1
|
Pranaitytė G, Grybaitė B, Endriulaityte U, Mickevičius V, Petrikaitė V. Exploration of 1-(2,4-difluorophenyl)-5-oxopyrrolidine-3-carboxylic acid derivatives effect on triple-negative breast, prostate cancer and melanoma cell 2D and 3D cultures. Sci Rep 2025; 15:17590. [PMID: 40399317 PMCID: PMC12095558 DOI: 10.1038/s41598-025-02106-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 05/12/2025] [Indexed: 05/23/2025] Open
Abstract
1-Substituted 5-oxopyrrolidine-3-carboxylic acid and its derivatives play an important role as components of many biologically active molecules. This study describes the synthesis of 1-(2,4-difluorophenyl)-5-oxopyrrolidine-3-carboxylic acid derivatives and their anticancer properties. The target compounds were prepared using 2,4-difluoroniline as a starting material; in this way, derivatives of benzimidazoles, hydrazones and azoles were formed. Investigation of the anticancer activity of all synthesized compounds showed that the hydrazones had the strongest effect on cancer cell lines. Compounds were tested for their cytotoxic effect by the MTT assay in human triple-negative breast cancer MDA-MB-231, prostate adenocarcinoma PPC1, melanoma A375 and human foreskin fibroblasts CRL-4001 after 72 hours of incubation. The impact of the compounds on cancer cell migration was assessed using a 'wound healing assay'. Activity in 3D cultures was determined by evaluating changes in spheroid size and assessing cell viability. Overall, the selected compounds 7b, 9c, 9e, 9f and 10 exhibited greater activity in the A375 cell line and were less active against the MDA-MB-231 cell line. Compounds 9c, 9e and 10 showed relatively higher selectivity for cancer cells over fibroblasts. Hydrazone 9f, bearing N'-(4-methylbenzylidene) moiety, was identifiedasthe most cytotoxic compound in both prostate adenocarcinoma PPC-1 and melanoma A375 cells in monolayer and 3D culture models. Compound 9e, with N'-(4-bromobenzylidene) moiety, exhibited the most pronounced inhibitory effect on cell migration as determined by the 'wound healing' assay.
Collapse
Affiliation(s)
- Guoda Pranaitytė
- Kaunas University of Technology, Radvilėnų Rd. 19, Kaunas, LT-50254, Lithuania
| | - Birutė Grybaitė
- Kaunas University of Technology, Radvilėnų Rd. 19, Kaunas, LT-50254, Lithuania
| | - Ugne Endriulaityte
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu pr. 13, Kaunas, LT-50162, Lithuania
| | | | - Vilma Petrikaitė
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu pr. 13, Kaunas, LT-50162, Lithuania.
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio Ave. 7, Vilnius, LT-10257, Lithuania.
| |
Collapse
|
2
|
Garg A, Saini P, Vijeata A, Chaudhary GR, Chaudhary S, Bhalla A. Stereoselective synthesis and antibacterial potential of C-3 chloro β-lactams: Insights into DNA gyrase inhibition using in silico molecular docking. Int J Biol Macromol 2025; 308:142713. [PMID: 40174848 DOI: 10.1016/j.ijbiomac.2025.142713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/26/2025] [Accepted: 03/30/2025] [Indexed: 04/04/2025]
Abstract
This study explores the development of novel antibacterial agents through the stereoselective synthesis of eight C-3 chloro-substituted ortho-/meta-/para-(2-benzo[d]oxazolyl)phenyl-β-lactams. These compounds were obtained via the reaction of 2-chloroethanoic acid and 4-chlorophenylethanoic acid with isomeric ortho-, meta- and para-(2-benzo[d]oxazolyl)phenyl Schiff bases, exclusively yielding trans-β-lactams with high stereoselectivity (J = 1.8-2.6 Hz) and excellent yields (78-93 %). The antibacterial potential of these chloro β-lactams was further evaluated against S. aureus and E. coli, revealing significant activity across all tested compounds. Notably, compounds 5a and 5f exhibited the highest potency, with binding energies of -7.65 and -8.17 kcal/mol against E. coli and -7.35 and -8.29 kcal/mol against S. aureus. The IC50 values further confirmed their strong inhibitory effects, with 5a and 5f displaying values of 39 ng/mL and 35 ng/mL against E. coli, and 32 ng/mL and 30 ng/mL against S. aureus. Molecular docking studies demonstrated strong hydrogen bonding interactions between the synthesized compounds and the active sites of DNA gyrase in E. coli (PDB ID: 1KZN) and S. aureus (PDB ID: 5BS3), indicating favourable binding affinity. These findings highlight the potential of stereoselective C-3 chloro β-lactams as promising antibacterial candidates targeting DNA gyrase.
Collapse
Affiliation(s)
- Ankita Garg
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Preety Saini
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Anjali Vijeata
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Ganga Ram Chaudhary
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Savita Chaudhary
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India.
| | - Aman Bhalla
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
3
|
Bendi A, Taruna, Rajni, Kataria S, Singh L, Kennedy JF, Supuran CT, Raghav N. Chemistry of heterocycles as carbonic anhydrase inhibitors: A pathway to novel research in medicinal chemistry review. Arch Pharm (Weinheim) 2024; 357:e2400073. [PMID: 38683875 DOI: 10.1002/ardp.202400073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 05/02/2024]
Abstract
Nowadays, the scientific community has focused on dealing with different kinds of diseases by exploring the chemistry of various heterocycles as novel drugs. In this connection, medicinal chemists identified carbonic anhydrases (CA) as one of the biologically active targets for curing various diseases. The widespread distribution of these enzymes and the high degree of homology shared by the different isoforms offer substantial challenges to discovering potential drugs. Medicinal and synthetic organic chemists have been continuously involved in developing CA inhibitors. This review explored the chemistry of different heterocycles as CA inhibitors using the last 11 years of published research work. It provides a pathway for young researchers to further explore the chemistry of a variety of synthetic as well as natural heterocycles as CA inhibitors.
