1
|
Shi H, Yang H, Wu C, Wang S, He S, Chen L, Chan YK, Lai S, Liang K, Deng Y. Glucose-triggered NO-evolving coating bestows orthopedic implants with enhanced anti-bacteria and angiectasis for safeguarding diabetic osseointegration. Biomaterials 2025; 321:123334. [PMID: 40239593 DOI: 10.1016/j.biomaterials.2025.123334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 04/18/2025]
Abstract
As a common chronic metabolic disease, diabetes mellitus (DM) features a hyperglycemic micromilieu around implants, resulting in the critical implantation failure and high complications such as peri-implantitis and angiectasis disorder. To address the plaguing issue, we devise and develop a glucose-unlocked NO-evolving orthopedic implant consisted of polyetheretherketone (PEEK), glucose oxidase (GOx) and l-arginine (Arg) with enhanced angiogenesis for boosting diabetic osseointegration. Upon hyperglycemic niche, GOx on implants catalytically exhaust glucose to H2O2, which immediately reacts with Arg to in situ liberate nitric oxide (NO), resulting in enhanced angiogenesis and angiectasis around PEEK implant. Besides, the engineered implant exhibits great anti-bacterial properties against both Gram-positive and Gram-negative bacteria, as well as fortifies osteogenicity of osteoblasts in terms of cell proliferation, alkaline phosphatase activity and calcium matrix mineralization. Intriguingly, in vivo evaluations utilizing diabetic infectious bone defect models of rat further authenticate that the engineered implants substantially augment bone remodeling and osseointegration at weeks 4 and 8 through dampening pathogens, anti-inflammatory as well as promoting angiectasis. Altogether, this work proposed a new tactic to remedy stalled diabetic osseointegration with hyperglycemic micromilieu-responsive therapeutic gas-evolving orthopedic implants.
Collapse
Affiliation(s)
- Hongxing Shi
- School of Chemical Engineering, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
| | - Hao Yang
- School of Chemical Engineering, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
| | - Chao Wu
- Institute of Digital Medicine, Zigong Academy of Big Data for Medical Science and Artificial Intelligence, Department of Orthopedics, Zigong Fourth People's Hospital, Zigong, 643000, China
| | - Song Wang
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Shuai He
- School of Chemical Engineering, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
| | - Lin Chen
- School of Chemical Engineering, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
| | - Yau Kei Chan
- Department of Ophthalmology, The University of Hong Kong, 999077, Hong Kong, China
| | - Shuangquan Lai
- School of Chemical Engineering, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China
| | - Kunneng Liang
- School of Chemical Engineering, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China; Department of Cardiology and Endodontics, State Key Laboratory of Oral Disease, West China Hospital, Sichuan University, Chengdu, 610065, China.
| | - Yi Deng
- School of Chemical Engineering, West China Hospital of Stomatology, Sichuan University, Chengdu, 610065, China; National Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu, 610065, China; Department of Mechanical Engineering, The University of Hong Kong, 999077, Hong Kong, China.
| |
Collapse
|
2
|
Wu B, Li X, Wang R, Liu L, Huang D, Ye L, Wang Z. Biomimetic Mineralized Collagen Scaffolds for Bone Tissue Engineering: Strategies on Elaborate Fabrication for Bioactivity Improvement. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406441. [PMID: 39580700 DOI: 10.1002/smll.202406441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/23/2024] [Indexed: 11/26/2024]
Abstract
Biomimetic mineralized collagen (BMC) scaffolds represent an innovative class of bone-repair biomaterials inspired by the natural biomineralization process in bone tissue. Owing to their favorable biocompatibility and mechanical properties, BMC scaffolds have garnered significant attention in bone tissue engineering. However, most studies have overlooked the importance of bioactivity, resulting in collagen scaffolds with suboptimal osteogenic potential. In this review, the composition of the mineralized extracellular matrix (ECM) in bone tissue is discussed to provide guidance for biomimetic collagen mineralization. Subsequently, according to the detailed fabrication procedure of BMC scaffolds, the substances that can regulate both the fabrication process and biological activities is summarized. Furthermore, a potential strategy for developing BMC scaffolds with superior mechanical properties and biological activities for bone tissue engineering is proposed.
