1
|
Geng X, Huang W, Deng L, Xiong Y, Zhao Y, Yao H, Zhou Z, Xu B, Xu F, Wang F, Wang X, Li Y, Tao W, Li Z, Yang Y. Renal Protection of HWL-088and ZLY-032, Two Dual GPR40/PPARδ Agonists, in Adenine-Induced Renal Fibrosis Model. Chem Biodivers 2025; 22:e202401598. [PMID: 39376036 PMCID: PMC11826300 DOI: 10.1002/cbdv.202401598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/29/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
This research examined the potential of novel GPR40/PPARδ dual agonists, HWL-088 and ZLY-032, to protect the kidneys in a mouse model of adenine-induced renal fibrosis. Mice were given a diet containing 0.25 % adenine to develop renal fibrosis and then received different dosages of HWL-088 or ZLY-032. After being euthanized, tissue and serum samples were collected for morphological, histological, and molecular examination. Compared to the control group, mice fed adenine showed an increase in kidney-to-body weight ratio, serum creatinine, and urea levels. Hematoxylin and eosin staining revealed alleviated glomerulosclerosis, tubular dilation, and inflammatory cell infiltration in mice treated with HWL-088 or ZLY-032. Furthermore, Masson staining and immunohistochemistry demonstrated that these dual agonists protected against renal interstitial fibrosis and inflammation, corroborated by decreased expression levels of fibrosis-related proteins (TGF-β, Collα1, TIMP-1) and pro-inflammatory cytokines (TNF-α, IL-1β, IL-6). Accordingly, it can be inferred that GPR40/PPARδ dual agonists HWL-088 and ZLY-032 could yield significant renoprotective effects by inhibiting inflammation and fibrosis. Overall, these results may contribute to the development of novel therapeutic strategies for renal fibrosis.
Collapse
Affiliation(s)
- Xinqian Geng
- Department of EndocrinologyThe Affiliated Hospital of Yunnan University and the Second People's Hospital of Yunnan ProvinceKunming, Yunnan650021PR China
| | - Wanqiu Huang
- School of PharmacyGuangdong Pharmaceutical UniversityGuangzhou510006PR China
| | - Liming Deng
- School of PharmacyGuangdong Pharmaceutical UniversityGuangzhou510006PR China
| | - Yuxin Xiong
- Department of EndocrinologyThe Affiliated Hospital of Yunnan University and the Second People's Hospital of Yunnan ProvinceKunming, Yunnan650021PR China
| | - Yunli Zhao
- Key Laboratory of Medicinal Chemistry for Natural ResourceMinistry of EducationYunnan Provincial Center for Research & Development of Natural ProductsSchool of Chemical Science and TechnologyYunnan UniversityKunming650091People's Republic of China
| | - Huixin Yao
- School of PharmacyGuangdong Pharmaceutical UniversityGuangzhou510006PR China
| | - Zongtao Zhou
- School of PharmacyGuangdong Pharmaceutical UniversityGuangzhou510006PR China
| | - Bo Xu
- Department of EndocrinologyThe Affiliated Hospital of Yunnan University and the Second People's Hospital of Yunnan ProvinceKunming, Yunnan650021PR China
| | - Fan Xu
- Department of EndocrinologyThe Affiliated Hospital of Yunnan University and the Second People's Hospital of Yunnan ProvinceKunming, Yunnan650021PR China
| | - Feiying Wang
- Department of EndocrinologyThe Affiliated Hospital of Yunnan University and the Second People's Hospital of Yunnan ProvinceKunming, Yunnan650021PR China
| | - Xiaoling Wang
- Department of EndocrinologyThe Affiliated Hospital of Yunnan University and the Second People's Hospital of Yunnan ProvinceKunming, Yunnan650021PR China
| | - Yiping Li
- Department of EndocrinologyThe Affiliated Hospital of Yunnan University and the Second People's Hospital of Yunnan ProvinceKunming, Yunnan650021PR China
| | - Wenyu Tao
- Department of EndocrinologyThe Affiliated Hospital of Yunnan University and the Second People's Hospital of Yunnan ProvinceKunming, Yunnan650021PR China
| | - Zheng Li
- School of PharmacyGuangdong Pharmaceutical UniversityGuangzhou510006PR China
- Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education DepartmentGuangdong Pharmaceutical UniversityGuangzhou510006PR China
| | - Ying Yang
- Department of EndocrinologyThe Affiliated Hospital of Yunnan University and the Second People's Hospital of Yunnan ProvinceKunming, Yunnan650021PR China
| |
Collapse
|
2
|
Rodríguez-Luévano A, Almanza-Pérez JC, Ortiz-Andrade R, Lara-González S, Santillán R, Navarrete-Vázquez G, Giacoman-Martínez A, Lazzarini-Lechuga RC, Bautista E, Hidalgo-Figueroa S. Discovery of Palindrome Dual PPARγ-GPR40 Agonists for Treating Type 2 Diabetes. ChemMedChem 2024; 19:e202400492. [PMID: 39237485 DOI: 10.1002/cmdc.202400492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/14/2024] [Accepted: 09/04/2024] [Indexed: 09/07/2024]
Abstract
This work describes a first attempt of palindromic design for dual compounds that act simultaneously on peroxisome proliferator-activated receptor gamma (PPARγ) and G-protein-coupled receptor 40 (GPR40) for the treatment of type 2 diabetes. The compounds were synthesized by multi-step chemical reactions and the relative mRNA expression levels of PPARγ, GPR40, and GLUT-4 were measured in cultured C2 C12 muscle cells and RIN-m5 f β-pancreatic cells. In addition, insulin secretion and GLUT-4 translocation were measured. Compound 2 displayed a moderate increase in the mRNA expression of PPARγ and GPR40. However, the translocation of the GLUT-4 transporter was 400 % with a similar effect to pioglitazone. The in vivo effect of compound 2 was determined at 25 mg/kg single dose using a normoglycemic and non-insulin dependent diabetes mellitus (NIDDM) rat models. Compound 2 showed basal plasma glucose in diabetic rats with feed intake, which is associated with the moderate release of insulin measured in cells. Surprisingly, the glucose does not decrease in normoglycemic rats. Compound 2 maintained significant interactions with the GPR40 and PPARγ receptors during molecular dynamics. Altogether, the results demonstrate that compound 2, with a palindromic design, simultaneously activates PPARγ and GPR40 receptors without inducing hypoglycemia.