Collapse
Affiliation(s)
- Anjaneyulu Bendi
- Department of Chemistry, Presidency University, Bengaluru, Karnataka, India
| | - Taruna
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | - Rajni
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | - Sweety Kataria
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | - Lakhwinder Singh
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | | | - Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Neutraceutical Section, University of Florence, Florence, Italy
| | - Neera Raghav
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| |
Collapse
|
4
|
Kairytė K, Vaickelionienė R, Grybaitė B, Anusevičius K, Mickevičius V, Petrikaitė V. The Effect of 4-(Dimethylamino)phenyl-5-oxopyrrolidines on Breast and Pancreatic Cancer Cell Colony Formation, Migration, and Growth of Tumor Spheroids. Int J Mol Sci 2024; 25:1834. [PMID: 38339112 PMCID: PMC10855844 DOI: 10.3390/ijms25031834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
A series of hydrazones, azoles, and azines bearing a 4-dimethylaminophenyl-5-oxopyrrolidine scaffold was synthesized. Their cytotoxic effect against human pancreatic carcinoma Panc-1 and triple-negative breast cancer MDA-MB-231 cell lines was established by MTT assay. Pyrrolidinone derivatives 3c and 3d, with incorporated 5-chloro and 5-methylbenzimidazole fragments; hydrazone 5k bearing a 5-nitrothien-2-yl substitution; and hydrazone 5l with a naphth-1-yl fragment in the structure significantly decreased the viability of both cancer cell lines. Compounds 3c and 5k showed the highest selectivity, especially against the MDA-MB-231 cancer cell line. The EC50 values of the most active compound 5k against the MDA-MB231 cell line was 7.3 ± 0.4 μM, which were slightly higher against the Panc-1 cell line (10.2 ± 2.6 μM). Four selected pyrrolidone derivatives showed relatively high activity in a clonogenic assay. Compound 5k was the most active in both cell cultures, and it completely disturbed MDA-MB-231 cell colony growth at 1 and 2 μM and showed a strong effect on Panc-1 cell colony formation, especially at 2 μM. The compounds did not show an inhibitory effect on cell line migration by the 'wound-healing' assay. Compound 3d most efficiently inhibited the growth of Panc-1 spheroids and reduced cell viability in MDA-MB-231 spheroids. Considering these different activities in biological assays, the selected pyrrolidinone derivatives could be further tested to better understand the structure-activity relationship and their mechanism of action.
Collapse
Affiliation(s)
- Karolina Kairytė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania; (K.K.); (R.V.); (B.G.); (K.A.); (V.M.)
| | - Rita Vaickelionienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania; (K.K.); (R.V.); (B.G.); (K.A.); (V.M.)
| | - Birutė Grybaitė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania; (K.K.); (R.V.); (B.G.); (K.A.); (V.M.)
| | - Kazimieras Anusevičius
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania; (K.K.); (R.V.); (B.G.); (K.A.); (V.M.)
| | - Vytautas Mickevičius
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania; (K.K.); (R.V.); (B.G.); (K.A.); (V.M.)
| | - Vilma Petrikaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio Al. 7, LT-10257 Vilnius, Lithuania
- Faculty of Medicine, Lithuanian University of Health Sciences, A. Mickevičiaus 9, LT-44307 Kaunas, Lithuania
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių Pr. 13, LT-50162 Kaunas, Lithuania
| |
Collapse
|
5
|
Vaickelionienė R, Petrikaitė V, Vaškevičienė I, Pavilonis A, Mickevičius V. Synthesis of novel sulphamethoxazole derivatives and exploration of their anticancer and antimicrobial properties. PLoS One 2023; 18:e0283289. [PMID: 36952512 PMCID: PMC10035904 DOI: 10.1371/journal.pone.0283289] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 03/06/2023] [Indexed: 03/25/2023] Open
Abstract
A series of new derivatives based on sulfamethoxazole were designed and synthesized in this study. The structures of the new compounds were confirmed based on a comprehensive characterization of spectral data by applied IR and 1H as well as 13C NMR spectroscopy. The prepared compounds were tested for their anticancer and antimicrobial properties. Hydrazone 16b demonstrated convincing anticancer effect against all tested cell cultures such as human prostate carcinoma PPC-1 and human kidney carcinoma CaKi-1 cell lines, and human fibroblasts HF, n = 3. The most promising compound 16b showed higher activity against CaKi-1 cell line than the anticancer drugs axitinib and pazopanib used to treat renal cancer. Also, it was more active in the PPC-1 cell line compared to the approved PARP inhibitor Olaparib. Hydrazone 16b was also found to possess good antimicrobial properties against gram-positive bacteria strains of Staphylococcus aureus, Staphylococcus epidermidis, as well as Bacillus cereus.
