpoint inhibitors) and immune cells (e.g. tumour-infiltrating lymphocyte, T cell receptor-engineered T cell and chimeric antigen receptor-T cell). PDTOs, as cancer avatars of the patients, can be expanded and stored to form a biobank. CONCLUSION Fundamental research and clinical trials are ongoing, and the intention is to use these models to replace animals. Pre-clinical immunotherapy screening using PDTOs will be beneficial to cancer patients. KEY POINTS The current PDTO models have not yet constructed key cellular and non-cellular components. PDTOs should be expandable and editable. PDTOs are promising preclinical models for immunotherapy unless mature PDTOs can be established. PDTO biobanks with consensual standards are urgently needed.
Collapse
Affiliation(s)
- Jie Mei
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
- Department of Clinical Pharmacology, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of PharmacogeneticsCentral South UniversityChangshaPeople's Republic of China
- Engineering Research Center of Applied Technology of PharmacogenomicsMinistry of EducationChangshaPeople's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
| | - Xingjian Liu
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
| | - Hui‐Xiang Tian
- Department of Clinical Pharmacology, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of PharmacogeneticsCentral South UniversityChangshaPeople's Republic of China
| | - Yixuan Chen
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
| | - Yang Cao
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
| | - Jun Zeng
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
- Department of Thoracic Surgery, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
| | - Yung‐Chiang Liu
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
| | - Yaping Chen
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
| | - Yang Gao
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
- Department of Thoracic Surgery, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis and Treatment, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
- Xiangya Lung Cancer Center, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
| | - Ji‐Ye Yin
- Department of Clinical Pharmacology, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of PharmacogeneticsCentral South UniversityChangshaPeople's Republic of China
- Engineering Research Center of Applied Technology of PharmacogenomicsMinistry of EducationChangshaPeople's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
| | - Peng‐Yuan Wang
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
| |
Collapse
|
5
|
Ma X, Wang Q, Li G, Li H, Xu S, Pang D. Cancer organoids: A platform in basic and translational research. Genes Dis 2024; 11:614-632. [PMID: 37692477 PMCID: PMC10491878 DOI: 10.1016/j.gendis.2023.02.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 02/16/2023] [Indexed: 09/12/2023] Open
Abstract
An accumulation of previous work has established organoids as good preclinical models of human tumors, facilitating translation from basic research to clinical practice. They are changing the paradigm of preclinical cancer research because they can recapitulate the heterogeneity and pathophysiology of human cancers and more closely approximate the complex tissue environment and structure found in clinical tumors than in vitro cell lines and animal models. However, the potential applications of cancer organoids remain to be comprehensively summarized. In the review, we firstly describe what is currently known about cancer organoid culture and then discuss in depth the basic mechanisms, including tumorigenesis and tumor metastasis, and describe recent advances in patient-derived tumor organoids (PDOs) for drug screening and immunological studies. Finally, the present challenges faced by organoid technology in clinical practice and its prospects are discussed. This review highlights that organoids may offer a novel therapeutic strategy for cancer research.
Collapse
Affiliation(s)
- Xin Ma
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
| | - Qin Wang
- Sino-Russian Medical Research Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
- Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang 150086, China
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Guozheng Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
| | - Hui Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
| | - Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
- Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang 150086, China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
- Sino-Russian Medical Research Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
- Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang 150086, China
| |
Collapse
|
6
|
Choi D, Gonzalez‐Suarez AM, Dumbrava MG, Medlyn M, de Hoyos‐Vega JM, Cichocki F, Miller JS, Ding L, Zhu M, Stybayeva G, Gaspar‐Maia A, Billadeau DD, Ma WW, Revzin A. Microfluidic Organoid Cultures Derived from Pancreatic Cancer Biopsies for Personalized Testing of Chemotherapy and Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303088. [PMID: 38018486 PMCID: PMC10837378 DOI: 10.1002/advs.202303088] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 10/17/2023] [Indexed: 11/30/2023]
Abstract
Patient-derived cancer organoids (PDOs) hold considerable promise for personalizing therapy selection and improving patient outcomes. However, it is challenging to generate PDOs in sufficient numbers to test therapies in standard culture platforms. This challenge is particularly acute for pancreatic ductal adenocarcinoma (PDAC) where most patients are diagnosed at an advanced stage with non-resectable tumors and where patient tissue is in the form of needle biopsies. Here the development and characterization of microfluidic devices for testing therapies using a limited amount of tissue or PDOs available from PDAC biopsies is described. It is demonstrated that microfluidic PDOs are phenotypically and genotypically similar to the gold-standard Matrigel organoids with the advantages of 1) spheroid uniformity, 2) minimal cell number requirement, and 3) not relying on Matrigel. The utility of microfluidic PDOs is proven by testing PDO responses to several chemotherapies, including an inhibitor of glycogen synthase kinase (GSKI). In addition, microfluidic organoid cultures are used to test effectiveness of immunotherapy comprised of NK cells in combination with a novel biologic. In summary, our microfluidic device offers considerable benefits for personalizing oncology based on cancer biopsies and may, in the future, be developed into a companion diagnostic for chemotherapy or immunotherapy treatments.
