1
|
Bendi A, Devi P, Sharma H, Yadav G, Raghav N, Pundeer R, Afshari M. Innovative Pyrazole Hybrids: A New Era in Drug Discovery and Synthesis. Chem Biodivers 2025; 22:e202402370. [PMID: 39613478 DOI: 10.1002/cbdv.202402370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/20/2024] [Accepted: 11/28/2024] [Indexed: 12/01/2024]
Abstract
Heterocyclic compounds that include nitrogen and their derivatives have long been regarded as excellent sources of medicinal substances. Pyrazole is a compound with two nitrogen atoms and an aromatic structure. It has several uses and intricate stereochemistry arranged in a five-membered ring. The knowledge of different pyrazole derivatives and their range of physiological and pharmacological actions has grown significantly in recent years. The scientific community has recently increasingly focused on exploring the chemistry of various pyrazole hybrids due to their enhanced biological activities. This review investigates the chemistry of these diverse pyrazole hybrids, emphasizing their synthesis and their antidiabetic, antibacterial, anticancer, antimicrobial, antioxidant, and anti-inflammatory activities. Articles published from 2014 onward with an emphasis on the last 5 years are included in this review. This review is anticipated to be useful for future investigations and innovative concepts in the pursuit of designs for creating more promising hybrids of pyrazoles.
Collapse
Affiliation(s)
- Anjaneyulu Bendi
- Innovation and Translational Research Hub (iTRH) & Department of Chemistry, Presidency University, Bangalore, Karnataka, India
| | - Poonam Devi
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | - Harsh Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | - Geetanjali Yadav
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | - Neera Raghav
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | - Rashmi Pundeer
- Department of Chemistry, Indira Gandhi University, Meerpur, Rewari, Haryana, India
| | - Mozhgan Afshari
- Department of Chemistry, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| |
Collapse
|
2
|
Zhu X, Li Q, Wu J, Ju Z. Discovery of Safe COX-2 Inhibitors: Achieving Reduced Colitis Side Effects through Balanced COX Inhibition. ChemMedChem 2025:e202500096. [PMID: 40012482 DOI: 10.1002/cmdc.202500096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 02/28/2025]
Abstract
The severe adverse effects associated with imbalanced cyclooxygenase-2 (COX-2) inhibition continue to pose significant challenges in the development of contemporary anti-inflammatory drugs. In recent years, the approach to COX-2 inhibitor drug development has shifted from a focus on highly selective inhibition of COX-2 to a strategy that emphasizes more moderate selectivity. The amino acid sequence and structural similarities between inducible COX-2 and constitutive cyclooxygenase-1 (COX-1) isoforms present both substantial opportunities and challenges for the design of next generation of balanced COX-2 inhibitors. As part of our ongoing research into the discovering novel and safer COX-2 inhibitors, we reported herein a highly potent and balanced COX-2 inhibitor 21 d (IC50 value=1.35 μM, selectivity profile (IC50 (COX-1)/IC50 (COX-2)=22.34)). In vivo assays demonstrated that 21 d significantly alleviated histological damage and provided robust protection against dextran sulfate sodium (DSS)-induced acute colitis.
Collapse
Affiliation(s)
- Xinlin Zhu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qin Li
- Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400000, China
| | - Junhui Wu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhiran Ju
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
3
|
Fu H, Li Z, Zhao Y, Li J. Interplays between Functional Groups and Substitution Sites Modulate the Photophysics of the Bithiophenes. J Phys Chem A 2025; 129:2033-2040. [PMID: 39960263 DOI: 10.1021/acs.jpca.4c08513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Bithiophene has an electron-rich conjugated ring, enabling highly tunable photophysical properties for the design of novel organic light-emitting materials. Extensive research was focused on the functionalization of α-site-connected bithiophene, while recent work reported the synthesis of β-bithiophene, substantially enlarging the chemical space for bithiophene design. However, the design rule for modulating the physical properties of β-bithiophene has remained unexplored. We performed comprehensive quantum chemical calculations to investigate how functional groups and substituent sites control the absorption and emission wavelengths of β-bithiophene. Our results show that the functional groups lead to red-shifts of the wavelengths by extending the electron delocalization, while the substitution sites have fewer effects on the wavelengths. The absorption and emission calculation for trithiophene and tetrathiophene suggest that the photophysical properties of thiophene polymer are controlled by the short thiophene chains, underscoring the significance of the rational design of β-bithiophene derivatives.
Collapse
Affiliation(s)
- Haijun Fu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, China
| | - Zhendong Li
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, China
| | - Yanying Zhao
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jingbai Li
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, China
| |
Collapse
|
4
|
Arora S, Upadhayay S, Kumar P, Kumar P, Kumar R. Design, synthesis and anticancer evaluation of 4-Substituted 5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidines as dual topoisomerase I and II inhibitors. Bioorg Chem 2025; 154:108043. [PMID: 39705937 DOI: 10.1016/j.bioorg.2024.108043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/15/2024] [Accepted: 12/04/2024] [Indexed: 12/23/2024]
Abstract
In this study, we herein report the design, synthesis, and anticancer assessment of a series of new 4-substituted 5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidines. The synthesis involved key intermediates such as the 2-aminoester derivative, which underwent a series of reactions to produce compounds 7a-7t. The optimized SNAr reactions, utilizing microwave irradiation in DMF, led to high yields and efficient preparation of the desired compounds. The biological evaluation revealed significant cytotoxicity of compounds 7b and 7t against MCF-7 breast cancer cell lines with IC50 values of 8.80 ± 0.08 and 7.45 ± 0.26 µM, respectively, demonstrating superior activity to standard controls like camptothecin and etoposide. Both the compounds exhibited dual topoisomerase I and II inhibition (7t > 7b), enhanced reactive oxygen species (ROS) generation in cancer cells, and halted cell cycle at the G2/M phase. Molecular docking and dynamics simulations further supported the higher binding affinity of compound 7t to topoisomerase enzymes compared to 7b and standard compounds. In silico ADME profiling of 7b and 7t confirmed their drug-likeness, while DFT calculations provided insight into their electronic properties.
Collapse
Affiliation(s)
- Sahil Arora
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda 151 401, India
| | - Shubham Upadhayay
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Pradeep Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda 151 401, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Raj Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda 151 401, India.
| |
Collapse
|
5
|
Mghwary AES, Hassan RA, Halim PA, Abdelhameid MK. Advances in structural identification of some thieno[2,3-d]pyrimidine scaffolds as antitumor molecules: Synthetic approaches and control programmed cancer cell death potential. Bioorg Chem 2025; 154:107985. [PMID: 39637483 DOI: 10.1016/j.bioorg.2024.107985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/30/2024] [Accepted: 11/17/2024] [Indexed: 12/07/2024]
Abstract
Thieno[2,3-d]pyrimidine fragment is not only bioistostere to quinazoline ring but also to purines which exist in nucleic acids responsible for several key biological processes of the living cells, thus it is of a great interest for many researchers. Thieno[2,3-d]pyrimidine ring has become an important scaffold for different compounds with versatile pharmacological activities including anticancer. These compounds exert their anticancer activity through variant mechanisms of action; one of these is the induction of different programmed cell death types as apoptosis and necroptosis which is an effective approach for cancer treatment. This review highlights the different synthetic approaches of recent thieno[2,3-d]pyrimidine analogs along with their anticancer significance through induction of apoptotic or necroptotic cell death with illustration of the structure-activity relationship (SAR).
Collapse
Affiliation(s)
- Aml E-S Mghwary
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Rasha A Hassan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Peter A Halim
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Mohammed K Abdelhameid
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| |
Collapse
|
6
|
Arora S, Patra B, Dhamija I, Guru SK, Kumar R. 2-(4-Bromobenzyl) tethered 4-amino aryl/alkyl-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3- d]pyrimidines: design, synthesis, anticancer assessment via dual topoisomerase-I/II inhibition, and in silico studies. RSC Med Chem 2024:d4md00817k. [PMID: 39697244 PMCID: PMC11650380 DOI: 10.1039/d4md00817k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/24/2024] [Indexed: 12/20/2024] Open
Abstract
A series of 2-(4-bromobenzyl) tethered 4-amino aryl/alkyl-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidines (7a-7u) were designed, synthesized, characterized and screened against a panel of cancer cell lines. Compound 7a, in particular, emerged as a potent antiproliferative agent against FaDu cells (HTB-43) with an IC50 value of 1.73 μM. 7a induced morphological alterations in FaDu cells were observed via brightfield microscopy and DAPI staining, confirming cytotoxicity. Autophagy and apoptotic effects of 7a were confirmed by acridine orange staining, Rhodamine 123 staining, and western blot analysis, which revealed dose-dependent increases in LC3A/B and cleaved caspase-3 levels, respectively. Further, 7a impaired cell migration and colony formation, as demonstrated by scratch and clonogenic assays. Additionally, 7a reduced oxidative stress and induced G2/M phase cell cycle arrest in MCF-7 cells. 7a emerged as a dual topoisomerase I and II inhibitor, and results were supported by molecular docking and simulation studies. In anti-inflammatory studies, 7a exhibited selective inhibition of COX-2 over COX-1, supporting its dual anticancer and anti-inflammatory properties.
