1
|
Plaass C, Reifenrath J, Alena Richter. Innovative Fixation Methods of Osteotomies for Hallux Valgus Correction. Foot Ankle Clin 2025; 30:269-283. [PMID: 40348460 DOI: 10.1016/j.fcl.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
In hallux valgus surgery, hardware removal is necessary in about 10% of the patients due to pain, bone resorption, implant loosening, or the psychological demand for implant removal. The secondary and imaging interferences in case of permanent metallic implants have promoted the development and clinical introduction of bioabsorbable fixation implants including polymeric, resorabable metallic, and biologic materials. Due to inferior rigidity, hardness and absolute mechanical strength compared to metallic materials, uncertain degradation times and inflammatory tissue responses, further development and clinical research has let to newer generations of resorbable implants.
Collapse
Affiliation(s)
- Christian Plaass
- Hannover Medical School, Clinic for Orthopedic Surgery at DIAKOVERE Annastift, Anna-von-Borries Straße 1-7, 30625 Hannover, Germany.
| | - Janin Reifenrath
- Hannover Medical School, Clinic for Orthopedic Surgery at DIAKOVERE Annastift, Anna-von-Borries Straße 1-7, 30625 Hannover, Germany; Hannover Medical School, Lower Saxony Centre of Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany
| | - Alena Richter
- Hannover Medical School, Clinic for Orthopedic Surgery at DIAKOVERE Annastift, Anna-von-Borries Straße 1-7, 30625 Hannover, Germany
| |
Collapse
|
2
|
Wang X, Shao M, Wang J, Liang X, Chen Y, Wang H, Li J. Incidence rate and risk factors of intraoperative-acquired pressure injury in posterior interbody fusion: A retrospective study of a national inpatient sample database. J Tissue Viability 2025; 34:100873. [PMID: 40101413 DOI: 10.1016/j.jtv.2025.100873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/05/2025] [Accepted: 02/19/2025] [Indexed: 03/20/2025]
Abstract
BACKGROUND Intraoperative-acquired pressure injuries (IAPIs) are a common complication in posterior intervertebral fusion surgery, leading to adverse outcomes for patients. However, there is a lack of large-scale national database research analyzing the morbidity and associated risk factors of IAPIs in this surgical procedure. METHODS This retrospective study analyzed data from the National Inpatient Sample (NIS) database from 2010 to 2019. Demographic, hospital, and patient characteristics were examined, including length of stay (LOS), total costs, in-hospital mortality, preoperative comorbidities, and complications. RESULT The overall incidence of IAPIs in posterior intervertebral fusion surgery was 0.2 % from 2010 to 2019. The annual occurrence of interbody fusion demonstrated an M-shaped trend, with rates of 0.2 % in 2010, 0.05 % in 2016, and 0.05 % in 2019. IAPIs were associated with increased preoperative complications, longer LOS, higher total hospitalization costs, and higher in-hospital mortality rates. Risk factors for IAPIs included comorbidities, large hospitals, urban hospitals, deficiency anemia, coagulation disorders, fluid electrolyte disorders, paralysis, and weight loss. Additionally, IAPIs were linked to medical complications such as sepsis, deep vein thrombosis, urinary tract infections, acute renal failure, shock, pneumonia, blood transfusion, and surgical complications such as cerebrospinal fluid leak. Elective admission was found to be a protective factor. CONCLUSION Identifying risk factors for IAPIs in posterior intervertebral fusion surgery can help identify high-risk patients and develop preventive measures. By targeting these risk factors, the incidence of IAPIs can be reduced, leading to improved patient outcomes.
Collapse
Affiliation(s)
- Xuelian Wang
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 510630, China
| | - Mengmeng Shao
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 510630, China
| | - Jian Wang
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xiaoshuang Liang
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 510630, China
| | - Yuhang Chen
- Department of Orthopedic Surgery, The First People's Hospital of Foshan, Foshan, Guangdong, 528000, China.
| | - Haofei Wang
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Baiyun District, Guangzhou, 510515, China
| | - Jianlong Li
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
3
|
Laubach M, Hartmann H, Holzapfel BM, Mayer-Wagner S, Schenke-Layland K, Hutmacher DW. [3D printing in surgery: relevance of technology maturity assessment in bioprinting research studies]. CHIRURGIE (HEIDELBERG, GERMANY) 2025; 96:306-315. [PMID: 39630288 PMCID: PMC11933231 DOI: 10.1007/s00104-024-02197-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 03/25/2025]
Abstract
Biological 3D printing (bioprinting) is an extension of what is defined as additive manufacturing in the American Society for Testing and Materials (ASTM) and International Organization for Standardization (ISO) standards and is based on the automated printing of living cells and biomaterials. Researchers and experts in the field of biomaterial science, tissue engineering and regenerative medicine (TE&RM) are constantly pointing to the potential of biological 3D printing and scientific articles regularly announce the imminent clinical application. We argue in this article that these announcements are often premature and counterproductive as they focus heavily on technological progress but regularly ignore the critical stages that need to be completed in order to successfully translate a technology into the healthcare market. The technology readiness level (TRL) scale is a potentially useful tool for measuring the relative maturity of a technology in terms of overcoming a series of critical milestones. We propose an adaptation of the TRL scale and use it to discuss the current state of research on biological 3D printing. Finally, we provide specific recommendations for optimizing future research projects to pave the way for clinical applications of biological 3D printing and thus achieve a direct positive impact on surgical patient care.
Collapse
Affiliation(s)
- Markus Laubach
- Klinik für Orthopädie und Unfallchirurgie, Muskuloskelettales Universitätszentrum München (MUM), LMU Klinikum, LMU München, Marchioninistr. 15, 81377, München, Deutschland.
| | - Hanna Hartmann
- NMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen, Markwiesenstr. 55, 72770, Reutlingen, Deutschland
| | - Boris M Holzapfel
- Klinik für Orthopädie und Unfallchirurgie, Muskuloskelettales Universitätszentrum München (MUM), LMU Klinikum, LMU München, Marchioninistr. 15, 81377, München, Deutschland
| | - Susanne Mayer-Wagner
- Klinik für Orthopädie und Unfallchirurgie, Muskuloskelettales Universitätszentrum München (MUM), LMU Klinikum, LMU München, Marchioninistr. 15, 81377, München, Deutschland
| | - Katja Schenke-Layland
- NMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen, Markwiesenstr. 55, 72770, Reutlingen, Deutschland
- Institut für Biomedical Engineering, Abteilung für Medizintechnik und Regenerative Medizin, Eberhard Karls Universität Tübingen, Silcherstr. 7/1, 72076, Tübingen, Deutschland
| | - Dietmar W Hutmacher
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, QLD 4000, Brisbane, Australien.
| |
Collapse
|
4
|
Qin Y, Yu C, Wang P, Yang H, Liu A, Wang S, Shen Z, Ma S, Huang Y, Yu B, Wen P, Zheng Y. Design and development of the additively manufactured Zn-Li scaffolds for posterolateral lumbar fusion. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY 2025; 215:180-191. [DOI: 10.1016/j.jmst.2024.06.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
|
5
|
Su X, Yang J, Xu Z, Wei L, Yang S, Li F, Sun M, Hu Y, He W, Zhao C, Chen L, Yuan Y, Qin L, Hu N. Fibrous scaffolds loaded with BMSC-derived apoptotic vesicles promote wound healing by inducing macrophage polarization. Genes Dis 2025; 12:101388. [PMID: 39759117 PMCID: PMC11697094 DOI: 10.1016/j.gendis.2024.101388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/21/2024] [Indexed: 01/07/2025] Open
Abstract
Macrophages play a key role in wound healing. Dysfunction of their M0 polarization to M2 leads to disorders of the wound immune microenvironment and chronic inflammation, which affects wound healing. Regulating the polarization of M0 macrophages to M2 macrophages is an effective strategy for treating wound healing. Mesenchymal stem cells (MSCs) deliver endogenous regulatory factors via paracrine extracellular vesicles, which may play a key role in wound healing, and previous studies have shown that apoptotic bodies (ABs) are closely associated with inflammation regression and macrophage polarization. However, the specific regulatory mechanisms involved in ABs remain unknown. In the present study, we designed an MSC-AB (MSC-derived AB)-loaded polycaprolactone (PCL) scaffold, evaluated the macrophage phenotype and skin wound inflammation in vivo and in vitro, and explored the ability of MSC-AB-loaded PCL scaffolds to promote wound healing. Our data suggest that the PCL scaffold regulates the expression of the CCL-1 gene by targeting the delivery of mmu-miR-21a-5p by local sustained-release MSC-ABs, and drives M0 macrophages to program M2 macrophages to regulate inflammation and angiogenesis, thereby synergistically promoting wound healing. This study provides a promising therapeutic strategy and experimental basis for treating various diseases associated with imbalances in proinflammatory and anti-inflammatory immune responses.