Collapse
Affiliation(s)
- Ana Rodríguez-Luévano
- Departamento de Posgrado en Biología Molecular, División de Biología Molecular, Institution Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), S.L.P, San Luis Potosí, 78216, México
| | - Julio C Almanza-Pérez
- Laboratorio de Farmacología, Depto. Ciencias de La Salud, D.C.B.S, Universidad Autónoma Metropolitana- Iztapalapa, CDMX, CP 09340, México
| | - Rolffy Ortiz-Andrade
- Área de Farmacología Experimental, Laboratorio de Farmacología, Facultad de Química, Universidad Autónoma de Yucatán., Calle 43 No. 613 X Calle 90, Colonia Inalámbrica, Mérida, Yucatán, 97069, México
| | - Samuel Lara-González
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A. C., San Luis Potosí, 78216, México
| | - Rosa Santillán
- Departamento de Química, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Avenida IPN 2508, CDMX, 07330, México
| | - Gabriel Navarrete-Vázquez
- Facultad de Farmacia, Universidad Autónoma Del Estado de Morelos, Cuernavaca, Morelos, 62209, México
| | - Abraham Giacoman-Martínez
- Laboratorio de Farmacología, Depto. Ciencias de La Salud, D.C.B.S, Universidad Autónoma Metropolitana- Iztapalapa, CDMX, CP 09340, México
- Laboratorio de Investigación en Obesidad y Asma, Hospital Infantil de México Federico Gómez, CDMX, 06720, México
| | - Roberto C Lazzarini-Lechuga
- División de Ciencias Biológicas y de la Salud, Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, CDMX, CP 09340, México
| | - Elihú Bautista
- CONAHCyT-División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A. C., S. L. P, San Luis Potosí, 78216, México
| | - Sergio Hidalgo-Figueroa
- CONAHCyT-División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A. C., S. L. P, San Luis Potosí, 78216, México
| |
Collapse
|
3
|
Saldívar-González FI, Navarrete-Vázquez G, Medina-Franco JL. Design of a multi-target focused library for antidiabetic targets using a comprehensive set of chemical transformation rules. Front Pharmacol 2023; 14:1276444. [PMID: 38027021 PMCID: PMC10651762 DOI: 10.3389/fphar.2023.1276444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Virtual small molecule libraries are valuable resources for identifying bioactive compounds in virtual screening campaigns and improving the quality of libraries in terms of physicochemical properties, complexity, and structural diversity. In this context, the computational-aided design of libraries focused against antidiabetic targets can provide novel alternatives for treating type II diabetes mellitus (T2DM). In this work, we integrated the information generated to date on compounds with antidiabetic activity, advances in computational methods, and knowledge of chemical transformations available in the literature to design multi-target compound libraries focused on T2DM. We evaluated the novelty and diversity of the newly generated library by comparing it with antidiabetic compounds approved for clinical use, natural products, and multi-target compounds tested in vivo in experimental antidiabetic models. The designed libraries are freely available and are a valuable starting point for drug design, chemical synthesis, and biological evaluation or further computational filtering. Also, the compendium of 280 transformation rules identified in a medicinal chemistry context is made available in the linear notation SMIRKS for use in other chemical library enumeration or hit optimization approaches.