Collapse
Affiliation(s)
- Sahil Arora
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab Bathinda 151 401 India
| | - Bhagyshree Patra
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad India
| | - Isha Dhamija
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad India
| | - Santosh Kumar Guru
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad India
| | - Raj Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab Bathinda 151 401 India
| |
Collapse
|
7
|
Barakat KM, Adel Elsayed S, Yılmaz M, Abdel-Latif E, Etman HA, Hamed MA, El Nemr A. Design, Synthesis and Antibacterial Assessment of Active (4-Arylazo-3-Methyl-2-Thienyl) 4-Antipyrine Ketones. Chem Biodivers 2024; 21:e202400894. [PMID: 38787357 DOI: 10.1002/cbdv.202400894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/24/2024] [Indexed: 05/25/2024]
Abstract
The chemicals formed from antipyrines are flexible organic building blocks that are employed in the development of pharmaceuticals. By diazotizing (4-arylazo-3-hydroxy-2-thienyl) 4-antipyrine ketones 1a, 1b and 1c and (4-arylazo-3-methyl-2-thienyl) 4-antipyrine ketones (2a, 2b and 2c) further replaced with six other coupling components, a broad spectrum of hybrid molecules have been created. Mass spectra, NMR, FTIR, and elemental analyses have all been used to confirm the structures of the synthesised compounds. The antimicrobial screening was investigated by agar well diffusion and diluting the broth technique against both Gram-negative and positive-tested bacterial strains. (3-methyl-5-(phenylamino)-4-(4-tolylazo)-2-thienyl) 4-antipyrine ketone (2a) was found to be superior to Ciprofloxacin against test strains: Acinetobacter sp (34.33±1.15 mm), Listeria monocytogenes (29.33±1.15 mm) and Streptococcus sp. (19.33±1.15 mm). Also, good to moderate activities were expressed as minimum inhibitory concentration (MIC) and minimum bacterial concentration (MBC) which were recorded at 9±1 to 59.67±4.51 μg/mL and 16±4 to >512 μg/mL, respectively, using compounds 2a, 2b, and 2c. MBC/MIC ratio showed, that only, 2a and 2b have a bactericidal effect but other antipyrines with bacteriostatic strength. To conclude, it was suggested that the use of these novel synthesized (4-arylazo-3-methyl-2-thienyl) 4-antipyrine ketone derivatives molecules as a new chemical class of antimicrobial agents to perform new drug discovery in pharmaceutical preparations and medicinal research.
Collapse
Affiliation(s)
- Khouloud M Barakat
- National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, Alexandria, Egypt
| | - Shymaa Adel Elsayed
- National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, Alexandria, Egypt
| | - Murat Yılmaz
- Osmaniye Korkut Ata University, Bahçe Vocational School, Department of Chemistry and Chemical Processing Technologies, Osmaniye, 80000, Türkiye
| | - Ehab Abdel-Latif
- Department of Chemistry, Faculty of Science, Mansoura University, ET, 35516, Mansoura, Egypt
| | - Hassan Ali Etman
- Department of Chemistry, Faculty of Science, Mansoura University, ET, 35516, Mansoura, Egypt
| | - Mohamed A Hamed
- National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, Alexandria, Egypt
| | - Ahmed El Nemr
- National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, Alexandria, Egypt
| |
Collapse
|
8
|
Deivasigamani P, Rubavathy SME, Jayasankar N, Saravanan V, Thilagavathi R, Prakash M, Selvam C, Rajagopal R, Alfarhan A, Kathiravan MK, Arokiyaraj S, Arockiaraj J. Dual Anti-Inflammatory and Anticancer Activity of Novel 1,5-Diaryl Pyrazole Derivatives: Molecular Modeling, Synthesis, In Vitro Activity, and Dynamics Study. Biomedicines 2024; 12:788. [PMID: 38672144 PMCID: PMC11048033 DOI: 10.3390/biomedicines12040788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
A series of novel 1,5-diaryl pyrazole derivatives targeting the COX enzyme were designed by combined ligand and structure-based approach. The designed molecules were then further subjected to ADMET and molecular docking studies. Out of 34 designed compounds, the top-10 molecules from the computation studies were synthesized, characterized, and evaluated for COX-2 inhibition and anti-cancer activity. Initially, the target compounds were screened for the protein denaturation assay. The results of the top-five molecules T2, T3, T5, T6, and T9 were further subjected to in vitro COX-2 enzymatic assay and anti-cancer activity. As far as COX-2 inhibitory activity is considered, two compounds, T3 and T5, exhibited the half maximum inhibitory concentration (IC50) at 0.781 µM and 0.781 µM respectively. Further, the two compounds T3 and T5, when evaluated for COX-1 inhibition, exhibited excellent inhibitory activity with T3 IC50 of 4.655μM and T5 with IC50 of 5.596 μM. The compound T5 showed more significant human COX-2 inhibition, with a selectivity index of 7.16, when compared with T3, which had a selectivity index of 5.96. Further, in vitro anti-cancer activity was screened against two cancer cell lines in which compounds T2 and T3 were active against A549 cell lines and T6 was active against the HepG2 cell line. Stronger binding energy was found by comparing MM-PBSA simulations with molecular docking, which suggests that compounds T3 and T5 have a better possibility of being effective compounds, in which T5 showed higher binding affinity. The results suggest that these compounds have the potential to develop effective COX-2 inhibitors as anti-cancer agents.
Collapse
Affiliation(s)
- Priya Deivasigamani
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India; (P.D.); (V.S.)
| | - S. M. Esther Rubavathy
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India; (S.M.E.R.)
| | - Narayanan Jayasankar
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India;
| | - Venkatesan Saravanan
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India; (P.D.); (V.S.)
| | - Ramasamy Thilagavathi
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India;
- Ennam College of Pharmacy, Coimbatore 641032, Tamil Nadu, India
| | - Muthuramalingam Prakash
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India; (S.M.E.R.)
| | - Chelliah Selvam
- Department of Pharmaceutical Sciences, Joan M. Lafleur College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (R.R.)
| | - Ahmed Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (R.R.)
| | - Muthu Kumaradoss Kathiravan
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India; (P.D.); (V.S.)
| | - Selvaraj Arokiyaraj
- Department of Food Science & Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Jesu Arockiaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| |
Collapse
|
9
|
Elsenbawy ESM, Alshehri ZS, Babteen NA, Abdel-Rahman AAH, El-Manawaty MA, Nossier ES, Arafa RK, Hassan NA. Designing Potent Anti-Cancer Agents: Synthesis and Molecular Docking Studies of Thieno[2,3- d][1,2,4]triazolo[1,5- a]pyrimidine Derivatives. Molecules 2024; 29:1067. [PMID: 38474579 DOI: 10.3390/molecules29051067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
A new series of thieno[2,3-d][1,2,4]triazolo[1,5-a]pyrimidines was designed and synthesized using readily available starting materials, specifically, β-enaminoester. Their cytotoxicity was screened against three cancer cell lines, namely, MCF-7, HCT-116, and PC-3. 2-(4-bromophenyl)triazole 10b and 2-(anthracen-9-yl)triazole 10e afforded excellent potency against MCF-7 cell lines (IC50 = 19.4 ± 0.22 and 14.5 ± 0.30 μM, respectively) compared with doxorubicin (IC50 = 40.0 ± 3.9 μM). The latter derivatives 10b and 10e were further subjected to in silico ADME and docking simulation studies against EGFR and PI3K and could serve as ideal leads for additional modification in the field of anticancer research.
