1
|
Zhang D, Zhang M, Zhang L, Wang W, Hua S, Zhou C, Sun X. Long non-coding RNAs and immune cells: Unveiling the role in viral infections. Biomed Pharmacother 2024; 170:115978. [PMID: 38056234 DOI: 10.1016/j.biopha.2023.115978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023] Open
Abstract
Viral infections present significant challenges to human health, underscoring the importance of understanding the immune response for effective therapeutic strategies. Immune cell activation leads to dynamic changes in gene expression. Numerous studies have demonstrated the crucial role of long noncoding RNAs (lncRNAs) in immune activation and disease processes, including viral infections. This review provides a comprehensive overview of lncRNAs expressed in immune cells, including CD8 T cells, CD4 T cells, B cells, monocytes, macrophages, dendritic cells, and granulocytes, during both acute and chronic viral infections. LncRNA-mediated gene regulation encompasses various mechanisms, including the modulation of viral replication, the establishment of latency, activation of interferon pathways and other critical signaling pathways, regulation of immune exhaustion and aging, and control of cytokine and chemokine production, as well as the modulation of interferon-stimulated genes. By highlighting specific lncRNAs in different immune cell types, this review enhances our understanding of immune responses to viral infections from a lncRNA perspective and suggests potential avenues for exploring lncRNAs as therapeutic targets against viral diseases.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Mengna Zhang
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Liqin Zhang
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Weijuan Wang
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Stéphane Hua
- Laboratory of Cellular Immunology and Biotechnology, Molecular Engineering for Health Unit CEA Saclay, 91191 Gif-sur-Yvette cedex, France
| | - Chan Zhou
- Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Xiaoming Sun
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
2
|
Zhang L, Zheng X, Li J, Wang G, Hu Z, Chen Y, Wang X, Gu M, Gao R, Hu S, Liu X, Jiao X, Peng D, Hu J, Liu X. Long noncoding RNA#45 exerts broad inhibitory effect on influenza a virus replication via its stem ring arms. Virulence 2021; 12:2443-2460. [PMID: 34517783 PMCID: PMC8451462 DOI: 10.1080/21505594.2021.1975494] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A growing body of evidence suggests the pivotal role of long non-coding RNA (lncRNA) in influenza virus infection. Based on next-generation sequencing, we previously demonstrated that Lnc45 was distinctively stimulated by H5N1 influenza virus in mice. In this study, we systematically investigated the specific role of Lnc45 during influenza A virus (IAV) infection. Through qRT-PCR, we first demonstrated that Lnc45 is highly up-regulated by different subtypes of IAV strains, including H5N1, H7N9, and H1N1 viruses. Using RNA-FISH and qRT-PCR, we then found that Lnc45 can translocate from nuclear to cytoplasm during H5N1 virus infection. In addition, forced Lnc45 expression dramatically impeded viral replication of H1N1, H5N1, and H7N9 virus, while abolish of Lnc45 expression by RNA interference favored replication of these viruses, highlighting the potential broad antiviral activity of Lnc45 to IAV. Correspondingly, overexpression of Lnc45 inhibited viral polymerase activity and suppressed IAV-induced cell apoptosis. Moreover, Lnc45 significantly restrained nuclear aggregation of viral NP and PA proteins during H5N1 virus infection. Further functional study revealed that the stem ring arms of Lnc45 mainly mediated the antiviral effect. Therefore, we here demonstrated that Lnc45 functions as a broad-spectrum antiviral factor to inhibit influenza virus replication probably through inhibiting polymerase activity and NP and PA nuclear accumulation via its stem ring arms. Our study not only advances our understanding of the complexity of the IAV pathogenesis but also lays the foundation for developing novel anti-IAV therapeutics targeting the host lncRNA.
Collapse
Affiliation(s)
- Lei Zhang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xinxin Zheng
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Jun Li
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Guoqing Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Zenglei Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Yu Chen
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Min Gu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Ruyi Gao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Daxin Peng
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| |
Collapse
|
3
|
Bioinformatics Analysis of ceRNA Network Related to Polycystic Ovarian Syndrome. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:9988347. [PMID: 34211581 PMCID: PMC8208863 DOI: 10.1155/2021/9988347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/21/2021] [Indexed: 12/15/2022]
Abstract
Introduction Polycystic ovary syndrome (PCOS) is caused by the hormonal environment in utero, abnormal metabolism, and genetics, and it is common in women of childbearing age. A large number of studies have reported that lncRNA is important to the biological process of cancer and can be used as a potential prognostic biomarker. Thus, we studied lncRNAs' roles in PCOS in this article. Methods We obtained mRNAs', miRNAs', and lncRNAs' expression profiles in PCOS specimens and normal specimens from the National Biotechnology Information Gene Expression Comprehensive Center database. The EdgeR software package is used to distinguish the differentially expressed lncRNAs, miRNAs, and mRNAs. Functional enrichment analysis was carried out by the clusterProfiler R Package, and the lncRNA-miRNA-mRNA interaction ceRNA network was built in Cytoscape plug-in BiNGO and Database for Annotation, Visualization, and Integration Discovery (DAVID), respectively. Results We distinguished differentially expressed RNAs, including 1087 lncRNAs, 14 miRNAs, and 566 mRNAs in PCOS. Among them, 410 lncRNAs, 11 miRNAs, and 185 mRNAs were contained in the ceRNA regulatory network. The outcomes from Gene Ontology (GO) analysis showed that the differentially expressed mRNAs (DEMs) were mainly enriched in response to the maternal process involved in female pregnancy, morphogenesis of embryonic epithelium, and the intracellular steroid hormone receptor signaling pathway. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis data showed that DEMs were primarily enriched in pathways related to the TGF-β signaling pathway, Type I diabetes mellitus, and glycolysis/gluconeogenesis. In addition, we chose NONHSAT123397, ENST00000564619, and NONHSAT077997 as key lncRNAs due to their high bearing on PCOS. Conclusion ceRNA networks play an important role in PCOS. The research indicated that specific lncRNAs were related to PCOS development. NONHSAT123397, ENST00000564619, and NONHSAT077997 could be regarded as potential diagnostic mechanisms and biomarkers for PCOS. This discovery might provide more effective and more novel insights into the mechanisms of PCOS worthy of further exploration.
Collapse
|
4
|
Shen A, Ma J, Hu X, Cui X. High expression of lncRNA-SNHG7 is associated with poor prognosis in hepatocellular carcinoma. Oncol Lett 2020; 19:3959-3963. [PMID: 32382340 PMCID: PMC7202315 DOI: 10.3892/ol.2020.11490] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/13/2019] [Indexed: 12/16/2022] Open
Abstract
Expression of long non-coding RNA SNHG7 (lncRNA-SNHG7) and its clinical significance in hepatocellular carcinoma (HCC) were explored. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression level of lncRNA-SNHG7 in cancer tissues. Kaplan-Meier curves and multivariate Cox proportional models were used to study the impact on clinical outcome. Expression of lncRNA-SNHG7 was much higher in cancer tissues than that in para-cancer tissues. The lncRNA-SNHG7 expression was correlated with tumor number, lymph node metastasis and clinical stage (P<0.05). In addition, HCC patients with higher lncRNA-SNHG7 expression had significantly poorer progression-free survival time and overall survival time (P<0.001). Both univariate analysis and multivariate analysis indicated that high expression of lncRNA-SNHG7 was an independent predictor of poor prognosis in HCC. LncRNA-SNHG7 might contribute to the development of HCC and serve as a clinical biomarker and a therapeutic target for HCC patients.