Collapse
Affiliation(s)
- Fernanda I. Saldívar-González
- Department of Pharmacy, DIFACQUIM Research Group, School of Chemistry, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - José L. Medina-Franco
- Department of Pharmacy, DIFACQUIM Research Group, School of Chemistry, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
4
|
Yang T, Wang H, Li C, Duan H. Mechanisms of drugs in the treatment of type 2 diabetes mellitus. Chin Med J (Engl) 2023; 136:394-396. [PMID: 36921103 PMCID: PMC10106166 DOI: 10.1097/cm9.0000000000002356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Indexed: 03/17/2023] Open
Affiliation(s)
- Tao Yang
- Zhuanglang People's Hospital, Pingliang, Gansu 744600, China
| | - Hongmei Wang
- Zhuanglang People's Hospital, Pingliang, Gansu 744600, China
| | - Caili Li
- Zhuanglang People's Hospital, Pingliang, Gansu 744600, China
| | - Haogang Duan
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
5
|
Tassopoulou VP, Tzara A, Kourounakis AP. Design of Improved Antidiabetic Drugs: A Journey from Single to Multitarget Agents. ChemMedChem 2022; 17:e202200320. [PMID: 36184571 DOI: 10.1002/cmdc.202200320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/27/2022] [Indexed: 01/14/2023]
Abstract
Multifactorial diseases exhibit a complex pathophysiology with several factors contributing to their pathogenesis and development. Examples of such disorders are neurodegenerative (e. g. Alzheimer's, Parkinson's) and cardiovascular diseases (e. g. atherosclerosis, metabolic syndrome, diabetes II). Traditional therapeutic approaches with single-target drugs have been proven, in many cases, unsatisfactory for the treatment of multifactorial diseases such as diabetes II. The well-established by now strategy of multitarget drugs is constantly gaining interest and momentum, as a more effective approach. The development of pharmacomolecules able to simultaneously modulate multiple relevant-to-the-disease targets has already several successful examples in various fields and has, as such, inspired the design of multitarget antidiabetic agents; this review highlights the design aspect and efficacy of this approach for improved antidiabetics by presenting several examples of successful pharmacophore combinations in (multitarget) agents that modulate two or more molecular targets involved in diabetes II, resulting in a superior antihyperglycemic profile.
Collapse
Affiliation(s)
- Vassiliki-Panagiota Tassopoulou
- Department of Medicinal Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Ariadni Tzara
- Department of Medicinal Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Angeliki P Kourounakis
- Department of Medicinal Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771, Athens, Greece
| |
Collapse
|
6
|
Singh A, Malhotra D, Singh K, Chadha R, Bedi PMS. Thiazole derivatives in medicinal chemistry: Recent advancements in synthetic strategies, structure activity relationship and pharmacological outcomes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Abstract
INTRODUCTION The number of diabetic patients is increasing, posing a heavy social and economic burden worldwide. Traditional drug development technology is time-consuming and costly, and the emergence of computer-aided drug design (CADD) has changed this situation. This study reviews the applications of CADD in diabetic drug designing. AREAS COVERED In this article, the authors focus on the advance in CADD in diabetic drug design by elaborating the discovery, including peroxisome proliferator-activated receptor (PPAR), G protein-coupled receptor 40 (GPR40), dipeptidyl peptidase-IV (DDP-IV), protein tyrosine phosphatase 1B (PTP1B), sodium-dependent glucose transporter 2 (SGLT-2), and glucokinase (GK). Some drug discovery of these targets is related to CADD strategies. EXPERT OPINION There is no doubt that CADD has contributed to the discovery of novel anti-diabetic agents. However, there are still many limitations and challenges, such as lack of co-crystal complex, dynamic simulations, water, and metal ion treatment. In the near future, artificial intelligence (AI) may be a promising strategy to accelerate drug discovery and reduce costs by identifying candidates. Moreover, AlphaFold, a deep learning model that predicts the 3D structure of proteins, represents a considerable advancement in the structural prediction of proteins, especially in the absence of homologous templates for protein structures.
Collapse
Affiliation(s)
- Wanqiu Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, PR China.,Key Laboratory of New Drug Discovery and Evaluation, Guangdong Pharmaceutical University, Guangzhou, PR China.,Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Luyong Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, PR China.,Key Laboratory of New Drug Discovery and Evaluation, Guangdong Pharmaceutical University, Guangzhou, PR China.,Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou, PR China.,Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, PR China
| | - Zheng Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, PR China.,Key Laboratory of New Drug Discovery and Evaluation, Guangdong Pharmaceutical University, Guangzhou, PR China
| |
Collapse
|
8
|
Zhou Z, Cai Z, Zhang C, Yang B, Chen L, He Y, Zhang L, Li Z. Design, synthesis, and biological evaluation of novel dual FFA1 and PPARδ agonists possessing phenoxyacetic acid scaffold. Bioorg Med Chem 2022; 56:116615. [PMID: 35051813 DOI: 10.1016/j.bmc.2022.116615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/24/2021] [Accepted: 01/06/2022] [Indexed: 11/11/2022]
Abstract
The free fatty acid receptor 1 (FFA1/GPR40) and peroxisome proliferator-activated receptor δ (PPARδ) have been widely considered as promising targets for type 2 diabetes mellitus (T2DM) due to their respective roles in promoting insulin secretion and improving insulin sensitivity. Hence, the dual FFA1/PPARδ agonists may exert synergistic effects by simultaneously activating FFA1 and PPARδ. The present study performed systematic exploration around previously reported FFA1 agonist 2-(2-fluoro-4-((2'-methyl-4'-(3-(methylsulfonyl)propoxy)-[1,1'-biphenyl]-3-yl)methoxy)phenoxy)acetic acid (lead compound), leading to the identification of a novel dual FFA1/PPARδ agonist 2-(2-fluoro-4-((3-(6-methoxynaphthalen-2-yl)benzyl)oxy)phenoxy)acetic acid (the optimal compound), which displayed high selectivity over PPARα and PPARγ. In addition, the docking study provided us with detailed binding modes of the optimal compound in FFA1 and PPARδ. Furthermore, the optimal compound exhibited greater glucose-lowering effects than lead compound, which might attribute to its synergistic effects by simultaneously modulating insulin secretion and resistance. Moreover, the optimal compound has an acceptable safety profile in the acute toxicity study at a high dose of 500 mg/kg Therefore, our results provided a novel dual FFA1/PPARδ agonist with excellent glucose-lowering effects in vivo.