Collapse
Affiliation(s)
- Rita Vaickelionienė
- Department of Organic Chemistry, Kaunas University of Technology, Kaunas, Lithuania
| | - Vilma Petrikaitė
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Irena Vaškevičienė
- Lithuanian Energy Institute, Laboratory of Heat-Equipment Research and Testing, Kaunas, Lithuania
| | - Alvydas Pavilonis
- Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vytautas Mickevičius
- Department of Organic Chemistry, Kaunas University of Technology, Kaunas, Lithuania
| |
Collapse
|
6
|
Kairytė K, Grybaitė B, Vaickelionienė R, Sapijanskaitė-Banevič B, Kavaliauskas P, Mickevičius V. Synthesis and Biological Activity Characterization of Novel 5-Oxopyrrolidine Derivatives with Promising Anticancer and Antimicrobial Activity. Pharmaceuticals (Basel) 2022; 15:ph15080970. [PMID: 36015119 PMCID: PMC9415606 DOI: 10.3390/ph15080970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
The 1-(4-acetamidophenyl)-5-oxopyrrolidine carboxylic acid was applied for synthesizing derivatives bearing azole, diazole, and hydrazone moieties in the molecule. Modification of an acetamide fragment to the free amino group afforded compounds with two functional groups, which enabled to provide a series of 4-substituted-1-(4-substituted phenyl)pyrrolidine-2-ones. The resulted compounds 2 and 4-22 were subjected to the in vitro anticancer and antimicrobial activity determination. The compounds 18-22 exerted the most potent anticancer activity against A549 cells. Furthermore, compound 21 bearing 5-nitrothiophene substituents demonstrated promising and selective antimicrobial activity against multidrug-resistant Staphylococcus aureus strains, including linezolid and tedizolid-resistant S. aureus. These results demonstrate that 5-oxopyrolidine derivatives are attractive scaffolds for the further development of anticancer and antimicrobial compounds targeting multidrug-resistant Gram-positive pathogens.
Collapse
Affiliation(s)
- Karolina Kairytė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania
| | - Birutė Grybaitė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania
| | - Rita Vaickelionienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania
| | | | - Povilas Kavaliauskas
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, 527 East 68th Street, New York, NY 10065, USA
- Department of Microbiology and Immunology, University of Maryland Baltimore School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA
- Biological Research Center, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės St. 18, LT-47181 Kaunas, Lithuania
- Institute of Infectious Diseases and Pathogenic Microbiology, Birštono Str. 38A, LT-59116 Prienai, Lithuania
- Correspondence:
| | - Vytautas Mickevičius
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania
| |
Collapse
|
7
|
Shahriari A, Amiri K, Nikbakht A, Rominger F, Bijanzadeh HR, Balalaie S. Synthesis of Pyrrolidin-5-one-2-carboxamides through Cyclization of N-Substituted-2-alleneamides. J Org Chem 2022; 87:7778-7785. [PMID: 35668356 DOI: 10.1021/acs.joc.2c00387] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis of pyrrolidin-5-one-2-carboxamides 6a-p has been developed via a one-pot Ugi reaction of allenic acids, primary amines, isocyanides, and aldehydes followed by regioselective cyclization of the resultant N-substituted-2-allenamides with KOt-Bu at room temperature. The cyclization reaction was carried out through a 5-exo-dig approach, which resulted in good yields and high atom-economy under transition-metal-free and mild reaction conditions.
Collapse
Affiliation(s)
- Azadeh Shahriari
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box, Tehran 15875-4416, Iran
| | - Kamran Amiri
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box, Tehran 15875-4416, Iran
| | - Ali Nikbakht
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box, Tehran 15875-4416, Iran
| | - Frank Rominger
- Organisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 270, Heidelberg D-69120, Germany
| | - Hamid Reza Bijanzadeh
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, P.O.Box, Noor 46414-356, Iran
| | - Saeed Balalaie
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box, Tehran 15875-4416, Iran
| |
Collapse
|
8
|
Yamali C, Sakagami H, Satoh K, Bandow K, Uesawa Y, Bua S, Angeli A, Supuran CT, Inci Gul H. Investigation of carbonic anhydrase inhibitory effects and cytotoxicities of pyrazole-based hybrids carrying hydrazone linker and zinc-binding benzenesulfonamide pharmacophores. Bioorg Chem 2022; 127:105969. [DOI: 10.1016/j.bioorg.2022.105969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/07/2022] [Accepted: 06/12/2022] [Indexed: 11/02/2022]
|
9
|
Balandis B, Šimkūnas T, Paketurytė-Latvė V, Michailovienė V, Mickevičiūtė A, Manakova E, Gražulis S, Belyakov S, Kairys V, Mickevičius V, Zubrienė A, Matulis D. Beta and Gamma Amino Acid-Substituted Benzenesulfonamides as Inhibitors of Human Carbonic Anhydrases. Pharmaceuticals (Basel) 2022; 15:477. [PMID: 35455474 PMCID: PMC9033141 DOI: 10.3390/ph15040477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/24/2022] [Accepted: 04/07/2022] [Indexed: 02/06/2023] Open
Abstract
A series of novel benzenesulfonamide derivatives were synthesized bearing para-N β,γ-amino acid or para-N β-amino acid and thiazole moieties and their binding to the human carbonic anhydrase (CA) isozymes determined. These enzymes are involved in various illnesses, such as glaucoma, altitude sickness, epilepsy, obesity, and even cancer. There are numerous compounds that are inhibitors of CA and used as pharmaceuticals. However, most of them bind to most CA isozymes with little selectivity. The design of high affinity and selectivity towards one CA isozyme remains a significant challenge. The beta and gamma amino acid-substituted compound affinities were determined by the fluorescent thermal shift assay and isothermal titration calorimetry for all 12 catalytically active human carbonic anhydrase isozymes, showing the full affinity and selectivity profile. The structures of several compounds were determined by X-ray crystallography, and the binding mode in the active site of CA enzyme was shown.