Collapse
Affiliation(s)
- An Shen
- Department of Hepatological Surgery, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261041, P.R. China
| | - Jinping Ma
- Department of Obstetrics, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261041, P.R. China
| | - Xiaolin Hu
- Department of General Surgery, Shouguang People's Hospital, Shouguang, Shandong 262700, P.R. China
| | - Xinjiang Cui
- Department of Interventional Oncology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
5
|
Xin Y, He X, Zhao W, Zhan M, Li Y, Xiao J, He K, Lu L. LncRNA PCAT6 increased cholangiocarcinoma cell proliferation and invasion via modulating miR-330-5p. Am J Transl Res 2019; 11:6185-6195. [PMID: 31632586 PMCID: PMC6789233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
Long non-coding RNAs (lncRNAs) act important roles in several tumors including cholangiocarcinoma. However, the expression pattern and function of PCAT6 in intrahepatic cholangiocarcinoma remains unknown. In our research, we showed that the PCAT6 expression level was upregulated in intrahepatic cholangiocarcinoma cell lines. The expression of PCAT6 in intrahepatic cholangiocarcinoma tissues than that in noncancerous samples and the higer expression of PCAT6 was associated with advanced stage. Ectopic expression of PCAT6 induced cell proliferation and invasion in cholangiocarcinoma cell. Moreover, we demonstrated that PCAT6 interacts with miR-330-5p by directly targeting and PCAT6 overexpression inhibited the expression of miR-330-5p in the ICC-9810 cell. We also showed that the expression level of miR-330-5p in intrahepatic cholangiocarcinoma samples was downregulated compared to noncancerous tissues. Interesting, we proved that the miR-330-5p expression was negative correlated with PCAT6 expression in intrahepatic cholangiocarcinoma. Ectopic expression of miR-330-5p suppressed cell proliferation and invasion. Finally, we showed that PCAT6 induced cell proliferation and invasion by decreasing miR-330-5p in cholangiocarcinoma cell. Taken together, these data suggested that lncRNA PCAT6 was an oncogenic player in the development of intrahepatic cholangiocarcinoma.
Collapse
Affiliation(s)
- Yongjie Xin
- Department of Interventional Oncology, Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical SciencesGuangzhou, Guangdong, P. R. China
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan UniversityZhuhai 519000, Guangdong, P. R. China
| | - Xu He
- Department of Interventional Oncology, Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical SciencesGuangzhou, Guangdong, P. R. China
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan UniversityZhuhai 519000, Guangdong, P. R. China
| | - Wei Zhao
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan UniversityZhuhai 519000, Guangdong, P. R. China
| | - Meixiao Zhan
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan UniversityZhuhai 519000, Guangdong, P. R. China
| | - Yong Li
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan UniversityZhuhai 519000, Guangdong, P. R. China
| | - Jing Xiao
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan UniversityZhuhai 519000, Guangdong, P. R. China
| | - Ke He
- Department of General Surgery, Guangdong Second Provincial General Hospital, Southern Medical UniversityHaizhu District, Guangzhou, Guangdong, P. R. China
- Department of Biochemistry, Zhongshan School of MedicineGuangzhou, Guangdong, P. R. China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory of Ministry of Education, Sun Yat-sen UniversityGuangzhou 510080, Guangdong, P. R. China
| | - Ligong Lu
- Department of Interventional Oncology, Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical SciencesGuangzhou, Guangdong, P. R. China
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan UniversityZhuhai 519000, Guangdong, P. R. China
| |
Collapse
|
6
|
More S, Zhu Z, Lin K, Huang C, Pushparaj S, Liang Y, Sathiaseelan R, Yang X, Liu L. Long non-coding RNA PSMB8-AS1 regulates influenza virus replication. RNA Biol 2019; 16:340-353. [PMID: 30669933 DOI: 10.1080/15476286.2019.1572448] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a new arm of gene regulatory mechanism as discovered by sequencing techniques and follow-up functional studies. There are only few studies on lncRNAs as related to gene expression regulation and anti-viral activity during influenza virus infection. We sought to identify and characterize lncRNAs involved in influenza virus replication. Using RNA sequencing analysis, we found that 1,912 lncRNAs were significantly changed in human lung epithelial A549 cells infected with influenza A/Puerto Rico/8/34. Gene ontology analysis on neighboring genes of these lncRNAs revealed that the genes involved in type I interferon signaling and cellular response were highly enriched. Seven selected up-regulated lncRNAs (AC015849.2, RP-1-7H24.1, PSMB8-AS1, CTD-2639E6.9, PSOR1C3, AC007283.5 and RP11-670E13.5) were verified by real-time PCR. These lncRNAs were also induced by other two influenza H1N1 virus strains (A/WSN/1933 and A/Oklahoma/3052/09) and interferon β1. Repression of PSMB8 antisense RNA 1 (PSMB8-AS1) using CRISPR interference reduced viral mRNA and protein levels as well as the release of progeny influenza virus particles. Our study suggests that lncRNA PSMB8-AS1 could be a new host factor target for developing antiviral therapy against influenza virus infection.
Collapse
Affiliation(s)
- Sunil More
- a Oklahoma Center for Respiratory and Infectious Diseases , Oklahoma State University , Stillwater , OK , USA.,b The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences , Oklahoma State University , Stillwater , OK , USA
| | - Zhengyu Zhu
- a Oklahoma Center for Respiratory and Infectious Diseases , Oklahoma State University , Stillwater , OK , USA.,b The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences , Oklahoma State University , Stillwater , OK , USA
| | - Kong Lin
- a Oklahoma Center for Respiratory and Infectious Diseases , Oklahoma State University , Stillwater , OK , USA.,b The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences , Oklahoma State University , Stillwater , OK , USA
| | - Chaoqun Huang
- a Oklahoma Center for Respiratory and Infectious Diseases , Oklahoma State University , Stillwater , OK , USA.,b The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences , Oklahoma State University , Stillwater , OK , USA
| | - Samuel Pushparaj
- a Oklahoma Center for Respiratory and Infectious Diseases , Oklahoma State University , Stillwater , OK , USA.,b The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences , Oklahoma State University , Stillwater , OK , USA
| | - Yurong Liang
- a Oklahoma Center for Respiratory and Infectious Diseases , Oklahoma State University , Stillwater , OK , USA.,b The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences , Oklahoma State University , Stillwater , OK , USA
| | - Roshini Sathiaseelan
- a Oklahoma Center for Respiratory and Infectious Diseases , Oklahoma State University , Stillwater , OK , USA.,b The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences , Oklahoma State University , Stillwater , OK , USA
| | - Xiaoyun Yang
- a Oklahoma Center for Respiratory and Infectious Diseases , Oklahoma State University , Stillwater , OK , USA.,b The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences , Oklahoma State University , Stillwater , OK , USA
| | - Lin Liu
- a Oklahoma Center for Respiratory and Infectious Diseases , Oklahoma State University , Stillwater , OK , USA.,b The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences , Oklahoma State University , Stillwater , OK , USA
| |
Collapse
|
7
|
Singh G, Rife BD, Seufzer B, Salemi M, Rendahl A, Boris-Lawrie K. Identification of conserved, primary sequence motifs that direct retrovirus RNA fate. Nucleic Acids Res 2018; 46:7366-7378. [PMID: 29846681 PMCID: PMC6101577 DOI: 10.1093/nar/gky369] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 04/20/2018] [Accepted: 05/16/2018] [Indexed: 12/16/2022] Open
Abstract
Precise stoichiometry of genome-length transcripts and alternatively spliced mRNAs is a hallmark of retroviruses. We discovered short, guanosine and adenosine sequence motifs in the 5'untranslated region of several retroviruses and ascertained the reasons for their conservation using a representative lentivirus and genetically simpler retrovirus. We conducted site-directed mutagenesis of the GA-motifs in HIV molecular clones and observed steep replication delays in T-cells. Quantitative RNA analyses demonstrate the GA-motifs are necessary to retain unspliced viral transcripts from alternative splicing. Mutagenesis of the GA-motifs in a C-type retrovirus validate the similar downregulation of unspliced transcripts and virion structural protein. The evidence from cell-based co-precipitation studies shows the GA-motifs in the 5'untranslated region confer binding by SFPQ/PSF, a protein co-regulated with T-cell activation. Diminished SFPQ/PSF or mutation of either GA-motif attenuates the replication of HIV. The interaction of SFPQ/PSF with both GA-motifs is crucial for maintaining the stoichiometry of the viral transcripts and does not affect packaging of HIV RNA. Our results demonstrate the conserved GA-motifs direct the fate of retrovirus RNA. These findings have exposed an RNA-based molecular target to attenuate retrovirus replication.