Collapse
Affiliation(s)
- Zongtao Zhou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Zongyu Cai
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Congzi Zhang
- Xianning Central Hospital, The First Affiliated Hospital of Hubei University Of Science And Technology, Xianning 437000, PR China
| | - Benhui Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Lianru Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yepu He
- Xianning Central Hospital, The First Affiliated Hospital of Hubei University Of Science And Technology, Xianning 437000, PR China
| | - Luyong Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Zheng Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; National Key Clinical Department (Clinical Pharmacy), The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
9
|
Zhou Z, Ren Q, Jiao S, Cai Z, Geng X, Deng L, Wang B, Hu L, Zhang L, Yang Y, Li Z. Discovery of new and highly effective quadruple FFA1 and PPARα/γ/δ agonists as potential anti-fatty liver agents. Eur J Med Chem 2022; 229:114061. [PMID: 34954593 DOI: 10.1016/j.ejmech.2021.114061] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 12/10/2021] [Accepted: 12/17/2021] [Indexed: 01/12/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the most common hepatic disease, while no drug was approved until now. The previous study reported that the quadruple FFA1/PPAR-α/γ/δ agonist RLA8 provided better efficacy than obeticholic acid on NASH. In the present study, two design strategies were introduced to explore better quadruple FFA1/PPAR-α/γ/δ agonists with improved metabolic stability. These efforts ultimately resulted in the identification of ZLY18, a quadruple FFA1/PPAR-α/γ/δ agonist with twice higher metabolic half-life than RLA8 in the liver microsome. In the triton-1339W-induced hyperlipidemic model, ZLY18 reversed hyperlipidemia to an almost normal level, which exhibited far stronger lipid-lowering effects than that of RLA8. Moreover, ZLY18 significantly decreased steatosis, hepatocellular ballooning, inflammation and liver fibrosis in NASH model even better than RLA8. Further mechanism studies suggested that ZLY18 exerts stronger effects than RLA8 on the regulation of the gene related to lipid synthesis, oxidative stress, inflammation and fibrosis. In addition, ZLY18 is more effective than pirfenidone in the prevention of CCl4-induced liver fibrosis. Besides, ZLY18 has an acceptable safety profile in the acute toxicity study at a high dose of 500 mg/kg. Therefore, ZLY18 represents a novel and highly promising quadruple FFA1/PPAR-α/γ/δ agonist worth of further investigation and development.
Collapse
Affiliation(s)
- Zongtao Zhou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Qiang Ren
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Shixuan Jiao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Zongyu Cai
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Xinqian Geng
- Department of Endocrinology, The Affiliated Hospital of Yunnan University and the Second People's Hospital of Yunnan Province, Kunming, Yunnan, 650021, PR China
| | - Liming Deng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Bin Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Lijun Hu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Luyong Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Ying Yang
- Department of Endocrinology, The Affiliated Hospital of Yunnan University and the Second People's Hospital of Yunnan Province, Kunming, Yunnan, 650021, PR China.
| | - Zheng Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| |
Collapse
|
10
|
Cabrera N, Cuesta SA, Mora JR, Calle L, Márquez EA, Kaunas R, Paz JL. In Silico Searching for Alternative Lead Compounds to Treat Type 2 Diabetes through a QSAR and Molecular Dynamics Study. Pharmaceutics 2022; 14:232. [PMID: 35213965 PMCID: PMC8879932 DOI: 10.3390/pharmaceutics14020232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/28/2021] [Accepted: 01/07/2022] [Indexed: 02/01/2023] Open
Abstract
Free fatty acid receptor 1 (FFA1) stimulates insulin secretion in pancreatic β-cells. An advantage of therapies that target FFA1 is their reduced risk of hypoglycemia relative to common type 2 diabetes treatments. In this work, quantitative structure-activity relationship (QSAR) approach was used to construct models to identify possible FFA1 agonists by applying four different machine-learning algorithms. The best model (M2) meets the Tropsha's test requirements and has the statistics parameters R2 = 0.843, Q2CV = 0.785, and Q2ext = 0.855. Also, coverage of 100% of the test set based on the applicability domain analysis was obtained. Furthermore, a deep analysis based on the ADME predictions, molecular docking, and molecular dynamics simulations was performed. The lipophilicity and the residue interactions were used as relevant criteria for selecting a candidate from the screening of the DiaNat and DrugBank databases. Finally, the FDA-approved drugs bilastine, bromfenac, and fenofibric acid are suggested as potential and lead FFA1 agonists.