Collapse
Affiliation(s)
- Bingfeng Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaohong Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Rui Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Liu Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Dingming Huang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhenming Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
3
|
Zhang Y, Xu T, Li T, Chen H, Xu G, Hu W, Li Y, Dong Y, Liu Z, Han B. A three-phase strategy of bionic drug reservoir scaffold by 3D printing and layer-by-layer modification for chronic relapse management in traumatic osteomyelitis. Mater Today Bio 2024; 29:101356. [PMID: 39687799 PMCID: PMC11648807 DOI: 10.1016/j.mtbio.2024.101356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/11/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
We have developed a novel three-phase strategy for osteomyelitis treatment, structured into three distinct phases: the "strong antimicrobial" phase, the "monitoring and osteogenesis" phase and the "bone repair" phase. To implement this staged therapeutic strategy, we engineered a bionic drug reservoir scaffold carrying a dual-drug combination of antimicrobial peptides (AMPs) and simvastatin (SV). The scaffold integrated a bilayer gel drug-carrying structure, based on an induced membrane and combined with a 3D-printed rigid bone graft using a layer-by-layer modification strategy. The mechanical strength of the composite scaffold (73.40 ± 22.44 MPa) is comparable to that of cancellous bone. This scaffold enables controlled, sequential drug release through a spatial structure design and nanoparticle drug-carrying strategy. AMPs are released rapidly, with the release efficiency of 74.90 ± 8.19 % at 14 days (pH = 7.2), thus enabling rapid antimicrobial therapy. Meanwhile, SV is released over a prolonged period, with a release efficiency of 98.98 ± 0.05 % over 40 days in vitro simulations, promoting sustained osteogenesis and facilitating the treatment of intracellular infections by activating macrophage extracellular traps (METs). The antimicrobial, osteogenic and immunomodulatory effects of the scaffolds were verified through in vitro and in vivo experiments. It was demonstrated that composite scaffolds were able to combat the chronic recurrence of osteomyelitis after debridement, by providing rapid sterilization, stimulating METs formation, and supporting osteogenic repair.
Collapse
Affiliation(s)
- Yutong Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Tongtong Xu
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Tieshu Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
- Changchun University of Chinese Medicine, Changchun, 130117, China
- Affiliated Hospital of Yangzhou University, Yangzhou, 225009, China
| | - Hening Chen
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Guangzhe Xu
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Wenxin Hu
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Yongting Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Yue Dong
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Zhihui Liu
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Bing Han
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| |
Collapse
|
4
|
Kolliopoulos V, Tiffany A, Polanek M, Harley BAC. Donor Sex and Passage Conditions Influence MSC Osteogenic Response in Mineralized Collagen Scaffolds. Adv Healthc Mater 2024; 13:e2400039. [PMID: 39036820 PMCID: PMC11518655 DOI: 10.1002/adhm.202400039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/13/2024] [Indexed: 07/23/2024]
Abstract
Contemporary tissue engineering efforts often seek to use mesenchymal stem cells (MSCs) due to their multi-potent potential and ability to generate a pro-regenerative secretome. While many have reported the influence of matrix environment on MSC osteogenic response, few have investigated the effects of donor and sex. Here, a well-defined mineralized collagen scaffold is used to study the influence of passage number and donor-reported sex on MSC proliferation and osteogenic potential. A library of bone marrow and adipose tissue-derived stem cells from eight donors to examine donor viability in osteogenic capacity in mineralized collagen scaffolds is obtained. MSCs displayed reduced proliferative capacity as a function of passage duration. Further, MSCs showed significant sex-associated variability in osteogenic capacity. Notably, MSCs from male donors displayed significantly higher cell proliferation while MSCs from female donors displayed significantly higher osteogenic response via increased alkaline phosphate activity, osteoprotegerin release, and mineral formation in vitro. The study highlights the essentiality of including donor-reported sex as an experimental variable and reporting culture expansion in future studies of biomaterial regenerative potential.
