1
|
Abbasi M, Tosur M, Astudillo M, Refaey A, Sabharwal A, Redondo MJ. Clinical Characterization of Data-Driven Diabetes Clusters of Pediatric Type 2 Diabetes. Pediatr Diabetes 2023; 2023:6955723. [PMID: 38694145 PMCID: PMC11062019 DOI: 10.1155/2023/6955723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/04/2024] Open
Abstract
Background Pediatric Type 2 diabetes (T2D) is highly heterogeneous. Previous reports on adult-onset diabetes demonstrated the existence of diabetes clusters. Therefore, we set out to identify unique diabetes subgroups with distinct characteristics among youth with T2D using commonly available demographic, clinical, and biochemical data. Methods We performed data-driven cluster analysis (K-prototypes clustering) to characterize diabetes subtypes in pediatrics using a dataset with 722 children and adolescents with autoantibody-negative T2D. The six variables included in our analysis were sex, race/ethnicity, age, BMI Z-score and hemoglobin A1c at the time of diagnosis, and non-HDL cholesterol within first year of diagnosis. Results We identified five distinct clusters of pediatric T2D, with different features, treatment regimens and risk of diabetes complications: Cluster 1 was characterized by higher A1c; Cluster 2, by higher non-HDL; Cluster 3, by lower age at diagnosis and lower A1c; Cluster 4, by lower BMI and higher A1c; and Cluster 5, by lower A1c and higher age. Youth in Cluster 1 had the highest rate of diabetic ketoacidosis (DKA) (p = 0.0001) and were most prescribed metformin (p = 0.06). Those in Cluster 2 were most prone to polycystic ovarian syndrome (p = 0.001). Younger individuals with lowest family history of diabetes were least frequently diagnosed with diabetic ketoacidosis (p = 0.001) and microalbuminuria (p = 0.06). Low-BMI individuals with higher A1c had the lowest prevalence of acanthosis nigricans (p = 0.0003) and hypertension (p = 0.03). Conclusions Utilizing clinical measures gathered at the time of diabetes diagnosis can be used to identify subgroups of pediatric T2D with prognostic value. Consequently, this advancement contributes to the progression and wider implementation of precision medicine in diabetes management.
Collapse
Affiliation(s)
- Mahsan Abbasi
- Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Mustafa Tosur
- Department of Pediatrics, Division of Diabetes and Endocrinology, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX, USA
- Children’s Nutrition Research Center, USDA/ARS, Houston, TX, USA
| | - Marcela Astudillo
- Department of Pediatrics, Division of Diabetes and Endocrinology, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX, USA
| | - Ahmad Refaey
- Department of Pediatrics, Division of Diabetes and Endocrinology, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX, USA
| | | | - Maria J. Redondo
- Department of Pediatrics, Division of Diabetes and Endocrinology, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX, USA
| |
Collapse
|
2
|
The Uroprotective Efficacy of Total Ginsenosides in Chinese Ginseng on Chemotherapy with Cyclophosphamide. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Hemorrhagic cystitis is a recognizable complication of cyclophosphamide (CYP) attributable to its lively metabolite acrolein, which produces urothelial injury. The study intended to examine the uroprotective efficacy of total ginsenosides in Chinese ginseng (TGCG) in CYP-induced hemorrhagic cystitis. In total, 24 virgin female rats were randomized into four groups as follows: group 1 (control group; injected with normal saline), group 2 (injected with CYP plus a placebo with normal saline), group 3 (given CYP and TGCG (200 mg/kg)), and group 4 (given CYP and 2-mercaptoethane sulfonate sodium (Mesna, 30 mg/kg)). An evaluation by cystometry was conducted. Values of the voiding interval were assessed in anesthetized rats and histological examinations of the bladders were measured. In the cystometry analysis, the voiding interval was significantly reduced in the CYP group. TGCG and Mesna significantly increased in the voiding interval values, individually. Bladder edema and urothelial injury were examined after contact with CYP. Contrasted to the group given CYP, CYP-induced hemorrhagic cystitis, TGCG significantly increased the urothelial thickness, and significantly reduced scores of mucosal break and submucosal edema in the bladder. In conclusion, these findings mean that the treatment with TGCG in CYP rats can avoid hemorrhagic cystitis. TGCG decreases urothelial injury. TGCG may participate as the chief character of uroprotection in CYP-induced hemorrhagic cystitis.
Collapse
|
3
|
Severe Quantitative Scale of Acanthosis Nigricans in Neck is Associated with Abdominal Obesity, HOMA-IR, and Hyperlipidemia in Obese Children from Mexico City: A Cross-Sectional Study. Dermatol Res Pract 2022; 2022:2906189. [PMID: 35386232 PMCID: PMC8979734 DOI: 10.1155/2022/2906189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/07/2022] [Accepted: 03/12/2022] [Indexed: 11/17/2022] Open
Abstract
Background. Acanthosis nigricans (AN) is a clinical sign that commonly occurs in obesity; however, its specificity and sensitivity have been controversial. It is unknown if AN severity degree can be a useful marker for cardiometabolic disorders screening. We suggest that the stratified analysis of AN severity degree in neck by Burke’s scale could be a useful tool in the screening of cardiometabolic alterations in obese children. Objective. The aim of this study was the association of AN severity degree in neck by Burke’s scale with anthropometric, biochemical, and inflammatory parameters in obese school-age children from Mexico City. Methods. A cross-sectional study was conducted, including 95 obese school-age children stratified by AN severity degree in neck by Burke’s scale. Anthropometric and fasting biochemical measurements were determined. Variables were compared by x2 test for frequencies and one-way ANOVA with Bonferroni posttest for continuous variables. Linear regression analysis adjusted by gender, BMI, and age was performed to evaluate the association between AN severity degree and cardiometabolic alterations. Statistical significance was set at
. Results. As AN severity degree in neck by Burke’s scale increased, diastolic blood pressure (
) and triglycerides (
) significantly increased and adiponectin significantly decreased (
). Positive associations between grade 3 AN and waist circumference, HOMA-IR, triglycerides, total cholesterol, and LDL cholesterol were observed. Conclusion. Our findings could be used to identify an easier clinical tool to prevent obesity progression and its complications in pediatrics. There are no similar studies.