Collapse
Affiliation(s)
- Gatikrushna Singh
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA
| | - Brittany D Rife
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Bradley Seufzer
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA
| | - Marco Salemi
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Aaron Rendahl
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA
| | - Kathleen Boris-Lawrie
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA
| |
Collapse
|
8
|
Tzeng HE, Chang AC, Tsai CH, Wang SW, Tang CH. Basic fibroblast growth factor promotes VEGF-C-dependent lymphangiogenesis via inhibition of miR-381 in human chondrosarcoma cells. Oncotarget 2018; 7:38566-38578. [PMID: 27229532 PMCID: PMC5122411 DOI: 10.18632/oncotarget.9570] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/10/2016] [Indexed: 12/12/2022] Open
Abstract
A chondrosarcoma is a common, primary malignant bone tumor that can grow to destroy the bone, produce fractures and develop soft tissue masses. Left untreated, chondrosarcomas metastasize through the vascular system to the lungs and ultimately lead to large metastatic deposits of the malignant cartilage taking over lung volume and function. Vascular endothelial growth factor (VEGF)-C has been implicated in tumor-induced lymphangiogenesis and elevated expression of VEGF-C has been found to correlate with cancer metastasis. bFGF (basic fibroblast growth factor), a secreted cytokine, regulates biological activity, including angiogenesis and metastasis. We have previously reported on the important role of bFGF in angiogenesis in chondrosarcomas. However, the effect of bFGF in VEGF-C regulation and lymphangiogenesis in chondrosarcomas is poorly understood. In this investigation, we demonstrate a correlation exists between bFGF and VEGF-C in tissue specimens from patients with chondrosarcomas. To examine the lymphangiogenic effect of bFGF, we used human lymphatic endothelial cells (LECs) to mimic lymphatic vessel formation. We found that bFGF-treated chondrosarcomas promoted LEC tube formation and cell migration. In addition, bFGF knockdown inhibited lymphangiogenesis in vitro and in vivo. We also found that bFGF-induced VEGF-C is mediated by the platelet-derived growth factor receptor (PDGFR) and c-Src signaling pathway. Furthermore, bFGF inhibited microRNA-381 expression via the PDGFR and c-Src cascade. Our study is the first to describe the mechanism of bFGF-promoted lymphangiogenesis by upregulating VEGF-C expression in chondrosarcomas. Thus, bFGF could serve as a therapeutic target in chondrosarcoma metastasis and lymphangiogenesis.
Collapse
Affiliation(s)
- Huey-En Tzeng
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan.,Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - An-Chen Chang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chun-Hao Tsai
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan.,Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
9
|
Sethuraman S, Gay LA, Jain V, Haecker I, Renne R. microRNA dependent and independent deregulation of long non-coding RNAs by an oncogenic herpesvirus. PLoS Pathog 2017; 13:e1006508. [PMID: 28715488 PMCID: PMC5531683 DOI: 10.1371/journal.ppat.1006508] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/27/2017] [Accepted: 07/02/2017] [Indexed: 02/07/2023] Open
Abstract
Kaposi’s sarcoma (KS) is a highly prevalent cancer in AIDS patients, especially in sub-Saharan Africa. Kaposi’s sarcoma-associated herpesvirus (KSHV) is the etiological agent of KS and other cancers like Primary Effusion Lymphoma (PEL). In KS and PEL, all tumors harbor latent KSHV episomes and express latency-associated viral proteins and microRNAs (miRNAs). The exact molecular mechanisms by which latent KSHV drives tumorigenesis are not completely understood. Recent developments have highlighted the importance of aberrant long non-coding RNA (lncRNA) expression in cancer. Deregulation of lncRNAs by miRNAs is a newly described phenomenon. We hypothesized that KSHV-encoded miRNAs deregulate human lncRNAs to drive tumorigenesis. We performed lncRNA expression profiling of endothelial cells infected with wt and miRNA-deleted KSHV and identified 126 lncRNAs as putative viral miRNA targets. Here we show that KSHV deregulates host lncRNAs in both a miRNA-dependent fashion by direct interaction and in a miRNA-independent fashion through latency-associated proteins. Several lncRNAs that were previously implicated in cancer, including MEG3, ANRIL and UCA1, are deregulated by KSHV. Our results also demonstrate that KSHV-mediated UCA1 deregulation contributes to increased proliferation and migration of endothelial cells. KS is the most prevalent cancer associated with AIDS in sub-Saharan Africa, and is also common in males not affected by AIDS. KSHV manipulates human cells by targeting protein-coding genes and cell signaling. Here we show that KSHV alters the expression of hundreds of human lncRNAs, a broad class of regulatory molecules involved in a variety of cellular pathways including cell cycle and apoptosis. KSHV uses both latency proteins and miRNAs to target lncRNAs. miRNA-mediated targeting of lncRNAs is a novel regulatory mechanism of gene expression. Given that most herpesviruses encode miRNAs, this mechanism might be a common theme during herpesvirus infections. Understanding lncRNA deregulation by KSHV will help decipher the important molecular mechanisms underlying viral pathogenesis and tumorigenesis.
Collapse
Affiliation(s)
- Sunantha Sethuraman
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Lauren Appleby Gay
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Vaibhav Jain
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Irina Haecker
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Rolf Renne
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
- UF Health Cancer Center, University of Florida, Gainesville, Florida, United States of America
- UF Genetics Institute, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
10
|
Schmiedel D, Mandelboim O. Disarming Cellular Alarm Systems-Manipulation of Stress-Induced NKG2D Ligands by Human Herpesviruses. Front Immunol 2017; 8:390. [PMID: 28443092 PMCID: PMC5387052 DOI: 10.3389/fimmu.2017.00390] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 03/20/2017] [Indexed: 12/18/2022] Open
Abstract
The coevolution of viruses and their hosts led to the repeated emergence of cellular alert signals and viral strategies to counteract them. The herpesvirus family of viruses displays the most sophisticated repertoire of immune escape mechanisms enabling infected cells to evade immune recognition and thereby maintain infection. The herpesvirus family consists of nine viruses that are capable of infecting humans: herpes simplex virus 1 and 2 (HSV-1, HSV-2), varicella zoster virus (VZV), Epstein–Barr virus (EBV), human cytomegalovirus (HCMV), roseoloviruses (HHV-6A, HHV-6B, and HHV-7), and Kaposi’s-sarcoma-associated herpesvirus (KSHV). Most of these viruses are highly prevalent and infect a vast majority of the human population worldwide. Notably, research over the past 15 years has revealed that cellular ligands for the activating receptor natural-killer group 2, member D (NKG2D)—which is primarily expressed on natural killer (NK) cells—are common targets suppressed during viral infection, i.e., their surface expression is reduced in virtually all lytic herpesvirus infections by diverse mechanisms. Here, we review the viral mechanisms by which all herpesviruses known to date to downmodulate the expression of the NKG2D ligands. Also, in light of recent findings, we speculate about the importance of the emergence of eight different NKG2D ligands in humans and further allelic diversification during host and virus coevolution.
Collapse
Affiliation(s)
- Dominik Schmiedel
- Faculty of Medicine, The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Ofer Mandelboim
- Faculty of Medicine, The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
11
|
Lin CC, Chen PC, Lein MY, Tsao CW, Huang CC, Wang SW, Tang CH, Tung KC. WISP-1 promotes VEGF-C-dependent lymphangiogenesis by inhibiting miR-300 in human oral squamous cell carcinoma cells. Oncotarget 2017; 7:9993-10005. [PMID: 26824419 PMCID: PMC4891098 DOI: 10.18632/oncotarget.7014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 01/01/2016] [Indexed: 01/19/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC), which accounts for nearly 90% of head and neck cancers, is characterized by a poor prognosis and a low survival rate. Vascular endothelial growth factor-C (VEGF-C) has been implicated in lymphangiogenesis and is correlated with cancer metastasis. WNT1-inducible signaling pathway protein-1 (WISP)-1/CCN4 is an extracellular matrix-related protein that belongs to the CCN family and stimulates many biological functions. Our previous studies showed that WISP-1 plays an important role in OSCC migration and angiogenesis. However, the effect of WISP-1 on VEGF-C regulation and lymphangiogenesis in OSCC is poorly understood. Here, we showed a correlation between WISP-1 and VEGF-C in tissue specimens from patients with OSCC. To examine the lymphangiogenic effect of WISP-1, we used human lymphatic endothelial cells (LECs) to mimic lymphatic vessel formation. The results showed that conditioned media from WISP-1-treated OSCC cells promoted tube formation and cell migration in LECs. We also found that WISP-1-induced VEGF-C is mediated via the integrin αvβ3/integrin-linked kinase (ILK)/Akt signaling pathway. In addition, the expression of microRNA-300 (miR-300) was inhibited by WISP-1 via the integrin αvβ3/ILK/Akt cascade. Collectively, these results reveal the detailed mechanism by which WISP-1 promotes lymphangiogenesis via upregulation of VEGF-C expression in OSCC. Therefore, WISP-1 could serve as therapeutic target to prevent metastasis and lymphangiogenesis in OSCC.