Collapse
Affiliation(s)
- Nicolás Cabrera
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA; (N.C.); (R.K.)
| | - Sebastián A. Cuesta
- Department of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK;
- Grupo de Química Computacional y Teórica (QCT-USFQ), Departamento de Ingeniería Química, Universidad San Francisco de Quito, Diego de Robles y vía Interoceánica, Quito 170901, Ecuador
| | - José R. Mora
- Grupo de Química Computacional y Teórica (QCT-USFQ), Departamento de Ingeniería Química, Universidad San Francisco de Quito, Diego de Robles y vía Interoceánica, Quito 170901, Ecuador
| | - Luis Calle
- Faculty of Pharmacy, University of Granada, 18011 Granada, Spain;
- Facultad de Ciencias Médicas, Instituto de Investigación e Innovación en Salud Integral, Universidad Católica Santiago de Guayaquil, Guayaquil 09013493, Ecuador
| | - Edgar A. Márquez
- Grupo de Investigaciones en Química y Biología, Departamento de Química y Biología, Facultad de Ciencias Exactas, Universidad del Norte, Carrera 51B, Km 5, vía Puerto Colombia, Barranquilla 081007, Colombia
| | - Roland Kaunas
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA; (N.C.); (R.K.)
| | - José Luis Paz
- Departamento Académico de Química Inorgánica, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Cercado de Lima 15081, Peru;
| |
Collapse
|
11
|
Hidalgo-Figueroa S, Rodríguez-Luévano A, Almanza-Pérez JC, Giacoman-Martínez A, Ortiz-Andrade R, León-Rivera I, Navarrete-Vázquez G. Synthesis, molecular docking, dynamic simulation and pharmacological characterization of potent multifunctional agent (dual GPR40-PPARγ agonist) for the treatment of experimental type 2 diabetes. Eur J Pharmacol 2021; 907:174244. [PMID: 34116041 DOI: 10.1016/j.ejphar.2021.174244] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 11/30/2022]
Abstract
The current manuscript describes two molecules that were designed against PPARγ and GPR40 receptors. The preparation of the compounds was carried out following a synthetic route of multiple steps. Then, the mRNA expression levels of PPARγ, GLUT4, and GPR40 induced by compounds were measured and quantified in adipocyte and β-pancreatic cell cultures. The synthesized compound 1 caused an increase in the 4-fold expression of mRNA of PPARγ regarding the control and had a similar behavior to the pioglitazone, while compound 2 only increased 2-fold the expression. Also, the compound 1 increased to 7-fold the GLUT4 expression levels, respect to the control and twice against the pioglitazone. On the other hand, the 1 increase 3-fold GPR40 expression, and compound 2 had a minor activity. Besides, 1 and 2 showed a moderated increase on insulin secretion and calcium mobilization versus the glibenclamide. Based on the molecular docking studies, the first compound had a similar conformation to co-crystal ligands into the binding site of both receptors. The poses were docked keeping the most important interactions and maintaining the interaction along the Molecular Dynamics simulation (20 ns). Finally, compound (1) showed an antihyperglycemic effect at 5 mg/kg, however at higher doses of 25 mg/kg it controlled blood glucose levels associated with feeding intake and without showing the adverse effects associated with insulin secretagogues (hypoglycemia). For these reasons, we have concluded that molecule 1 acts as a dual PPARγ and GPR40 agonist offering a better glycemic control than current treatments.
Collapse
Affiliation(s)
- Sergio Hidalgo-Figueroa
- CONACyT, IPICYT/Consorcio de Investigación, Innovación y Desarrollo para Las Zonas Áridas, San Luis Potosí, 78216, Mexico.
| | - Ana Rodríguez-Luévano
- Posgrado en Biología Molecular, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, 78216, Mexico
| | - Julio C Almanza-Pérez
- Laboratorio de Farmacología, Depto. Ciencias de La Salud, D.C.B.S, Universidad Autónoma Metropolitana- Iztapalapa, Apdo.-Postal 55-535, México, CP 09340, CDMx, Mexico
| | - Abraham Giacoman-Martínez
- Departamento de Farmacobiología, Centro de Investigación y Estudios Avanzados Del Instituto Politécnico Nacional, Sede Sur, CDMx, Mexico
| | - Rolffy Ortiz-Andrade
- Área de Farmacología Experimental, Laboratorio de Farmacología, Facultad de Química, Universidad Autónoma de Yucatán, Calle 43 No. 613 X Calle 90, Colonia Inalámbrica, Mérida, Yucatán, 97069, Mexico
| | - Ismael León-Rivera
- Centro de Investigaciones Químicas, IICBA, Universidad Autónoma Del Estado de Morelos, Cuernavaca, Morelos, 62209, Mexico
| | - Gabriel Navarrete-Vázquez
- Facultad de Farmacia, Universidad Autónoma Del Estado de Morelos, Cuernavaca, Morelos, 62209, Mexico
| |
Collapse
|
12
|
Ge W, Yang B, Chen L, Zhou Z, Jin Y. Discovery of Novel G‐Protein‐Coupled Receptor 40 Agonist with Phenylacetic Acid Scaffold for the Treatment of Type 2 Diabetes. ChemistrySelect 2021. [DOI: 10.1002/slct.202101589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wei Ge
- Huazhong University of Science and Technology Hospital WuHan 430074 China
| | - Benhui Yang
