1
|
Dang X, Xue Y, Zhang S, Chen M, Sheng K, Ma J, Gao S, Wang Y. Recent advances in anti-tumor mechanisms and biological applications of vanadium compounds. Biomed Mater 2025; 20:032009. [PMID: 40315899 DOI: 10.1088/1748-605x/add3e5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 05/01/2025] [Indexed: 05/04/2025]
Abstract
Vanadium, a transition metal, has emerged as a promising element in the development of therapeutic drugs. While not an essential element for life, vanadium compounds have demonstrated significant potential as anticancer agents. Current evidence suggests that these compounds exert their anti-tumor effects through multiple mechanisms, including DNA damage, cell cycle regulation, induction of apoptosis and autophagy, inhibition of metastasis and invasion, and disruption of mitochondrial function. Furthermore, vanadium compounds have shown efficacy against a wide range of cancers, such as melanoma, breast, colorectal, pancreatic, liver, and central nervous system tumors, as well as oral squamous cell carcinoma. This review aims to comprehensively examine the anti-tumor properties and underlying mechanisms of various vanadium compounds while also providing an overview of their current biological applications.
Collapse
Affiliation(s)
- Xinhao Dang
- School of Life Sciences, Anhui University, Hefei 230601 Anhui, People's Republic of China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601 Anhui, People's Republic of China
| | - Yan Xue
- School of Life Sciences, Anhui University, Hefei 230601 Anhui, People's Republic of China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601 Anhui, People's Republic of China
| | - Siying Zhang
- School of Life Sciences, Anhui University, Hefei 230601 Anhui, People's Republic of China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601 Anhui, People's Republic of China
| | - Menglan Chen
- School of Life Sciences, Anhui University, Hefei 230601 Anhui, People's Republic of China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601 Anhui, People's Republic of China
| | - Kangliang Sheng
- School of Life Sciences, Anhui University, Hefei 230601 Anhui, People's Republic of China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601 Anhui, People's Republic of China
| | - Jie Ma
- Department of Thoracic Surgery, Anhui Chest Hospital, Hefei, Anhui, People's Republic of China
| | - Shan Gao
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Anhui University, Hefei, People's Republic of China
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei 230601 Anhui, People's Republic of China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601 Anhui, People's Republic of China
| |
Collapse
|
2
|
Alizadeh M, Yadollahi B. Synthesis of nanoscale surfactant-encapsulated silica-supported polyoxometalate [Si/AlO 2]@[PWZn]@CTAB and its catalytic application in the oxidation of alcohols. RSC Adv 2025; 15:8777-8783. [PMID: 40124916 PMCID: PMC11926973 DOI: 10.1039/d5ra00821b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025] Open
Abstract
Silica-supported polyoxometalates [Si/AlO2]@[PWM] (M = Zn, Cu, Ni, Co, Fe, Mn, and Cr) were produced by immobilizing transition metal substituted Keggin-type polyoxometalates on cationic silica nanoparticles. These silica-supported polyoxometalates were then encapsulated with hexadecyltrimethylammonium bromide to obtain [Si/AlO2]@[PWM]@CTAB (M = Zn, Cu, Ni, Co, Fe, Mn, and Cr) to prevent polyoxometalate leaching. Characterization by FT-IR, TG-DTG, XRD, SEM, and TEM indicated that the polyoxometalate structure was retained after immobilization and encapsulation. These nanoscale compounds were used as heterogeneous catalysts in the oxidation of various alcohols, achieving very good to excellent yields with H2O2 as an oxidant, and demonstrating high reusability. These benefits introduce surfactant-encapsulated silica-supported polyoxometalates as highly efficient heterogeneous catalysts in different oxidation reactions.