Collapse
Affiliation(s)
- Ching-Chia Lin
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Po-Chun Chen
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Yu Lein
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Ching-Wen Tsao
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | | | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Kwong-Chung Tung
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
12
|
Kazemzadeh M, Safaralizadeh R, Feizi MAH, Ravanbakhsh R, Somi MH, Hashemzadeh S. LOC100287225, novel long intergenic non-coding RNA, misregulates in colorectal cancer. Cancer Biomark 2016; 16:499-505. [PMID: 27062707 DOI: 10.3233/cbm-160589] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Colorectal cancer (CRC) is one of the most common cancers in the world; therefore, extensive research is needed to find new molecular therapeutic targets and biomarkers. LncRNA (long non-coding RNA), a new class of non-coding RNAs, has a crucial role in the onset and progression of various cancers including colorectal cancer. Research on lncRNA is still at initial stages and underlying molecular mechanisms of the vast majority of lncRNA have remained unclear. LOC100287225 is one of these novel lncRNAs (long intergenic non-coding RNA) located in the long arm of the chromosome 18. The purpose of this study was to determine the expression of LOC100287225 in colorectal tissue, and its misregulation in CRC patients. Quantitative real-time-PCR (qRT-PCR) was used to investigate the LOC100287225 expression in pairs of tumorous and adjacent tumor-free tissues of 39 colorectal cancer patients. Also, the relationship between the clinicopathology and expression of LOC100287225 was determined. QRT-PCR results revealed that not only is LOC100287225 expressed in the intestinal tissue, but has also been misregulated during tumorigenesis. Moreover, LOC100287225 RNA relative expression levels were significantly lower in tumor tissues compared with adjacent tumor-free tissues (P< 0.001). RNA expression level of LOC100287225 did not show significant correlation with clinical characteristics. In conclusion, our study demonstrated that LOC100287225 misregulation could be a potential target for gene therapy in colorectal cancer.
Collapse
Affiliation(s)
- Mina Kazemzadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Reyhaneh Ravanbakhsh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mohammad Hossein Somi
- Liver and Gastroenterology Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahryar Hashemzadeh
- Liver and Gastrointestinal Disease Research Center and Department of General and Thoracic Surgery, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Zhang Q, Matsuura K, Kleiner DE, Zamboni F, Alter HJ, Farci P. Analysis of long noncoding RNA expression in hepatocellular carcinoma of different viral etiology. J Transl Med 2016; 14:328. [PMID: 27894309 PMCID: PMC5125040 DOI: 10.1186/s12967-016-1085-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 11/14/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Dysregulation of long noncoding RNA (lncRNA) expression contributes to the pathogenesis of many human diseases, including liver diseases. Several lncRNAs have been reported to play a role in the development of hepatocellular carcinoma (HCC). However, most studies have analyzed lncRNAs only in hepatitis B virus (HBV)-related HCC or in a single group of HCC patients regardless of the viral etiology. METHODS To investigate whether lncRNAs are differentially expressed in HCC of different viral etiology, we profiled 101 disease-related lncRNAs, including 25 lncRNAs previously associated with HCC, in liver specimens obtained from well-characterized patients with HBV-, hepatitis C virus (HCV)-, or hepatitis D virus (HDV)-associated HCC. RESULTS We identified eight novel HCC-related lncRNAs that were significantly dysregulated in HCC tissues compared to their surrounding non-tumorous tissues. Some of these lncRNAs were significantly dysregulated predominantly in one specific hepatitis virus-related HCC, including PCAT-29 in HBV-related HCC, aHIF and PAR5 in HCV-related HCC, and Y3 in HDV-related HCC. Among the lncRNAs previously reported in HCC, we found that DBH-AS1, hDREH and hPVT1 were differentially expressed in HCC of different viral etiology. CONCLUSIONS Our study suggests that HCC of different viral etiology is regulated by different lncRNAs. The identification of lncRNAs unique to specific hepatitis virus-related HCC may provide new tools for improving the diagnosis of HCC and open new avenues for disease-specific therapeutic interventions.
Collapse
Affiliation(s)
- Quan Zhang
- Laboratory of Infectious Diseases, Hepatic Pathogenesis Section, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.,Department of Experimental Medicine and Infectious Diseases, Nanjing Drum Tower Hospital, Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Kentaro Matsuura
- Department of Transfusion Medicine, Warren G. Magnuson Clinical Center, NIH, Bethesda, MD, 20892, USA
| | - David E Kleiner
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Fausto Zamboni
- Liver Transplantation Center, Brotzu Hospital, Cagliari, Italy
| | - Harvey J Alter
- Department of Transfusion Medicine, Warren G. Magnuson Clinical Center, NIH, Bethesda, MD, 20892, USA
| | - Patrizia Farci
- Laboratory of Infectious Diseases, Hepatic Pathogenesis Section, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
| |
Collapse
|
14
|
Abstract
The advent of next-generation sequencing has demonstrated that eukaryotic genomes are extremely complex than what were previously thought. Recent studies revealed that in addition to protein-coding genes, nonprotein-coding genes have allocated a large fraction of the genome. Long noncoding RNA (lncRNA) genes are classified as nonprotein-coding genes, serving as a molecular signal, decoy, guide and scaffold. They were suggested to play important roles in chromatin states, epigenetic and posttranscriptional regulation of genes. Aberrant expression of lncRNAs and changes in their structure are associated with a wide spectrum of diseases ranging from different types of cancer and neurodegeneration to ?-thalassaemia. The purpose of this study was to summarize the current progress in understanding the genomic bases and origin of lncRNAs. Moreover, this study focusses on the diverse functions of lncRNAs in normal cells as well as various types of disease to illustrate the potential impacts of lncRNAs on diverse biological processes and their therapeutic significance.
Collapse
|
15
|
Nair M, Sagar V, Pilakka-Kanthikeel S. Gene-expression reversal of lncRNAs and associated mRNAs expression in active vs latent HIV infection. Sci Rep 2016; 6:34862. [PMID: 27756902 PMCID: PMC5069461 DOI: 10.1038/srep34862] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 09/15/2016] [Indexed: 01/09/2023] Open
Abstract
Interplay between lncRNAs and mRNAs is rapidly emerging as a key epigenetic mechanism in controlling various cell functions. HIV can actively infect and/or can persist latently for years by manipulating host epigenetics; however, its molecular essence remains undiscovered in entirety. Here for the first time, we delineate the influence of HIV on global lncRNAs expression in monocytic cells lines. Our analysis revealed the expression modulation of nearly 1060 such lncRNAs which are associated with differentially expressed mRNAs in active and latent infection. This suggests a greater role of lncRNAs in regulating transcriptional and post-transcriptional gene expression during HIV infection. The differentially expressed mRNAs were involved in several different biological pathways where immunological networks were most enriched. Importantly, we discovered that HIV induces expression reversal of more than 150 lncRNAs between its active and latent infection. Also, hundreds of unique lncRNAs were identified in both infection conditions. The pathology specific "gene-expression reversal" and "on-and-off" switching of lncRNAs and associated mRNAs may lead to establish the relationship between active and HIV infection.
Collapse
Affiliation(s)
- Madhavan Nair
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199, USA
- Institute of Neuro-Immune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199, USA
- Center for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199, USA
| | - Vidya Sagar
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199, USA
- Institute of Neuro-Immune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199, USA
- Center for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199, USA
| | - Sudheesh Pilakka-Kanthikeel
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199, USA
- Institute of Neuro-Immune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199, USA
- Center for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199, USA
| |
Collapse
|
16
|
Huang PC, Kuo WW, Shen CY, Chen YF, Lin YM, Ho TJ, Padma VV, Lo JF, Huang CY, Huang CY. Anthocyanin Attenuates Doxorubicin-Induced Cardiomyotoxicity via Estrogen Receptor-α/β and Stabilizes HSF1 to Inhibit the IGF-IIR Apoptotic Pathway. Int J Mol Sci 2016; 17:E1588. [PMID: 27657062 PMCID: PMC5037853 DOI: 10.3390/ijms17091588] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/23/2016] [Accepted: 09/13/2016] [Indexed: 11/16/2022] Open
Abstract
Doxorubicin (Dox) is extensively used for chemotherapy in different types of cancer, but its use is limited to because of its cardiotoxicity. Our previous studies found that doxorubicin-induced insulin-like growth factor II receptor (IGF-IIR) accumulation causes cardiomyocytes apoptosis via down-regulation of HSF1 pathway. In these studies, we demonstrated a new mechanism through which anthocyanin protects cardiomyoblast cells against doxorubicin-induced injury. We found that anthocyanin decreased IGF-IIR expression via estrogen receptors and stabilized heat shock factor 1 (HSF1) to inhibit caspase 3 activation and apoptosis of cardiomyocytes. Therefore, the phytoestrogen from plants has been considered as another potential treatment for heart failure. It has been reported that the natural compound anthocyanin (ACN) has the ability to reduce the risk of cardiovascular disease (CVD). Here, we demonstrated that anthocyanin acts as a cardioprotective drug against doxorubicin-induced heart failure by attenuating cardiac apoptosis via estrogen receptors to stabilize HSF1 expression and down-regulated IGF-IIR-induced cardiomyocyte apoptosis.