Collapse
|
4
|
Ting WJ, Huang CY, Jiang CH, Lin YM, Chung LC, Shen CY, Pai P, Lin KH, Viswanadha VP, Liao SC. Treatment with 17β-Estradiol Reduced Body Weight and the Risk of Cardiovascular Disease in a High-Fat Diet-Induced Animal Model of Obesity. Int J Mol Sci 2017; 18:ijms18030629. [PMID: 28335423 PMCID: PMC5372642 DOI: 10.3390/ijms18030629] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/25/2017] [Accepted: 03/08/2017] [Indexed: 01/12/2023] Open
Abstract
Estrogen receptor α (ERα) and estrogen receptor β (ERβ) play important roles in cardiovascular disease (CVD) prevention. Recently, these estrogen receptors were reconsidered as an important treatment target of obesity leading to CVD. In this study, 17β-estradiol (17β-E) replacement therapy applied to high-fat diet-induced obese C57B male mice and ovariectomized (OVX) rats were evaluated, and the protective effects against high-fat diet-induced obesity were assessed in C57B mouse hearts. The results showed that 17β-E treatment activated both ERα and ERβ, and ERβ levels increased in a dose-dependent manner in high-fat diet C57B mouse cardiomyocytes following 17β-E treatment. Notably, an almost 16% reduction in body weight was observed in the 17β-E-treated (12 μg/kg/day for 60 days) high-fat diet-induced obese C57B male mice. These results suggested that 17β-E supplements may reduce CVD risk due to obesity.
Collapse
Affiliation(s)
- Wei-Jen Ting
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, B24 Yinquan South Road, Qingyuan 511518, China.
- Graduate Institute of Basic Medical Science, China Medical University, 91 Hsueh-Shih Road, Taichung 40402, Taiwan.
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, 91 Hsueh-Shih Road, Taichung 40402, Taiwan.
- Graduate Institute of Chinese Medical Science, China Medical University, 91 Hsueh-Shih Road, Taichung 40402, Taiwan.
- Department of Health and Nutrition Biotechnology, Asia University, 500 Lioufeng Road, Taichung 41354, Taiwan.
| | - Chong-He Jiang
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, B24 Yinquan South Road, Qingyuan 511518, China.
| | - Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, 135 Nanxiao Street, Changhua 50006, Taiwan.
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, 79-9 Sha-Luen Hu, Hou-Loung Town, Miaoli 35664, Taiwan.
| | - Li-Chin Chung
- Department of Hospital and Health Care Administration, China Nan University of Pharmacy & Science, 60, Section 1, Erren Road, Rende District, Tainan 71710, Taiwan.
| | - Chia-Yao Shen
- Department of Nursing, Mei Ho University, 23 Pingguang Road, Pingtung 91202, Taiwan.
| | - Peiying Pai
- Division of Cardiology, China Medical University Hospital, 91 Hsueh-Shih Road, Taichung 40402, Taiwan.
| | - Kuan-Ho Lin
- Department of Emergency Medicine, China Medical University Hospital, 91 Hsueh-Shih Road, Taichung 40402, Taiwan.
| | | | - Shih-Chieh Liao
- School of Medicine, College of Medicine, China Medical University, 91 Hsueh-Shih Road, Taichung 40402, Taiwan.
| |
Collapse
|
5
|
Ting WJ, Yang JJ, Kuo CH, Xiao ZJ, Lu XZ, Yeh YL, Day CH, Wen SY, Viswanadha VP, Jiang CH, Kuo WW, Huang CY. Environmental tobacco smoke increases autophagic effects but decreases longevity associated with Sirt-1 protein expression in young C57BL mice hearts. Oncotarget 2016; 7:39017-39025. [PMID: 27167200 PMCID: PMC5129910 DOI: 10.18632/oncotarget.9176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 04/16/2016] [Indexed: 11/25/2022] Open
Abstract
Recently, a survey by the Centers for Disease Control and Prevention (CDC) reported that nearly 90% of U.S. adult smokers began smoking at the age of 18. This demonstrates that the exposure to environmental tobacco smoke (ETS) of youngsters today is changing from passive smoking to active smoking (direct inhalation of tobacco). In the current study, an investigation of ETS exposure in young C57BL mice was conducted. After 6 weeks of ETS exposure, the Sirt-1 protein level was decreased and cardiac autophagy was increased in C57BL mice. Furthermore, the IGF2R cardiac hypertrophy signaling pathway was also triggered, although cardiac apoptosis and hypertrophy were not induced. Youngsters' desire to look more mature is one of the psychological factors that impacts smoking amongst young people. Our results suggest that though ETS exposure might cause cardiac autophagy amongst youngsters, the loss of the longevity Sirt-1 protein and the increase in IGF2R cardiac hypertrophy signaling could still promote heart diseases that are age-specific.