Collapse
Affiliation(s)
- Benas Balandis
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania; (B.B.); (V.M.)
| | - Tomas Šimkūnas
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (T.Š.); (V.P.-L.); (V.M.); (A.M.); (A.Z.)
| | - Vaida Paketurytė-Latvė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (T.Š.); (V.P.-L.); (V.M.); (A.M.); (A.Z.)
| | - Vilma Michailovienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (T.Š.); (V.P.-L.); (V.M.); (A.M.); (A.Z.)
| | - Aurelija Mickevičiūtė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (T.Š.); (V.P.-L.); (V.M.); (A.M.); (A.Z.)
| | - Elena Manakova
- Department of Protein–DNA Interactions, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania; (E.M.); (S.G.)
| | - Saulius Gražulis
- Department of Protein–DNA Interactions, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania; (E.M.); (S.G.)
| | - Sergey Belyakov
- Laboratory of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia;
| | - Visvaldas Kairys
- Department of Bioinformatics, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania;
| | - Vytautas Mickevičius
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania; (B.B.); (V.M.)
| | - Asta Zubrienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (T.Š.); (V.P.-L.); (V.M.); (A.M.); (A.Z.)
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (T.Š.); (V.P.-L.); (V.M.); (A.M.); (A.Z.)
| |
Collapse
|
10
|
Moghadam ES, Mireskandari K, Abdel-Jalil R, Amini M. An approach to pharmacological targets of pyrrole family from a medicinal chemistry viewpoint. Mini Rev Med Chem 2022; 22:2486-2561. [PMID: 35339175 DOI: 10.2174/1389557522666220325150531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/12/2022] [Accepted: 01/30/2022] [Indexed: 11/22/2022]
Abstract
Pyrrole is one of the most widely used heterocycles in the pharmaceutical industry. Due to the importance of pyrrole structure in drug design and development, herein, we tried to conduct an extensive review of the bioactive pyrrole based compounds reported recently. The bioactivity of pyrrole derivatives varies, so in the review, we categorized them based on their direct pharmacologic targets. Therefore, readers are able to find the variety of biologic targets for pyrrole containing compounds easily. This review explains around seventy different biologic targets for pyrrole based derivatives, so, it is helpful for medicinal chemists in design and development novel bioactive compounds for different diseases. This review presents an extensive meaningful structure activity relationship for each reported structure as much as possible. The review focuses on papers published between 2018 and 2020.
Collapse
Affiliation(s)
- Ebrahim Saeedian Moghadam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran14176, Iran.
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
- Department of Chemistry, College of Science, Sultan Qaboos University, Muscat, P.O. Box 36, P.C. 123, Sultanate of Oman
| | - Katayoon Mireskandari
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Raid Abdel-Jalil
- Department of Chemistry, College of Science, Sultan Qaboos University, Muscat, P.O. Box 36, P.C. 123, Sultanate of Oman
| | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran14176, Iran.
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Tawfik HO, Petreni A, Supuran CT, El-Hamamsy MH. Discovery of new carbonic anhydrase IX inhibitors as anticancer agents by toning the hydrophobic and hydrophilic rims of the active site to encounter the dual-tail approach. Eur J Med Chem 2022; 232:114190. [PMID: 35182815 DOI: 10.1016/j.ejmech.2022.114190] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/19/2022] [Accepted: 02/06/2022] [Indexed: 12/13/2022]
Abstract
The hydrophobic and the hydrophilic rims in the active site of human carbonic anhydrase IX (hCA IX) which as well contains a zinc ion as part of the catalytic core, were simultaneously matched to design and synthesize potent and selective inhibitors using a dual-tail approach. Seventeen new compounds, 5a-q, were designed to have the benzenesulfonamide moiety as a zinc binding group. In addition, N-substituted hydrazone and N-phenyl fragments were chosen as the hydrophilic and hydrophobic parts, respectively to achieve favorable interactions with the corresponding halves of the active site. All synthesized compounds successfully suppressed the CA IX, with IC50 values in nanomolar range from 13.3 to 259 nM. Compounds, 5h, 5c, 5m, 5e, and 5k were the top-five compounds efficiently inhibited the tumor-related CA IX isoform in the low nanomolar range (KI = 13.3, 22.6, 25.8, 26.9 and 27.2 nM, respectively). The target compounds 5a-q developed remarkable selectivity toward the tumor-associated isoforms (hCA IX and XII) over the off-target isoforms (hCA I and II). Furthermore, they were assessed for their anti-proliferative activity, according to US-NCI protocol, against a panel of fifty-nine cancer cell lines. Compounds 5d, 5k and 5o were passed the criteria for activity and scheduled automatically for evaluation at five concentrations with 10-fold dilutions. Compound 5k exhibited significant in vitro anticancer activity with GI50-MID; 8.68 μM compared to compounds 5d and 5o with GI50-MID; 25.76 μM and 34.97 μM respectively. The most selective compounds 5h and 5k were further screened for their in vitro cytotoxic activity against SK-MEL-5, HCC-2998 and RXF 393 cancer cell lines under hypoxic conditions. Furthermore, 5k was screened for cell cycle disturbance, apoptosis induction and intracellular reactive oxygen species (ROS) production in SK-MEL-5 cancer cells. Finally, molecular docking studies were performed to gain insights for the plausible binding interactions and affinities for selected compounds within hCA IX active site.