Collapse
Affiliation(s)
- Pei-Chen Huang
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 40402, Taiwan.
- Department of Obstetrics and Gynecology, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan.
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan.
| | - Chia-Yao Shen
- Department of Nursing, Mei Ho University, Pingguang Road, Pingtung 91202, Taiwan.
| | - Yu-Feng Chen
- Section of Cardiology, Yuan Rung Hospital, Yuanlin 51045, Taiwan.
| | - Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua 500, Taiwan.
- Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 35664, Taiwan.
| | - Tsung-Jung Ho
- Chinese Medicine Department, China Medical University Beigang Hospital, Taichung 40402, Taiwan.
| | - V Vijaya Padma
- Department of Biotechnology, Bharathiar University, Coimbatore 641046, India.
| | - Jeng-Fan Lo
- Institute of Oral Biology, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Chih-Yang Huang
- Translation Research Core, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan.
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan.
- Graduate Institute of Chinese Medical Science, China Medical University, Hsueh-Shih Road, Taichung 40402, Taiwan.
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 40402, Taiwan.
| |
Collapse
|
17
|
lncRHOXF1, a Long Noncoding RNA from the X Chromosome That Suppresses Viral Response Genes during Development of the Early Human Placenta. Mol Cell Biol 2016; 36:1764-75. [PMID: 27066803 DOI: 10.1128/mcb.01098-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/07/2016] [Indexed: 11/20/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) can regulate gene expression in a cell-specific fashion during development. Here, we identify a novel lncRNA from the X chromosome that we named lncRHOXF1 and which is abundantly expressed in trophectoderm and primitive endoderm cells of human blastocyst-stage embryos. lncRHOXF1 is a spliced and polyadenylated lncRNA about 1 kb in length that is found in both the nuclear and cytoplasmic compartments of in vitro differentiated human trophectoderm progenitor cells. Gain-of-function experiments in human embryonic stem cells, which normally lack lncRHOXF1 RNA, revealed that lncRHOXF1 reduced proliferation and favored cellular differentiation. lncRHOXF1 knockdown using small interfering RNAs (siRNAs) in human trophectoderm progenitors increased expression of viral response genes, including type I interferon. Sendai virus infection of human trophectoderm progenitor cells increased lncRHOXF1 RNA levels, and siRNA-mediated disruption of lncRHOXF1 during infection reduced the expression of viral response genes leading to higher virus replication. Thus, lncRHOXF1 RNA is the first example of a lncRNA that regulates the host response to viral infections in human placental progenitor cells, and we propose that it functions as a repressor of the viral response during early human development.
Collapse
|
18
|
Ouyang J, Hu J, Chen JL. lncRNAs regulate the innate immune response to viral infection. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 7:129-43. [PMID: 26667656 PMCID: PMC7169827 DOI: 10.1002/wrna.1321] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 10/14/2015] [Accepted: 11/04/2015] [Indexed: 01/01/2023]
Abstract
Long noncoding RNAs (lncRNAs) are extensively expressed in mammalian cells and play a crucial role as RNA regulators in various cellular processes. Increasing data reveal that they function in innate antiviral immunity through complex mechanisms. Thousands of lncRNAs are regulated by RNA virus or DNA virus infection. The significant differential expression of lncRNAs is induced by virus or host antiviral signaling mediated by interferons (IFNs) and tumor necrosis factor‐α. In turn, these lncRNAs modulate the host immune response including the pathogen recognition receptor (PRR)‐related signaling, the translocation and activation of transcription factors, the production of IFNs and cytokines, the IFN‐activated JAK‐STAT signaling and the transcription of antiviral IFN‐stimulated genes (ISGs). Using gain‐ or loss‐of‐function analysis, the effect of lncRNAs on viral replication has been investigated to elucidate the essential role of lncRNA in the host–virus interaction. lncRNAs have shown specifically elevated or decreased levels in patients with viral diseases, suggesting the possibility of clinical application as biomarkers. Here we review the current advances of viral infection‐associated host lncRNAs, their functional significance in different aspects of antiviral immune response, the specific mechanisms and unsolved issues. We also summarize the regulation of lncRNAs by viruses, PRR agonists and cytokines. In addition, virus‐encoded lncRNAs and their functional involvement in host–virus interaction are addressed. WIREs RNA 2016, 7:129–143. doi: 10.1002/wrna.1321 This article is categorized under:
RNA Interactions with Proteins and Other Molecules > Protein–RNA Interactions: Functional Implications RNA in Disease and Development > RNA in Disease
Collapse
Affiliation(s)
- Jing Ouyang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jiayue Hu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ji-Long Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
19
|
Lü M, Tian H, Cao YX, He X, Chen L, Song X, Ping P, Huang H, Sun F. Downregulation of miR-320a/383-sponge-like long non-coding RNA NLC1-C (narcolepsy candidate-region 1 genes) is associated with male infertility and promotes testicular embryonal carcinoma cell proliferation. Cell Death Dis 2015; 6:e1960. [PMID: 26539909 PMCID: PMC4670917 DOI: 10.1038/cddis.2015.267] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 08/21/2015] [Accepted: 08/25/2015] [Indexed: 01/09/2023]
Abstract
Long non-coding RNAs (lncRNAs), which are extensively transcribed from the genome, have been proposed to be key regulators of diverse biological processes. However, little is known about the role of lncRNAs in regulating spermatogenesis in human males. Here, using microarray technology, we show altered expression of lncRNAs in the testes of infertile men with maturation arrest (MA) or hypospermatogenesis (Hypo), with 757 and 2370 differentially down-regulated and 475 and 163 up-regulated lncRNAs in MA and Hypo, respectively. These findings were confirmed by quantitative real-time PCR (qRT-PCR) assays on select lncRNAs, including HOTTIP, imsrna320, imsrna292 and NLC1-C (narcolepsy candidate-region 1 genes). Interestingly, NLC1-C, also known as long intergenic non-protein-coding RNA162 (LINC00162), was down-regulated in the cytoplasm and accumulated in the nucleus of spermatogonia and primary spermatocytes in the testes of infertile men with mixed patterns of MA compared with normal control. The accumulation of NLC1-C in the nucleus repressed miR-320a and miR-383 transcript and promoted testicular embryonal carcinoma cell proliferation by binding to Nucleolin. Here, we define a novel mechanism by which lncRNAs modulate miRNA expression at the transcriptional level by binding to RNA-binding proteins to regulate human spermatogenesis.
Collapse
MESH Headings
- Adult
- Carcinoma, Embryonal/genetics
- Carcinoma, Embryonal/metabolism
- Carcinoma, Embryonal/pathology
- Case-Control Studies
- Cell Proliferation/genetics
- Down-Regulation
- Embryonal Carcinoma Stem Cells/metabolism
- Embryonal Carcinoma Stem Cells/physiology
- Humans
- Infertility, Male/genetics
- Infertility, Male/metabolism
- Infertility, Male/pathology
- Male
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Middle Aged
- Neoplasms, Germ Cell and Embryonal/genetics
- Neoplasms, Germ Cell and Embryonal/metabolism
- Neoplasms, Germ Cell and Embryonal/pathology
- Phosphoproteins/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA-Binding Proteins/metabolism
- Testicular Neoplasms/genetics
- Testicular Neoplasms/metabolism
- Testicular Neoplasms/pathology
- Young Adult
- Nucleolin
Collapse
Affiliation(s)
- M Lü
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Reproduction Medical Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Shanghai Key Laboratory for Reproductive Medicine, Shanghai, China
| | - H Tian
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Y-x Cao
- Reproduction Medical Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - X He
- Reproduction Medical Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - L Chen
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - X Song
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - P Ping
- Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - H Huang
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Shanghai Key Laboratory for Reproductive Medicine, Shanghai, China
| | - F Sun
- International Peace Maternity & Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Shanghai Key Laboratory for Reproductive Medicine, Shanghai, China
| |
Collapse
|
20
|
Jayakodi M, Jung JW, Park D, Ahn YJ, Lee SC, Shin SY, Shin C, Yang TJ, Kwon HW. Genome-wide characterization of long intergenic non-coding RNAs (lincRNAs) provides new insight into viral diseases in honey bees Apis cerana and Apis mellifera. BMC Genomics 2015; 16:680. [PMID: 26341079 PMCID: PMC4559890 DOI: 10.1186/s12864-015-1868-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 08/19/2015] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) are a class of RNAs that do not encode proteins. Recently, lncRNAs have gained special attention for their roles in various biological process and diseases. RESULTS In an attempt to identify long intergenic non-coding RNAs (lincRNAs) and their possible involvement in honey bee development and diseases, we analyzed RNA-seq datasets generated from Asian honey bee (Apis cerana) and western honey bee (Apis mellifera). We identified 2470 lincRNAs with an average length of 1011 bp from A. cerana and 1514 lincRNAs with an average length of 790 bp in A. mellifera. Comparative analysis revealed that 5 % of the total lincRNAs derived from both species are unique in each species. Our comparative digital gene expression analysis revealed a high degree of tissue-specific expression among the seven major tissues of honey bee, different from mRNA expression patterns. A total of 863 (57 %) and 464 (18 %) lincRNAs showed tissue-dependent expression in A. mellifera and A. cerana, respectively, most preferentially in ovary and fat body tissues. Importantly, we identified 11 lincRNAs that are specifically regulated upon viral infection in honey bees, and 10 of them appear to play roles during infection with various viruses. CONCLUSIONS This study provides the first comprehensive set of lincRNAs for honey bees and opens the door to discover lincRNAs associated with biological and hormone signaling pathways as well as various diseases of honey bee.