Collapse
Affiliation(s)
- Vasiliki Kolliopoulos
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Aleczandria Tiffany
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Maxwell Polanek
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Brendan A C Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
5
|
Timmer KB, Killian ML, Harley BAC. Paracrine signals influence patterns of fibrocartilage differentiation in a lyophilized gelatin hydrogel for applications in rotator cuff repair. Biomater Sci 2024; 12:4806-4822. [PMID: 39150417 PMCID: PMC11404831 DOI: 10.1039/d4bm00543k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Rotator cuff injuries present a clinical challenge for repair due to current limitations in functional regeneration of the native tendon-to-bone enthesis. A biomaterial that can regionally instruct unique tissue-specific phenotypes offers potential to promote enthesis repair. We have recently demonstrated the mechanical benefits of a stratified triphasic biomaterial made up of tendon- and bone-mimetic collagen scaffold compartments connected via a continuous hydrogel, and we now explore the potential of a biologically favorable enthesis hydrogel for this application. Here we report in vitro behavior of human mesenchymal stem cells (hMSCs) within thiolated gelatin (Gel-SH) hydrogels in response to chondrogenic stimuli as well as paracrine signals derived from MSC-seeded bone and tendon scaffold compartments. Chondrogenic differentiation media promoted upregulation of cartilage and entheseal fibrocartilage matrix markers COL2, COLX, and ACAN as well as the enthesis-associated transcription factors SCX, SOX9, and RUNX2 in hMSCs within Gel-SH. Similar effects were observed in response to TGF-β3 and BMP-4, enthesis-associated growth factors known to play a role in entheseal development and maintenance. Conditioned media generated by hMSCs seeded in tendon- and bone-mimetic collagen scaffolds influenced patterns of gene expression regarding enthesis-relevant growth factors, matrix markers, and tendon-to-bone transcription factors for hMSCs within the material. Together, these findings demonstrate that a Gel-SH hydrogel provides a permissive environment for enthesis tissue engineering and highlights the significance of cellular crosstalk between adjacent compartments within a spatially graded biomaterial.
Collapse
Affiliation(s)
- Kyle B Timmer
- Dept. Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, 110 Roger Adams Laboratory, 600 S. Mathews Ave., Urbana, IL 61801, USA.
| | - Megan L Killian
- Department of Orthopaedic Surgery, University of Michigan Ann Arbor, Ann Arbor, Michigan 48109, USA
- Department of Molecular and Integrative Physiology, University of Michigan Ann Arbor, Ann Arbor, Michigan 48109, USA
| | - Brendan A C Harley
- Dept. Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, 110 Roger Adams Laboratory, 600 S. Mathews Ave., Urbana, IL 61801, USA.
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
6
|
Sulaksono HLS, Annisa A, Ruslami R, Mufeeduzzaman M, Panatarani C, Hermawan W, Ekawardhani S, Joni IM. Recent Advances in Graphene Oxide-Based on Organoid Culture as Disease Model and Cell Behavior - A Systematic Literature Review. Int J Nanomedicine 2024; 19:6201-6228. [PMID: 38911499 PMCID: PMC11193994 DOI: 10.2147/ijn.s455940] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/02/2024] [Indexed: 06/25/2024] Open
Abstract
Due to their ability to replicate the in vivo microenvironment through cell interaction and induce cells to stimulate cell function, three-dimensional cell culture models can overcome the limitations of two-dimensional models. Organoids are 3D models that demonstrate the ability to replicate the natural structure of an organ. In most organoid tissue cultures, matrigel made of a mouse tumor extracellular matrix protein mixture is an essential ingredient. However, its tumor-derived origin, batch-to-batch variation, high cost, and safety concerns have limited the usefulness of organoid drug development and regenerative medicine. Its clinical application has also been hindered by the fact that organoid generation is dependent on the use of poorly defined matrices. Therefore, matrix optimization is a crucial step in developing organoid culture that introduces alternatives as different materials. Recently, a variety of substitute materials has reportedly replaced matrigel. The purpose of this study is to review the significance of the latest advances in materials for cell culture applications and how they enhance build network systems by generating proper cell behavior. Excellence in cell behavior is evaluated from their cell characteristics, cell proliferation, cell differentiation, and even gene expression. As a result, graphene oxide as a matrix optimization demonstrated high potency in developing organoid models. Graphene oxide can promote good cell behavior and is well known for having good biocompatibility. Hence, advances in matrix optimization of graphene oxide provide opportunities for the future development of advanced organoid models.