- School of Pharmacy Guangdong Pharmaceutical University Guangzhou 510006 China
| | - Lianru Chen
- School of Pharmacy Guangdong Pharmaceutical University Guangzhou 510006 China
| | - Zongtao Zhou
- School of Pharmacy Guangdong Pharmaceutical University Guangzhou 510006 China
| | - Yao Jin
- Huazhong University of Science and Technology Hospital WuHan 430074 China
| |
Collapse
|
13
|
Kaczmarek I, Suchý T, Prömel S, Schöneberg T, Liebscher I, Thor D. The relevance of adhesion G protein-coupled receptors in metabolic functions. Biol Chem 2021; 403:195-209. [PMID: 34218541 DOI: 10.1515/hsz-2021-0146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/08/2021] [Indexed: 01/06/2023]
Abstract
G protein-coupled receptors (GPCRs) modulate a variety of physiological functions and have been proven to be outstanding drug targets. However, approximately one-third of all non-olfactory GPCRs are still orphans in respect to their signal transduction and physiological functions. Receptors of the class of Adhesion GPCRs (aGPCRs) are among these orphan receptors. They are characterized by unique features in their structure and tissue-specific expression, which yields them interesting candidates for deorphanization and testing as potential therapeutic targets. Capable of G-protein coupling and non-G protein-mediated function, aGPCRs may extend our repertoire of influencing physiological function. Besides their described significance in the immune and central nervous systems, growing evidence indicates a high importance of these receptors in metabolic tissue. RNAseq analyses revealed high expression of several aGPCRs in pancreatic islets, adipose tissue, liver, and intestine but also in neurons governing food intake. In this review, we focus on aGPCRs and their function in regulating metabolic pathways. Based on current knowledge, this receptor class represents high potential for future pharmacological approaches addressing obesity and other metabolic diseases.
Collapse
Affiliation(s)
- Isabell Kaczmarek
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
| | - Tomáš Suchý
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
| | - Simone Prömel
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
- Institute of Cell Biology, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
| | - Doreen Thor
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
| |
Collapse
|
14
|
Rani L, Grewal AS, Sharma N, Singh S. Recent Updates on Free Fatty Acid Receptor 1 (GPR-40) Agonists for the Treatment of Type 2 Diabetes Mellitus. Mini Rev Med Chem 2021; 21:426-470. [PMID: 33100202 DOI: 10.2174/1389557520666201023141326] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The global incidence of type 2 diabetes mellitus (T2DM) has enthused the development of new antidiabetic targets with low toxicity and long-term stability. In this respect, free fatty acid receptor 1 (FFAR1), which is also recognized as a G protein-coupled receptor 40 (GPR40), is a novel target for the treatment of T2DM. FFAR1/GPR40 has a high level of expression in β-cells of the pancreas, and the requirement of glucose for stimulating insulin release results in immense stimulation to utilise this target in the medication of T2DM. METHODS The data used for this review is based on the search of several scienctific databases as well as various patent databases. The main search terms used were free fatty acid receptor 1, FFAR1, FFAR1 agonists, diabetes mellitus, G protein-coupled receptor 40 (GPR40), GPR40 agonists, GPR40 ligands, type 2 diabetes mellitus and T2DM. RESULTS The present review article gives a brief overview of FFAR1, its role in T2DM, recent developments in small molecule FFAR1 (GPR40) agonists reported till now, compounds of natural/plant origin, recent patents published in the last few years, mechanism of FFAR1 activation by the agonists, and clinical status of the FFAR1/GPR40 agonists. CONCLUSION The agonists of FFAR1/GRP40 showed considerable potential for the therapeutic control of T2DM. Most of the small molecule FFAR1/GPR40 agonists developed were aryl alkanoic acid derivatives (such as phenylpropionic acids, phenylacetic acids, phenoxyacetic acids, and benzofuran acetic acid derivatives) and thiazolidinediones. Some natural/plant-derived compounds, including fatty acids, sesquiterpenes, phenolic compounds, anthocyanins, isoquinoline, and indole alkaloids, were also reported as potent FFAR1 agonists. The clinical investigations of the FFAR1 agonists demonstrated their probable role in the improvement of glucose control. Though, there are some problems still to be resolved in this field as some FFAR1 agonists terminated in the late phase of clinical studies due to "hepatotoxicity." Currently, PBI-4050 is under clinical investigation by Prometic. Further investigation of pharmacophore scaffolds for FFAR1 full agonists as well as multitargeted modulators and corresponding clinical investigations will be anticipated, which can open up new directions in this area.