Collapse
Affiliation(s)
- Xudong Su
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Jianye Yang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Zhenghao Xu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Li Wei
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Shuhao Yang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Feilong Li
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Min Sun
- Department of Knee Joint Sports Injury, Sichuan Provincial Orthopedic Hospital, Chengdu, Sichuan 610042, China
| | - Yingkun Hu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Wenge He
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Chen Zhao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Li Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Yonghua Yuan
- Research Center for Pharmacodynamic Evaluation Engineering Technology of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Leilei Qin
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Ning Hu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
6
|
Song P, Zhou D, Wang F, Li G, Bai L, Su J. Programmable biomaterials for bone regeneration. Mater Today Bio 2024; 29:101296. [PMID: 39469314 PMCID: PMC11513843 DOI: 10.1016/j.mtbio.2024.101296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024] Open
Abstract
Programmable biomaterials are distinguished by their ability to adjust properties and functions on demand, in a periodic, reversible, or sequential manner. This contrasts with traditional biomaterials, which undergo irreversible, uncontrolled changes. This review synthesizes key advances in programmable biomaterials, examining their design principles, functionalities and applications in bone regeneration. It charts the transition from traditional to programmable biomaterials, emphasizing their enhanced precision, safety and control, which are critical from clinical and biosafety standpoints. We then classify programmable biomaterials into six types: dynamic nucleic acid-based biomaterials, electrically responsive biomaterials, bioactive scaffolds with programmable properties, nanomaterials for targeted bone regeneration, surface-engineered implants for sequential regeneration and stimuli-responsive release materials. Each category is analyzed for its structural properties and its impact on bone tissue engineering. Finally, the review further concludes by highlighting the challenges faced by programmable biomaterials and suggests integrating artificial intelligence and precision medicine to enhance their application in bone regeneration and other biomedical fields.
Collapse
Affiliation(s)
- Peiran Song
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Dongyang Zhou
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Fuxiao Wang
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Guangfeng Li
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Shanghaizhongye Hospital, Shanghai, 200941, China
| | - Long Bai
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Wenzhou Institute of Shanghai University, Wenzhou, 325000, China
| | - Jiacan Su
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
7
|
Laubach M, Whyte S, Chan HF, Frankenbach-Désor T, Mayer-Wagner S, Hildebrand F, Holzapfel BM, Kneser U, Dulleck U, Hutmacher DW. Lost in translation: the lack of agreement between surgeons and scientists regarding biomaterials research and innovation for treating bone defects. BMC Med 2024; 22:517. [PMID: 39506708 PMCID: PMC11542434 DOI: 10.1186/s12916-024-03734-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND With over 2 million grafts performed annually, bone ranks second only to blood in the frequency of transplants. This high demand is primarily driven by the persistent challenges posed by bone defects, particularly following trauma or surgical interventions such as tumour excision. The demand for effective and efficient treatments has increased exponentially in the twenty-first century. Limitations associated with autologous bone grafts drive exploration into replacements, including allografts, synthetic substitutes, and 3D-printed scaffolds. This research aimed to unravel disparities in the knowledge and evaluation of current and future bone defect treatments between surgeons and biomaterial scientists. METHODS A prospective cross-sectional survey, pre-registered with the OSF ( https://osf.io/y837m/?view_only=fab29e24df4f4adf897353ac70aa3361 ) and conducted online from October 2022 to March 2023, collected data on surgeons' views (n = 337) and scientists (n = 99) on bone defect treatments. RESULTS Scientists were significantly more optimistic than surgeons regarding the future replacement of autologous bone grafts with synthetic or tissue-engineered substitutes (p < 0.001). Accordingly, scientists foresee a paradigm shift from autologous bone grafts to biomaterial and tissue-engineered solutions, reflecting their confidence in the ongoing advancements within this field. Furthermore, regulatory trepidations for 3D-printed bone scaffolds were acknowledged, with scientists emphasizing the need for a more significant focus on clinical relevance in preclinical studies and regulatory clarity. In a ranked categorical assessment, witnessing the technology in action was deemed most influential in adopting new bone regeneration methods by both scientists and surgeons. CONCLUSIONS To conclude, this study was conducted through a web-based survey, highlighting a substantial translational gap. It underscores the immediate need ("call to action") for meaningful interdisciplinary collaboration between surgeons and scientists, often referred to as the need to "walk the talk". The findings underscore the critical importance of aligning clinical needs, research outcomes, and regulatory frameworks to improve the development and implementation of biomaterial-based bone graft substitutes that demonstrate efficacy and efficiency in bone defect treatment.
Collapse
Affiliation(s)
- Markus Laubach
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Munich, Germany.
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD, 4000, Australia.
| | - Stephen Whyte
- School of Economics and Finance, Queensland University of Technology (QUT), 2 George St, Brisbane, QLD, 4001, Australia.
- Centre for Behavioural Economics, Society & Technology (BEST), Queensland University of Technology (QUT), Brisbane, QLD, 4001, Australia.
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia.
- ARC Training Centre for Behavioural Insights for Technology Adoption, Queensland University of Technology (QUT), Brisbane, QLD, 4001, Australia.
| | - Ho Fai Chan
- School of Economics and Finance, Queensland University of Technology (QUT), 2 George St, Brisbane, QLD, 4001, Australia
- Centre for Behavioural Economics, Society & Technology (BEST), Queensland University of Technology (QUT), Brisbane, QLD, 4001, Australia
- ARC Training Centre for Behavioural Insights for Technology Adoption, Queensland University of Technology (QUT), Brisbane, QLD, 4001, Australia
| | - Tina Frankenbach-Désor
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Munich, Germany
| | - Susanne Mayer-Wagner
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Munich, Germany
| | - Frank Hildebrand
- Department of Orthopaedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Boris M Holzapfel
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Munich, Germany
| | - Ulrich Kneser
- Department of Hand, Plastic, and Reconstructive Surgery, BG Trauma Center Ludwigshafen, Heidelberg University, Ludwigshafen, Germany
| | - Uwe Dulleck
- School of Economics and Finance, Queensland University of Technology (QUT), 2 George St, Brisbane, QLD, 4001, Australia
- Centre for Behavioural Economics, Society & Technology (BEST), Queensland University of Technology (QUT), Brisbane, QLD, 4001, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia
- ARC Training Centre for Behavioural Insights for Technology Adoption, Queensland University of Technology (QUT), Brisbane, QLD, 4001, Australia
- Faculty of Business Government and Law, University of Canberra, Canberra, Australia
| | - Dietmar W Hutmacher
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD, 4000, Australia.
- Centre for Behavioural Economics, Society & Technology (BEST), Queensland University of Technology (QUT), Brisbane, QLD, 4001, Australia.
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia.
- ARC Training Centre in Additive Biomanufacturing, Queensland University of Technology, Brisbane, QLD, 4059, Australia.