Collapse
Affiliation(s)
- Wei-Jen Ting
- The Sixth Affiliated Hospital of Guangzhou Medical University, Guangdong, China
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Jaw-Ji Yang
- Institute of Medicine, School of Dentistry, Chung-Shan Medical University, Taichung, Taiwan
| | - Chia-Hua Kuo
- Department of Sports Sciences, University of Taipei, Taipei, Taiwan
| | - Zi-Jun Xiao
- National Taichung First Senior High School, Taichung, Taiwan
| | - Xin-Ze Lu
- National Taichung First Senior High School, Taichung, Taiwan
| | - Yu-Lan Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
- Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | | | - Su-Ying Wen
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
- Department of Dermatology, Taipei City Hospital, Renai Branch, Taipei, Taiwan
| | | | - Chong-He Jiang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
6
|
Yeh YL, Ting WJ, Kuo WW, Hsu HH, Lin YM, Shen CY, Chang CH, Padma VV, Tsai Y, Huang CY. San Huang Shel Shin Tang beta-cyclodextrin complex augmented the hepatoprotective effects against carbon tetrachloride-induced acute hepatotoxicity in rats. Altern Ther Health Med 2016; 16:150. [PMID: 27234802 PMCID: PMC4884430 DOI: 10.1186/s12906-016-1127-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 05/15/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND San Huang Shel Shin Tang (SHSST) is a traditional herbal decoction used as a hepato-protective agent and is composed of Rheum officinale Baill, Scutellaria baicalnsis Geprgi and Coptis chinensis Franch (2:1:1 w/w). Beta-cyclodextrin (β-CD) modification may potentially increase the solubility and spectral properties of SHSST. METHODS In this research, the hepato-protective effects of unmodified SHSST, β-CD modified SHSST complex (SHSSTc) and silymarin were evaluated in carbon tetrachloride (CCl4) induced acute hepatotoxicity in rats. RESULTS SHHSTc (40 mg/kg/day) and silymarin (100 mg/kg/day) both decreased the CCl4-induced cirrhosis pathway-related transforming growth factor beta (TGF-β) and apoptosis pathway-related caspase-8 protein expressions, but SHSST (40 mg/kg/day) did not reduce TGF-β and caspase-8 significantly . Moreover, SHHSTc (40 mg/kg/day) enhanced the activation of insulin-like growth factor 1 receptor (IGF1R) mediated survival pathway than the silymarin (100 mg/kg/day) to protect the liver from damage induced by CCl4. CONCLUSIONS β-CD modification promotes hepato-protective effects of SHSST and reduces the required-dosage of the SHSST.
Collapse
|
7
|
Yeh YL, Hu WS, Ting WJ, Shen CY, Hsu HH, Chung LC, Tu CC, Chang SH, Day CH, Tsai Y, Huang CY. Hypoxia Augments Increased HIF-1α and Reduced Survival Protein p-Akt in Gelsolin (GSN)-Dependent Cardiomyoblast Cell Apoptosis. Cell Biochem Biophys 2016; 74:221-8. [PMID: 27193608 DOI: 10.1007/s12013-016-0729-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 04/09/2016] [Indexed: 12/25/2022]
Abstract
Cytoskeleton filaments play an important role in cellular functions such as maintaining cell shape, cell motility, intracellular transport, and cell division. Actin-binding proteins (ABPs) have numerous functions including regulation of actin filament nucleation, elongation, severing, capping, cross linking, and actin monomer sequestration. Gelsolin (GSN) is one of the actin-binding proteins. Gelsolin (GSN) is one of the actin-binding proteins that regulate cell morphology, differentiation, movement, and apoptosis. GSN also regulates cell morphology, differentiation, movement, and apoptosis. In this study, we have used H9c2 cardiomyoblast cell and H9c2-GSN stable clones to understand the roles and mechanisms of GSN overexpression in hypoxia-induced cardiomyoblast cell death. The data show that hypoxia or GSN overexpression induces HIF-1α expression and reduces the expression of survival markers p-Akt and Bcl-2 in H9c2 cardiomyoblast cells. Under hypoxic conditions, GSN overexpression further reduces p-Akt expression and elevates total as well as cleaved GSN levels and HIF-1α levels. In addition, GSN overexpression enhances apoptosis in cardiomyoblasts under hypoxia. Hypoxic challenge further induced activated caspase-3 and cell death that was attenuated after GSN knock down, which implies that GSN is a critical therapeutic target against hypoxia-induced cardiomyoblast cell death.
Collapse
Affiliation(s)
- Yu-Lan Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | | | - Wei-Jen Ting
- Graduate Institute of Basic Medical Science, School of Chinese Medicine, China Medical University and Hospital, 91 Hsueh-Shih Road 404, Taichung, Taiwan, ROC
| | - Chia-Yao Shen
- Department of Nursing, MeiHo University, Pingtung, Taiwan
| | - Hsi-Hsien Hsu
- Division of Colorectal Surgery, Mackay Memorial Hospital, Taipei, Taiwan
| | - Li-Chin Chung
- Department of Hospital and Health Care Administration, Chia Nan University of Pharmacy and Science, Tainan County, Taiwan
| | - Chuan-Chou Tu
- Division of Chest Medicine, Department of Internal Medicine, Armed Force Taichung General Hospital, Taichung, Taiwan
| | - Sheng-Huang Chang
- Department of Health, Tsao-Tun Psychiatric Center, Executive Yuan, Nantou, 54249, Taiwan
| | | | - Yuhsin Tsai
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, School of Chinese Medicine, China Medical University and Hospital, 91 Hsueh-Shih Road 404, Taichung, Taiwan, ROC.