Collapse
Affiliation(s)
- Lata Rani
- Chitkara University School of Basic Sciences, Chitkara University, Himachal Pradesh, India
| | - Ajmer Singh Grewal
- Chitkara University School of Basic Sciences, Chitkara University, Himachal Pradesh, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
15
|
Governa P, Caroleo MC, Carullo G, Aiello F, Cione E, Manetti F. FFAR1/GPR40: One target, different binding sites, many agonists, no drugs, but a continuous and unprofitable tug-of-war between ligand lipophilicity, activity, and toxicity. Bioorg Med Chem Lett 2021; 41:127969. [PMID: 33771587 DOI: 10.1016/j.bmcl.2021.127969] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/31/2022]
Abstract
The progress made so far in the elucidation of the structure of free fatty acid receptor 1 (FFAR1) and its secondary and ternary complexes with partial and full allosteric ligands led to the discovery of various putative binding regions on the FFAR1 surface. Attempts to develop FFAR1 agonists culminated with the identification of TAK-875 (1), whose phase 3 clinical trials were terminated due to potential liver toxicity. In the search of safer agonists, numerous classes of new compounds were designed, synthesized, and tested. Chemical decoration of the scaffolds was rationalized to reach a good balance between lipophilicity, activity, and toxicity. Today, targeting FFAR1 with positive modulators represents an attractive pharmacological tool for the treatment of type 2 diabetes mellitus (T2DM), mainly because of the lack of hypoglycaemic side effects associated with several antidiabetic drugs currently available. Moreover, considering the involvement of FFAR1 in many physio-pathological processes, its agonists are also emerging as possible therapeutic tools for alleviating organ inflammation and fibrosis, as well as for the treatment of CNS disorders, such as Alzheimer's disease and dementia.
Collapse
Affiliation(s)
- Paolo Governa
- Department of Biotechnology, Chemistry and Pharmacy-Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Maria Cristina Caroleo
- Department of Pharmacy, Health and Nutritional Sciences-Department of Excellence 2018-2022, University of Calabria, Ed. Polifunzionale, I-87036 Arcavacata di Rende, CS, Italy
| | - Gabriele Carullo
- Department of Biotechnology, Chemistry and Pharmacy-Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Francesca Aiello
- Department of Pharmacy, Health and Nutritional Sciences-Department of Excellence 2018-2022, University of Calabria, Ed. Polifunzionale, I-87036 Arcavacata di Rende, CS, Italy.
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences-Department of Excellence 2018-2022, University of Calabria, Ed. Polifunzionale, I-87036 Arcavacata di Rende, CS, Italy.
| | - Fabrizio Manetti
- Department of Biotechnology, Chemistry and Pharmacy-Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy.
| |
Collapse
|
16
|
Ma H, Huang B, Zhang Y. Recent advances in multitarget-directed ligands targeting G-protein-coupled receptors. Drug Discov Today 2020; 25:1682-1692. [PMID: 32652312 PMCID: PMC7572774 DOI: 10.1016/j.drudis.2020.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/19/2020] [Accepted: 07/03/2020] [Indexed: 01/13/2023]
Abstract
Mounting evidence indicates that single-target drugs might be inadequate to achieve satisfactory therapeutic effects on complex diseases. Recently, increasing attention has been paid to developing drugs that can manipulate multiple targets to generate beneficial effects through potential synergy. G-protein-coupled receptors (GPCRs) become desirable targets for developing multitarget-directed ligands (MTDLs) because of their crucial roles in the pathophysiology of various human diseases and the accessibility of druggable sites at the cell surface. Herein, we review the most recent advances in the development of GPCR-targeted MTDLs in treating complex diseases, and discuss their potential therapeutic strategies to reveal current trends and shed insights into the utility of GPCR-targeted MTDLs for future drug design and development.
Collapse
Affiliation(s)
- Hongguang Ma
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 East Leigh Street, Richmond, VA 23298, USA
| | - Boshi Huang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 East Leigh Street, Richmond, VA 23298, USA
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 East Leigh Street, Richmond, VA 23298, USA.
| |
Collapse
|
17
|
Ren Q, Deng L, Zhou Z, Wang X, Hu L, Xie R, Li Z. Design, synthesis, and biological evaluation of novel dual PPARα/δ agonists for the treatment of T2DM. Bioorg Chem 2020; 101:103963. [PMID: 32480174 DOI: 10.1016/j.bioorg.2020.103963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/02/2020] [Accepted: 05/20/2020] [Indexed: 01/09/2023]
|
18
|
Hu L, Zhou Z, Deng L, Ren Q, Cai Z, Wang B, Li Z, Wang G. HWL-088, a new and highly effective FFA1/PPARδ dual agonist, attenuates nonalcoholic steatohepatitis by regulating lipid metabolism, inflammation and fibrosis. J Pharm Pharmacol 2020; 72:1564-1573. [PMID: 32734608 DOI: 10.1111/jphp.13342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/28/2020] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Nonalcoholic fatty liver (NAFLD), a chronic progressive liver disease, is highly correlated with pathoglycemia, dyslipidemia and oxidative stress. The free fatty acid receptor 1 (FFA1) agonists have been reported to improve liver steatosis and fibrosis, and the peroxisome proliferator-activated receptor δ (PPARδ) plays a synergistic role with FFA1 in energy metabolism and fibrosis. HWL-088, a PPARδ/FFA1 dual agonist, exerts better glucose-lowering effects than the representative FFA1 agonist TAK-875. However, the ability of HWL-088 to protect NAFLD was unknown. This study aimed to discover a new strategy for the treatment of NAFLD. METHODS The methionine- and choline-deficient diet (MCD)-induced Nonalcoholic steatohepatitis (NASH) model was constructed to evaluate the effects of HWL-088. KEY FINDINGS Administration of HWL-088 exerted multiple benefits on glucose control, lipid metabolism and fatty liver. Further mechanism research indicated that HWL-088 promotes lipid metabolism by decreasing lipogenesis and increasing lipolysis. Moreover, HWL-088 attenuates NASH by regulating the expression levels of genes related to inflammation, fibrosis and oxidative stress. CONCLUSIONS These positive results indicated that PPARδ/FFA1 dual agonist HWL-088 might be a potential candidate to improve multiple pathogenesis of NASH.