Collapse
Affiliation(s)
- Eman S M Elsenbawy
- Department of Chemistry, Faculty of Science, Menofia University, Shbien El-Kom 32511, Egypt
| | - Zafer S Alshehri
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Dawadmi 19257, Saudi Arabia
| | - Nouf A Babteen
- Department of Biochemistry, College of Sciences, University of Jeddah, Jeddah 21577, Saudi Arabia
| | - Adel A-H Abdel-Rahman
- Department of Chemistry, Faculty of Science, Menofia University, Shbien El-Kom 32511, Egypt
| | - Mai A El-Manawaty
- Department of Pharmacognosy, Pharmaceutical Science Division, National Research Centre, Cairo 12622, Egypt
| | - Eman S Nossier
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt
| | - Reem K Arafa
- Drug Design and Discovery Laboratory, Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, Cairo 12578, Egypt
| | - Nasser A Hassan
- Synthetic Unit, Department of Photochemistry, Chemical Industries Research Institute, National Research Centre, Cairo 12622, Egypt
| |
Collapse
|
10
|
Elsayed S, Abdelkhalek AS, Rezq S, Abu Kull ME, Romero DG, Kothayer H. Magic shotgun approach to anti-inflammatory pharmacotherapy: Synthesis of novel thienopyrimidine monomers/heterodimer as dual COX-2 and 15-LOX inhibitors endowed with potent antioxidant activity. Eur J Med Chem 2023; 260:115724. [PMID: 37611534 PMCID: PMC10528942 DOI: 10.1016/j.ejmech.2023.115724] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/12/2023] [Accepted: 08/13/2023] [Indexed: 08/25/2023]
Abstract
Emerging evidence points to the intertwining framework of inflammation and oxidative stress in various ailments. We speculate on the potential impact of the magic shotgun approach in these ailments as an attempt to mitigate the drawbacks of current NSAIDs. Hence, we rationally designed and synthesized new tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine monomers/heterodimer as dual selective COX-2/15-LOX inhibitors with potent antioxidant activity. The synthesized compounds were challenged with diverse in vitro biological assays. Regarding the monomeric series, compound 5k exerted the highest COX-2 inhibitory activity (IC50 = 0.068 μM, SI = 160.441), while compound 5i showed the highest 15-LOX inhibitory activity (IC50 = 1.97 μM). Surpassing the most active monomeric members, the heterodimer 11 stemmed as the most potent and selective one in the whole study (COX-2 IC50 = 0.065 μM, SI = 173.846, 15-LOX IC50 = 1.86 μM). Heterodimer design was inspired by the cross-talk between the partner monomers of the COX-2 isoform. Moreover, some of our synthesized compounds could significantly reverse the LPS-enhanced production of ROS and proinflammatory cytokines (IL-6, TNF-α, and NO) in RAW 264.7 macrophages. Again, the heterodimer showed the strongest suppressor activity against ROS (IC50 = 18.79 μM) and IL-6 (IC50 = 4.15 μM) production outperforming the two references, celecoxib and diclofenac. Regarding NO suppressor activity, compound 5j (IC50 = 18.62 μM) surpassed the two references. Only compound 5a significantly suppressed TNF-α production (IC50 = 19.68 μM). Finally, molecular modeling simulated the possible binding scenarios of our synthesized thienopyrimidines within the active sites of COX-2 and 15-LOX. These findings suggest that those novel thienopyrimidines are promising leads showing pharmacodynamics synergy against the selected targets.
Collapse
Affiliation(s)
- Sara Elsayed
- Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Ahmed S Abdelkhalek
- Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Samar Rezq
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt; Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA; Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS, USA; Women's Health Research Center, University of Mississippi Medical Center, Jackson, MS, USA; Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Mansour E Abu Kull
- Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Damian G Romero
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA; Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS, USA; Women's Health Research Center, University of Mississippi Medical Center, Jackson, MS, USA; Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Hend Kothayer
- Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
11
|
Abdelkhalek AS, Kothayer H, Rezq S, Orabi KY, Romero DG, El-Sabbagh OI. Synthesis of new multitarget-directed ligands containing thienopyrimidine nucleus for inhibition of 15-lipoxygenase, cyclooxygenases, and pro-inflammatory cytokines. Eur J Med Chem 2023; 256:115443. [PMID: 37182334 PMCID: PMC10247423 DOI: 10.1016/j.ejmech.2023.115443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/29/2023] [Accepted: 04/30/2023] [Indexed: 05/16/2023]
Abstract
A new series of thieno[2,3-d]pyrimidine derivatives 4, 5, 6a-o, and 11 was designed and synthesized starting from cyclohexanone under Gewald condition with the aim to develop multitarget-directed ligands (MTDLs) having anti-inflammatory properties against both 15-LOX and COX-2 enzymes. Moreover, the potential of the compounds against the proinflammatory mediators NO, ROS, TNF-α, and IL-6 were tested in LPS-activated RAW 264.7 macrophages. Compound 6o showed the greatest 15-LOX inhibitory effect (IC50 = 1.17 μM) which was superior to that of the reference nordihydroguaiaretic acid (NDGA, IC50 = 1.28 μM); meanwhile, compounds 6h, 6g, 11, and 4 exhibited potent activities (IC50 = 1.29-1.77 μM). The ester 4 (SI = 137.37) and the phenyl-substituted acetohydrazide 11 (SI = 132.26) showed the highest COX-2 selectivity, which was about 28 times more selective than the reference drug diclofenac (SI = 4.73), however, it was lower than that of celecoxib (SI = 219.25). Interestingly, compound 6o, which showed the highest 15-LOX inhibitory activity and 5 times higher COX-2 selectivity than diclofenac, showed a greater poteny in reducing NO (IC50 = 7.77 μM) than both celecoxib (IC50 = 22.89 μM) and diclofenac (IC50 = 25.34), but comparable activity in inhibiting TNF-α (IC50 = 11.27) to diclofenac (IC50 = 10.45 μM). Similarly, compounds 11 and 6h were more potent in reducing TNF-α and IL6 levels than diclofenac, meanwhile, compound 4 reduced ROS, NO, IL6, and TNF-α levels with comparable potency to the reference drugs celecoxib and diclofenac. Furthermore, docking studies for our compounds within 15-LOX and COX-2 active sites revealed good agreement with the biological evaluations. The proposed compounds could be promising multi-targeted anti-inflammatory candidates to treat resistant inflammatory conditions.
Collapse
Affiliation(s)
- Ahmed S Abdelkhalek
- Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Hend Kothayer
- Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Samar Rezq
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Egypt; Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA; Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS, USA; Women's Health Research Center, University of Mississippi Medical Center, Jackson, MS, USA; Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Khaled Y Orabi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Health Sciences Center, Kuwait University, 13110, Safat, Kuwait
| | - Damian G Romero
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA; Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS, USA; Women's Health Research Center, University of Mississippi Medical Center, Jackson, MS, USA; Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Osama I El-Sabbagh
- Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
12
|
Rogova A, Gorbunova IA, Karpov TE, Sidorov RY, Rubtsov AE, Shipilovskikh DA, Muslimov AR, Zyuzin MV, Timin AS, Shipilovskikh SA. Synthesis of thieno[3,2-e]pyrrolo[1,2-a]pyrimidine derivatives and their precursors containing 2-aminothiophenes fragments as anticancer agents for therapy of pulmonary metastatic melanoma. Eur J Med Chem 2023; 254:115325. [PMID: 37084598 DOI: 10.1016/j.ejmech.2023.115325] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/23/2023]
Abstract
The design and synthesis of new promising compounds based on thienopyrimidine scaffold containing 2-aminothiophene fragments with good safety and favorable drug-like properties are highly relevant for chemotherapy. In this study, a series of 14 variants of thieno[3,2-e]pyrrolo[1,2-a]pyrimidine derivatives (11aa-oa) and their precursors (31 compounds) containing 2-aminothiophenes fragments (9aa-mb, 10aa-oa) were synthesized and screened for their cytotoxicity against B16-F10 melanoma cells. The selectivity of the developed compounds was assessed by determining the cytotoxicity using normal mouse embryonic fibroblasts (MEF NF2 cells). The lead compounds 9cb, 10ic and 11jc with the most significant antitumor activity and minimum cytotoxicity on normal non-cancerous cells were chosen for further in vivo experiments. Additional in vitro experiments with compounds 9cb, 10ic and 11jc showed that apoptosis was the predominant mechanism of death in B16-F10 melanoma cells. With support from in vivo studies, compounds 9cb, 10ic and 11jc demonstrated the biosafety to healthy mice and significant inhibition of the metastatic nodules in pulmonary metastatic melanoma mouse model. Histological analysis detected no abnormal changes in the main organs (the liver, spleen, kidneys, and heart) after the therapy. Thus, the developed compounds 9cb, 10ic and 11jc demonstrate high efficiency in the treatment of pulmonary metastatic melanoma and can be recommended for further preclinical investigation of the melanoma treatment.