Collapse
Affiliation(s)
- Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| | - Andrea Petreni
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy.
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy.
| | - Mervat H El-Hamamsy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
12
|
Malūkaitė D, Grybaitė B, Vaickelionienė R, Vaickelionis G, Sapijanskaitė-Banevič B, Kavaliauskas P, Mickevičius V. Synthesis of Novel Thiazole Derivatives Bearing β-Amino Acid and Aromatic Moieties as Promising Scaffolds for the Development of New Antibacterial and Antifungal Candidates Targeting Multidrug-Resistant Pathogens. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010074. [PMID: 35011308 PMCID: PMC8746625 DOI: 10.3390/molecules27010074] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/09/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022]
Abstract
Rapidly growing antimicrobial resistance among clinically important bacterial and fungal pathogens accounts for high morbidity and mortality worldwide. Therefore, it is critical to look for new small molecules targeting multidrug-resistant pathogens. Herein, in this paper we report a synthesis, ADME properties, and in vitro antimicrobial activity characterization of novel thiazole derivatives bearing β-amino acid, azole, and aromatic moieties. The in silico ADME characterization revealed that compounds 1-9 meet at least 2 Lipinski drug-like properties while cytotoxicity studies demonstrated low cytotoxicity to Vero cells. Further in vitro antimicrobial activity characterization showed the selective and potent bactericidal activity of 2a-c against Gram-positive pathogens (MIC 1-64 µg/mL) with profound activity against S. aureus (MIC 1-2 µg/mL) harboring genetically defined resistance mechanisms. Furthermore, the compounds 2a-c exhibited antifungal activity against azole resistant A. fumigatus, while only 2b and 5a showed antifungal activity against multidrug resistant yeasts including Candida auris. Collectively, these results demonstrate that thiazole derivatives 2a-c and 5a could be further explored as a promising scaffold for future development of antifungal and antibacterial agents targeting highly resistant pathogenic microorganisms.
Collapse
Affiliation(s)
- Dovilė Malūkaitė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania; (D.M.); (B.G.); (G.V.); (B.S.-B.); (P.K.); (V.M.)
| | - Birutė Grybaitė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania; (D.M.); (B.G.); (G.V.); (B.S.-B.); (P.K.); (V.M.)
| | - Rita Vaickelionienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania; (D.M.); (B.G.); (G.V.); (B.S.-B.); (P.K.); (V.M.)
- Correspondence: ; Tel.: +370-6001-6958
| | - Giedrius Vaickelionis
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania; (D.M.); (B.G.); (G.V.); (B.S.-B.); (P.K.); (V.M.)
| | - Birutė Sapijanskaitė-Banevič
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania; (D.M.); (B.G.); (G.V.); (B.S.-B.); (P.K.); (V.M.)
| | - Povilas Kavaliauskas
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania; (D.M.); (B.G.); (G.V.); (B.S.-B.); (P.K.); (V.M.)
- Weill Cornell Medicine of Cornell University, 527 East 68th Street, New York, NY 10065, USA
- Institute for Genome Sciences, School of Medicine, University of Maryland, 655 W. Baltimore Street, Baltimore, MD 21201, USA
- Biological Research Center, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės Str. 18, LT-47181 Kaunas, Lithuania
- Institute of Infectious Diseases and Pathogenic Microbiology, Birštono Str. 38A, LT-59116 Prienai, Lithuania
| | - Vytautas Mickevičius
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania; (D.M.); (B.G.); (G.V.); (B.S.-B.); (P.K.); (V.M.)
| |
Collapse
|
13
|
Balandis B, Mickevičius V, Petrikaitė V. Exploration of Benzenesulfonamide-Bearing Imidazole Derivatives Activity in Triple-Negative Breast Cancer and Melanoma 2D and 3D Cell Cultures. Pharmaceuticals (Basel) 2021; 14:1158. [PMID: 34832940 PMCID: PMC8625351 DOI: 10.3390/ph14111158] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/13/2022] Open
Abstract
Heterocyclic compounds are one of the main groups of organic compounds possessing wide range of applications in various areas of science and their derivatives are present in many bioactive structures. They display a wide variety of biological activities. Recently, more and more attention has been focused to such heterocyclic compounds as azoles. In this work, we have synthesized a series of new imidazole derivatives incorporating a benzenesulfonamide moiety in their structure, which then were evaluated for their cytotoxicity against human triple-negative breast cancer MDA-MB-231 and human malignant melanoma IGR39 cell lines by MTT assay. Benzenesulfonamide-bearing imidazole derivatives containing 4-chloro and 3,4-dichlorosubstituents in benzene ring, and 2-ethylthio and 3-ethyl groups in imidazole ring have been determined as the most active compounds. Half-maximal effective concentration (EC50) of the most cytotoxic compound was 27.8 ± 2.8 µM against IGR39 cell line and 20.5 ± 3.6 µM against MDA-MB-231 cell line. Compounds reduced cell colony formation of both cell lines and inhibited the growth and viability of IGR39 cell spheroids more efficiently compared to triple-negative breast cancer spheroids.