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan.
| |
Collapse
|
8
|
Lo HY, Ho TY, Li CC, Chen JC, Liu JJ, Hsiang CY. A novel insulin receptor-binding protein from Momordica charantia enhances glucose uptake and glucose clearance in vitro and in vivo through triggering insulin receptor signaling pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:8952-8961. [PMID: 25144709 DOI: 10.1021/jf5002099] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Diabetes, a common metabolic disorder, is characterized by hyperglycemia. Insulin is the principal mediator of glucose homeostasis. In a previous study, we identified a trypsin inhibitor, named Momordica charantia insulin receptor (IR)-binding protein (mcIRBP) in this study, that might interact with IR. The physical and functional interactions between mcIRBP and IR were clearly analyzed in the present study. Photo-cross-linking coupled with mass spectrometry showed that three regions (17-21, 34-40, and 59-66 residues) located on mcIRBP physically interacted with leucine-rich repeat domain and cysteine-rich region of IR. IR-binding assay showed that the binding behavior of mcIRBP and insulin displayed a cooperative manner. After binding to IR, mcIRBP activated the kinase activity of IR by (5.87 ± 0.45)-fold, increased the amount of phospho-IR protein by (1.31 ± 0.03)-fold, affected phosphoinositide-3-kinase/Akt pathways, and consequently stimulated the uptake of glucose in 3T3-L1 cells by (1.36 ± 0.12)-fold. Intraperitoneal injection of 2.5 nmol/kg mcIRBP significantly decreased the blood glucose levels by 20.9 ± 3.2% and 10.8 ± 3.6% in normal and diabetic mice, respectively. Microarray analysis showed that mcIRBP affected genes involved in insulin signaling transduction pathway in mice. In conclusion, our findings suggest that mcIRBP is a novel IRBP that binds to sites different from the insulin-binding sites on IR and stimulates both the glucose uptake in cells and the glucose clearance in mice.
Collapse
Affiliation(s)
- Hsin-Yi Lo
- Graduate Institute of Chinese Medicine, China Medical University , Taichung 40402, Taiwan
| | | | | | | | | | | |
Collapse
|
9
|
Lead screening for CXCR4 of the human HIV infection receptor inhibited by traditional Chinese medicine. BIOMED RESEARCH INTERNATIONAL 2014; 2014:809816. [PMID: 24999477 PMCID: PMC4066726 DOI: 10.1155/2014/809816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 03/05/2014] [Accepted: 03/05/2014] [Indexed: 11/18/2022]
Abstract
The acquired immunodeficiency syndrome (AIDS) is a serious worldwide disease caused by the human immunodeficiency virus (HIV) infection. Recent research has pointed out that the G protein-coupled chemokine receptor CXCR4 and the coreceptor C-C chemokine receptor type 5 (CCR5) are important targets for HIV infection. The traditional Chinese medicine (TCM) database has been screened for candidate compounds by simulating molecular docking and molecular dynamics against HIV. Saussureamine C, 5-hydroxy-L-tryptophan, and diiodotyrosine are selected based on the highest docking score. The molecular dynamics is helpful in the analysis and detection of protein-ligand interactions. According to the analysis of docking poses, hydrophobic interactions, hydrogen bond variations, and the comparison of the effect on CXCR4 and CCR5, these results indicate Saussureamine C may have better effect on these two receptors. But for some considerations, diiodotyrosine could make the largest variation and may have some efficacy contrary to expectations.
Collapse
|
10
|
Lead screening for HIV-1 integrase (IN) inhibited by traditional Chinese medicine. BIOMED RESEARCH INTERNATIONAL 2014; 2014:479367. [PMID: 25013783 PMCID: PMC4071968 DOI: 10.1155/2014/479367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 03/05/2014] [Indexed: 12/25/2022]
Abstract
Human immunodeficiency virus causes the acquired immunodeficiency syndrome (AIDS) and becomes a serious world-wide problem because of this disease's rapid propagation and incurability. Integrase strand transfer inhibitors (INSTIs) supports HIV have rapid drug resistance for antitreatment. Screening the traditional Chinese medicine (TCM) database by simulating molecular docking and molecular dynamics may select molecular compounds to inhibit INSTIs against HIV drug resistance. (S)-cathinone and (1S,2S)-norpseudoephedrine are selected based on structure and ligand-based drugs are designed and then get higher bioactivity predicted score from SVM than Raltegravir and other TCM compounds. The molecular dynamics are helpful in the analysis and detection of protein-ligand interactions. According to the docking poses, hydrophobic interactions and hydrogen bond variations define the main regions of important amino acids in integrase. In addition to the detection of TCM compound efficacy, we suggest (1S,2S)-norpseudoephedrine is better than the others based on the analysis of interaction and the effect on the structural variation.
Collapse
|
11
|
Lead Screening for Chronic Obstructive Pulmonary Disease of IKK2 Inhibited by Traditional Chinese Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:465025. [PMID: 24987428 PMCID: PMC4060305 DOI: 10.1155/2014/465025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 02/08/2014] [Accepted: 02/08/2014] [Indexed: 12/28/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic obstructive lung disease and is frequently found in well-developed countries due to the issue of aging populations. Not all forms of medical treatment are unable to return a patient's limited pulmonary function back to normal and eventually they could require a lung transplant. At this time, COPD is the leading cause of death in the world. Studies surveying I-kappa-B-kinase beta (IKK2) are very relevant to the occurrence and deterioration of the condition COPD. The sinapic acid-4-O-sulfate, kaempferol, and alpha-terpineol were found to be IKK2 inhibitors and helped prevent COPD occurrence and worsening according to a screening of the traditional Chinese medicine (TCM) database. The protein-ligand interaction of these three compounds with regard to IKK2 was also done by molecular dynamics. The docking poses, hydrogen bond variation, and hydrophobic interactions found Asp103 and Lys106 are crucial to IKK2 binding areas for IKK2 inhibition. Finally, we found the three compounds that have an equally strong effect in terms of IKK2 binding proven by the TCM database and perhaps these may be an alternative treatment for COPD in the future.