Collapse
Affiliation(s)
- Murukarthick Jayakodi
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea.
| | - Je Won Jung
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea.
| | - Doori Park
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea.
| | - Young-Joon Ahn
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea.
| | - Sang-Choon Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea.
| | - Sang-Yoon Shin
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea.
| | - Chanseok Shin
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea.
| | - Tae-Jin Yang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea.
| | - Hyung Wook Kwon
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea.
| |
Collapse
|
21
|
Tsai CH, Tsai HC, Huang HN, Hung CH, Hsu CJ, Fong YC, Hsu HC, Huang YL, Tang CH. Resistin promotes tumor metastasis by down-regulation of miR-519d through the AMPK/p38 signaling pathway in human chondrosarcoma cells. Oncotarget 2015; 6:258-70. [PMID: 25404641 PMCID: PMC4381593 DOI: 10.18632/oncotarget.2724] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/1969] [Accepted: 11/06/2014] [Indexed: 12/28/2022] Open
Abstract
Resistin is a recently discovered adipocyte-secreting adipokine, which may play a critical role in modulating cancer pathogenesis. Chondrosarcoma is a highly malignant tumor known to frequently metastasize; however, the role of resistin in the metastasis of human chondrosarcoma is largely unknown. Here, we found that the expression of resistin was higher in chondrosarcoma biopsy tissues than in normal cartilage. Moreover, treatment with resistin increased matrix metalloproteinase (MMP)-2 expression and promoted cell migration in human chondrosarcoma cells. Co-transfection with microRNA (miR)-519d mimic resulted in reversed resistin-mediated cell migration and MMP-2 expression. Additionally, AMP-activated protein kinase (AMPK) and p38 inhibitors or siRNAs reduced the resistin-increased cell migration and miR-519d suppression, and inhibition of resistin expression resulted in suppression of MMP-2 expression and lung metastasis in vivo. Taken together, our results indicate that resistin promotes chondrosarcoma metastasis and MMP-2 expression through activation of the AMPK/p38 signaling pathway and down-regulation of miR-519d expression. Therefore, resistin may represent a potential novel molecular therapeutic target in chondrosarcoma metastasis.
Collapse
Affiliation(s)
- Chun-Hao Tsai
- Department of Medicine and Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan. Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Hsiao-Chi Tsai
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Ho-Ning Huang
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Chih-Hung Hung
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chin-Jung Hsu
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan. School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yi-Chin Fong
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan. School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Horng-Chaung Hsu
- Department of Medicine and Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan. Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Yuan-Li Huang
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan. Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan. Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
22
|
Tai HC, Chang AC, Yu HJ, Huang CY, Tsai YC, Lai YW, Sun HL, Tang CH, Wang SW. Osteoblast-derived WNT-induced secreted protein 1 increases VCAM-1 expression and enhances prostate cancer metastasis by down-regulating miR-126. Oncotarget 2015; 5:7589-98. [PMID: 25277191 PMCID: PMC4202146 DOI: 10.18632/oncotarget.2280] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Bone metastases of prostate cancer (PCa) may cause intractable pain. Wnt-induced secreted protein-1 (WISP-1) belongs to the CCN family (CTGF/CYR61/NOV) that plays a key role in bone formation. We found that osteoblast-conditioned medium (OBCM) stimulates migration and vascular cell adhesion molecule-1 (VCAM-1) expression in human PCa (PC3 and DU145) cells. Osteoblast transfection with WISP-1 shRNA reduced OBCM-mediated PCa migration and VCAM-1 expression. Stimulation of PCa with OBCM or WISP-1 elevated focal adhesion kinase (FAK) and p38 phosphorylation. Either FAK and p38 inhibitors or siRNA abolished osteoblast-derived WISP-1-induced migration and VCAM-1 expression. Osteoblast-derived WISP-1 inhibited miR-126 expression. Moreover, miR-216 mimic reversed the WISP-1-enhanced migration and VCAM-1 expression. This study suggests that osteoblast-derived WISP-1 promotes migration and VCAM-1 expression in human PCa cells by down-regulating miR-126 expression via αvβ1 integrin, FAK, and p38 signaling pathways. Thus, WISP-1 may be a new molecular therapeutic target in PCa bone metastasis.
Collapse
Affiliation(s)
- Huai-Ching Tai
- Department of Urology, National Taiwan University Hospital, Taipei, Taiwan
| | - An-Chen Chang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Hong-Jeng Yu
- Department of Urology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chao-Yuan Huang
- Department of Urology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Chieh Tsai
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Wei Lai
- Division of Urology, Taipei City Hospital Renai Branch, Taipei, Taiwan
| | - Hui-Lung Sun
- Department of Molecular Virology, Immunology and Mediccal Genetics, Ohio state University, Columbus, OH, USA
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan. Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan. Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| |
Collapse
|
23
|
Tsai HC, Su HL, Huang CY, Fong YC, Hsu CJ, Tang CH. CTGF increases matrix metalloproteinases expression and subsequently promotes tumor metastasis in human osteosarcoma through down-regulating miR-519d. Oncotarget 2015; 5:3800-12. [PMID: 25003330 PMCID: PMC4116521 DOI: 10.18632/oncotarget.1998] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Osteosarcoma, the most common primary malignant bone tumor, shows potent capacity for local invasion and distant metastasis. Connective tissue growth factor (CTGF/CCN2), a secreted protein, binds to integrins, modulates invasive behavior of certain human cancer cells. Effect of CTGF in metastasis of human osteosarcoma is unknown. We found overexpression of CTGF increasing matrix metalloproteinases (MMPs)-2 and MMP-3 expression as well as promoting cell migration. MicroRNA (miRNA) analysis of CTGF-overexpressed osteosarcoma versus control cells probed mechanisms of CTGF-mediated promotion of migration. Among miRNAs regulated by CTGF, miR-519d was most downregulated after CTGF treatment. Co-transfection with miR-519d mimic reversed CTGF-mediated MMPs expression and cell migration. Also, MEK and ERK inhibitors or mutants reduced CTGF-increased cell migration and miR-519d suppression. By contrast, knockdown of CTGF diminished lung metastasis in vivo. Clinical samples indicate CTGF expression as linked with clinical stage and tumor metastasis. Taken together, data show CTGF elevating MMPs expression and subsequently promoting tumor metastasis in human osteosarcoma, down-regulating miR-519d via MEK and ERK pathways, making CTGF a new molecular therapeutic target in osteosarcoma metastasis.