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
| |
Collapse
|
8
|
Dou X, Liu X, Liu Y, Wang L, Jia F, Shen F, Ma Y, Liang C, Jin G, Wang M, Liu Z, Zhu B, Liu X. Biomimetic Porous Ti6Al4V Implants: A Novel Interbody Fusion Cage via Gel-Casting Technique to Promote Spine Fusion. Adv Healthc Mater 2024; 13:e2400550. [PMID: 39031096 DOI: 10.1002/adhm.202400550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/20/2024] [Indexed: 07/22/2024]
Abstract
An interbody fusion cage (Cage) is crucial in spinal decompression and fusion procedures for restoring normal vertebral curvature and rebuilding spinal stability. Currently, these Cages suffer from issues related to mismatched elastic modulus and insufficient bone integration capability. Therefore, a gel-casting technique is utilized to fabricate a biomimetic porous titanium alloy material from Ti6Al4V powder. The biomimetic porous Ti6Al4V is compared with polyetheretherketone (PEEK) and 3D-printed Ti6Al4V materials and their respective Cages. Systematic validation is performed through mechanical testing, in vitro cell, in vivo rabbit bone defect implantation, and ovine anterior cervical discectomy and fusion experiments to evaluate the mechanical and biological performance of the materials. Although all three materials demonstrate good biocompatibility and osseointegration properties, the biomimetic porous Ti6Al4V, with its excellent mechanical properties and a structure closely resembling bone trabecular tissue, exhibited superior bone ingrowth and osseointegration performance. Compared to the PEEK and 3D-printed Ti6Al4V Cages, the biomimetic porous Ti6Al4V Cage outperforms in terms of intervertebral fusion performance, achieving excellent intervertebral fusion without the need for bone grafting, thereby enhancing cervical vertebra stability. This biomimetic porous Ti6Al4V Cage offers cost-effectiveness, presenting significant potential for clinical applications in spinal surgery.
Collapse
Affiliation(s)
- Xinyu Dou
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Xiao Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Yu Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Linbang Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Fei Jia
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250000, China
| | - Fei Shen
- Laboratory Animal Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Yunlong Ma
- Pain Medical Center, Peking University Third Hospital, Beijing, 100191, China
| | - Chen Liang
- Pain Medical Center, Peking University Third Hospital, Beijing, 100191, China
| | - Gong Jin
- ZhongAoHuiCheng Technology Co., Beijing, 100176, China
| | - Meina Wang
- ZhongAoHuiCheng Technology Co., Beijing, 100176, China
| | - Zhongjun Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Bin Zhu
- Department of Orthopaedics, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, 100050, China
| | - Xiaoguang Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| |
Collapse
|
9
|
Cheers GM, Weimer LP, Neuerburg C, Arnholdt J, Gilbert F, Thorwächter C, Holzapfel BM, Mayer-Wagner S, Laubach M. Advances in implants and bone graft types for lumbar spinal fusion surgery. Biomater Sci 2024; 12:4875-4902. [PMID: 39190323 DOI: 10.1039/d4bm00848k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The increasing prevalence of spinal disorders worldwide necessitates advanced treatments, particularly interbody fusion for severe cases that are unresponsive to non-surgical interventions. This procedure, especially 360° lumbar interbody fusion, employs an interbody cage, pedicle screw-and-rod instrumentation, and autologous bone graft (ABG) to enhance spinal stability and promote fusion. Despite significant advancements, a persistent 10% incidence of non-union continues to result in compromised patient outcomes and escalated healthcare costs. Innovations in lumbar stabilisation seek to mimic the properties of natural bone, with evolving implant materials like titanium (Ti) and polyetheretherketone (PEEK) and their composites offering new prospects. Additionally, biomimetic cages featuring precisely engineered porosities and interconnectivity have gained traction, as they enhance osteogenic differentiation, support osteogenesis, and alleviate stress-shielding. However, the limitations of ABG, such as harvesting morbidities and limited fusion capacity, have spurred the exploration of sophisticated solutions involving advanced bone graft substitutes. Currently, demineralised bone matrix and ceramics are in clinical use, forming the basis for future investigations into novel bone graft substitutes. Bioglass, a promising newcomer, is under investigation despite its observed rapid absorption and the potential for foreign body reactions in preclinical studies. Its clinical applicability remains under scrutiny, with ongoing research addressing challenges related to burst release and appropriate dosing. Conversely, the well-documented favourable osteogenic potential of growth factors remains encouraging, with current efforts focused on modulating their release dynamics to minimise complications. In this evidence-based narrative review, we provide a comprehensive overview of the evolving landscape of non-degradable spinal implants and bone graft substitutes, emphasising their applications in lumbar spinal fusion surgery. We highlight the necessity for continued research to improve clinical outcomes and enhance patient well-being.
Collapse
Affiliation(s)
- Giles Michael Cheers
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Lucas Philipp Weimer
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Carl Neuerburg
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Jörg Arnholdt
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Fabian Gilbert
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Christoph Thorwächter
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Boris Michael Holzapfel
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Susanne Mayer-Wagner
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Markus Laubach
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
10
|
Zheng X, Luo H, Li J, Yang Z, Zhuan X, Li X, Chen Y, Huo S, Zhou X. Zinc-doped bioactive glass-functionalized polyetheretherketone to enhance the biological response in bone regeneration. J Biomed Mater Res A 2024; 112:1565-1577. [PMID: 38514993 DOI: 10.1002/jbm.a.37710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024]
Abstract
Polyether ether ketone (PEEK) is gaining recognition as a highly promising polymer for orthopedic implants, attributed to its exceptional biocompatibility, ease of processing, and radiation resistance. However, its long-term in vivo application faces challenges, primarily due to suboptimal osseointegration from postimplantation inflammation and immune reactions. Consequently, biofunctionalization of PEEK implant surfaces emerges as a strategic approach to enhance osseointegration and increase the overall success rates of these implants. In our research, we engineered a multifaceted PEEK implant through the in situ integration of chitosan-coated zinc-doped bioactive glass nanoparticles (Zn-BGNs). This novel fabrication imbues the implant with immunomodulatory capabilities while bolstering its osseointegration potential. The biofunctionalized PEEK composite elicited several advantageous responses; it facilitated M2 macrophage polarization, curtailed the production of inflammatory mediators, and augmented the osteogenic differentiation of bone marrow mesenchymal stem cells. The experimental findings underscore the vital and intricate role of biofunctionalized PEEK implants in preserving normal bone immunity and metabolism. This study posits that utilizing chitosan-BGNs represents a direct and effective method for creating multifunctional implants. These implants are designed to facilitate biomineralization and immunomodulation, making them especially apt for orthopedic applications.