Collapse
Affiliation(s)
- Benas Balandis
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania;
| | - Vytautas Mickevičius
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania;
| | - Vilma Petrikaitė
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių pr. 13, LT-50162 Kaunas, Lithuania;
- Institute of Physiology and Pharmacology, Faculty of Medicine, Lithuanian University of Health Sciences, A. Mickevičiaus g. 9, LT-44307 Kaunas, Lithuania
| |
Collapse
|
14
|
Smirnovienė J, Smirnov A, Zakšauskas A, Zubrienė A, Petrauskas V, Mickevičiūtė A, Michailovienė V, Čapkauskaitė E, Manakova E, Gražulis S, Baranauskienė L, Chen W, Ladbury JE, Matulis D. Switching the Inhibitor-Enzyme Recognition Profile via Chimeric Carbonic Anhydrase XII. ChemistryOpen 2021; 10:567-580. [PMID: 33945229 PMCID: PMC8095314 DOI: 10.1002/open.202100042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/08/2021] [Indexed: 01/02/2023] Open
Abstract
A key part of the optimization of small molecules in pharmaceutical inhibitor development is to vary the molecular design to enhance complementarity of chemical features of the compound with the positioning of amino acids in the active site of a target enzyme. Typically this involves iterations of synthesis, to modify the compound, and biophysical assay, to assess the outcomes. Selective targeting of the anti-cancer carbonic anhydrase isoform XII (CA XII), this process is challenging because the overall fold is very similar across the twelve CA isoforms. To enhance drug development for CA XII we used a reverse engineering approach where mutation of the key six amino acids in the active site of human CA XII into the CA II isoform was performed to provide a protein chimera (chCA XII) which is amenable to structure-based compound optimization. Through determination of structural detail and affinity measurement of the interaction with over 60 compounds we observed that the compounds that bound CA XII more strongly than CA II, switched their preference and bound more strongly to the engineered chimera, chCA XII, based on CA II, but containing the 6 key amino acids from CA XII, behaved as CA XII in its compound recognition profile. The structures of the compounds in the chimeric active site also resembled those determined for complexes with CA XII, hence validating this protein engineering approach in the development of new inhibitors.
Collapse
Affiliation(s)
- Joana Smirnovienė
- Department of Biothermodynamics and Drug DesignInstitute of BiotechnologyLife Sciences CenterVilnius UniversitySaulėtekio 7Vilnius10257Lithuania
| | - Alexey Smirnov
- Department of Biothermodynamics and Drug DesignInstitute of BiotechnologyLife Sciences CenterVilnius UniversitySaulėtekio 7Vilnius10257Lithuania
| | - Audrius Zakšauskas
- Department of Biothermodynamics and Drug DesignInstitute of BiotechnologyLife Sciences CenterVilnius UniversitySaulėtekio 7Vilnius10257Lithuania
| | - Asta Zubrienė
- Department of Biothermodynamics and Drug DesignInstitute of BiotechnologyLife Sciences CenterVilnius UniversitySaulėtekio 7Vilnius10257Lithuania
| | - Vytautas Petrauskas
- Department of Biothermodynamics and Drug DesignInstitute of BiotechnologyLife Sciences CenterVilnius UniversitySaulėtekio 7Vilnius10257Lithuania
| | - Aurelija Mickevičiūtė
- Department of Biothermodynamics and Drug DesignInstitute of BiotechnologyLife Sciences CenterVilnius UniversitySaulėtekio 7Vilnius10257Lithuania
| | - Vilma Michailovienė
- Department of Biothermodynamics and Drug DesignInstitute of BiotechnologyLife Sciences CenterVilnius UniversitySaulėtekio 7Vilnius10257Lithuania
| | - Edita Čapkauskaitė
- Department of Biothermodynamics and Drug DesignInstitute of BiotechnologyLife Sciences CenterVilnius UniversitySaulėtekio 7Vilnius10257Lithuania
| | - Elena Manakova
- Department of Protein-DNA InteractionsInstitute of BiotechnologyLife Sciences CenterVilnius UniversitySaulėtekio 7Vilnius10257Lithuania
| | - Saulius Gražulis
- Department of Protein-DNA InteractionsInstitute of BiotechnologyLife Sciences CenterVilnius UniversitySaulėtekio 7Vilnius10257Lithuania
| | - Lina Baranauskienė
- Department of Biothermodynamics and Drug DesignInstitute of BiotechnologyLife Sciences CenterVilnius UniversitySaulėtekio 7Vilnius10257Lithuania
| | - Wen‐Yih Chen
- Department of Chemical and Materials EngineeringInstitute of Systems Biology and BioinformaticsNational Central UniversityTaiwan
| | - John E. Ladbury
- School of Molecular and Cellular BiologyUniversity of LeedsLC Miall BuildingLeedsLS2 9JTUK
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug DesignInstitute of BiotechnologyLife Sciences CenterVilnius UniversitySaulėtekio 7Vilnius10257Lithuania
| |
Collapse
|
15
|
Sapijanskaitė-Banevič B, Palskys V, Vaickelionienė R, Šiugždaitė J, Kavaliauskas P, Grybaitė B, Mickevičius V. Synthesis and Antibacterial Activity of New Azole, Diazole and Triazole Derivatives Based on p-Aminobenzoic Acid. Molecules 2021; 26:molecules26092597. [PMID: 33946936 PMCID: PMC8125559 DOI: 10.3390/molecules26092597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/16/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022] Open
Abstract
The p-aminobenzoic acid was applied for the synthesis of substituted 1-phenyl-5-oxopyrrolidine derivatives containing benzimidazole, azole, oxadiazole, triazole, dihydrazone, and dithiosemicarbazide moieties in the structure. All the obtained compounds were evaluated for their in vitro antimicrobial activity against Staphylococcus aureus, Bacillus cereus, Listeria monocytogenes, Salmonella enteritidis, Escherichia coli, and Pseudomonas aeruginosa by using MIC and MBC assays. This study showed a good bactericidal activity of γ-amino acid and benzimidazoles derivatives. The antimicrobial activity of the most promising compounds was higher than ampicillin. Furthermore, two benzimidazoles demonstrated good antimicrobial activity against L. monocytogenes (MIC 15.62 µg/mL) that was four times more potent than ampicillin (MIC 65 µg/mL). Further studies are needed to better understand the mechanism of the antimicrobial activity as well as to generate antimicrobial compounds based on the 1-phenyl-5-oxopyrrolidine scaffold.