Collapse
Affiliation(s)
- Anna Rogova
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg, 191002, Russian Federation; Laboratory of nano- and microencapsulation of biologically active compounds, Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg, 195251, Russian Federation
| | - Irina A Gorbunova
- Perm State University, Perm, Bukireva 15, Perm, 614990, Russian Federation
| | - Timofey E Karpov
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg, 191002, Russian Federation; Laboratory of nano- and microencapsulation of biologically active compounds, Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg, 195251, Russian Federation
| | - Roman Yu Sidorov
- Perm State University, Perm, Bukireva 15, Perm, 614990, Russian Federation; Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Ural Branch, Goleva 13, Perm, 614081, Russian Federation
| | | | - Daria A Shipilovskikh
- Perm State University, Perm, Bukireva 15, Perm, 614990, Russian Federation; Perm National Research Polytechnic University, 29 Komsomolsky prospekt, Perm, 614990, Russian Federation
| | - Albert R Muslimov
- Laboratory of nano- and microencapsulation of biologically active compounds, Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg, 195251, Russian Federation
| | - Mikhail V Zyuzin
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg, 191002, Russian Federation
| | - Alexander S Timin
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg, 191002, Russian Federation; Laboratory of nano- and microencapsulation of biologically active compounds, Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg, 195251, Russian Federation.
| | - Sergei A Shipilovskikh
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg, 191002, Russian Federation; Perm State University, Perm, Bukireva 15, Perm, 614990, Russian Federation.
| |
Collapse
|
13
|
Recent updates on thienopyrimidine derivatives as anticancer agents. Med Chem Res 2023. [DOI: 10.1007/s00044-023-03040-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
AbstractThienopyrimidine derivatives hold a unique place between fused pyrimidine compounds. They are important and widely represented in medicinal chemistry as they are structural analogs of purines. Thienopyrimidine derivatives have various biological activities. The current review discusses different synthetic methods for the preparation of heterocyclic thienopyrimidine derivatives. It also highlights the most recent research on the anticancer effects of thienopyrimidines through the inhibition of various enzymes and pathways, which was published within the last 9 years.
Graphical Abstract
Collapse
|
14
|
Ayman R, Radwan AM, Elmetwally AM, Ammar YA, Ragab A. Discovery of novel pyrazole and pyrazolo[1,5-a]pyrimidine derivatives as cyclooxygenase inhibitors (COX-1 and COX-2) using molecular modeling simulation. Arch Pharm (Weinheim) 2023; 356:e2200395. [PMID: 36336646 DOI: 10.1002/ardp.202200395] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022]
Abstract
Searching for effective and selective anti-inflammatory agents, our study involved designing and synthesizing new pyrazole and pyrazolo[1,5-a]pyrimidine derivatives 4-11. The structures of the synthesized derivatives were confirmed using different spectroscopic techniques. Virtual screening was achieved for the newly designed derivatives using in silico docking simulation inside the active sites of four proteins classified as two cyclooxygenases (COX)-1 (PDB: 3KK6 and 4OIZ) and two COX-2 (PBD: 1CX2 and 3LN1). Among them, six derivatives 4c, 5b, 6a, 7a, 7b, and 10b displayed the highest binding energy. These derivatives were evaluated for their in vitro COX-1 and COX-2 inhibitory activities and their selectivity indexes were calculated. Additionally, these derivatives displayed IC50 values ranging between 4.909 ± 0.25 and 57.53 ± 2.91 µM, and 3.289 ± 0.14 and 124 ± 5.32 µM, against COX-1 and COX-2, respectively. Furthermore, the tested derivatives were found to have selective inhibitory activity on the COX-2 enzyme. Surprisingly, the two pyrazole derivatives 4c and 5b were found to be the most active, with IC50 values of 9.835 ± 0.50 and 4.909 ± 0.25 µM and 4.597 ± 0.20 and 3.289 ± 0.14 µM compared with meloxicam (1.879 ± 0.1 and 5.409 ± 0.23 µM) and celecoxib (5.439 ± 0.28 and 2.164 ± 0.09 µM) against COX-1/-2, respectively. Besides, two pyrazole derivatives, 4c and 5b, displayed a COX-1/COX-2 SI of 2.14 and 1.49. Computational techniques such as molecular docking, density function theory (DFT) calculation, and chemical absorption, distribution, metabolism, excretion, and toxicity evaluation were applied to explain the molecules' binding mode, chemical nature, drug likeness, and toxicity prediction.
Collapse
Affiliation(s)
- Radwa Ayman
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | - A M Radwan
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | | | - Yousry A Ammar
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Ahmed Ragab
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
15
|
Anitha K, Nataraj A, Narayana B. DFT Investigation, Chemical Reactivity Identification and Molecular Docking of 2( E)˗1˗(3˗Bromothiophene˗2˗yl)˗3˗(Furan˗2˗yl)Prop˗2˗en˗1˗one. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2138920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- K. Anitha
- Department of Physics, SRM Institute of Science and Technology, Chennai, Tamilnadu, India
| | - A. Nataraj
- Department of Physics, SRM Institute of Science and Technology, Chennai, Tamilnadu, India
| | - Badiadka Narayana
- Department of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore, Karnataka, India
| |
Collapse
|
16
|
Abdelnaby RM, El-Malah AA, FakhrEldeen RR, Saeed MM, Nadeem RI, Younis NS, Abdel-Rahman HM, El-Dydamony NM. In Vitro Anticancer Activity Screening of Novel Fused Thiophene Derivatives as VEGFR-2/AKT Dual Inhibitors and Apoptosis Inducers. Pharmaceuticals (Basel) 2022; 15:ph15060700. [PMID: 35745619 PMCID: PMC9229165 DOI: 10.3390/ph15060700] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 01/13/2023] Open
Abstract
Protein kinases are seen as promising targets in controlling cell proliferation and survival in treating cancer where fused thiophene synthon was utilized in many kinase inhibitors approved by the FDA. Accordingly, this work focused on adopting fused thienopyrrole and pyrrolothienopyrimidine scaffolds in preparing new inhibitors, which were evaluated as antiproliferative agents in the HepG2 and PC-3 cell lines. The compounds 3b (IC50 = 3.105 and 2.15 μM) and 4c (IC50 = 3.023 and 3.12 μM) were the most promising candidates on both cells with good selective toxicity-sparing normal cells. A further mechanistic evaluation revealed promising kinase inhibitory activity, where 4c inhibited VEGFR-2 and AKT at IC50 = 0.075 and 4.60 μM, respectively, while 3b showed IC50 = 0.126 and 6.96 μM, respectively. Moreover, they resulted in S phase cell cycle arrest with subsequent caspase-3-induced apoptosis. Lastly, docking studies evaluated the binding patterns of these active derivatives and demonstrated a similar fitting pattern to the reference ligands inside the active sites of both VEGFR-2 and AKT (allosteric pocket) crystal structures. To conclude, these thiophene derivatives represent promising antiproliferative leads inhibiting both VEGFR-2 and AKT and inducing apoptosis in liver cell carcinoma.
Collapse
Affiliation(s)
- Rana M. Abdelnaby
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
- Correspondence: (R.M.A.); (N.M.E.-D.); Tel.: +20-01001797688 or +2-01270551779 (R.M.A.)
| | - Afaf A. El-Malah
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Rasha R. FakhrEldeen
- Biochemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City 12585, Egypt;
| | - Marwa M. Saeed
- Pharmacology and Toxicology Lecturer, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt;
| | - Rania I. Nadeem
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt;
| | - Nancy S. Younis
- Pharmaceutical Sciences Department, Faculty of Clinical Pharmacy, King Faisal University, Al-Ahsa, Al-Hofuf 31982, Saudi Arabia;
| | - Hanaa M. Abdel-Rahman
- Pharmacy Practice Department, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt;
- Department of Forensic Medicine and Toxicology, Faculty of Medicine, Ain Shams University, Cairo 11562, Egypt
| | - Nehad M. El-Dydamony
- Pharmaceutical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City 12585, Egypt
- Correspondence: (R.M.A.); (N.M.E.-D.); Tel.: +20-01001797688 or +2-01270551779 (R.M.A.)
| |
Collapse
|
17
|
Wang Y, Luo Y, Hu D, Song B. Design, Synthesis, Anti-Tomato Spotted Wilt Virus Activity, and Mechanism of Action of Thienopyrimidine-Containing Dithioacetal Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6015-6025. [PMID: 35576166 DOI: 10.1021/acs.jafc.2c00773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Currently, there is insufficient viricide to effectively control tomato spotted wilt virus (TSWV). To address this pending issue, a series of thienopyrimidine-containing dithioacetal derivatives were prepared and tested for their anti-TSWV activities. A subsequent three-dimensional quantitative structure-activity relationship was constructed to indicate the development of optimal compound 35. The obtained compound 35 had excellent anti-TSWV curative, protective, and inactivating activities (63.0, 56.6, and 74.1%, respectively), and the EC50 values of protective and inactivating activities of compound 35 were 252.8 and 113.5 mg/L, respectively, better than those of ningnanmycin (284.8 and 144.7 mg/L) and xiangcaoliusuobingmi (624.9 and 300.0 mg/L). In addition, the anti-TSWV activity of compound 35 was associated with defense-related enzyme activities, enhanced photosynthesis, and reduced stress response, thereby enhancing disease resistance.