Collapse
Affiliation(s)
- Xiaoyu Zheng
- Guangdong Medical University, Zhanjiang, China
- The Spine Department, Orthopaedic Center, Guangdong Second Provincial General Hospital, Zhanjiang, China
| | - Han Luo
- Guangdong Medical University, Zhanjiang, China
- The Spine Department, Orthopaedic Center, Guangdong Second Provincial General Hospital, Zhanjiang, China
| | - Jingzhi Li
- Guangdong Medical University, Zhanjiang, China
- The Spine Department, Orthopaedic Center, Guangdong Second Provincial General Hospital, Zhanjiang, China
| | - Zhenyu Yang
- The Spine Department, Orthopaedic Center, Guangdong Second Provincial General Hospital, Zhanjiang, China
- Southern Medical University, Guangzhou, China
| | - Xiaoquan Zhuan
- Southern Medical University, Guangzhou, China
- The Department of Orthopaedic, Clifford Hospital affiliated to Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoquan Li
- The Spine Department, Orthopaedic Center, Guangdong Second Provincial General Hospital, Zhanjiang, China
| | - Yuting Chen
- The Spine Department, Orthopaedic Center, Guangdong Second Provincial General Hospital, Zhanjiang, China
| | - Shicheng Huo
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Navy Medical University, Shanghai, China
| | - Xiaozhong Zhou
- Guangdong Medical University, Zhanjiang, China
- The Spine Department, Orthopaedic Center, Guangdong Second Provincial General Hospital, Zhanjiang, China
- Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
He X, Li Y, Zou D, Zu H, Li W, Zheng Y. An overview of magnesium-based implants in orthopaedics and a prospect of its application in spine fusion. Bioact Mater 2024; 39:456-478. [PMID: 38873086 PMCID: PMC11170442 DOI: 10.1016/j.bioactmat.2024.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 06/15/2024] Open
Abstract
Due to matching biomechanical properties and significant biological activity, Mg-based implants present great potential in orthopedic applications. In recent years, the biocompatibility and therapeutic effect of magnesium-based implants have been widely investigated in trauma repair. In contrast, the R&D work of Mg-based implants in spinal fusion is still limited. This review firstly introduced the general background for Mg-based implants. Secondly, the mechanical properties and degradation behaviors of Mg and its traditional and novel alloys were reviewed. Then, different surface modification techniques of Mg-based implants were described. Thirdly, this review comprehensively summarized the biological pathways of Mg degradation to promote bone formation in neuro-musculoskeletal circuit, angiogenesis with H-type vessel formation, osteogenesis with osteoblasts activation and chondrocyte ossification as an integrated system. Fourthly, this review followed the translation process of Mg-based implants via updating the preclinical studies in fracture fixation, sports trauma repair and reconstruction, and bone distraction for large bone defect. Furthermore, the pilot clinical studies were involved to demonstrate the reliable clinical safety and satisfactory bioactive effects of Mg-based implants in bone formation. Finally, this review introduced the background of spine fusion surgeryand the challenges of biological matching cage development. At last, this review prospected the translation potential of a hybrid Mg-PEEK spine fusion cage design.
Collapse
Affiliation(s)
- Xuan He
- Department of Orthopaedics, Peking University Third Hospital, No.49 North Huayuan Road, Haidian, Beijing, PR China
| | - Ye Li
- Department of Rehabilitation Science, The Hong Kong Polytechnic University, Hong Kong SAR, PR China
| | - Da Zou
- Department of Orthopaedics, Peking University Third Hospital, No.49 North Huayuan Road, Haidian, Beijing, PR China
| | - Haiyue Zu
- Department of Orthopaedics, The First Affiliated Hospital of Suchow University, PR China
| | - Weishi Li
- Department of Orthopaedics, Peking University Third Hospital, No.49 North Huayuan Road, Haidian, Beijing, PR China
| | - Yufeng Zheng
- Department of Materials Science and Engineering, College of Engineering, Peking University, Comprehensive Scientific Research Building, Beijing, PR China
| |
Collapse
|
12
|
Li C, Zhao Y, Qi L, Xu B, Yue L, Zhu R, Li C. Comparison of biomechanical effects of polyetheretherketone (PEEK) rods and titanium rods in lumbar long-segment instrumentation: a finite element study. Front Bioeng Biotechnol 2024; 12:1416046. [PMID: 39055340 PMCID: PMC11269095 DOI: 10.3389/fbioe.2024.1416046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction Polyetheretherketone (PEEK) lumbar fusion rods have been successfully used in short-segment posterior instrumentation to prevent adjacent segment degeneration. However, limited studies have reported their application in lumbar long-segment instrumentation. This study aimed to compare the biomechanical performances of PEEK rods and titanium rods in lumbar long-segment instrumentation using finite element (FE) models, with the expectation of providing clinical guidance. Methods A lumbar FE model (A) and four lumbar fixation FE models (BI, CI, BII, CII) of the L1-S1 vertebral body were developed using CT image segmentation (A: intact model; BI: intact model with L2-S1 PEEK rod internal fixation; CI: intact model with L2-S1 titanium rod internal fixation; BII: intact model with L3-S1 PEEK rod internal fixation; CII: intact model with L3-S1 titanium rod internal fixation). A 150-N preload was applied to the top surface of L1, similar to the intact model. The stresses on the lumbar intervertebral disc, facet joint, pedicle screws, and rods were calculated to evaluate the biomechanical effect of the different fixation procedures in lumbar long-segment instrumented surgery. Results Under the four physiological motion states, the average stresses on the adjacent segment intervertebral disc and facet joint in all fixation models were greater than those in the intact model. Furthermore, the average stresses on the adjacent segment intervertebral disc and facet joint were greater in models CI and CII than in models BI and BII, respectively. The average stresses on the pedicle screws and rods were decreased in models BI and BII compared with models CI and CII under the four physiological motion states, respectively. Discussion The PEEK rod internal fixation system may have better biomechanical properties than the titanium rod internal fixation system in delaying adjacent segment degeneration, improving the lumbar function of postoperative patients, and reducing the risk of screw loosening and breakage in lumbar long-segment instrumentation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chunde Li
- Department of Orthopedics, Peking University First Hospital, Beijing, China
| |
Collapse
|
13
|
Li N, Wang J, Feng G, Liu Y, Shi Y, Wang Y, Chen L. Advances in biomaterials for oral-maxillofacial bone regeneration: spotlight on periodontal and alveolar bone strategies. Regen Biomater 2024; 11:rbae078. [PMID: 39055303 PMCID: PMC11272181 DOI: 10.1093/rb/rbae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/05/2024] [Accepted: 06/16/2024] [Indexed: 07/27/2024] Open
Abstract
The intricate nature of oral-maxillofacial structure and function, coupled with the dynamic oral bacterial environment, presents formidable obstacles in addressing the repair and regeneration of oral-maxillofacial bone defects. Numerous characteristics should be noticed in oral-maxillofacial bone repair, such as irregular morphology of bone defects, homeostasis between hosts and microorganisms in the oral cavity and complex periodontal structures that facilitate epithelial ingrowth. Therefore, oral-maxillofacial bone repair necessitates restoration materials that adhere to stringent and specific demands. This review starts with exploring these particular requirements by introducing the particular characteristics of oral-maxillofacial bones and then summarizes the classifications of current bone repair materials in respect of composition and structure. Additionally, we discuss the modifications in current bone repair materials including improving mechanical properties, optimizing surface topography and pore structure and adding bioactive components such as elements, compounds, cells and their derivatives. Ultimately, we organize a range of potential optimization strategies and future perspectives for enhancing oral-maxillofacial bone repair materials, including physical environment manipulation, oral microbial homeostasis modulation, osteo-immune regulation, smart stimuli-responsive strategies and multifaceted approach for poly-pathic treatment, in the hope of providing some insights for researchers in this field. In summary, this review analyzes the complex demands of oral-maxillofacial bone repair, especially for periodontal and alveolar bone, concludes multifaceted strategies for corresponding biomaterials and aims to inspire future research in the pursuit of more effective treatment outcomes.
Collapse
Affiliation(s)
- Nayun Li
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jinyu Wang
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guangxia Feng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuqing Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yunsong Shi
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yifan Wang
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
14
|
Liu M, Liu B, Liu Z, Yang Z, Webster TJ, Zhou H, Yang L. High Strength and Shape Memory Spinal Fusion Device for Minimally Invasive Interbody Fusions. Int J Nanomedicine 2024; 19:5109-5123. [PMID: 38846643 PMCID: PMC11155384 DOI: 10.2147/ijn.s460339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
INTRODUCTION Lumbar interbody fusion is widely employed for both acute and chronic spinal diseases interventions. However, large incision created during interbody cage implantation may adversely impair spinal tissue and influence postoperative recovery. The aim of this study was to design a shape memory interbody fusion device suitable for small incision implantation. METHODS In this study, we designed and fabricated an intervertebral fusion cage that utilizes near-infrared (NIR) light-responsive shape memory characteristics. This cage was composed of bisphenol A diglycidyl ether, polyether amine D-230, decylamine and iron oxide nanoparticles. A self-hardening calcium phosphate-starch cement (CSC) was injected internally through the injection channel of the cage for healing outcome improvement. RESULTS The size of the interbody cage is reduced from 22 mm to 8.8 mm to minimize the incision size. Subsequent NIR light irradiation prompted a swift recovery of the cage shape within 5 min at the lesion site. The biocompatibility of the shape memory composite was validated through in vitro MC3T3-E1 cell (osteoblast-like cells) adhesion and proliferation assays and subcutaneous implantation experiments in rats. CSC was injected into the cage, and the relevant results revealed that CSC is uniformly dispersed within the internal space, along with the cage compressive strength increasing from 12 to 20 MPa. CONCLUSION The results from this study thus demonstrated that this integrated approach of using a minimally invasive NIR shape memory spinal fusion cage with CSC has potential for lumbar interbody fusion.