Collapse
|
12
|
In Silico Investigation of Potential PARP-1 Inhibitors from Traditional Chinese Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:917605. [PMID: 24876881 PMCID: PMC4021748 DOI: 10.1155/2014/917605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/03/2014] [Accepted: 01/03/2014] [Indexed: 12/04/2022]
Abstract
Poly(ADP-ribose) polymerases (PARPs) are nuclear enzymes which catalyze the poly-ADP-ribosylation involved in gene transcription, DNA damage repair, and cell-death signaling. As PARP-1 protein contains a DNA-binding domain, which can bind to DNA strand breaks and repair the damaged DNA over a low basal level, the inhibitors of poly(ADP-ribose) polymerase 1 (PARP-1) have been indicated as the agents treated for cancer. This study employed the compounds from TCM Database@Taiwan to identify the potential PARP-1 inhibitors from the vast repertoire of TCM compounds. The binding affinities of the potential TCM compounds were also predicted utilized several distinct scoring functions. Molecular dynamics simulations were performed to optimize the result of docking simulation and analyze the stability of interactions between protein and ligand. The top TCM candidates, isopraeroside IV, picrasidine M, and aurantiamide acetate, had higher potent binding affinities than control, A927929. They have stable H-bonds with residues Gly202 and, Ser243 as A927929 and stable H-bonds with residues Asp105, Tyr228, and His248 in the other side of the binding domain, which may strengthen and stabilize ligand inside the binding domain of PARP-1 protein. Hence, we propose isopraeroside IV and aurantiamide acetate as potential lead compounds for further study in drug development process with the PARP-1 protein.
Collapse
|
13
|
Chen KC, Chen CYC. In Silico Identification of Potent PPAR-γ Agonists from Traditional Chinese Medicine: A Bioactivity Prediction, Virtual Screening, and Molecular Dynamics Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2014; 2014:192452. [PMID: 24971147 PMCID: PMC4058246 DOI: 10.1155/2014/192452] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 01/25/2014] [Indexed: 12/15/2022]
Abstract
The peroxisome proliferator-activated receptors (PPARs) related to regulation of lipid metabolism, inflammation, cell proliferation, differentiation, and glucose homeostasis by controlling the related ligand-dependent transcription of networks of genes. They are used to be served as therapeutic targets against metabolic disorder, such as obesity, dyslipidemia, and diabetes; especially, PPAR-γ is the most extensively investigated isoform for the treatment of dyslipidemic type 2 diabetes. In this study, we filter compounds of traditional Chinese medicine (TCM) using bioactivities predicted by three distinct prediction models before the virtual screening. For the top candidates, the molecular dynamics (MD) simulations were also utilized to investigate the stability of interactions between ligand and PPAR-γ protein. The top two TCM candidates, 5-hydroxy-L-tryptophan and abrine, have an indole ring and carboxyl group to form the H-bonds with the key residues of PPAR-γ protein, such as residues Ser289 and Lys367. The secondary amine group of abrine also stabilized an H-bond with residue Ser289. From the figures of root mean square fluctuations (RMSFs), the key residues were stabilized in protein complexes with 5-Hydroxy-L-tryptophan and abrine as control. Hence, we propose 5-hydroxy-L-tryptophan and abrine as potential lead compounds for further study in drug development process with the PPAR-γ protein.
Collapse
Affiliation(s)
- Kuan-Chung Chen
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan
| | - Calvin Yu-Chian Chen
- School of Medicine, College of Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Biomedical Informatics, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
14
|
Treatment of acute lymphoblastic leukemia from traditional chinese medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:601064. [PMID: 25136372 PMCID: PMC4055129 DOI: 10.1155/2014/601064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 01/07/2014] [Indexed: 12/21/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is a cancer that immature white blood cells continuously overproduce in the bone marrow. These cells crowd out normal cells in the bone marrow bringing damage and death. Methotrexate (MTX) is a drug used in the treatment of various cancer and autoimmune diseases. In particular, for the treatment of childhood acute lymphoblastic leukemia, it had significant effect. MTX competitively inhibits dihydrofolate reductase (DHFR), an enzyme that participates in the tetrahydrofolate synthesis so as to inhibit purine synthesis. In addition, its downstream metabolite methotrexate polyglutamates (MTX-PGs) inhibit the thymidylate synthase (TS). Therefore, MTX can inhibit the synthesis of DNA. However, MTX has cytotoxicity and neurotoxin may cause multiple organ injury and is potentially lethal. Thus, the lower toxicity drugs are necessary to be developed. Recently, diseases treatments with Traditional Chinese Medicine (TCM) as complements are getting more and more attention. In this study, we attempted to discover the compounds with drug-like potential for ALL treatment from the components in TCM. We applied virtual screen and QSAR models based on structure-based and ligand-based studies to identify the potential TCM component compounds. Our results show that the TCM compounds adenosine triphosphate, manninotriose, raffinose, and stachyose could have potential to improve the side effects of MTX for ALL treatment.