Collapse
Affiliation(s)
- Yanju Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yuqin Luo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
18
|
Ebenezer O, Shapi M, Tuszynski JA. A Review of the Recent Development in the Synthesis and Biological Evaluations of Pyrazole Derivatives. Biomedicines 2022; 10:biomedicines10051124. [PMID: 35625859 PMCID: PMC9139179 DOI: 10.3390/biomedicines10051124] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 12/12/2022] Open
Abstract
Pyrazoles are five-membered heterocyclic compounds that contain nitrogen. They are an important class of compounds for drug development; thus, they have attracted much attention. In the meantime, pyrazole derivatives have been synthesized as target structures and have demonstrated numerous biological activities such as antituberculosis, antimicrobial, antifungal, and anti-inflammatory. This review summarizes the results of published research on pyrazole derivatives synthesis and biological activities. The published research works on pyrazole derivatives synthesis and biological activities between January 2018 and December 2021 were retrieved from the Scopus database and reviewed accordingly.
Collapse
Affiliation(s)
- Oluwakemi Ebenezer
- Department of Chemistry, Faculty of Natural Science, Mangosuthu University of Technology, Durban 4026, South Africa; (O.E.); (M.S.)
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Michael Shapi
- Department of Chemistry, Faculty of Natural Science, Mangosuthu University of Technology, Durban 4026, South Africa; (O.E.); (M.S.)
| | - Jack A. Tuszynski
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Department of Mechanical and Aerospace Engineering, (DIMEAS), Politecnico di Torino, 10129 Turin, Italy
- Correspondence:
| |
Collapse
|
19
|
Wang T, Wu F, Luo L, Zhang Y, Ma J, Hu Y. Efficient synthesis and cytotoxic activity of polysubstituted thieno[2,3-d]pyrimidine derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
3D-QSAR, ADME-Tox, and molecular docking of semisynthetic triterpene derivatives as antibacterial and insecticide agents. Struct Chem 2022; 33:1063-1084. [PMID: 35345415 PMCID: PMC8941842 DOI: 10.1007/s11224-022-01912-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/03/2022] [Indexed: 01/02/2023]
Abstract
In the present work, 27 triterpene derivatives have been subjected to 3D-QSAR, ADME-Tox, and molecular docking for their insecticidal activity. The selected derivatives are previously semi-synthesized based on compounds obtained from Euphorbia resinifera and Euphorbia officinarum latex. The in silico studies were used to predict and to evaluate the antibacterial and insecticidal properties of the 3D structure of triterpene derivatives. The 3D-QSAR models are developed using CoMFA and CoMSIA techniques, and they have showed excellent statistical results (R2 = 0.99; Q2 = 0.672; R2pred = 0.91 for CoMFA and R2 = 0.97; Q2 = 0.61; R2pred = 0.94 for CoMSIA). The results indicate that the built models are able to describe the relationship between the structure of triterpene derivatives and the pLD50 bioactivity. Based on contour maps obtained from CoMFA and CoMSIA models, 38 new molecules are designed and their pLD50 activities are predicted. The drug-like and ADME-Tox properties of the molecule designed are examined and led to the selection of four molecules (55, 56, 59, 64) as promising antibacterial and insecticidal agents. Compounds 55, 56, 59, and 64 are able to inhibit the MurE (PDB code: 1E8C) and EcR (PDB code: 1R20) proteins involved in the process of antibacterial and insecticidal activities. This hypothesis is confirmed by the implementation of a molecular docking test. This test predicted the most important referential interactions that occur between the structure of triterpene derivatives and the targeted receptors. Among the four docked molecules, three molecules (55, 56, and 59) showed greater stability than the reference molecule 16 inside the MurE and EcR receptors pocket. Therefore, the structure of the three new triterpene derivatives can be adopted as reference for the synthesis of antibacterial drugs and also in the development of insecticides.
Collapse
|
21
|
Abdellatif KR, Abdelall EK, Elshemy HA, Philoppes JN, Hassanein EH, Kahk NM. Design, synthesis, and pharmacological evaluation of novel and selective COX-2 inhibitors based on celecoxib scaffold supported with in vivo anti-inflammatory activity, ulcerogenic liability, ADME profiling and docking study. Bioorg Chem 2022; 120:105627. [DOI: 10.1016/j.bioorg.2022.105627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 11/26/2022]
|
22
|
Priya D, Gopinath P, Dhivya LS, Vijaybabu A, Haritha M, Palaniappan S, Kathiravan MK. Structural Insights into Pyrazoles as Agents against Anti‐inflammatory and Related Disorders. ChemistrySelect 2022. [DOI: 10.1002/slct.202104429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Deivasigamani Priya
- Department of Pharmaceutical Chemistry SRM College of Pharmacy SRMIST Kattankulathur India
| | | | | | - Anandan Vijaybabu
- Department of Pharmaceutical Chemistry SRM College of Pharmacy SRMIST Kattankulathur India
| | - Manoharan Haritha
- Department of Pharmaceutical Chemistry SRM College of Pharmacy SRMIST Kattankulathur India
| | | | - Muthu K. Kathiravan
- Department of Pharmaceutical Chemistry SRM College of Pharmacy SRMIST Kattankulathur India
- Dr APJ Abdul Kalam Research Lab Department of Pharmaceutical Chemistry SRM College of Pharmacy SRMIST Kattankulathur India
| |
Collapse
|
23
|
An Investigation into the Interaction between Double Hydroxide-Based Antioxidant Benzophenone Derivatives and Cyclooxygenase 2. Molecules 2021; 26:molecules26216622. [PMID: 34771031 PMCID: PMC8587043 DOI: 10.3390/molecules26216622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 12/18/2022] Open
Abstract
Cyclooxygenases 2 (COX2) is a therapeutic target for many inflammation and oxidative stress associated diseases. A high-throughput technique, biolayer interferometry, was performed to primarily screen the potential COX2 binding activities of twelve newly synthesized double hydroxide-based benzophenone derivatives. Binding confirmation was achieved by molecular docking and multi-spectroscopy studies. Such a combined method provided a comprehensive understanding of binding mechanism and conformational changes. Compounds DB2, SC2 and YB2 showed effective COX2 binding activity and underlined the benefits of three phenolic hydroxyl groups adjacent to each other on the B ring. The twelve tested derivatives were further evaluated for antioxidant activity, wherein compound SC2 showed the highest activity. Its concentration for the 50% of maximal effect (EC50) value was approximately 1000 times greater than that of the positive controls. SC2 treatment effectively improved biochemical indicators caused by oxidative stress. Overall, compound SC2 could serve as a promising candidate for further development of a new potent COX2 inhibitor.
Collapse
|
24
|
Bian M, Ma QQ, Wu Y, Du HH, Guo-Hua G. Small molecule compounds with good anti-inflammatory activity reported in the literature from 01/2009 to 05/2021: a review. J Enzyme Inhib Med Chem 2021; 36:2139-2159. [PMID: 34628990 PMCID: PMC8516162 DOI: 10.1080/14756366.2021.1984903] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Inflammation and disease are closely related. Inflammation can induce various diseases, and diseases can promote inflammatory response, and two possibly induces each other in a bidirectional loop. Inflammation is usually treated using synthetic anti-inflammatory drugs which are associated with several adverse effects hence are not safe for long-term use. Therefore, there is need for anti-inflammatory drugs which are not only effective but also safe. Several researchers have devoted to the research and development of effective anti-inflammatory drugs with little or no side effects. In this review, we studied some small molecules with reported anti-inflammatory activities and hence potential sources of anti-inflammatory agents. The information was retrieved from relevant studies published between January 2019 and May, 2021 for review. This review study was aimed to provide relevant information towards the design and development of effective and safe anti-inflammation agents.