Collapse
Affiliation(s)
- Min Liu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, People’s Republic of China
- Center for Health Science and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300131, People’s Republic of China
| | - Bo Liu
- Center for Health Science and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300131, People’s Republic of China
| | - Ziyang Liu
- Department of Orthopedics, Tianjin Hospital, Tianjin, People’s Republic of China
| | - Zhen Yang
- Center for Health Science and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300131, People’s Republic of China
| | | | - Huan Zhou
- Center for Health Science and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300131, People’s Republic of China
| | - Lei Yang
- Center for Health Science and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300131, People’s Republic of China
| |
Collapse
|
15
|
Chang SY, Kang DH, Cho SK. Innovative Developments in Lumbar Interbody Cage Materials and Design: A Comprehensive Narrative Review. Asian Spine J 2024; 18:444-457. [PMID: 38146053 PMCID: PMC11222887 DOI: 10.31616/asj.2023.0407] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 12/27/2023] Open
Abstract
This review comprehensively examines the evolution and current state of interbody cage technology for lumbar interbody fusion (LIF). This review highlights the biomechanical and clinical implications of the transition from traditional static cage designs to advanced expandable variants for spinal surgery. The review begins by exploring the early developments in cage materials, highlighting the roles of titanium and polyetheretherketone in the advancement of LIF techniques. This review also discusses the strengths and limitations of these materials, leading to innovations in surface modifications and the introduction of novel materials, such as tantalum, as alternative materials. Advancements in three-dimensional printing and surface modification technologies form a significant part of this review, emphasizing the role of these technologies in enhancing the biomechanical compatibility and osseointegration of interbody cages. In addition, this review explores the increase in biodegradable and composite materials such as polylactic acid and polycaprolactone, addressing their potential to mitigate long-term implant-related complications. A critical evaluation of static and expandable cages is presented, including their respective clinical and radiological outcomes. While static cages have been a mainstay of LIF, expandable cages are noted for their adaptability to the patient's anatomy, reducing complications such as cage subsidence. However, this review highlights the ongoing debate and the lack of conclusive evidence regarding the superiority of either cage type in terms of clinical outcomes. Finally, this review proposes future directions for cage technology, focusing on the integration of bioactive substances and multifunctional coatings and the development of patient-specific implants. These advancements aim to further enhance the efficacy, safety, and personalized approach of spinal fusion surgeries. Moreover, this review offers a nuanced understanding of the evolving landscape of cage technology in LIF and provides insights into current practices and future possibilities in spinal surgery.
Collapse
Affiliation(s)
- Sam Yeol Chang
- Department of Orthopaedic Surgery, Seoul National University Hospital, Seoul,
Korea
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul,
Korea
| | - Dong-Ho Kang
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul,
Korea
- Department of Orthopaedic Surgery, Spine Center, Samsung Medical Center, Seoul,
Korea
| | - Samuel K. Cho
- Department of Orthopaedic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY,
USA
| |
Collapse
|
16
|
Yuan K, Deng C, Tan L, Wang X, Yan W, Dai X, Du R, Zheng Y, Zhang H, Wang G. Structural and temporal dynamics analysis of zinc-based biomaterials: History, research hotspots and emerging trends. Bioact Mater 2024; 35:306-329. [PMID: 38362138 PMCID: PMC10867564 DOI: 10.1016/j.bioactmat.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 02/17/2024] Open
Abstract
Objectives To examine the 16-year developmental history, research hotspots, and emerging trends of zinc-based biodegradable metallic materials from the perspective of structural and temporal dynamics. Methods The literature on zinc-based biodegradable metallic materials in WoSCC was searched. Historical characteristics, the evolution of active topics and development trends in the field of zinc-based biodegradable metallic materials were analyzed using the bibliometric tools CiteSpace and HistCite. Results Over the past 16 years, the field of zinc-based biodegradable metal materials has remained in a hotspot stage, with extensive scientific collaboration. In addition, there are 45 subject categories and 51 keywords in different research periods, and 80 papers experience citation bursts. Keyword clustering anchored 3 emerging research subfields, namely, #1 plastic deformation #4 additive manufacturing #5 surface modification. The keyword alluvial map shows that the longest-lasting research concepts in the field are mechanical property, microstructure, corrosion behavior, etc., and emerging keywords are additive manufacturing, surface modification, dynamic recrystallization, etc. The most recent research on reference clustering has six subfields. Namely, #0 microstructure, #2 sem, #3 additive manufacturing, #4 laser powder bed fusion, #5 implant, and #7 Zn-1Mg. Conclusion The results of the bibliometric study provide the current status and trends of research on zinc-based biodegradable metallic materials, which can help researchers identify hot spots and explore new research directions in the field.
Collapse
Affiliation(s)
- Kunshan Yuan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, 251100, China
| | - Chengchen Deng
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Lili Tan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Xiangxiu Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Wenhua Yan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Xiaozhen Dai
- School of Biosciences and Technology, Chengdu Medical College, Chengdu, 610500, China
| | - Ruolin Du
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Yufeng Zheng
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Haijun Zhang
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, 251100, China
- Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
- JinFeng Laboratory, Chongqing, 401329, China
- School of Biosciences and Technology, Chengdu Medical College, Chengdu, 610500, China
| |
Collapse
|
17
|
Liu X, Astudillo Potes MD, Serdiuk V, Dashtdar B, Schreiber AC, Rezaei A, Miller AL, Hamouda AM, Shafi M, Elder BD, Lu L. Bioactive Moldable Click Chemistry Polymer Cement with Nano-Hydroxyapatite and Growth Factor-Enhanced Posterolateral Spinal Fusion in a Rabbit Model. ACS APPLIED BIO MATERIALS 2024; 7:2450-2459. [PMID: 38500414 DOI: 10.1021/acsabm.4c00073] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Spinal injuries or diseases necessitate effective fusion solutions, and common clinical approaches involve autografts, allografts, and various bone matrix products, each with limitations. To address these challenges, we developed an innovative moldable click chemistry polymer cement that can be shaped by hand and self-cross-linked in situ for spinal fusion. This self-cross-linking cement, enabled by the bioorthogonal click reaction, excludes the need for toxic initiators or external energy sources. The bioactivity of the cement was promoted by incorporating nanohydroxyapatite and microspheres loaded with recombinant human bone morphogenetic protein-2 and vascular endothelial growth factor, fostering vascular induction and osteointegration. The release kinetics of growth factors, mechanical properties of the cement, and the ability of the scaffold to support in vitro cell proliferation and differentiation were evaluated. In a rabbit posterolateral spinal fusion model, the moldable cement exhibited remarkable induction of bone regeneration and effective bridging of spine vertebral bodies. This bioactive moldable click polymer cement therefore presents a promising biomaterial for spinal fusion augmentation, offering advantages in safety, ease of application, and enhanced bone regrowth.