Collapse
|
15
|
Huang HJ, Chen HY, Lee CC, Chen CYC. Computational design of apolipoprotein E4 inhibitors for Alzheimer's disease therapy from traditional Chinese medicine. BIOMED RESEARCH INTERNATIONAL 2014; 2014:452625. [PMID: 24967370 PMCID: PMC4055423 DOI: 10.1155/2014/452625] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/05/2014] [Accepted: 03/05/2014] [Indexed: 12/19/2022]
Abstract
Apolipoprotein E4 (Apo E4) is the major genetic risk factor in the causation of Alzheimer's disease (AD). In this study we utilize virtual screening of the world's largest traditional Chinese medicine (TCM) database and investigate potential compounds for the inhibition of ApoE4. We present the top three TCM candidates: Solapalmitine, Isodesacetyluvaricin, and Budmunchiamine L5 for further investigation. Dynamics analysis and molecular dynamics (MD) simulation were used to simulate protein-ligand complexes for observing the interactions and protein variations. Budmunchiamine L5 did not have the highest score from virtual screening; however, the dynamics pose is similar to the initial docking pose after MD simulation. Trajectory analysis reveals that Budmunchiamine L5 was stable over all simulation times. The migration distance of Budmunchiamine L5 illustrates that docked ligands are not variable from the initial docked site. Interestingly, Arg158 was observed to form H-bonds with Budmunchiamine L5 in the docking pose and MD snapshot, which indicates that the TCM compounds could stably bind to ApoE4. Our results show that Budmunchiamine L5 has good absorption, blood brain barrier (BBB) penetration, and less toxicity according to absorption, distribution, metabolism, excretion, and toxicity (ADMET) prediction and could, therefore, be safely used for developing novel ApoE4 inhibitors.
Collapse
Affiliation(s)
- Hung-Jin Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Pharmacy, China Medical University, Taichung 40402, Taiwan
| | - Hsin-Yi Chen
- Department of Biomedical Informatics, Asia University, Taichung 41354, Taiwan
| | - Cheng-Chun Lee
- School of Medicine, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Calvin Yu-Chian Chen
- Department of Biomedical Informatics, Asia University, Taichung 41354, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
16
|
Huang HJ, Chang TT, Chen HY, Chen CYC. Finding inhibitors of mutant superoxide dismutase-1 for amyotrophic lateral sclerosis therapy from traditional chinese medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2014; 2014:156276. [PMID: 24963318 PMCID: PMC4052194 DOI: 10.1155/2014/156276] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/06/2014] [Accepted: 02/06/2014] [Indexed: 12/13/2022]
Abstract
Superoxide dismutase type 1 (SOD1) mutations cause protein aggregation and decrease protein stability, which are linked to amyotrophic lateral sclerosis (ALS) disease. This research utilizes the world's largest traditional Chinese medicine (TCM) database to search novel inhibitors of mutant SOD1, and molecular dynamics (MD) simulations were used to analyze the stability of protein that interacted with docked ligands. Docking results show that hesperidin and 2,3,5,4'-tetrahydroxystilbene-2-O- β -D-glucoside (THSG) have high affinity to mutant SOD1 and then dopamine. For MD simulation analysis, hesperidin and THSG displayed similar value of RMSD with dopamine, and the migration analysis reveals stable fluctuation at the end of MD simulation time. Interestingly, distance between the protein and ligand has distinct difference, and hesperidin changes the position from initial binding site to the other place. In flexibility of residues analysis, the secondary structure among all complexes does not change, indicating that the structure are not affect ligand binding. The binding poses of hesperidin and THSG are similar to dopamine after molecular simulation. Our result indicated that hesperidin and THSG might be potential lead compound to design inhibitors of mutant SOD1 for ALS therapy.
Collapse
Affiliation(s)
- Hung-Jin Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Pharmacy, China Medical University, Taichung 40402, Taiwan
| | - Tung-Ti Chang
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - Hsin-Yi Chen
- Department of Biomedical Informatics, Asia University, Taichung 41354, Taiwan
| | - Calvin Yu-Chian Chen
- Department of Biomedical Informatics, Asia University, Taichung 41354, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
17
|
Hung TC, Chang TT, Fan MJ, Lee CC, Chen CYC. In Silico Insight into Potent of Anthocyanin Regulation of FKBP52 to Prevent Alzheimer's Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2014; 2014:450592. [PMID: 24899909 PMCID: PMC4036721 DOI: 10.1155/2014/450592] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 01/03/2014] [Accepted: 01/03/2014] [Indexed: 02/01/2023]
Abstract
Alzheimer's disease (AD) is caused by the hyperphosphorylation of Tau protein aggregation. FKBP52 (FK506 binding protein 52) has been found to inhibit Tau protein aggregation. This study found six different kinds of anthocyanins that have high binding potential. After analyzing the docking positions, hydrophobic interactions, and hydrogen bond interactions, several amino acids were identified that play important roles in protein and ligand interaction. The proteins' variation is described using eigenvectors and the distance between the amino acids during a molecular dynamics simulation (MD). This study investigates the three loops based around Glu85, Tyr113, and Lys121-all of which are important in inducing FKBP52 activation. By performing a molecular dynamic simulation process between unbound proteins and the protein complex with FK506, it was found that ligand targets that docked onto the FK1 domain will decrease the distance between Glu85/Tyr113 and Glu85/Lys121. The FKBP52 structure variation may induce FKBP52 activation and inhibit Tau protein aggregation. The results indicate that anthocyanins might change the conformation of FKBP52 during binding. In addition, the purple anthocyanins, such as cyanidin-3-glucoside and malvidin-3-glucoside, might be better than FK506 in regulating FKBP52 and treating Alzheimer's disease.