Collapse
Affiliation(s)
- Birutė Sapijanskaitė-Banevič
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania; (B.S.-B.); (B.G.); (V.M.)
| | - Vykintas Palskys
- Thermo Fisher Scientific, V. A. Graičiūno st. 8, LT-02241 Vilnius, Lithuania;
| | - Rita Vaickelionienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania; (B.S.-B.); (B.G.); (V.M.)
- Correspondence: ; Tel.: +370-600-16-958
| | - Jūratė Šiugždaitė
- Department of Veterinary Pathobiology, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės Str. 18, LT-47181 Kaunas, Lithuania;
| | - Povilas Kavaliauskas
- Weill Cornell Medicine of Cornell University, 527 East 68th Street, New York, NY 10065, USA;
- Institute for Genome Sciences, School of Medicine, University of Maryland, 655 W. Baltimore Street, Baltimore, MD 21201, USA
- Biological Research Center, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės Str. 18, LT-47181 Kaunas, Lithuania
| | - Birutė Grybaitė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania; (B.S.-B.); (B.G.); (V.M.)
| | - Vytautas Mickevičius
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania; (B.S.-B.); (B.G.); (V.M.)
| |
Collapse
|
16
|
Buabeng ER, Henary M. Developments of small molecules as inhibitors for carbonic anhydrase isoforms. Bioorg Med Chem 2021; 39:116140. [PMID: 33905966 DOI: 10.1016/j.bmc.2021.116140] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/08/2021] [Accepted: 03/23/2021] [Indexed: 11/29/2022]
Abstract
Carbonic anhydrases are ubiquitous, and their role in the hydration of carbon dioxide is essential for the survival of many tissues and organs. However, their association with many pathological diseases, especially in glaucoma, Alzheimer's, obesity, epilepsy, and tumorigenesis, has prompted the design and synthesis of novel carbonic anhydrase inhibitors (CAIs). Herein we describe (1) approaches used in the design of CAIs and (2) synthesis of small molecules as CAIs within the last five years. Despite the active research in this area, there are still more avenues to explore, especially selective inhibition of CA I, CA IX, and XII. These isoforms would continue to open up a diversity of carbonic anhydrase inhibitors containing 1,2,3-triazoles, imidazolone, pyrrolidone, thiadiazole, isatin, and glycoconjugates as part of their molecular frameworks.
Collapse
Affiliation(s)
- Emmanuel Ramsey Buabeng
- Department of Chemistry, 100 Piedmont Avenue SE, Georgia State University, Atlanta, GA 30303, USA; Center for Diagnostics and Therapeutics, 100 Piedmont Avenue SE, Georgia State University, Atlanta, GA 30303, USA
| | - Maged Henary
- Department of Chemistry, 100 Piedmont Avenue SE, Georgia State University, Atlanta, GA 30303, USA; Center for Diagnostics and Therapeutics, 100 Piedmont Avenue SE, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
17
|
Li HJ, Wang QS, Han W, Zhou H, Li P, Zhou F, Qin W, Zhao D, Zhou X, He CX, Xing L, Li PQ, Jin X, Yu F, He JH, Cao HL. Anti-NSCLC activity in vitro of Hsp90 N inhibitor KW-2478 and complex crystal structure determination of Hsp90 N-KW-2478. J Struct Biol 2021; 213:107710. [PMID: 33610655 DOI: 10.1016/j.jsb.2021.107710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 10/22/2022]
Abstract
KW-2478 is a promising anti-cancer lead compound targeting to the molecular chaperone heat shock protein 90 N (Hsp90N). Absence of complex crystal structure of Hsp90N-KW-2478, however, hampered further structure optimization of KW-2478 and understanding on the molecular interaction mechanism. Herein, a high-resolution complex crystal structure of Hsp90N-KW-2478 was determined by X-ray diffraction (XRD, resolution limit: 1.59 Å; PDB ID: 6LT8) and their molecular interaction was analyzed in detail, which suggested that KW-2478 perfectly bound in the N-terminal ATP-binding pocket of Hsp90 to disable its molecular chaperone function, therefore suppressed or killed cancer cells. The results from thermal shift assay (TSA, ΔTm, 18.82 ± 0.51 °C) and isothermal titration calorimetry (ITC, Kd, 7.30 ± 2.20 nM) suggested that there is an intense binding force and favorable thermodynamic changes during the process of KW-2478 binding with Hsp90N. Additionally, KW-2478 exhibited favorable anti-NSCLC activity in vitro, as it inhibited cell proliferation (IC50, 8.16 μM for A549; 14.29 μM for H1975) and migration, induced cell cycle arrest and promoted apoptosis. Thirty-six novel KW-2478 derivatives were designed, based on the complex crystal structure and molecular interaction analysis of Hsp90N-KW-2478 complex. Among them, twenty-two derivatives exhibited increased binding force with Hsp90N evaluated by molecular docking assay. The results would provide new guidance for anti-NSCLC new drug development based on the lead compound KW-2478.