Collapse
Affiliation(s)
- Daheui Choi
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMN55905USA
| | | | - Mihai G. Dumbrava
- Division of Experimental PathologyMayo ClinicRochesterMN55905USA
- Center for Individualized MedicineEpigenomics programMayo ClinicRochesterMN55905USA
| | - Michael Medlyn
- Division of Oncology ResearchCollege of MedicineMayo ClinicRochesterMN55905USA
| | | | - Frank Cichocki
- Department of MedicineUniversity of MinnesotaMinneapolisMN55455USA
| | | | - Li Ding
- Division of Oncology ResearchCollege of MedicineMayo ClinicRochesterMN55905USA
| | - Mojun Zhu
- Division of Medical OncologyMayo ClinicRochesterMN55905USA
| | - Gulnaz Stybayeva
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMN55905USA
| | - Alexandre Gaspar‐Maia
- Division of Experimental PathologyMayo ClinicRochesterMN55905USA
- Center for Individualized MedicineEpigenomics programMayo ClinicRochesterMN55905USA
| | - Daniel D. Billadeau
- Division of Oncology ResearchCollege of MedicineMayo ClinicRochesterMN55905USA
| | - Wen Wee Ma
- Division of Medical OncologyMayo ClinicRochesterMN55905USA
| | - Alexander Revzin
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMN55905USA
| |
Collapse
|
7
|
Zhou B, Feng Z, Xu J, Xie J. Organoids: approaches and utility in cancer research. Chin Med J (Engl) 2023; 136:1783-1793. [PMID: 37365679 PMCID: PMC10406116 DOI: 10.1097/cm9.0000000000002477] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Indexed: 06/28/2023] Open
Abstract
ABSTRACT Organoids are three-dimensional cellular structures with self-organizing and self-differentiation capacities. They faithfully recapitulate structures and functions of in vivo organs as represented by functionality and microstructural definitions. Heterogeneity in in vitro disease modeling is one of the main reasons for anti-cancer therapy failures. Establishing a powerful model to represent tumor heterogeneity is crucial for elucidating tumor biology and developing effective therapeutic strategies. Tumor organoids can retain the original tumor heterogeneity and are commonly used to mimic the cancer microenvironment when co-cultured with fibroblasts and immune cells; therefore, considerable effort has been made recently to promote the use of this new technology from basic research to clinical studies in tumors. In combination with gene editing technology and microfluidic chip systems, engineered tumor organoids show promising abilities to recapitulate tumorigenesis and metastasis. In many studies, the responses of tumor organoids to various drugs have shown a positive correlation with patient responses. Owing to these consistent responses and personalized characteristics with patient data, tumor organoids show excellent potential for preclinical research. Here, we summarize the properties of different tumor models and review their current state and progress in tumor organoids. We further discuss the substantial challenges and prospects in the rapidly developing tumor organoid field.