Collapse
Affiliation(s)
- Tzu-Chieh Hung
- Department of Biomedical Informatics, Asia University, Taichung 41354, Taiwan
| | - Tung-Ti Chang
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - Ming-Jen Fan
- Department of Biotechnology, Asia University, Taichung 41354, Taiwan
- Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan
| | - Cheng-Chun Lee
- School of Medicine, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Calvin Yu-Chian Chen
- Department of Biomedical Informatics, Asia University, Taichung 41354, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
18
|
Ligand-based and structure-based investigation for Alzheimer's disease from traditional chinese medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:364819. [PMID: 24899907 PMCID: PMC4034731 DOI: 10.1155/2014/364819] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 01/12/2014] [Indexed: 11/18/2022]
Abstract
Alzheimer's disease is a neurodegenerative disease that was conventionally thought to be related to the sedimentation of beta-amyloids, but drugs designed according to this hypothesis have generally failed. That FKBP52 can reduce the accumulation of tau proteins, and that Tacrolimus can reduce the pathological changes of tau proteins are new directions away from the long held amyloid-beta-centric concept. Therefore, the screening of traditional Chinese medicine compounds for those with higher affinity towards FKBP52 than Tacrolimus may be a new direction for treating Alzheimer's disease. This study utilizes ligand-based and structure-based methods as the foundation. By utilizing dock scores and the predicted pIC50 from SVM, MLR, and Bayesian Network, several TCM compounds were selected for further analysis of their protein-ligand interactions. Daphnetoxin has higher affinity and complex structure stability than Tacrolimus; Lythrancine II exhibits the most identical trends in FKBP52 interactions as Tacrolimus, and 20-O-(2′E,4′E-decadienoyl)ingenol may be further modified at its hydrocarbon chain to promote interaction with FKBP52. In addition, we observed the residue Tyr113 of FKBP52 may play a key role in protein-ligand interaction. Our results indicate that Daphnetoxin, 20-O-(2′E,4′E-decadienoyl)ingenol, and Lythrancine II may be starting points for further modification as a new type of non-amyloid-beta-centric drug for Alzheimer's disease.
Collapse
|
19
|
Lead Screening for HIV of C-C Chemokine Receptor Type 5 Receptor Inhibited by Traditional Chinese Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:313094. [PMID: 24876870 PMCID: PMC4021832 DOI: 10.1155/2014/313094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/10/2014] [Indexed: 01/15/2023]
Abstract
The acquired immunodeficiency syndrome (AIDS), caused by the human immunodeficiency virus (HIV), has become a serious world-wide problem because of this disease's rapid propagation and incurability. Recent research has pointed out that the C-C chemokine receptor type 5 (CCR5) is an important target for HIV infection. The traditional Chinese medicine (TCM) database (http://tcm.cmu.edu.tw/) has been screened for molecular compounds that, by simulating molecular docking and molecular dynamics, may protect CCR5 against HIV. Saussureamine C, 5-hydroxy-L-tryptophan, and abrine are selected based on the docking score being higher than Maraviroc and other TCM compounds. The molecular dynamics are helpful in the analysis and detection of protein-ligand interactions. According to the docking poses, hydrophobic interactions, and hydrogen bond variations, this research surmises TRP86, TYR108, GLN194, TYR251, and GLU283 are the main regions of important amino acids in CCR5. In addition to the detection of TCM compound efficacy, we suggest saussureamine C is better than the others for maintaining protein composition during protein-ligand interaction, based on the structural variation.
Collapse
|
20
|
Potential retinoid x receptor agonists for treating Alzheimer's disease from traditional chinese medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:278493. [PMID: 24876869 PMCID: PMC4021742 DOI: 10.1155/2014/278493] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 01/04/2014] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease is neurodegenerative disorder due to the accumulation of amyloid-β in the brain and causes dementia with ageing. Some researches indicate that the RXR agonist, Targretin, has also been used for treatment of Alzheimer's disease in mouse models. We investigate the potent candidates as RXR agonists from the vast repertoire of TCM compounds in TCM Database@Taiwan. The potential TCM compounds, β-lipoic acid and sulfanilic acid, had higher potent binding affinities than both 9-cis-retinoic acid and Targretin in docking simulation and have stable H-bonds with residues Arg316 and some equivalent hydrophobic contacts with residues Ala272, Gln275, Leu309, Phe313, Val342, Ile345, and Cys432 as Targretin. The carboxyl or sulfonyl hydroxide group can form a H-bond with key residue Arg316 in the docking pose, and the phenyl group next to the carboxyl or sulfonyl hydroxide group can form a π interaction with residue Phe313. Moreover, β-lipoic acid and sulfanilic acid have stable H-bonds with residue Gln275, Ser313, and residue Ala327, respectively, which may strengthen and stabilize TCM candidates inside the binding domain of RXR protein. Hence, we propose β-lipoic acid and sulfanilic acid as potential lead compounds for further study in drug development process with the RXR protein against Alzheimer's disease.