Collapse
Affiliation(s)
- Hui-Jin Li
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic & Translational Medicine, Xi'an Medical University, Xi'an 710021, China
| | - Qi-Sheng Wang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wen Han
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic & Translational Medicine, Xi'an Medical University, Xi'an 710021, China
| | - Huan Zhou
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ping Li
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic & Translational Medicine, Xi'an Medical University, Xi'an 710021, China
| | - Fang Zhou
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic & Translational Medicine, Xi'an Medical University, Xi'an 710021, China
| | - Wei Qin
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic & Translational Medicine, Xi'an Medical University, Xi'an 710021, China
| | - Dong Zhao
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic & Translational Medicine, Xi'an Medical University, Xi'an 710021, China
| | - Xin Zhou
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic & Translational Medicine, Xi'an Medical University, Xi'an 710021, China
| | - Chun-Xia He
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic & Translational Medicine, Xi'an Medical University, Xi'an 710021, China
| | - Lu Xing
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic & Translational Medicine, Xi'an Medical University, Xi'an 710021, China
| | - Peng-Quan Li
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic & Translational Medicine, Xi'an Medical University, Xi'an 710021, China
| | - Xi Jin
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic & Translational Medicine, Xi'an Medical University, Xi'an 710021, China
| | - Feng Yu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Jian-Hua He
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, China; Institute for Advanced Studies, Wuhan University, Wuhan 430072, China.
| | - Hui-Ling Cao
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic & Translational Medicine, Xi'an Medical University, Xi'an 710021, China.
| |
Collapse
|
18
|
Yunusova SN, Novikov AS, Soldatova NS, Vovk MA, Bolotin DS. Iodonium salts as efficient iodine(iii)-based noncovalent organocatalysts for Knorr-type reactions. RSC Adv 2021; 11:4574-4583. [PMID: 35424399 PMCID: PMC8694507 DOI: 10.1039/d0ra09640g] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/05/2021] [Indexed: 12/11/2022] Open
Abstract
Hypervalent iodine(iii)-derivatives display higher catalytic activity than other aliphatic and aromatic iodine(i)- or bromine(i)-containing substrates for a Knorr-type reaction of N-acetyl hydrazides with acetyl acetone to give N-acyl pyrazoles. The highest activity was observed for dibenziodolium triflate, for which 10 mol% resulted in the generation of N-acyl pyrazole from acyl hydrazide and acetyl acetone typically at 50 °C for 3.5-6 h with up to 99% isolated yields. 1H NMR titration data and DFT calculations indicate that the catalytic activity of the iodine(iii) is caused by the binding with a ketone.
Collapse
Affiliation(s)
- Sevilya N Yunusova
- Institute of Chemistry, Saint Petersburg State University Universitetskaya Nab. 7/9 Saint Petersburg 199034 Russian Federation
| | - Alexander S Novikov
- Institute of Chemistry, Saint Petersburg State University Universitetskaya Nab. 7/9 Saint Petersburg 199034 Russian Federation
| | - Natalia S Soldatova
- Institute of Chemistry, Saint Petersburg State University Universitetskaya Nab. 7/9 Saint Petersburg 199034 Russian Federation
| | - Mikhail A Vovk
- Center for Magnetic Resonance, Saint Petersburg State University Universitetskii Pr., 26 Saint Petersburg 198504 Russian Federation
| | - Dmitrii S Bolotin
- Institute of Chemistry, Saint Petersburg State University Universitetskaya Nab. 7/9 Saint Petersburg 199034 Russian Federation
| |
Collapse
|
19
|
Synthesis, Characterization and Bioassay of Novel Substituted 1-(3-(1,3-Thiazol-2-yl)phenyl)-5-oxopyrrolidines. Molecules 2020; 25:molecules25102433. [PMID: 32456041 PMCID: PMC7288019 DOI: 10.3390/molecules25102433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/27/2022] Open
Abstract
Thiazole derivatives attract the attention of scientists both in the field of organic synthesis and bioactivity research due to their high biological activity. In the present study, thiazole ring was obtained by the interaction of 1-(4-(bromoacetyl)phenyl)-5-oxopyrrolidine-3-carboxylic acid with thiocarbamide or benzenecarbothioamide, as well as tioureido acid. A series of substituted 1-(3-(1,3-thiazol-2-yl)phenyl)-5-oxopyrrolidines with pyrrolidinone, thiazole, pyrrole, 1,2,4-triazole, oxadiazole and benzimidazole heterocyclic fragments were synthesized and their antibacterial properties were evaluated against Gram-positive strains of Staphylococcus aureus, Bacillus cereus, Listeria monocytogenes and Gram-negative Pseudomonas aeruginosa, Escherichia coli and Salmonella enterica enteritidis. The vast majority of compounds exhibited between twofold and 16-fold increased antibacterial effect against the test-cultures when compared with Oxytetracycline.
Collapse
|