Collapse
Affiliation(s)
- Ming Bian
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia, China.,Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Qian-Qian Ma
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia, China.,Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Yun Wu
- First Clinical Medical of Inner, Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Huan-Huan Du
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia, China.,Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Gong Guo-Hua
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia, China.,Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China.,First Clinical Medical of Inner, Mongolia Minzu University, Tongliao, Inner Mongolia, China
| |
Collapse
|
25
|
Laxmikeshav K, Kumari P, Shankaraiah N. Expedition of sulfur-containing heterocyclic derivatives as cytotoxic agents in medicinal chemistry: A decade update. Med Res Rev 2021; 42:513-575. [PMID: 34453452 DOI: 10.1002/med.21852] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 04/20/2021] [Accepted: 08/17/2021] [Indexed: 12/13/2022]
Abstract
This review article proposes a comprehensive report of the design strategies engaged in the development of various sulfur-bearing cytotoxic agents. The outcomes of various studies depict that the sulfur heterocyclic framework is a fundamental structure in diverse synthetic analogs representing a myriad scope of therapeutic activities. A number of five-, six- and seven-membered sulfur-containing heterocyclic scaffolds, such as thiazoles, thiadiazoles, thiazolidinediones, thiophenes, thiopyrans, benzothiazoles, benzothiophenes, thienopyrimidines, simple and modified phenothiazines, and thiazepines have been discussed. The subsequent studies of the derivatives unveiled their cytotoxic effects through multiple mechanisms (viz. inhibition of tyrosine kinases, topoisomerase I and II, tubulin, COX, DNA synthesis, and PI3K/Akt and Raf/MEK/ERK signaling pathways), and several others. Thus, our concise illustration explains the design strategy and anticancer potential of these five- and six-membered sulfur-containing heterocyclic molecules along with a brief outline on seven-membered sulfur heterocycles. The thorough assessment of antiproliferative activities with the reference drug allows a proficient assessment of the structure-activity relationships (SARs) of the diversely synthesized molecules of the series.
Collapse
Affiliation(s)
- Kritika Laxmikeshav
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Pooja Kumari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
26
|
Mavrova AT, Dimov S, Yancheva D, Rangelov M, Wesselinova D, Naydenova E. New C2- and N3-Modified Thieno[2,3-d]Pyrimidine Conjugates with Cytotoxicity in the Nanomolar Range. Anticancer Agents Med Chem 2021; 22:1201-1212. [PMID: 34315388 DOI: 10.2174/1871520621666210727130227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 11/22/2022]
Abstract
AIMS The aim of the current study was to develop and explore a series of new cytotoxic agents based on the conjugation between the thieno[2,3-d]pyrimidine moiety and a second pharmacophore at the C2 or N3 position. BACKGROUND As the thieno[2,3-d]pyrimidine core is a bioisostere of the 4-anilinoquinazoline, various new thienopyrimidine derivatives were synthesized by modifying the structure of the clinically used anticancer quinazoline EGFR inhibitors of the first generation - gefitinib, and second generation - dacomitinib and canertinib. It was reported that some thieno[2,3-d]pyrimidine derivatives showed improved EGFR inhibitory activity. On the other hand, the benzimidazole heterocycle is present as a pharmacophore unit in the structure of many clinically used chemotherapeutic agents. Some 2-aminobenzimidazole derivatives, possessing anticancer activity, demonstrated EGFR inhibition and the benzimidazole derivative EGF816 is currently in the second phase of clinical trials. OBJECTIVE The objectives of the study were design of a novel series thieno[2,3-d]pyrimidines, synthesis of the compounds and investigation of their effects towards human cancer HT-29, MDA-MB-231, HeLa, HepG2 and to normal human Lep3 cell lines. (American Type Culture Collection, ATCC, Rockville, MD, USA) Methods: The synthetic protocol implemented cyclocondensation of 2-amino-thiophenes and nitriles in inert medium, aza-Michael addition to benzimidazole derivatives and nucleophylic substitution at the N3 place. MTS test was used in order to establish the cytotoxicity of the tested compounds. SAR analysis and in silico assessment of the inhibitory potential towards human oncogenic V599EB-Raf were performed using Molinspiration tool and Molecular Operating environment software. RESULTS The MTS test data showed that almost all studied thieno[2,3-d]pyirimidines (9-13, 21-22 and 25) manifest high inhibiting effect on the cell proliferation at nanomolar concentrations, whereat compounds 9 (IC50 = 130 nM) and 10 (IC50 = 261 nM) containing amino acid moiety, and 21 (IC50 = 108 nM) possesing two thienopyrimidine moieties attached to a 1,3-disubstituted benzimidazole linker, revealed many times lower toxicity against Lep3 cells compared to the cancer cells. Thienopyrimidines 11-13 possessed high selectivity against HeLa cells. Compound 13 showed high inhibitory activity against MDA-MB-231 and HepG2, with IC50 1.44 nM and 1.11 nM respectively. To outline the possible biological target of the studied coumpounds, their potential to interact with human oncogenic V599EB-Raf was explored by a docking study. As a result, it was suggested that the benzimidazolyl and glycyl fragments could enhance the binding ability of the new compounds by increasing the number of hydrogen bond acceptors and by stabilizing the inactive form of the enzyme. CONCLUSION The thienopyrimidines tested in vitro towards human cancer HT-29, MDA-MB-231, HeLa, HepG2 and normal human Lep3 cell lines demonstrated cytotoxicity in nanomolar range. It was established that compounds 9, 10 and 21 showed many times lower toxicity against normal Lep3 cells that can provide a high selectivity towards all four cancer cell lines at small concentrations. Based on the analysis of the structure-activity relationship, the observed trends in the cytotoxicity could be related to the lipophilicity and the topological polar surface area of the tested compounds. The docking study on the potential of the new thieno[2,3-d]pyrimidine-4-ones to interact with mutant V599EB-Raf showed that the compounds might be able to stabilize the enzyme in its inactive form.
Collapse
Affiliation(s)
- Anelia Ts Mavrova
- University of Chemical Technology and Metallurgy, Department of Organic Synthesis, 8 Kliment Ohridski Blvd., 1756 Sofia. Bulgaria
| | - Stefan Dimov
- University of Chemical Technology and Metallurgy, Department of Organic Synthesis, 8 Kliment Ohridski Blvd., 1756 Sofia. Bulgaria
| | - Denitsa Yancheva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., build. 9, 1113 Sofia. Bulgaria
| | - Miroslav Rangelov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., build. 9, 1113 Sofia. Bulgaria
| | - Diana Wesselinova
- Institute of General and Comparative Pathology, Bulgarian Academy of Science, Acad. G. Bonchev Str., build. 25, 1113 Sofia. Bulgaria
| | - Emilia Naydenova
- University of Chemical Technology and Metallurgy, Department of Organic Synthesis, 8 Kliment Ohridski Blvd., 1756 Sofia. Bulgaria
| |
Collapse
|
27
|
Farghaly AM, AboulWafa OM, Baghdadi HH, Abd El Razik HA, Sedra SMY, Shamaa MM. New thieno[3,2-d]pyrimidine-based derivatives: Design, synthesis and biological evaluation as antiproliferative agents, EGFR and ARO inhibitors inducing apoptosis in breast cancer cells. Bioorg Chem 2021; 115:105208. [PMID: 34365057 DOI: 10.1016/j.bioorg.2021.105208] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 06/02/2021] [Accepted: 07/21/2021] [Indexed: 01/28/2023]
Abstract
An array of newly synthesized thieno[3,2-d]pyrimidine-based derivatives and thienotriazolopyrimidines hybridized with some pharmacophoric anticancer fragments were designed, synthesized and assessed for their in vitro antiproliferative activity against MCF-7 and MDA-MB-231 breast cancer cell lines using erlotinib and pictilisib as reference standards in the MTT assay. In general, many compounds were endowed with considerable antiproliferative activity (IC50 = 0.43-1.31 µM). Some of the tested compounds, namely 3c, 5b, 5c, 9d, 10, 11b and 13 displayed remarkable antiproliferative activity against both cell lines. Meanwhile, compounds 2c-e, 3b, 4a, 5a, 9c and 15b showed noticeable selectivity against MCF-7 cells while compounds 2b, 3a, 4b, 6a-c, 7, 8, 9b and 12 exhibited considerable selectivity against MDA-MB-231 cells. Further mechanistic evidences for their anticancer activities were provided by screening the most potent compounds against MCF-7 and/or MDA-MB-231 cells for EGFR and ARO inhibitory activities using erlotinib and letrozole as reference standards respectively. Results proved that, in general, tested compounds were better EGFRIs than ARIs. In addition, significant overexpression in caspase-9 level in treated MCF-7 breast cell line samples was observed for all tested compounds with the 4-fluorophenylhydrazone derivative 2d exhibiting the highest activation. In treated MDA-MB-231 breast cell line samples, 11b was found to highly induce caspase-9 level thereby inducing apoptosis. Cell cycle analysis and Annexin V-FITC/PI assay were also assessed for active compounds where results indicated that all tested compounds induced preG1 apoptosis and cell cycle arrest at G2/M phase. Compound 9d, as an inhibitor of ARO, was observed to downregulate the downstream signaling proteins HSP27 and p-ERK in MCF-7 cells. Furthermore, compound 11b downregulated EGFR expression as well as the downstream signaling protein p-AKT. Docking experiments on EGFR and ARO enzymes supported their in vitro results. Thus, the thienotriazolopyrimidines 11b and 12 showing good EGFR inhibition and the thieno[3,2-d]-pyrimidine derivatives 3b and 9d, eliciting the best ARO inhibition activity, can be considered as new candidates as anti-breast cancer agents that necessitate further development.