Collapse
Affiliation(s)
- Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Maria D Astudillo Potes
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Vitalii Serdiuk
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Babak Dashtdar
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Areonna C Schreiber
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Asghar Rezaei
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - A Lee Miller
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Abdelrahman M Hamouda
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Mahnoor Shafi
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Benjamin D Elder
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| |
Collapse
|
18
|
Shen Y, Pan Y, Liang F, Song J, Yu X, Cui J, Cai G, EL-Newehy M, Abdulhameed MM, Gu H, Sun B, Yin M, Mo X. Development of 3D printed electrospun vascular graft loaded with tetramethylpyrazine for reducing thrombosis and restraining aneurysmal dilatation. BURNS & TRAUMA 2024; 12:tkae008. [PMID: 38596623 PMCID: PMC11002459 DOI: 10.1093/burnst/tkae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/01/2024] [Accepted: 02/22/2024] [Indexed: 04/11/2024]
Abstract
Background Small-diameter vascular grafts have become the focus of attention in tissue engineering. Thrombosis and aneurysmal dilatation are the two major complications of the loss of vascular access after surgery. Therefore, we focused on fabricating 3D printed electrospun vascular grafts loaded with tetramethylpyrazine (TMP) to overcome these limitations. Methods Based on electrospinning and 3D printing, 3D-printed electrospun vascular grafts loaded with TMP were fabricated. The inner layer of the graft was composed of electrospun poly(L-lactic-co-caprolactone) (PLCL) nanofibers and the outer layer consisted of 3D printed polycaprolactone (PCL) microfibers. The characterization and mechanical properties were tested. The blood compatibility and in vitro cytocompatibility of the grafts were also evaluated. Additionally, rat abdominal aortas were replaced with these 3D-printed electrospun grafts to evaluate their biosafety. Results Mechanical tests demonstrated that the addition of PCL microfibers could improve the mechanical properties. In vitro experimental data proved that the introduction of TMP effectively inhibited platelet adhesion. Afterwards, rat abdominal aorta was replaced with 3D-printed electrospun grafts. The 3D-printed electrospun graft loaded with TMP showed good biocompatibility and mechanical strength within 6 months and maintained substantial patency without the occurrence of acute thrombosis. Moreover, no obvious aneurysmal dilatation was observed. Conclusions The study demonstrated that 3D-printed electrospun vascular grafts loaded with TMP may have the potential for injured vascular healing.
Collapse
Affiliation(s)
- Yihong Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, No. 2999 North Renmin Road, Songjiang District, Donghua University, Shanghai 201620, PR China
| | - Yanjun Pan
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, No. 1678 Dongfang Road,Pudong New Area, Shanghai 200127, PR China
| | - Fubang Liang
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, No. 1678 Dongfang Road,Pudong New Area, Shanghai 200127, PR China
| | - Jiahui Song
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, No. 2999 North Renmin Road, Songjiang District, Donghua University, Shanghai 201620, PR China
| | - Xiao Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, No. 2999 North Renmin Road, Songjiang District, Donghua University, Shanghai 201620, PR China
| | - Jie Cui
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, No. 2999 North Renmin Road, Songjiang District, Donghua University, Shanghai 201620, PR China
| | - Guangfang Cai
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, No. 2999 North Renmin Road, Songjiang District, Donghua University, Shanghai 201620, PR China
| | - Mohamed EL-Newehy
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Meera Moydeen Abdulhameed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Hongbing Gu
- Department of Cardiovascular Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 Xinsongjiang Road, Songjiang District, Shanghai 201600, PR China
| | - Binbin Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, No. 2999 North Renmin Road, Songjiang District, Donghua University, Shanghai 201620, PR China
| | - Meng Yin
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, No. 1678 Dongfang Road,Pudong New Area, Shanghai 200127, PR China
| | - Xiumei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, No. 2999 North Renmin Road, Songjiang District, Donghua University, Shanghai 201620, PR China
| |
Collapse
|
19
|
Liang W, Zhou C, Bai J, Zhang H, Long H, Jiang B, Liu L, Xia L, Jiang C, Zhang H, Zhao J. Nanotechnology-based bone regeneration in orthopedics: a review of recent trends. Nanomedicine (Lond) 2024; 19:255-275. [PMID: 38275154 DOI: 10.2217/nnm-2023-0187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024] Open
Abstract
Nanotechnology has revolutionized the field of bone regeneration, offering innovative solutions to address the challenges associated with conventional therapies. This comprehensive review explores the diverse landscape of nanomaterials - including nanoparticles, nanocomposites and nanofibers - tailored for bone tissue engineering. We delve into the intricate design principles, structural mimicry of native bone and the crucial role of biomaterial selection, encompassing bioceramics, polymers, metals and their hybrids. Furthermore, we analyze the interface between cells and nanostructured materials and their pivotal role in engineering and regenerating bone tissue. In the concluding outlook, we highlight emerging frontiers and potential research directions in harnessing nanomaterials for bone regeneration.
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua hospital, Zhoushan, 316000, China
| | - Juqin Bai
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Hongwei Zhang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Hengguo Long
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Bo Jiang
- Rehabilitation Department, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Lu Liu
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Linying Xia
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Chanyi Jiang
- Department of Pharmacy, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Hengjian Zhang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Jiayi Zhao
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| |
Collapse
|
20
|
Spirin OA, Aleksanyan MM, Makarov SA, Aganesov AG, Krupnin AE, Pobezhimov VV, Sedush NG. [Interbody cage implantation in cadaveric model of the ram spine: biomechanical tests]. Khirurgiia (Mosk) 2024:91-94. [PMID: 39665351 DOI: 10.17116/hirurgia202412291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
OBJECTIVE To evaluate the mechanical properties of poly(L-lactide) cage prototypes on cadaveric models of the lumbar spine ram model. MATERIAL AND METHODS Prototypes of neck devices were developed on the Ender 2v2 3D printer («Shenzhen Creality 3D Technology Co., Ltd.», China). We analyzed mechanical properties of experimental cages. Single-level lumbar discectomy and fusion with poly(L-lactide) and poly-ε-caprolactone cage was performed on 4 cadaver models. Subsequent mechanical tests of vertebral segment were conducted on Instron 5965 electromechanical testing machine (Instron, A Division of Illinois Tool Works, Inc., USA). RESULTS Static and cyclic tests revealed rigidity, adequate fixation and no migration of cages. CONCLUSION Biocompatible biodegradable cages is a perspective direction in medicine. Considering high incidence of postoperative complications associated with migration and subsidence of non-resorbable cages, we can assume that biodegradable implants can become a competitive analogue for spinal fusion.
Collapse
Affiliation(s)
- O A Spirin
- Petrovsky National Research Center of Surgery, Moscow, Russia
- Kurchatov Institute, Moscow, Russia
| | - M M Aleksanyan
- Petrovsky National Research Center of Surgery, Moscow, Russia
- Kurchatov Institute, Moscow, Russia
| | - S A Makarov
- Petrovsky National Research Center of Surgery, Moscow, Russia
- Kurchatov Institute, Moscow, Russia
| | - A G Aganesov
- Petrovsky National Research Center of Surgery, Moscow, Russia
- Kurchatov Institute, Moscow, Russia
| | - A E Krupnin
- Petrovsky National Research Center of Surgery, Moscow, Russia
- Kurchatov Institute, Moscow, Russia
| | - V V Pobezhimov
- Petrovsky National Research Center of Surgery, Moscow, Russia
- Kurchatov Institute, Moscow, Russia
| | - N G Sedush
- Petrovsky National Research Center of Surgery, Moscow, Russia
- Kurchatov Institute, Moscow, Russia
| |
Collapse
|
21
|
Doulgeris J, Lin M, Lee W, Aghayev K, Papanastassiou ID, Tsai CT, Vrionis FD. Inter-Specimen Analysis of Diverse Finite Element Models of the Lumbar Spine. Bioengineering (Basel) 2023; 11:24. [PMID: 38247901 PMCID: PMC10813462 DOI: 10.3390/bioengineering11010024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/09/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Over the past few decades, there has been a growing popularity in utilizing finite element analysis to study the spine. However, most current studies tend to use one specimen for their models. This research aimed to validate multiple finite element models by comparing them with data from in vivo experiments and other existing finite element studies. Additionally, this study sought to analyze the data based on the gender and age of the specimens. For this study, eight lumbar spine (L2-L5) finite element models were developed. These models were then subjected to finite element analysis to simulate the six fundamental motions. CT scans were obtained from a total of eight individuals, four males and four females, ranging in age from forty-four (44) to seventy-three (73) years old. The CT scans were preprocessed and used to construct finite element models that accurately emulated the motions of flexion, extension, lateral bending, and axial rotation. Preloads and moments were applied to the models to replicate physiological loading conditions. This study focused on analyzing various parameters such as vertebral rotation, facet forces, and intradiscal pressure in all loading directions. The obtained data were then compared with the results of other finite element analyses and in vivo experimental measurements found in the existing literature to ensure their validity. This study successfully validated the intervertebral rotation, intradiscal pressure, and facet force results by comparing them with previous research findings. Notably, this study concluded that gender did not have a significant impact on the results. However, the results did highlight the importance of age as a critical variable when modeling the lumbar spine.