Collapse
Affiliation(s)
- Lijun Hu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zongtao Zhou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Liming Deng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qiang Ren
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zongyu Cai
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Bin Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zheng Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of New Drug Discovery and Evaluation, Guangdong Pharmaceutical University, Guangzhou, China
| | - Guangji Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China.,State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
19
|
Hepatoprotective effects of ZLY16, a dual peroxisome proliferator-activated receptor α/δ agonist, in rodent model of nonalcoholic steatohepatitis. Eur J Pharmacol 2020; 882:173300. [PMID: 32592770 DOI: 10.1016/j.ejphar.2020.173300] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/18/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD), a chronic progressive liver disease, covers a series of liver damage encompassing steatosis, nonalcoholic steatohepatitis (NASH), fibrosis and cirrhosis. However, there are no approved therapies for NAFLD. Herein, we characterize the pharmacological profile of ZLY16 ((E)-2-(4-(3-(2,3-dihydrobenzo[b]thiophen -5-yl)-3-oxoprop-1-en-1-yl)-2,6-dimethylphenoxy)-2-methylpropanoic acid), a novel highly potent PPARα/δ agonist with relative higher potency on PPARγ. The chronic effects of ZLY16 on NASH development were evaluated in MCD-induced db/db mice. ZLY16 revealed decreased liver injury biomarkers, hepatic steatosis, inflammation, ballooning, and oxidative stress. Further mechanism researches suggested that ZLY16 inhibited liver inflammation and fibrosis by regulating gene expression including COLIA1, TIMP, TGFβ, TNFα, and IL6. Moreover, ZLY16 offers more favorable effects in decreasing liver TC and TG accumulation, blocking liver fibrosis and inflammation than GFT505, the most advanced candidate of PPARα/δ agonist for the treatment of NASH. These results indicate that ZLY16 is a highly potent PPARα/δ agonist that provides great protection against NASH development, and may be useful for the treatment of NAFLD/NASH.
Collapse
|
20
|
Li Z, Zhou Z, Hu L, Deng L, Ren Q, Zhang L. ZLY032, the first-in-class dual FFA1/PPARδ agonist, improves glucolipid metabolism and alleviates hepatic fibrosis. Pharmacol Res 2020; 159:105035. [PMID: 32562818 DOI: 10.1016/j.phrs.2020.105035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 05/19/2020] [Accepted: 06/14/2020] [Indexed: 02/07/2023]
Abstract
The free fatty acid receptor 1 (FFA1) and peroxisome proliferator-activated receptor δ (PPARδ) are considered as anti-diabetic targets based on their role in improving insulin secretion and resistance. Based on their synergetic mechanisms, we have previously identified the first-in-class dual FFA1/PPARδ agonist ZLY032. After long-term treatment, ZLY032 significantly improved glucolipid metabolism and alleviated fatty liver in ob/ob mice and methionine choline-deficient diet-fed db/db mice, mainly by regulating triglyceride metabolism, fatty acid β-oxidation, lipid synthesis, inflammation, oxidative stress and mitochondrial function. Notably, ZLY032 exhibited greater advantages on lipid metabolism, insulin sensitivity and pancreatic β-cell function than TAK-875, the most advanced candidate of FFA1 agonists. Moreover, ZLY032 prevented CCl4-induced liver fibrosis by reducing the expressions of genes involved in inflammation and fibrosis development. These results suggest that the dual FFA1/PPARδ agonists such as ZLY032 may be useful for the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Zheng Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| | - Zongtao Zhou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Lijun Hu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Liming Deng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Qiang Ren
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Luyong Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
21
|
Li Z, Xu Y, Cai Z, Wang X, Ren Q, Zhou Z, Xie R. Discovery of novel dual PPARα/δ agonists based on benzimidazole scaffold for the treatment of non-alcoholic fatty liver disease. Bioorg Chem 2020; 99:103803. [PMID: 32251945 DOI: 10.1016/j.bioorg.2020.103803] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/16/2020] [Accepted: 03/26/2020] [Indexed: 12/12/2022]
|
22
|
Li Z, Zhou Z, Zhang L. Current status of GPR40/FFAR1 modulators in medicinal chemistry (2016–2019): a patent review. Expert Opin Ther Pat 2019; 30:27-38. [DOI: 10.1080/13543776.2020.1698546] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zheng Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, PR China
- Key Laboratory of New Drug Discovery and Evaluation of ordinary universities of Guangdong province, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Zongtao Zhou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Luyong Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, PR China
- Key Laboratory of New Drug Discovery and Evaluation of ordinary universities of Guangdong province, Guangdong Pharmaceutical University, Guangzhou, PR China
- Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou, PR China
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, PR China
| |
Collapse
|