Collapse
Affiliation(s)
- Ahmed M Farghaly
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt
| | - Omaima M AboulWafa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt
| | - Hoda H Baghdadi
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Heba A Abd El Razik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt.
| | - Samir M Y Sedra
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Marium M Shamaa
- Clinical and Biological Sciences (Biochemistry and Molecular Biology) Department, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
| |
Collapse
|
28
|
da Cruz RMD, Mendonça-Junior FJB, de Mélo NB, Scotti L, de Araújo RSA, de Almeida RN, de Moura RO. Thiophene-Based Compounds with Potential Anti-Inflammatory Activity. Pharmaceuticals (Basel) 2021; 14:ph14070692. [PMID: 34358118 PMCID: PMC8308569 DOI: 10.3390/ph14070692] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 01/18/2023] Open
Abstract
Rheumatoid arthritis, arthrosis and gout, among other chronic inflammatory diseases are public health problems and represent major therapeutic challenges. Non-steroidal anti-inflammatory drugs (NSAIDs) are the most prescribed clinical treatments, despite their severe side effects and their exclusive action in improving symptoms, without effectively promoting the cure. However, recent advances in the fields of pharmacology, medicinal chemistry, and chemoinformatics have provided valuable information and opportunities for development of new anti-inflammatory drug candidates. For drug design and discovery, thiophene derivatives are privileged structures. Thiophene-based compounds, like the commercial drugs Tinoridine and Tiaprofenic acid, are known for their anti-inflammatory properties. The present review provides an update on the role of thiophene-based derivatives in inflammation. Studies on mechanisms of action, interactions with receptors (especially against cyclooxygenase (COX) and lipoxygenase (LOX)), and structure-activity relationships are also presented and discussed. The results demonstrate the importance of thiophene-based compounds as privileged structures for the design and discovery of novel anti-inflammatory agents. The studies reveal important structural characteristics. The presence of carboxylic acids, esters, amines, and amides, as well as methyl and methoxy groups, has been frequently described, and highlights the importance of these groups for anti-inflammatory activity and biological target recognition, especially for inhibition of COX and LOX enzymes.
Collapse
Affiliation(s)
- Ryldene Marques Duarte da Cruz
- Post-Graduation Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (R.M.D.d.C.); (L.S.); (R.N.d.A.)
| | - Francisco Jaime Bezerra Mendonça-Junior
- Post-Graduation Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (R.M.D.d.C.); (L.S.); (R.N.d.A.)
- Laboratory of Synthesis and Drug Delivery, State University of Paraíba, João Pessoa 58071-160, PB, Brazil; (N.B.d.M.); (R.S.A.d.A.); (R.O.d.M.)
- Correspondence: ; Tel.: +55-83-9-9924-1423
| | - Natália Barbosa de Mélo
- Laboratory of Synthesis and Drug Delivery, State University of Paraíba, João Pessoa 58071-160, PB, Brazil; (N.B.d.M.); (R.S.A.d.A.); (R.O.d.M.)
| | - Luciana Scotti
- Post-Graduation Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (R.M.D.d.C.); (L.S.); (R.N.d.A.)
| | - Rodrigo Santos Aquino de Araújo
- Laboratory of Synthesis and Drug Delivery, State University of Paraíba, João Pessoa 58071-160, PB, Brazil; (N.B.d.M.); (R.S.A.d.A.); (R.O.d.M.)
| | - Reinaldo Nóbrega de Almeida
- Post-Graduation Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (R.M.D.d.C.); (L.S.); (R.N.d.A.)
| | - Ricardo Olímpio de Moura
- Laboratory of Synthesis and Drug Delivery, State University of Paraíba, João Pessoa 58071-160, PB, Brazil; (N.B.d.M.); (R.S.A.d.A.); (R.O.d.M.)
| |
Collapse
|
29
|
El Foujji L, El Bourakadi K, Essassi EM, Boeré RT, Qaiss AEK, Bouhfid R. Solid-state zwitterionic tautomerization of 2-((5-methyl-1H-pyrazol-3-yl)methyl)-1H-benzimidazole: Synthesis, characterization, DFT calculation and docking studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
30
|
Neha K, Wakode S. Contemporary advances of cyclic molecules proposed for inflammation. Eur J Med Chem 2021; 221:113493. [PMID: 34029774 DOI: 10.1016/j.ejmech.2021.113493] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022]
Abstract
This review stretches insight about the advancement (2011-2021) of synthesized non-heterocyclic, heterocyclic and natural occurring cyclic molecules for inflammation. While inflammation is very significant in the abolition of pathogens and other causes of soreness, a protracted inflammatory procedure takes to outcomes in chronic disease that might finally affect in organ failure or damage. Thus, restraining the provocative process by the use of anti-inflammatory agents is chief in controlling this damage. It also reveals other pursuit along with their anti-inflammatory activity. Molecular docking studies represent most suitable PDB (Protein Data Bank) ID for the synthesized heterocyclic molecules with their selective inhibitor. It discusses the findings presented in recent research papers and provides understanding to researchers intended for the growth of newer combinations/molecules having littler side things.
Collapse
Affiliation(s)
- Kumari Neha
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), DPSR University, New Delhi, India
| | - Sharad Wakode
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), DPSR University, New Delhi, India.
| |
Collapse
|
31
|
Masaret GS. Convenient synthesis and anticancer evaluation of novel pyrazolyl‐thiophene, thieno[3,2‐
b
]pyridine, pyrazolo[3,4‐
d
]thieno[3,2‐
b
]pyridine and pyrano[2,3‐
d
]thieno[3,2‐
b
]pyridine derivatives. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Ghada S. Masaret
- Chemistry Department College of Applied Sciences, Umm Al‐Qura University Makkah Saudi Arabia
| |
Collapse
|
32
|
Chen LZ, Shu HY, Wu J, Yu YL, Ma D, Huang X, Liu MM, Liu XH, Shi JB. Discovery and development of novel pyrimidine and pyrazolo/thieno-fused pyrimidine derivatives as potent and orally active inducible nitric oxide synthase dimerization inhibitor with efficacy for arthritis. Eur J Med Chem 2021; 213:113174. [PMID: 33515864 DOI: 10.1016/j.ejmech.2021.113174] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/24/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022]
Abstract
In order to discover and develop drug-like anti-inflammatory agents against arthritis, based on "Hit" we found earlier and to overcome drawbacks of toxicity, twelve series of total 89 novel pyrimidine, pyrazolo[4,3-d]pyrimidine and thieno[3,2-d]pyrimidine derivatives were designed, synthesized and screened for their anti-inflammatory activity against NO and toxicity for normal liver cells (LO2). Relationships of balance toxicity and activity have been summarized through multi-steps, and title compounds 22o, 22l were found to show lower toxicity (against LO2: IC50 = 2934, 2301 μM, respectively) and potent effect against NO release (IR = 98.3, 97.67%, at 10 μM, respectively). Furthermore, compound 22o showed potent iNOS inhibitory activity with value of IC50 is 0.96 μM and could interfere stability and formation of the active dimeric iNOS. It's anti-inflammatory activity in vivo was assessed by AIA rat model. Furthermore, the results of metabolic stability, CYP, PK study in vivo, acute toxicity study and subacute toxicity assessment indicated this compound had good drug-like properties for treatment.