Collapse
Affiliation(s)
- James Doulgeris
- Department of Medical Engineering, University of South Florida, Tampa, FL 33620, USA; (J.D.); (W.L.)
| | - Maohua Lin
- Department of Ocean & Mechanical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA;
| | - William Lee
- Department of Medical Engineering, University of South Florida, Tampa, FL 33620, USA; (J.D.); (W.L.)
| | - Kamran Aghayev
- Department of Neurosurgery, Esencan Hospital, Baglarcesme Mahallesi, Istanbul 34510, Turkey;
| | | | - Chi-Tay Tsai
- Department of Ocean & Mechanical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA;
| | - Frank D. Vrionis
- Department of Neurosurgery, Marcus Neuroscience Institute, Boca Raton Regional Hospital, Boca Raton, FL 33486, USA
| |
Collapse
|
22
|
Maroju PA, Ganesan R, Ray Dutta J. Probing the Effects of Antimicrobial-Lysozyme Derivatization on Enzymatic Degradation of Poly(ε-caprolactone) Film and Fiber. Macromol Biosci 2023; 23:e2300296. [PMID: 37555590 DOI: 10.1002/mabi.202300296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/03/2023] [Indexed: 08/10/2023]
Abstract
Surface derivatization is essential for incorporating unique functionalities into biodegradable polymers. Nonetheless, its precise effects on enzymatic biodegradation still lack comprehensive understanding. In this study, a facile solution-based method is employed to surface derivatize poly(ε-caprolactone) films and electrospun fibers with lysozyme, aiming to impart antimicrobial properties and examine the impact on enzymatic degradation. The derivatized films and fibers have shown high antibacterial efficacy against Escherichia coli and Staphylococcus aureus. Through gravimetric analysis, it is observed that the degradation rate experiences a slight decrease upon lysozyme derivatization. However, this reduction is effectively countered by the inclusion of Tween-20, as affirmed by isothermal titration calorimetry. Comparing films and fibers, the latter undergoes degradation at a more accelerated pace, coupled with a rapid decline in molecular weight. This study provides valuable insights into the factors influencing the degradation of surface-derivatized biopolymers through electrospinning, offering a simple strategy to mitigate biomaterial-associated infections.
Collapse
Affiliation(s)
- Pranay Amruth Maroju
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana, 500078, India
| | - Ramakrishnan Ganesan
- Department of Chemistry, Birla Institute of Technology and Science (BITS), Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana, 500078, India
| | - Jayati Ray Dutta
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana, 500078, India
| |
Collapse
|
23
|
Laubach M, Herath B, Bock N, Suresh S, Saifzadeh S, Dargaville BL, McGovern J, Wille ML, Hutmacher DW, Medeiros Savi F. In vivo characterization of 3D-printed polycaprolactone-hydroxyapatite scaffolds with Voronoi design to advance the concept of scaffold-guided bone regeneration. Front Bioeng Biotechnol 2023; 11:1272348. [PMID: 37860627 PMCID: PMC10584154 DOI: 10.3389/fbioe.2023.1272348] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023] Open
Abstract
Three-dimensional (3D)-printed medical-grade polycaprolactone (mPCL) composite scaffolds have been the first to enable the concept of scaffold-guided bone regeneration (SGBR) from bench to bedside. However, advances in 3D printing technologies now promise next-generation scaffolds such as those with Voronoi tessellation. We hypothesized that the combination of a Voronoi design, applied for the first time to 3D-printed mPCL and ceramic fillers (here hydroxyapatite, HA), would allow slow degradation and high osteogenicity needed to regenerate bone tissue and enhance regenerative properties when mixed with xenograft material. We tested this hypothesis in vitro and in vivo using 3D-printed composite mPCL-HA scaffolds (wt 96%:4%) with the Voronoi design using an ISO 13485 certified additive manufacturing platform. The resulting scaffold porosity was 73% and minimal in vitro degradation (mass loss <1%) was observed over the period of 6 months. After loading the scaffolds with different types of fresh sheep xenograft and ectopic implantation in rats for 8 weeks, highly vascularized tissue without extensive fibrous encapsulation was found in all mPCL-HA Voronoi scaffolds and endochondral bone formation was observed, with no adverse host-tissue reactions. This study supports the use of mPCL-HA Voronoi scaffolds for further testing in future large preclinical animal studies prior to clinical trials to ultimately successfully advance the SGBR concept.
Collapse
Affiliation(s)
- Markus Laubach
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Munich, Germany
| | - Buddhi Herath
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- Jamieson Trauma Institute, Metro North Hospital and Health Service, Royal Brisbane and Women’s Hospital, Herston, QLD, Australia
| | - Nathalie Bock
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD, Australia
| | - Sinduja Suresh
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- Biomechanics and Spine Research Group at the Centre of Children’s Health Research, Queensland University of Technology, Brisbane, QLD, Australia
| | - Siamak Saifzadeh
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- Medical Engineering Research Facility, Queensland University of Technology, Chermside, QLD, Australia
| | - Bronwin L. Dargaville
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD, Australia
| | - Jacqui McGovern
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, QLD, Australia
| | - Marie-Luise Wille
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD, Australia
| | - Dietmar W. Hutmacher
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, QLD, Australia
| | - Flavia Medeiros Savi
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
24
|
Pu F, Yu Y, Zhang Z, Wu W, Shao Z, Li C, Feng J, Xue L, Chen F. Research and Application of Medical Polyetheretherketone as Bone Repair Material. Macromol Biosci 2023; 23:e2300032. [PMID: 37088909 DOI: 10.1002/mabi.202300032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/01/2023] [Indexed: 04/25/2023]
Abstract
Polyetheretherketone (PEEK) can potentially be used for bone repair because its elastic modulus is similar to that of human natural bone and good biocompatibility and chemical stability. However, its hydrophobicity and biological inertness limit its application in the biomedical field. Inspired by the composition, structure, and function of bone tissue, many strategies are proposed to change the structure and functionality of the PEEK surface. In this review, the applications of PEEK in bone repair and the optimization strategy for PEEK's biological activity are reviewed, which provides a direction for the development of multifunctional bone repair materials in the future.