Collapse
Affiliation(s)
- Bingrui Zhou
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Zhiwei Feng
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Jun Xu
- Department of Hepatobiliary and Pancreatic Surgery and Liver Transplant Center, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| |
Collapse
|
8
|
Zhang L, Wang L, Yang S, He K, Bao D, Xu M. Quantifying the drug response of patient-derived organoid clusters by aggregated morphological indicators with multi-parameters based on optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2023; 14:1703-1717. [PMID: 37078050 PMCID: PMC10110317 DOI: 10.1364/boe.486666] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 05/03/2023]
Abstract
Patient-derived organoids (PDOs) serve as excellent tools for personalized drug screening to predict clinical outcomes of cancer treatment. However, current methods for efficient quantification of drug response are limited. Herein, we develop a method for label-free, continuous tracking imaging and quantitative analysis of drug efficacy using PDOs. A self-developed optical coherence tomography (OCT) system was used to monitor the morphological changes of PDOs within 6 days of drug administration. OCT image acquisition was performed every 24 h. An analytical method for organoid segmentation and morphological quantification was developed based on a deep learning network (EGO-Net) to simultaneously analyze multiple morphological organoid parameters under the drug's effect. Adenosine triphosphate (ATP) testing was conducted on the last day of drug treatment. Finally, a corresponding aggregated morphological indicator (AMI) was established using principal component analysis (PCA) based on the correlation analysis between OCT morphological quantification and ATP testing. Determining the AMI of organoids allowed quantitative evaluation of the PDOs responses to gradient concentrations and combinations of drugs. Results showed that there was a strong correlation (correlation coefficient >90%) between the results using the AMI of organoids and those from ATP testing, which is the standard test used for bioactivity measurement. Compared with single-time-point morphological parameters, the introduction of time-dependent morphological parameters can reflect drug efficacy with improved accuracy. Additionally, the AMI of organoids was found to improve the efficiency of 5-fluorouracil(5FU) against tumor cells by allowing the determination of the optimum concentration, and the discrepancies in response among different PDOs using the same drug combinations could also be measured. Collectively, the AMI established by OCT system combined with PCA could quantify the multidimensional morphological changes of organoids under the drug's effect, providing a simple and efficient tool for drug screening in PDOs.
Collapse
Affiliation(s)
- Linyi Zhang
- Hangzhou Dianzi University, Automation College, Hangzhou, Zhejiang, China
| | - Ling Wang
- Hangzhou Dianzi University, Automation College, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Medical Information and Biological 3D Printing, Hangzhou, Zhejiang, China
| | - Shanshan Yang
- Hangzhou Dianzi University, Automation College, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Medical Information and Biological 3D Printing, Hangzhou, Zhejiang, China
| | - Kangxin He
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Di Bao
- Hangzhou Dianzi University, Automation College, Hangzhou, Zhejiang, China
| | - Mingen Xu
- Hangzhou Dianzi University, Automation College, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Medical Information and Biological 3D Printing, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Chakrabarti J, Pandey R, Churko JM, Eschbacher J, Mallick S, Chen Y, Hermes B, Mallick P, Stansfield BN, Pond KW, Thorne CA, Yuen KCJ, Little AS, Zavros Y. Development of Human Pituitary Neuroendocrine Tumor Organoids to Facilitate Effective Targeted Treatments of Cushing's Disease. Cells 2022; 11:3344. [PMID: 36359740 PMCID: PMC9659185 DOI: 10.3390/cells11213344] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 08/25/2023] Open
Abstract
(1) Background: Cushing's disease (CD) is a serious endocrine disorder caused by an adrenocorticotropic hormone (ACTH)-secreting pituitary neuroendocrine tumor (PitNET) that stimulates the adrenal glands to overproduce cortisol. Chronic exposure to excess cortisol has detrimental effects on health, including increased stroke rates, diabetes, obesity, cognitive impairment, anxiety, depression, and death. The first-line treatment for CD is pituitary surgery. Current surgical remission rates reported in only 56% of patients depending on several criteria. The lack of specificity, poor tolerability, and low efficacy of the subsequent second-line medical therapies make CD a medical therapeutic challenge. One major limitation that hinders the development of specific medical therapies is the lack of relevant human model systems that recapitulate the cellular composition of PitNET microenvironment. (2) Methods: human pituitary tumor tissue was harvested during transsphenoidal surgery from CD patients to generate organoids (hPITOs). (3) Results: hPITOs generated from corticotroph, lactotroph, gonadotroph, and somatotroph tumors exhibited morphological diversity among the organoid lines between individual patients and amongst subtypes. The similarity in cell lineages between the organoid line and the patient's tumor was validated by comparing the neuropathology report to the expression pattern of PitNET specific markers, using spectral flow cytometry and exome sequencing. A high-throughput drug screen demonstrated patient-specific drug responses of hPITOs amongst each tumor subtype. Generation of induced pluripotent stem cells (iPSCs) from a CD patient carrying germline mutation CDH23 exhibited dysregulated cell lineage commitment. (4) Conclusions: The human pituitary neuroendocrine tumor organoids represent a novel approach in how we model complex pathologies in CD patients, which will enable effective personalized medicine for these patients.