Collapse
Affiliation(s)
| | - Annisa Annisa
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung, Indonesia
| | - Rovina Ruslami
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Mufeeduzzaman Mufeeduzzaman
- Functional Nano Powder University Center of Excellence (FiNder U-CoE), Universitas Padjadjaran, Bandung, Indonesia
| | - Camellia Panatarani
- Functional Nano Powder University Center of Excellence (FiNder U-CoE), Universitas Padjadjaran, Bandung, Indonesia
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung, Indonesia
| | - Wawan Hermawan
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung, Indonesia
- Functional Nano Powder University Center of Excellence (FiNder U-CoE), Universitas Padjadjaran, Bandung, Indonesia
| | - Savira Ekawardhani
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Functional Nano Powder University Center of Excellence (FiNder U-CoE), Universitas Padjadjaran, Bandung, Indonesia
| | - I Made Joni
- Functional Nano Powder University Center of Excellence (FiNder U-CoE), Universitas Padjadjaran, Bandung, Indonesia
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
7
|
Onyango LA, Liang J. Manuka honey as a non-antibiotic alternative against Staphylococcus spp. and their small colony variant (SCVs) phenotypes. Front Cell Infect Microbiol 2024; 14:1380289. [PMID: 38868298 PMCID: PMC11168119 DOI: 10.3389/fcimb.2024.1380289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/21/2024] [Indexed: 06/14/2024] Open
Abstract
The antibiotic resistance (ABR) crisis is an urgent global health priority. Staphylococci are among the problematic bacteria contributing to this emergency owing to their recalcitrance to many clinically important antibiotics. Staphylococcal pathogenesis is further complicated by the presence of small colony variants (SCVs), a bacterial subpopulation displaying atypical characteristics including retarded growth, prolific biofilm formation, heightened antibiotic tolerance, and enhanced intracellular persistence. These capabilities severely impede current chemotherapeutics, resulting in chronic infections, poor patient outcomes, and significant economic burden. Tackling ABR requires alternative measures beyond the conventional options that have dominated treatment regimens over the past 8 decades. Non-antibiotic therapies are gaining interest in this arena, including the use of honey, which despite having ancient therapeutic roots has now been reimagined as an alternative treatment beyond just traditional topical use, to include the treatment of an array of difficult-to-treat staphylococcal infections. This literature review focused on Manuka honey (MH) and its efficacy as an anti-staphylococcal treatment. We summarized the studies that have used this product and the technologies employed to study the antibacterial mechanisms that render MH a suitable agent for the management of problematic staphylococcal infections, including those involving staphylococcal SCVs. We also discussed the status of staphylococcal resistance development to MH and other factors that may impact its efficacy as an alternative therapy to help combat ABR.
Collapse
Affiliation(s)
- Laura A. Onyango
- Department of Biology, Trinity Western University, Langley, BC, Canada
| | | |
Collapse
|
8
|
Wang S, Qiu Y, Zhu F. An updated review of functional ingredients of Manuka honey and their value-added innovations. Food Chem 2024; 440:138060. [PMID: 38211407 DOI: 10.1016/j.foodchem.2023.138060] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 01/13/2024]
Abstract
Manuka honey (MH) is a highly prized natural product from the nectar of Leptospermum scoparium flowers. Increased competition on the global market drives MH product innovations. This review updates comparative and non-comparative studies to highlight nutritional, therapeutic, bioengineering, and cosmetic values of MH. MH is a good source of phenolics and unique chemical compounds, such as methylglyoxal, dihydroxyacetone, leptosperin glyoxal, methylsyringate and leptosin. Based on the evidence from in vitro, in vivo and clinical studies, multifunctional bioactive compounds of MH have exhibited anti-oxidative, anti-inflammatory, immunomodulatory, anti-microbial, and anti-cancer activities. There are controversial topics related to MH, such as MH grading, safety/efficacy, implied benefits, and maximum levels of contaminants concerned. Artificial intelligence can optimize MH studies related to chemical analysis, toxicity prediction, multi-functional mechanism exploration and product innovation.
Collapse
Affiliation(s)
- Sunan Wang
- Canadian Food and Wine Institute, Niagara College, 135 Taylor Road, Niagara-on-the-Lake, Ontario L0S 1J0, Canada; School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Yi Qiu
- Division of Engineering Science, Faculty of Applied Science and Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada
| | - Fan Zhu
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
9
|
Dewey MJ, Timmer KB, Blystone A, Lu C, Harley BAC. Evaluating osteogenic effects associated with the incorporation of ascorbic acid in mineralized collagen scaffolds. J Biomed Mater Res A 2024; 112:336-347. [PMID: 37861296 PMCID: PMC10841497 DOI: 10.1002/jbm.a.37628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
Current treatments for craniomaxillofacial (CMF) defects motivate the design of instructive biomaterials that can promote osteogenic healing of complex bone defects. We report methods to promote in vitro osteogenesis of human mesenchymal stem cells (hMSCs) within a model mineralized collagen scaffold via the incorporation of ascorbic acid (vitamin C), a key factor in collagen biosynthesis and bone mineralization. An addition of 5 w/v% ascorbic acid into the base mineralized collagen scaffold significantly changes key morphology characteristics including porosity, macrostructure, and microstructure. This modification promotes hMSC metabolic activity, ALP activity, and hMSC-mediated deposition of calcium and phosphorous. Additionally, the incorporation of ascorbic acid influences osteogenic gene expression (BMP-2, RUNX2, COL1A2) and delays the expression of genes associated with osteoclast activity and bone resorption (OPN, CTSK), though it reduces the secretion of OPG. Together, these findings highlight ascorbic acid as a relevant component for mineralized collagen scaffold design to promote osteogenic differentiation and new bone formation for improved CMF outcomes.