Collapse
|
21
|
Chen KC, Chen HY, Chen CYC. Potential Protein Phosphatase 2A Agents from Traditional Chinese Medicine against Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2014; 2014:436863. [PMID: 24868239 PMCID: PMC4020536 DOI: 10.1155/2014/436863] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 01/30/2014] [Indexed: 02/07/2023]
Abstract
Protein phosphatase 2A (PP2A) is an important phosphatase which regulates various cellular processes, such as protein synthesis, cell growth, cellular signaling, apoptosis, metabolism, and stress responses. It is a holoenzyme composed of the structural A and catalytic C subunits and a regulatory B subunit. As an environmental toxin, okadaic acid, is a tumor promoter and binds to PP2A catalytic C subunit and the cancer-associated mutations in PP2A structural A subunit in human tumor tissue; PP2A may have tumor-suppressing function. It is a potential drug target in the treatment of cancer. In this study, we screen the TCM compounds in TCM Database@Taiwan to investigate the potent lead compounds as PP2A agent. The results of docking simulation are optimized under dynamic conditions by MD simulations after virtual screening to validate the stability of H-bonds between PP2A- α protein and each ligand. The top TCM candidates, trichosanatine and squamosamide, have potential binding affinities and interactions with key residues Arg89 and Arg214 in the docking simulation. In addition, these interactions were stable under dynamic conditions. Hence, we propose the TCM compounds, trichosanatine and squamosamide, as potential candidates as lead compounds for further study in drug development process with the PP2A- α protein.
Collapse
Affiliation(s)
- Kuan-Chung Chen
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan
| | - Hsin-Yi Chen
- Department of Biomedical Informatics, Asia University, Taichung 41354, Taiwan
| | - Calvin Yu-Chian Chen
- Department of Biomedical Informatics, Asia University, Taichung 41354, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung 40402, Taiwan
- Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
22
|
Investigation of the novel lead of melanocortin 1 receptor for pigmentary disorders. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:254678. [PMID: 24693320 PMCID: PMC3947904 DOI: 10.1155/2014/254678] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 12/15/2013] [Accepted: 12/15/2013] [Indexed: 11/18/2022]
Abstract
Knowing the role of MC1R in skin tanning can provide a brand new idea to resolve pigmentary disorders. α MSH has 13 amino acids and is the most essential pigmentary melanocortin responsible for melanin synthesis. One could utilize the compound library to find lead compounds by virtual screening from peptide database and traditional Chinese medicine (TCM) database@Taiwan. Computational simulation provided a convenient technology to survey potential lead. Ligand-based validation set up the reliable model for molecular dynamics simulation. Molecular dynamics simulation approved the binding affinity and stability of the peptides selected by virtual screening. Thus, we concluded that Glu-Glu-Lys-Glu (EEKE), Glu-Gly-Gly-Ser-Val-Glu-Ser (EGGSVES), and Glu-Glu-Asp-Cys-Lys (EEDCK) were potent lead peptides for MC1R to resolve pigmentary disorders.
Collapse
|
23
|
Huang HJ, Lee CC, Chen CYC. Pharmacological chaperone design for reducing risk factor of Parkinson's disease from traditional chinese medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2014; 2014:830490. [PMID: 24527054 PMCID: PMC3914314 DOI: 10.1155/2014/830490] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 12/13/2013] [Accepted: 12/15/2013] [Indexed: 01/11/2023]
Abstract
Dysfunction of β -glucocerebrosidase (GCase) has no hydrolytic activity in patients of Gaucher's disease and increasing the risk factor for Parkinson's disease occurrence. Pharmacological chaperone design has been used to treat with misfolded protein in related disease, which utilized a small compound to cause protein folding correctly. This study employed the world largest traditional Chinese medicine (TCM) database for searching for potential lead compound as pharmacological chaperone, and we also performed molecular dynamics (MD) simulations to observe the stability of binding conformation between ligands and active site of GCase structure. The docking results from database screening show that N-methylmescaline and shihunine have high binding ability to GCase than tetrahydroxyazepanes. From MD simulation analysis, tetrahydroxyazepanes displayed high opportunity of ligand migration instead of our TCM candidates, and H-bonds number was decreased in the end of MD snapshot. Our result indicated that binding conformation of N-methylmescaline and shihunine remains stable during MD simulation, demonstrating that the two candidates are suitable for GCase binding and might be potential as pharmacological chaperone for GCase folding correctly.
Collapse
Affiliation(s)
- Hung-Jin Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Pharmacy, China Medical University, Taichung 40402, Taiwan
| | - Cheng-Chun Lee
- School of Medicine, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Calvin Yu-Chian Chen
- School of Medicine, College of Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Biotechnology, Asia University, Taichung 41354, Taiwan
- China Medical University Beigang Hospital, Yunlin 65152, Taiwan
- Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
24
|
Design of Glucagon-Like Peptide-1 Receptor Agonist for Diabetes Mellitus from Traditional Chinese Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:385120. [PMID: 24891870 PMCID: PMC4033432 DOI: 10.1155/2014/385120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 01/29/2014] [Indexed: 11/18/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) is a promising target for diabetes mellitus (DM) therapy and reduces the occurrence of diabetes due to obesity. However, GLP-1 will be hydrolyzed soon by the enzyme dipeptidyl peptidase-4 (DPP-4). We tried to design small molecular drugs for GLP-1 receptor agonist from the world's largest traditional Chinese medicine (TCM) Database@Taiwan. According to docking results of virtual screening, we selected 2 TCM compounds, wenyujinoside and 28-deglucosylchikusetsusaponin IV, for further molecular dynamics (MD) simulation. GLP-1 was assigned as the control compound. Based on the results of root mean square deviation (RMSD), solvent accessible surface (SAS), mean square deviation (MSD), Gyrate, total energy, root mean square fluctuation (RMSF), matrices of smallest distance of residues, database of secondary structure assignment (DSSP), cluster analysis, and distance of H-bond, we concluded that all the 3 compounds could bind and activate GLP-1 receptor by computational simulation. Wenyujinoside and 28-deglucosylchikusetsusaponin IV were the TCM compounds that could be GLP-1 receptor agonists.
Collapse
|