Collapse
Affiliation(s)
- Feifei Pu
- Department of Orthopedics, Traditional Chinese and Western Medicine Hospital of Wuhan (Wuhan No.1 Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Yihan Yu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Zhicai Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Wei Wu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Chao Li
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Jing Feng
- Department of Orthopedics, Traditional Chinese and Western Medicine Hospital of Wuhan (Wuhan No.1 Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Longjian Xue
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei, 430072, China
| | - Fengxia Chen
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430071, China
| |
Collapse
|
25
|
Laubach M, Hildebrand F, Suresh S, Wagels M, Kobbe P, Gilbert F, Kneser U, Holzapfel BM, Hutmacher DW. The Concept of Scaffold-Guided Bone Regeneration for the Treatment of Long Bone Defects: Current Clinical Application and Future Perspective. J Funct Biomater 2023; 14:341. [PMID: 37504836 PMCID: PMC10381286 DOI: 10.3390/jfb14070341] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/31/2023] [Accepted: 06/21/2023] [Indexed: 07/29/2023] Open
Abstract
The treatment of bone defects remains a challenging clinical problem with high reintervention rates, morbidity, and resulting significant healthcare costs. Surgical techniques are constantly evolving, but outcomes can be influenced by several parameters, including the patient's age, comorbidities, systemic disorders, the anatomical location of the defect, and the surgeon's preference and experience. The most used therapeutic modalities for the regeneration of long bone defects include distraction osteogenesis (bone transport), free vascularized fibular grafts, the Masquelet technique, allograft, and (arthroplasty with) mega-prostheses. Over the past 25 years, three-dimensional (3D) printing, a breakthrough layer-by-layer manufacturing technology that produces final parts directly from 3D model data, has taken off and transformed the treatment of bone defects by enabling personalized therapies with highly porous 3D-printed implants tailored to the patient. Therefore, to reduce the morbidities and complications associated with current treatment regimens, efforts have been made in translational research toward 3D-printed scaffolds to facilitate bone regeneration. Three-dimensional printed scaffolds should not only provide osteoconductive surfaces for cell attachment and subsequent bone formation but also provide physical support and containment of bone graft material during the regeneration process, enhancing bone ingrowth, while simultaneously, orthopaedic implants supply mechanical strength with rigid, stable external and/or internal fixation. In this perspective review, we focus on elaborating on the history of bone defect treatment methods and assessing current treatment approaches as well as recent developments, including existing evidence on the advantages and disadvantages of 3D-printed scaffolds for bone defect regeneration. Furthermore, it is evident that the regulatory framework and organization and financing of evidence-based clinical trials remains very complex, and new challenges for non-biodegradable and biodegradable 3D-printed scaffolds for bone regeneration are emerging that have not yet been sufficiently addressed, such as guideline development for specific surgical indications, clinically feasible design concepts for needed multicentre international preclinical and clinical trials, the current medico-legal status, and reimbursement. These challenges underscore the need for intensive exchange and open and honest debate among leaders in the field. This goal can be addressed in a well-planned and focused stakeholder workshop on the topic of patient-specific 3D-printed scaffolds for long bone defect regeneration, as proposed in this perspective review.
Collapse
Affiliation(s)
- Markus Laubach
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Frank Hildebrand
- Department of Orthopaedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Sinduja Suresh
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Michael Wagels
- Department of Plastic Surgery, Princess Alexandra Hospital, Woolloongabba, QLD 4102, Australia;
- The Herston Biofabrication Institute, The University of Queensland, Herston, QLD 4006, Australia
- Southside Clinical Division, School of Medicine, University of Queensland, Woolloongabba, QLD 4102, Australia
- Department of Plastic and Reconstructive Surgery, Queensland Children’s Hospital, South Brisbane, QLD 4101, Australia
- The Australian Centre for Complex Integrated Surgical Solutions, Woolloongabba, QLD 4102, Australia
| | - Philipp Kobbe
- Department of Orthopaedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Fabian Gilbert
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Ulrich Kneser
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, 67071 Ludwigshafen, Germany
| | - Boris M. Holzapfel
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Dietmar W. Hutmacher
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD 4000, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies (CTET), Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| |
Collapse
|
26
|
Popkov A, Kononovich N, Dubinenko G, Gorbach E, Shastov A, Tverdokhlebov S, Popkov D. Long Bone Defect Filling with Bioactive Degradable 3D-Implant: Experimental Study. Biomimetics (Basel) 2023; 8:biomimetics8020138. [PMID: 37092390 PMCID: PMC10123725 DOI: 10.3390/biomimetics8020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/26/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
Previously, 3D-printed bone grafts made of titanium alloy with bioactive coating has shown great potential for the restoration of bone defects. Implanted into a medullary canal titanium graft with cellular structure demonstrated stimulation of the reparative osteogenesis and successful osseointegration of the graft into a single bone-implant block. The purpose of this study was to investigate osseointegration of a 3D-printed degradable polymeric implant with cellular structure as preclinical testing of a new technique for bone defect restoration. During an experimental study in sheep, a 20 mm-long segmental tibial defect was filled with an original cylindrical implant with cellular structure made of polycaprolactone coated with hydroxyapatite. X-ray radiographs demonstrated reparative bone regeneration from the periosteum lying on the periphery of cylindrical implant to its center in a week after the surgery. Cellular structure of the implant was fully filled with newly-formed bone tissue on the 4th week after the surgery. The bone tissue regeneration from the proximal and distal bone fragments was evident on 3rd week. This provides insight into the use of bioactive degradable implants for the restoration of segmental bone defects. Degradable implant with bioactive coating implanted into a long bone segmental defect provides stimulation of reparative osteogenesis and osseointegration into the single implant-bone block.
Collapse
|
27
|
Peidavosi N, Azami M, Beheshtizadeh N, Ramazani Saadatabadi A. Piezoelectric conductive electrospun nanocomposite PCL/Polyaniline/Barium Titanate scaffold for tissue engineering applications. Sci Rep 2022; 12:20828. [PMID: 36460783 PMCID: PMC9718788 DOI: 10.1038/s41598-022-25332-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
Recent trends in tissue engineering technology have switched to electrical potentials generated through bioactive scaffolds regarding their appropriate effects on cell behaviors. Preparing a piezo-electrical stimuli scaffold with high electrical conductivity for bone and cartilage tissue regeneration is the ultimate goal of the present study. Here, Barium Titanate nanoparticles (BaTiO3 NPs) were used as piezoelectric material and highly conductive binary doped Polyaniline nanoparticles (PANI NPs) were synthesized by oxidative polymerization. Polycaprolactone (PCL) was applied as carrier substrate polymer and conductive spun nanofibrous scaffolds of PCL/PANI composites were prepared in two different amounts of PANI (3 and 5 wt.%). The conductivity of PCL/PANI nanofibers has been analyzed by standard four probes test. Based on the obtained results, the PCL/PANI5 (with 5 wt.% PANI) was selected due to the superior electrical conductivity of 8.06 × 10-4 s cm - 1. Moreover, the piezoelectric nanofibrous scaffolds of PCL/BT composite were electrospun in three different amounts of BT (20, 30, and 40 wt.%). To investigate the synergic effect of conductive PANI and piezoelectric BT, ternary nanocomposite scaffolds of PCL/PANI/BT were prepared using the dual jet electrospinning technique. The piezoelectric properties have been analyzed by determining the produced voltage. The morphological assessment, contact angle, mechanical test, and MTT assay have been conducted to evaluate other properties including biocompatibility of nanofibrous scaffolds. The PCL/PANI5/BT40 composite resulted in an unprecedented voltage of 1.9 Volt. SEM results confirm that BT NPs have been distributed and embedded inside PCL fibers quite appropriately. Also, the chosen scaffolds were homogeneously intertwined and possessed an average fiber diameter of 288 ± 180 nm, and a contact angle of 92 ± 7°, making it a desirable surface for cell attachment and protein interactions. Moreover, Young's modulus, ultimate tensile stress, and elongation were obtained as 11 ± 1 MPa, 5 ± 0.6 MPa, and 109 ± 15% respectively. Obtained results assert the novel potential of piezo-electrical stimuli conductive nanocomposite scaffold for tissue engineering applications.
Collapse
Affiliation(s)
- Naeemeh Peidavosi
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Azami
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Nima Beheshtizadeh
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|