Collapse
Affiliation(s)
- Marley J Dewey
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kyle B Timmer
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Ashley Blystone
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Crislyn Lu
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Brendan A C Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
10
|
Kolliopoulos V, Tiffany A, Polanek M, Harley BAC. DONOR VARIABILITY IN HUMAN MESENCHYMAL STEM CELL OSTEOGENIC RESPONSE AS A FUNCTION OF PASSAGE CONDITIONS AND DONOR SEX. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.12.566781. [PMID: 38014316 PMCID: PMC10680622 DOI: 10.1101/2023.11.12.566781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Contemporary tissue engineering efforts often seek to use mesenchymal stem cells (MSCs) due to their potential to differentiate to various tissue-specific cells and generate a pro-regenerative secretome. While MSC differentiation and therapeutic potential can differ as a function of matrix environment, it may also be widely influenced as a function of donor-to-donor variability. Further, effects of passage number and donor sex may further convolute the identification of clinically effective MSC-mediated regeneration technologies. We report efforts to adapt a well-defined mineralized collagen scaffold platform to study the influence of MSC proliferation and osteogenic potential as a function of passage number and donor sex. Mineralized collagen scaffolds broadly support MSC osteogenic differentiation and regenerative potency in the absence of traditional osteogenic supplements for a wide range of MSCs (rabbit, rat, porcine, human). We obtained a library of bone marrow and adipose tissue derived stem cells to examine donor-variability of regenerative potency in mineralized collagen scaffolds. MSCs displayed reduced proliferative capacity as a function of passage duration. Further, MSCs showed significant sex-based differences. Notably, MSCs from male donors displayed significantly higher metabolic activity and proliferation while MSCs from female donor displayed significantly higher osteogenic response via increased alkaline phosphate activity, osteoprotegerin release, and mineral formation in vitro. Our study highlights the essentiality of considering MSC donor sex and culture expansion in future studies of biomaterial regenerative potential.
Collapse
|
11
|
Mitchell K, Panicker SS, Adler CL, O’Toole GA, Hixon KR. Antibacterial Efficacy of Manuka Honey-Doped Chitosan-Gelatin Cryogel and Hydrogel Scaffolds in Reducing Infection. Gels 2023; 9:877. [PMID: 37998967 PMCID: PMC10670823 DOI: 10.3390/gels9110877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023] Open
Abstract
Honey has been used for centuries to reduce bacterial infection; Manuka honey (MH) possesses an additional antibacterial agent, Unique Manuka Factor (UMF). However, MH's physical properties challenge delivery to the wound site. Tissue-engineered scaffolds (cryogels/hydrogels) provide a potential vehicle for MH delivery, but effects on bacterial clearance and biofilm formation demand further examination. MH (0, 1, 5, or 10%) was incorporated into both chitosan-gelatin (1:4 ratio; 4%) cryogels and hydrogels. To assess physical changes, all scaffolds were imaged with scanning electron microscopy and subjected to swell testing to quantify pore size and rehydration potential, respectively. As MH concentration increased, both pore size and scaffold swelling capacity decreased. Both bacterial clearance and biofilm formation were also assessed, along with cellular infiltration. Bacterial clearance testing with S. aureus demonstrated that MH cryogels are superior to 0% control, indicating the potential to perform well against Gram-positive bacteria. However, higher concentrations of MH resulted in cell death over time. These results support our hypothesis that MH release from 5% cryogels would induce reduced viability for four bacteria species without compromising scaffold properties. These outcomes assist in the development of a standard of practice for incorporating MH into scaffolds and the evaluation of biofilm reduction.
Collapse
Affiliation(s)
- Karina Mitchell
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA; (K.M.); (S.S.P.); (C.L.A.)
| | - Sreejith S. Panicker
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA; (K.M.); (S.S.P.); (C.L.A.)
| | - Calista L. Adler
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA; (K.M.); (S.S.P.); (C.L.A.)
| | | | - Katherine R. Hixon
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA; (K.M.); (S.S.P.); (C.L.A.)
- Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|