Collapse
Affiliation(s)
- Jayati Chakrabarti
- Department of Cellular and Molecular Medicine, University of Arizona College of Medicine, Tucson, AZ 85721, USA
| | - Ritu Pandey
- Department of Cellular and Molecular Medicine, University of Arizona College of Medicine, Tucson, AZ 85721, USA
- Center for Biomedical Informatics and Biostatistics, University of Arizona Health Sciences, Tucson, AZ 85721, USA
| | - Jared M. Churko
- Department of Cellular and Molecular Medicine, University of Arizona College of Medicine, Tucson, AZ 85721, USA
| | - Jennifer Eschbacher
- Department of Neuropathology, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Saptarshi Mallick
- Department of Cellular and Molecular Medicine, University of Arizona College of Medicine, Tucson, AZ 85721, USA
| | - Yuliang Chen
- University of Arizona Cancer Center Bioinformatics Core, Tucson, AZ 85721, USA
| | - Beth Hermes
- Department of Neuropathology, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Palash Mallick
- Department of Cellular and Molecular Medicine, University of Arizona College of Medicine, Tucson, AZ 85721, USA
| | - Ben N. Stansfield
- Department of Cellular and Molecular Medicine, University of Arizona College of Medicine, Tucson, AZ 85721, USA
| | - Kelvin W. Pond
- Department of Cellular and Molecular Medicine, University of Arizona College of Medicine, Tucson, AZ 85721, USA
| | - Curtis A. Thorne
- Department of Cellular and Molecular Medicine, University of Arizona College of Medicine, Tucson, AZ 85721, USA
| | - Kevin C. J. Yuen
- Department of Neuroendocrinology, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Andrew S. Little
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Yana Zavros
- Department of Cellular and Molecular Medicine, University of Arizona College of Medicine, Tucson, AZ 85721, USA
| |
Collapse
|
10
|
Hao M, Cao Z, Wang Z, Xin J, Kong B, Xu J, Zhang L, Chen P. Patient-Derived Organoid Model in the Prediction of Chemotherapeutic Drug Response in Colorectal Cancer. ACS Biomater Sci Eng 2022; 8:3515-3525. [PMID: 35696669 DOI: 10.1021/acsbiomaterials.2c00354] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
As an emerging technology in precision medicine, the patient-derived organoid (PDO) technology has been indicated to provide novel modalities to judge the sensitivity of individual tumors to cancer drugs. In this work, an in vitro model of colorectal cancer (CRC) was established using the PDO culture, and it is demonstrated that the PDO samples preserved, to a great extent, the histologic features and marker expression of the original tumor tissues. Subsequently, cancer drugs 5-FU, oxaliplatin, and irinotecan were selected and screened on five CRC PDO samples, while the patient-derived organoid xenograft (PDOX) model was applied for comparison. The receiver operating characteristic (ROC) curve was drawn according to the IC50 data from the PDO model and the relative tumor proliferation rate (T/C%) from PDOX. Interestingly, the area under the ROC curve was 0.84 (95% CI, 0.64-1.04, P value = 0.028), which suggested that the IC50 of cancer drugs from the PDO model was strongly correlated with PDOX responses. In addition, the optimal sensitivity cutoff value for drug screening in CRC PDOs was identified at 10.35 μM, which could act as a reference value for efficacy evaluation of 5-FU, oxaliplatin, and irinotecan in the colorectal cancer drug screening. Since there are no unified criteria to judge the sensitivity of drugs in vitro, our work provides a method for establishing in vitro evaluation criteria via PDO and PDOX model using the patient tissues received from local hospitals, exhibiting potential in clinical cancer therapy and precision medicine.
Collapse
Affiliation(s)
- Minglu Hao
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Zhipeng Cao
- NanoPeptide (Qingdao) Biotechnology Ltd., Qingdao 266100, China
| | - Zhiwei Wang
- The Affiliated Qingdao Central Hospital, Qingdao University, Qingdao 266000, China.,Qingdao Central Hospital, Qingdao 266042, China
| | - Jianjun Xin
- The Affiliated Qingdao Central Hospital, Qingdao University, Qingdao 266000, China.,Qingdao Central Hospital, Qingdao 266042, China
| | - Biao Kong
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, China
| | - Jing Xu
- The Affiliated Qingdao Central Hospital, Qingdao University, Qingdao 266000, China.,Qingdao Central Hospital, Qingdao 266042, China
| | - Lei Zhang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Pu Chen
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.,Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
11
|
Baskar G, Palaniyandi T, Viswanathan S, Rajendran BK, Ravi M, Sivaji A. Development of patient derived organoids for cancer drug screening applications. Acta Histochem 2022; 124:151895. [PMID: 35486967 DOI: 10.1016/j.acthis.2022.151895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 12/15/2022]
Abstract
Cancer is a disease characterised by abnormal cell growth that can invade or spread to other regions of the body. Organoids are three-dimensional ex vivo tissue cultures made from embryonic stem cells, induced pluripotent stem cells, progenitor cells or tissue that serve as a physiological model for cancer research. These are designed to recapitulate the in vivo properties of tumours. Importantly, effective recapitulation of the structure of tissues and function is believed to predict patient response, allowing for the creation of personalised therapy in a timely manner that may be used in the clinic. This Review discusses the pre-clinical model and different types of human organoids as models for the development of high throughput drug screening and also aims to highlight how organoids are shaping the future of cancer research.