Collapse
Affiliation(s)
- Hsiao-Chi Tsai
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | | | | | | | | | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan; Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan; Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
24
|
Schwerk J, Jarret AP, Joslyn RC, Savan R. Landscape of post-transcriptional gene regulation during hepatitis C virus infection. Curr Opin Virol 2015; 12:75-84. [PMID: 25890065 DOI: 10.1016/j.coviro.2015.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 02/11/2015] [Indexed: 12/11/2022]
Abstract
Post-transcriptional regulation of gene expression plays a pivotal role in various gene regulatory networks including, but not limited to metabolism, embryogenesis and immune responses. Different mechanisms of post-transcriptional regulation, which can act individually, synergistically, or even in an antagonistic manner have been described. Hepatitis C virus (HCV) is notorious for subverting host immune responses and indeed exploits several components of the host's post-transcriptional regulatory machinery for its own benefit. At the same time, HCV replication is post-transcriptionally targeted by host cell components to blunt viral propagation. This review discusses the interplay of post-transcriptional mechanisms that affect host immune responses in the setting of HCV infection and highlights the sophisticated mechanisms both host and virus have evolved in the race for superiority.
Collapse
Affiliation(s)
- Johannes Schwerk
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Abigail P Jarret
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Rochelle C Joslyn
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Ram Savan
- Department of Immunology, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
25
|
Promoter Targeting RNAs: Unexpected Contributors to the Control of HIV-1 Transcription. MOLECULAR THERAPY-NUCLEIC ACIDS 2015; 4:e222. [PMID: 25625613 PMCID: PMC4345301 DOI: 10.1038/mtna.2014.67] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 11/01/2014] [Indexed: 11/22/2022]
Abstract
In spite of prolonged and intensive treatment with combined antiretroviral therapy (cART), which efficiently suppresses plasma viremia, the integrated provirus of HIV-1 persists in resting memory CD4+ T cells as latent infection. Treatment with cART does not substantially reduce the burden of latent infection. Once cART is ceased, HIV-1 replication recrudesces from these reservoirs in the overwhelming majority of patients. There is increasing evidence supporting a role for noncoding RNAs (ncRNA), including microRNAs (miRNAs), antisense (as)RNAs, and short interfering (si)RNA in the regulation of HIV-1 transcription. This appears to be mediated by interaction with the HIV-1 promoter region. Viral miRNAs have the potential to act as positive or negative regulators of HIV transcription. Moreover, inhibition of virally encoded long-asRNA can induce positive transcriptional regulation, while antisense strands of siRNA targeting the NF-κB region suppress viral transcription. An in-depth understanding of the interaction between ncRNAs and the HIV-1 U3 promoter region may lead to new approaches for the control of HIV reservoirs. This review focuses on promoter associated ncRNAs, with particular emphasis on their role in determining whether HIV-1 establishes active or latent infection.
Collapse
|
26
|
Liu GT, Chen HT, Tsou HK, Tan TW, Fong YC, Chen PC, Yang WH, Wang SW, Chen JC, Tang CH. CCL5 promotes VEGF-dependent angiogenesis by down-regulating miR-200b through PI3K/Akt signaling pathway in human chondrosarcoma cells. Oncotarget 2014; 5:10718-10731. [PMID: 25301739 PMCID: PMC4279405 DOI: 10.18632/oncotarget.2532] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/25/2014] [Indexed: 12/14/2022] Open
Abstract
Chondrosarcoma is the second most common primary malignant bone cancer, with potential for local invasion and distant metastasis. Chemokine CCL5 (formerly RANTES) of the CC-chemokine family plays a crucial role in metastasis. Angiogenesis is essential for the cancer metastasis. However, correlation of CCL5 with vascular endothelial growth factor (VEGF) expression and angiogenesis in human chondrosarcoma is still unknown. CCL5-mediated VEGF expression was assessed by qPCR, ELISA, and Western blotting. CCL5-induced angiogenesis was examined by migration and tube formation in endothelial progenitor cells in vitro. CCL5 increased VEGF expression and also promoted chondrosarcoma conditional medium-mediated angiogenesis in vitro and in vivo. Stimulation of chondrosarcoma with CCL5 augmented PI3K and Akt phosphorylation, while PI3K and Akt inhibitor or siRNA abolished CCL5-induced VEGF expression and angiogenesis. We also demonstrated CCL5 inhibiting miR-200b expression and miR-200b mimic reversing the CCL5-enhanced VEGF expression and angiogenesis. Moreover, in chondrosarcoma patients showed the positive correlation between CCL5 and VEGF; negative correlation between CCL5 and miR-200b. Taken together, results demonstrate CCL5 promoting VEGF-dependent angiogenesis in human chondrosarcoma cells by down-regulating miR-200b through PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Guan-Ting Liu
- Ph.D. Program for Aging, China Medical University, Taichung, Taiwan
| | - Hsien-Te Chen
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Hsi-Kai Tsou
- Functional Neurosurgery Division, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Early Childhood Care and Education, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli County, Taiwan
| | - Tzu-Wei Tan
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Yi-Chin Fong
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Po-Chen Chen
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Wei-Hung Yang
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Orthopedic Surgery, Taichung Hospital, Ministry of Health and Welfare, Taichung, Taiwan
- Department of Nursing, National Taichung University of Science and Technology, Taichung, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Jui-Chieh Chen
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Ph.D. Program for Aging, China Medical University, Taichung, Taiwan
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
27
|
CCL5 promotes vascular endothelial growth factor expression and induces angiogenesis by down-regulating miR-199a in human chondrosarcoma cells. Cancer Lett 2014; 357:476-87. [PMID: 25444917 DOI: 10.1016/j.canlet.2014.11.015] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/28/2014] [Accepted: 11/09/2014] [Indexed: 01/22/2023]
Abstract
Chondrosarcoma is a primary malignant bone cancer, with a potent capacity to invade locally and cause distant metastasis. Angiogenesis is a critical step in tumor growth and metastasis. Chemokine CCL5 (previously called RANTES) has been shown to facilitate tumor progression and metastasis. However, the relationship of CCL5 with vascular endothelial growth factor (VEGF) expression and angiogenesis in human chondrosarcoma is mostly unknown. In this study, CCL5 increased VEGF expression and also promoted chondrosarcoma medium-mediated angiogenesis in vitro as well as angiogenesis effects in the chick chorioallantoic membrane and Matrigel plug nude mice model in vivo. MicroRNA analysis was performed in CCL5-treated chondrosarcoma cells versus control cells to investigate the mechanism of CCL5-mediated promotion of chondrosarcoma angiogenesis. Among the miRNAs regulated by CCL5, miR-199a was the most downregulated miRNA after CCL5 treatment. In addition, co-transfection with miR-199a mimic reversed the CCL5-mediated VEGF expression and angiogenesis in vitro and in vivo. Moreover, overexpression of CCL5 increased tumor-associated angiogenesis and tumor growth by downregulating miR-199a in the xenograft tumor angiogenesis model. Taken together, these results demonstrated that CCL5 promotes VEGF-dependent angiogenesis in human chondrosarcoma cells by downregulating miR-199a.
Collapse
|
28
|
Campbell M, Kung HJ, Izumiya Y. Long non-coding RNA and epigenetic gene regulation of KSHV. Viruses 2014; 6:4165-77. [PMID: 25375882 PMCID: PMC4246214 DOI: 10.3390/v6114165] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/21/2014] [Accepted: 10/22/2014] [Indexed: 12/22/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV/human herpesvirus 8) is a γ-herpesvirus linked to Kaposi's sarcoma (KS) and two lymphoproliferative disorders, primary effusion lymphoma (PEL or body-cavity B-lymphoma [BCBL]) and a subset of Multicentric Castleman's Disease. During lytic growth, pervasive viral transcription generating a variety of transcripts with uncertain protein-coding potential has been described on a genome-wide scale in β- and γ-herpesviruses. One class of such RNAs is called long non-coding RNAs (lncRNAs). KSHV encodes a viral lncRNA known as polyadenylated nuclear RNA (PAN RNA), a copious early gene product. PAN RNA has been implicated in KSHV gene expression, replication, and immune modulation. PAN RNA expression is required for optimal expression of the entire KSHV lytic gene expression program. Latent KSHV episomes are coated with viral latency-associated nuclear antigen (LANA). LANA rapidly dissociates from episomes during reactivation. Here we review recent studies suggesting that PAN RNA may function as a viral lncRNA, including a role in the facilitation of LANA-episomal dissociation during lytic replication.