Collapse
Affiliation(s)
- Liu Zeng Chen
- School of Pharmacy, Anhui Medical University, Hefei, 230032, PR China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, PR China
| | - Hai Yang Shu
- School of Pharmacy, Anhui Medical University, Hefei, 230032, PR China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, PR China
| | - Jing Wu
- School of Pharmacy, Anhui Medical University, Hefei, 230032, PR China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, PR China
| | - Yun Long Yu
- School of Pharmacy, Anhui Medical University, Hefei, 230032, PR China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, PR China
| | - Duo Ma
- School of Pharmacy, Anhui Medical University, Hefei, 230032, PR China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, PR China
| | - Xin Huang
- School of Pharmacy, Anhui Medical University, Hefei, 230032, PR China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, PR China
| | - Ming Ming Liu
- School of Pharmacy, Anhui Medical University, Hefei, 230032, PR China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, PR China
| | - Xin Hua Liu
- School of Pharmacy, Anhui Medical University, Hefei, 230032, PR China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, PR China.
| | - Jing Bo Shi
- School of Pharmacy, Anhui Medical University, Hefei, 230032, PR China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, PR China.
| |
Collapse
|
33
|
Bhuvaneswari K, Nagasundaram N, Lalitha A. Synthesis, anti‐inflammatory activity, and molecular docking study of novel azo bis antipyrine derivatives against cyclooxygenase‐2 enzyme. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.202000265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
34
|
Turones LC, Martins AN, Moreira LKDS, Fajemiroye JO, Costa EA. Development of pyrazole derivatives in the management of inflammation. Fundam Clin Pharmacol 2020; 35:217-234. [PMID: 33171533 DOI: 10.1111/fcp.12629] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 01/15/2023]
Abstract
The therapeutic limitations and poor management of inflammatory conditions are anticipated to impact patients negatively over the coming decades. Following the synthesis of the first pyrazole-antipyrine in 1887, several other derivatives have been screened for anti-inflammatory, analgesic, and antipyretic activities. Arguably, the pyrazole ring, as a major pharmacophore and central scaffold partly, defines the pharmacological profile of several derivatives. In this review, we explore the structural-activity relationship that accounts for the pharmacological profile of pyrazole derivatives and highlights future research perspectives capable of optimizing current advancement in the search for safe and efficacy anti-inflammatory drugs. The flourishing research into the pyrazole derivatives as drug candidates has advanced our understanding of inflammation-related diseases and treatment.
Collapse
Affiliation(s)
- Larissa Córdova Turones
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Campus Samambaia, Goiânia, Goiás, 74001970, Brazil
| | - Aline Nazareth Martins
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Campus Samambaia, Goiânia, Goiás, 74001970, Brazil
| | - Lorrane Kelle da Silva Moreira
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Campus Samambaia, Goiânia, Goiás, 74001970, Brazil
| | - James Oluwagbamigbe Fajemiroye
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Campus Samambaia, Goiânia, Goiás, 74001970, Brazil
| | - Elson Alves Costa
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Campus Samambaia, Goiânia, Goiás, 74001970, Brazil
| |
Collapse
|
35
|
da Cruz RMD, Braga RM, de Andrade HHN, Monteiro ÁB, Luna IS, da Cruz RMD, Scotti MT, Mendonça-Junior FJB, de Almeida RN. RMD86, a thiophene derivative, promotes antinociceptive and antipyretic activities in mice. Heliyon 2020; 6:e05520. [PMID: 33294672 PMCID: PMC7695913 DOI: 10.1016/j.heliyon.2020.e05520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/28/2020] [Accepted: 11/11/2020] [Indexed: 12/29/2022] Open
Abstract
Treatment of pain and fever remains an important challenge for modern medicine. Non-steroidal anti-inflammatory drugs (NSAIDs) are the pharmacological options most often used, but their frequent use exposes the patient to serious side effects and dangerous drug interactions. In this context, thiophene derivatives are promising therapeutic alternatives. In this study, we evaluated the in vivo and in silico antinociceptive and antipyretic properties of RMD86, a thiophene derivative. At 100 mg/kg, RMD86 induced no significant changes in the motor coordination of mice in the Rotarod test. At 25, 50, and 100 mg/kg RMD86 significantly reduced the number of abdominal contortions induced by acetic acid (antinociceptive activity) in mice when compared to the control. In the formalin test, for the first phase, there was a reduction in licking times at doses of 50 and 100 mg/kg. In the second phase, reduction occurred at all doses. In the hot plate test, RMD86 (at 100 mg/kg) increased latency time in the first 30 min. For antipyretic activity, RMD86, when compared to the reference drug acetaminophen (250 mg/kg), significantly reduced pyrexia at 30, 60, and 120 min, at dosages of 25, 50 and 100 mg/kg. Molecular docking studies revealed that RMD86 presents a greater number of interactions and lower energy values than both the co-crystallized ligand and the reference drug (meloxicam) against COX-1 and COX-2 isoenzymes. The results give evidence of the analgesic and antipyretic properties like NSAIDs suggesting its potential for pain therapy.
Collapse
Affiliation(s)
- Ryldene Marques Duarte da Cruz
- Post-Graduation Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, João Pessoa, PB 58051-900, Brazil
| | - Renan Marinho Braga
- Post-Graduation Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, João Pessoa, PB 58051-900, Brazil
| | - Humberto Hugo Nunes de Andrade
- Post-Graduation Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, João Pessoa, PB 58051-900, Brazil
| | - Álefe Brito Monteiro
- Post-Graduation Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, João Pessoa, PB 58051-900, Brazil
| | - Isadora Silva Luna
- Post-Graduation Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, João Pessoa, PB 58051-900, Brazil
| | - Rayssa Marques Duarte da Cruz
- Post-Graduation Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, João Pessoa, PB 58051-900, Brazil
- Laboratory of Synthesis and Drug Delivery, State University of Paraiba, João Pessoa, PB 58071-160, Brazil
| | - Marcus Tullius Scotti
- Post-Graduation Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, João Pessoa, PB 58051-900, Brazil
| | - Francisco Jaime Bezerra Mendonça-Junior
- Post-Graduation Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, João Pessoa, PB 58051-900, Brazil
- Laboratory of Synthesis and Drug Delivery, State University of Paraiba, João Pessoa, PB 58071-160, Brazil
| | - Reinaldo Nóbrega de Almeida
- Post-Graduation Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, João Pessoa, PB 58051-900, Brazil
| |
Collapse
|
36
|
Molecular and in silico evidences explain the anti-inflammatory effect of Trachyspermum ammi essential oil in lipopolysaccharide induced macrophages. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
37
|
Synthesis, in vivo anti-inflammatory, COX-1/COX-2 and 5-LOX inhibitory activities of new 2,3,4-trisubstituted thiophene derivatives. Bioorg Chem 2020; 102:103890. [DOI: 10.1016/j.bioorg.2020.103890] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/14/2020] [Accepted: 04/25/2020] [Indexed: 12/15/2022]
|
38
|
Synthesis, pharmacological evaluation and structure-activity relationship of recently discovered enzyme antagonist azoles. Heliyon 2020; 6:e03656. [PMID: 32274429 PMCID: PMC7132078 DOI: 10.1016/j.heliyon.2020.e03656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/06/2020] [Accepted: 03/20/2020] [Indexed: 12/18/2022] Open
Abstract
Global people are suffering from the legion of diseases. Cytotoxic property of the chemical compound would not solely influence effective drug properties and reduce unnecessary side effects. Proteins/enzymes responsible for microbe proliferation or survival are specifically targeted and inhibited successfully making the cells to undergo apoptosis. Furthermore, isoforms of essential enzymes have distinct physiological functions; thereby inhibition of essential enzyme isoforms is an apt way to the clinical approach of disease neutralization. Drugs are designed so as to play significant roles such as signaling pathways in the oncogenic process including cell proliferation, invasion, and angiogenesis. The present review comprises collective information of the recent synthesis of various organic drug compounds in brief, which could inhibit particular enzyme. The review also covers the correlation of the structure of a drug molecule designed and its inhibitory activity. Also, the most significant enzyme inhibitors are highlighted and structural moieties/core units responsible for remarkable inhibitory values are emphasized.
Collapse
|
39
|
Konus M, Algso MAS, Kavak E, Kurt‐Kızıldoğan A, Yılmaz C, Kivrak A. Design, Synthesis, andIn vitroEvaluation of Thieno[a]dibenzothiophene Derivatives. ChemistrySelect 2020. [DOI: 10.1002/slct.202000685] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Metin Konus
- Department of Molecular Biology and GeneticsVan Yüzüncü Yil University Van 65080 Turkey
| | | | - Emrah Kavak
- Department of ChemistryVan Yüzüncü Yil University Van 65080 Turkey
| | - Aslıhan Kurt‐Kızıldoğan
- Department of Agricultural BiotechnologyFaculty of AgricultureOndokuz Mayıs University 55139 Samsun Turkey
| | - Can Yılmaz
- Department of Molecular Biology and GeneticsVan Yüzüncü Yil University Van 65080 Turkey
| | - Arif Kivrak
- Department of ChemistryVan Yüzüncü Yil University Van 65080 Turkey
| |
Collapse
|
40
|
Sharma V, Bhatia P, Alam O, Javed Naim M, Nawaz F, Ahmad Sheikh A, Jha M. Recent advancement in the discovery and development of COX-2 inhibitors: Insight into biological activities and SAR studies (2008–2019). Bioorg Chem 2019; 89:103007. [PMID: 31132600 DOI: 10.1016/j.bioorg.2019.103007] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 12/13/2022]
|