Collapse
Affiliation(s)
- Gomathy Baskar
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to be University, Chennai, Tamil nadu, India
| | - Thirunavukkarasu Palaniyandi
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to be University, Chennai, Tamil nadu, India.
| | - Sandhiya Viswanathan
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to be University, Chennai, Tamil nadu, India
| | | | - Maddaly Ravi
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil nadu, India
| | - Asha Sivaji
- Department of Biochemistry, DKM College for Women, Vellore, Tamil nadu, India
| |
Collapse
|
12
|
Patient-Derived Organoids of Colorectal Cancer: A Useful Tool for Personalized Medicine. J Pers Med 2022; 12:jpm12050695. [PMID: 35629118 PMCID: PMC9147270 DOI: 10.3390/jpm12050695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 11/18/2022] Open
Abstract
Colorectal cancer is one of the most important malignancies worldwide, with high incidence and mortality rates. Several studies have been conducted using two-dimensional cultured cell lines; however, these cells do not represent a study model of patient tumors very well. In recent years, advancements in three-dimensional culture methods have facilitated the establishment of patient-derived organoids, which have become indispensable for molecular biology-related studies of colorectal cancer. Patient-derived organoids are useful in both basic science and clinical practice; they can help predict the sensitivity of patients with cancer to chemotherapy and radiotherapy and provide the right treatment to the right patient. Regarding precision medicine, combining gene panel testing and organoid-based screening can increase the effectiveness of medical care. In this study, we review the development of three-dimensional culture methods and present the most recent information on the clinical application of patient-derived organoids. Moreover, we discuss the problems and future prospects of organoid-based personalized medicine.
Collapse
|
13
|
Elshaer D, Moniruzzaman M, Ong YT, Qu Z, Schreiber V, Begun J, Popat A. Facile synthesis of dendrimer like mesoporous silica nanoparticles to enhance targeted delivery of interleukin-22. Biomater Sci 2021; 9:7402-7411. [PMID: 34709241 DOI: 10.1039/d1bm01352a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Interleukin (IL)-22 is a multifunctional cytokine with a very short half-life that activates STAT3 and can elicit strong anti-inflammatory effects in the intestine but can induce inflammation in other sites. Several long-circulating IL-22 fusion proteins have been manufactured to date; however, those were associated with adverse effects in other organs limiting their utility for treating intestinal inflammation. Targeted delivery of IL-22 to the intestine could utilize its anti-inflammatory properties and overcome systemic toxicity. Therefore, this study aimed to synthesise large pore mesoporous silica nanoparticles (LPMSN), load recombinant (r)IL-22 in the LPMSN and test its bioactivity in the STAT3 reporter LS174T, wild type LS174T, Caco-2 intestinal epithelial cells, and healthy human colonic organoids. Our data showed one hundred percent loading capacity (w/w) of the synthesised LPMSN, which prolonged IL-22 induced STAT3 luciferase activities in LS174T and p-STAT3 immunofluorescence in Caco-2 cells. LPMSN also stabilized and increased the permeability of rIL-22 across Caco-2 monolayers. Moreover, LPMSN-IL-22 retained the functionality of the cytokine in human colonic organoids. Taken together, these data demonstrate the protection and effective delivery of IL-22 using bio-nanomaterials (LPMSN) that could enable targeted oral delivery of this IL-22.
Collapse
Affiliation(s)
- Dana Elshaer
- Inflammatory Bowel Disease Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia.
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Md Moniruzzaman
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia.
- Inflammatory Bowel Disease Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia.
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yi Theng Ong
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia.
| | - Zhi Qu
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia.
| | - Veronika Schreiber
- Inflammatory Bowel Disease Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia.
| | - Jakob Begun
- Inflammatory Bowel Disease Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia.
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia.
| |
Collapse
|