Collapse
Affiliation(s)
- Mel Campbell
- Department of Dermatology, University of California, Davis, CA 95616, USA.
| | - Hsing-Jien Kung
- UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA.
| | - Yoshihiro Izumiya
- Department of Dermatology, University of California, Davis, CA 95616, USA.
| |
Collapse
|
29
|
Yang WH, Tsai CH, Fong YC, Huang YL, Wang SJ, Chang YS, Tang CH. Leptin induces oncostatin M production in osteoblasts by downregulating miR-93 through the Akt signaling pathway. Int J Mol Sci 2014; 15:15778-90. [PMID: 25198901 PMCID: PMC4200751 DOI: 10.3390/ijms150915778] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 08/20/2014] [Accepted: 09/03/2014] [Indexed: 11/16/2022] Open
Abstract
Inflammatory response and articular destruction are common symptoms of osteoarthritis (OA) and rheumatoid arthritis (RA). Leptin, an adipocyte-secreted hormone that centrally regulates weight control, may exert proinflammatory effects in the joint, depending on the immune response. Yet, the mechanism of leptin interacting with the arthritic inflammatory response is unclear. This study finds that leptin increased expression of oncostatin M (OSM) in human osteoblasts in a concentration- and time-dependent manner. In addition, OBRl, but not OBRs receptor antisense oligonucleotide, abolished the leptin-mediated increase of OSM expression. On the other hand, leptin inhibited miR-93 expression; an miR-93 mimic reversed leptin-increased OSM expression. Stimulation of osteoblasts with leptin promoted Akt phosphorylation, while pretreatment of cells with Akt inhibitor or siRNA reversed leptin-inhibited miR-93 expression. Our results showed that leptin heightened OSM expression by downregulating miR-93 through the Akt signaling pathway in osteoblasts, suggesting leptin as a novel target in arthritis treatment.
Collapse
Affiliation(s)
- Wei-Hung Yang
- Department of Orthopedic Surgery, Taichung Hospital, Department of Health Executive Yuan, Taichung 403, Taiwan.
| | - Chun-Hao Tsai
- Department of Medicine and Graduate Institute of Clinical Medical Science, China Medical University, Taichung 404, Taiwan.
| | - Yi-Chin Fong
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan.
| | - Yuan-Li Huang
- Department of Biotechnology, College of Health Science, Asia University, Taichung 500, Taiwan.
| | - Shoou-Jyi Wang
- Department of Orthopedic Surgery, Chang-Hua Hospital, Department of Health Executive Yuan, Changhua Country 500, Taiwan.
| | - Yung-Sen Chang
- Department of Orthopedic Surgery, Taichung Hospital, Department of Health Executive Yuan, Taichung 403, Taiwan.
| | - Chih-Hsin Tang
- Department of Biotechnology, College of Health Science, Asia University, Taichung 500, Taiwan.
| |
Collapse
|
30
|
Mechanisms of miRNA-Mediated Gene Regulation from Common Downregulation to mRNA-Specific Upregulation. Int J Genomics 2014; 2014:970607. [PMID: 25180174 PMCID: PMC4142390 DOI: 10.1155/2014/970607] [Citation(s) in RCA: 374] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/09/2014] [Accepted: 07/17/2014] [Indexed: 12/12/2022] Open
Abstract
Discovered in 1993, micoRNAs (miRNAs) are now recognized as one of the major regulatory gene families in eukaryotes. To date, 24521 microRNAs have been discovered and there are certainly more to come. It was primarily acknowledged that miRNAs result in gene expression repression at both the level of mRNA stability by conducting mRNA degradation and the level of translation (at initiation and after initiation) by inhibiting protein translation or degrading the polypeptides through binding complementarily to 3′UTR of the target mRNAs. Nevertheless, some studies revealed that miRNAs have the capability of activating gene expression directly or indirectly in respond to different cell types and conditions and in the presence of distinct cofactors. This reversibility in their posttranslational gene regulatory natures enables the bearing cells to rapidly response to different cell conditions and consequently block unnecessary energy wastage or maintain the cell state. This paper provides an overview of the current understandings of the miRNA characteristics including their genes and biogenesis, as well as their mediated downregulation. We also review up-to-date knowledge of miRNA-mediated gene upregulation through highlighting some notable examples and discuss the emerging concepts of their associations with other posttranscriptional gene regulation processes.
Collapse
|
31
|
Lin YJ, Chen CY, Jeang KT, Liu X, Wang JH, Hung CH, Tsang H, Lin TH, Liao CC, Huang SM, Lin CW, Ho MW, Chien WK, Chen JH, Ho TJ, Tsai FJ. Ring finger protein 39 genetic variants associate with HIV-1 plasma viral loads and its replication in cell culture. Cell Biosci 2014; 4:40. [PMID: 25126410 PMCID: PMC4131809 DOI: 10.1186/2045-3701-4-40] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 07/29/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The human immunodeficiency virus (HIV-1) exploits host proteins to complete its life cycle. Genome-wide siRNA approaches suggested that host proteins affect HIV-1 replication. However, the results barely overlapped. RING finger protein 39 (RNF39) has been identified from genome-wide association studies. However, its function during HIV-1 replication remains unclear. METHODS AND RESULTS We investigated the relationship between common RNF39 genetic variants and HIV-1 viral loads. The effect of RNF39 protein knockdown or overexpression on HIV-1 replication was then investigated in different cell lines. Two genetic variants were associated with HIV-1 viral loads. Patients with the ht1-GG/GG haplotype presented lower RNF39 expression levels and lower HIV-1 viral load. RNF39 knockdown inhibited HIV-1 expression. CONCLUSIONS RNF39 protein may be involved in HIV-1 replication as observed in genetic studies on patients with HIV-1 and in in vitro cell cultures.
Collapse
Affiliation(s)
- Ying-Ju Lin
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chia-Yen Chen
- Viral Biochemistry Section, Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kuan-Teh Jeang
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Xiang Liu
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jen-Hsien Wang
- Section of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chien-Hui Hung
- Graduate Institute of Clinical Medical Science, Chang-Gung University, Chiayi, Taiwan
| | - Hsinyi Tsang
- The Laboratory of Molecular Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ting-Hsu Lin
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chiu-Chu Liao
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Shao-Mei Huang
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Cheng-Wen Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Mao-Wang Ho
- Section of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Kuei Chien
- Biostatistics Center, China Medical University, Taichung, Taiwan.,Biostatistics Center, Taipei Medical University, Taipei, Taiwan
| | - Jin-Hua Chen
- Biostatistics Center, China Medical University, Taichung, Taiwan.,Biostatistics Center, Taipei Medical University, Taipei, Taiwan
| | - Tsung-Jung Ho
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Division of Chinese Medicine, China Medical University Beigang Hospital, Yunlin County, Taiwan.,Division of Chinese Medicine, Tainan Municipal An-Nan Hospital -China Medical University, Tainan, Taiwan
| | - Fuu-Jen Tsai
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
32
|
Fitzgerald KA, Caffrey DR. Long noncoding RNAs in innate and adaptive immunity. Curr Opin Immunol 2013; 26:140-6. [PMID: 24556411 DOI: 10.1016/j.coi.2013.12.001] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 11/14/2013] [Accepted: 12/02/2013] [Indexed: 12/11/2022]
Abstract
The differentiation and activation of both innate and adaptive immune cells is highly dependent on a coordinated set of transcriptional and post-transcriptional events. Chromatin-modifiers and transcription factors regulate the accessibility and transcription of immune genes, respectively. Immune cells also express miRNA and RNA-binding proteins that provide an additional layer of regulation at the mRNA level. However, long noncoding RNAs (lncRNAs), which have been primarily studied in the context of genomic imprinting, cancer, and cell differentiation, are now emerging as important regulators of immune cell differentiation and activation. In this review, we provide a brief overview of lncRNAs, their known functions in immunity, and discuss their potential to be more broadly involved in other aspects of the immune response.
Collapse
Affiliation(s)
- Katherine A Fitzgerald
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Daniel R Caffrey
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
33
|
Vijayendran D, Airs PM, Dolezal K, Bonning BC. Arthropod viruses and small RNAs. J Invertebr Pathol 2013; 114:186-95. [PMID: 23932976 DOI: 10.1016/j.jip.2013.07.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 07/25/2013] [Accepted: 07/28/2013] [Indexed: 01/09/2023]
Abstract
The recently characterized small RNAs provide a new paradigm for physiological studies. These molecules have been shown to be integral players in processes as diverse as development and innate immunity against bacteria and viruses in eukaryotes. Several of the well-characterized small RNAs including small interfering RNAs, microRNAs and PIWI-interacting RNAs are emerging as important players in mediating arthropod host-virus interactions. Understanding the role of small RNAs in arthropod host-virus molecular interactions will facilitate manipulation of these pathways for both management of arthropod pests of agricultural and medical importance, and for protection of beneficial arthropods such as honey bees and shrimp. This review highlights recent research on the role of small RNAs in arthropod host-virus interactions with reference to other host-pathogen systems.
Collapse
|