Collapse
Affiliation(s)
- Mohammad Alizadeh
- Department of Chemistry, University of Isfahan Isfahan 81746-73441 Iran
| | - Bahram Yadollahi
- Department of Chemistry, University of Isfahan Isfahan 81746-73441 Iran
| |
Collapse
|
3
|
Arduino I, Francese R, Civra A, Feyles E, Argenziano M, Volante M, Cavalli R, Mougharbel AM, Kortz U, Donalisio M, Lembo D. Polyoxometalate exerts broad-spectrum activity against human respiratory viruses hampering viral entry. Antiviral Res 2024; 226:105897. [PMID: 38685531 DOI: 10.1016/j.antiviral.2024.105897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
Human respiratory viruses have an enormous impact on national health systems, societies, and economy due to the rapid airborne transmission and epidemic spread of such pathogens, while effective specific antiviral drugs to counteract infections are still lacking. Here, we identified two Keggin-type polyoxometalates (POMs), [TiW11CoO40]8- (TiW11Co) and [Ti2PW10O40]7- (Ti2PW10), endowed with broad-spectrum activity against enveloped and non-enveloped human respiratory viruses, i.e., coronavirus (HCoV-OC43), rhinovirus (HRV-A1), respiratory syncytial virus (RSV-A2), and adenovirus (AdV-5). Ti2PW10 showed highly favorable selectivity indexes against all tested viruses (SIs >700), and its antiviral potential was further investigated against human coronaviruses and rhinoviruses. This POM was found to inhibit replication of multiple HCoV and HRV strains, in different cell systems. Ti2PW10 did not affect virus binding or intracellular viral replication, but selectively inhibited the viral entry. Serial passaging of virus in presence of the POM revealed a high barrier to development of Ti2PW10-resistant variants of HRV-A1 or HCoV-OC43. Moreover, Ti2PW10 was able to inhibit HRV-A1 production in a 3D model of the human nasal epithelium and, importantly, the antiviral treatment did not determine cytotoxicity or tissue damage. A mucoadhesive thermosensitive in situ hydrogel formulation for nasal delivery was also developed for Ti2PW10. Overall, good biocompatibility on cell lines and human nasal epithelia, broad-spectrum activity, and absence of antiviral resistance development reveal the potential of Ti2PW10 as an antiviral candidate for the development of a treatment of acute respiratory viral diseases, warranting further studies to identify the specific target/s of the polyanion and assess its clinical potential.
Collapse
Affiliation(s)
- Irene Arduino
- Department of Clinical and Biological Sciences, Laboratory of Molecular Virology and Antiviral Research, University of Turin, Regione Gonzole 10, 10043, Orbassano, Turin, Italy.
| | - Rachele Francese
- Department of Clinical and Biological Sciences, Laboratory of Molecular Virology and Antiviral Research, University of Turin, Regione Gonzole 10, 10043, Orbassano, Turin, Italy.
| | - Andrea Civra
- Department of Clinical and Biological Sciences, Laboratory of Molecular Virology and Antiviral Research, University of Turin, Regione Gonzole 10, 10043, Orbassano, Turin, Italy.
| | - Elisa Feyles
- Department of Clinical and Biological Sciences, Laboratory of Molecular Virology and Antiviral Research, University of Turin, Regione Gonzole 10, 10043, Orbassano, Turin, Italy.
| | - Monica Argenziano
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10100, Torino, Italy.
| | - Marco Volante
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043, Orbassano, Turin, Italy.
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10100, Torino, Italy.
| | - Ali M Mougharbel
- School of Science, Constructor University, Campus Ring 1, 28759, Bremen, Germany.
| | - Ulrich Kortz
- School of Science, Constructor University, Campus Ring 1, 28759, Bremen, Germany.
| | - Manuela Donalisio
- Department of Clinical and Biological Sciences, Laboratory of Molecular Virology and Antiviral Research, University of Turin, Regione Gonzole 10, 10043, Orbassano, Turin, Italy.
| | - David Lembo
- Department of Clinical and Biological Sciences, Laboratory of Molecular Virology and Antiviral Research, University of Turin, Regione Gonzole 10, 10043, Orbassano, Turin, Italy.
| |
Collapse
|
4
|
Li Z, Duan Y, Yu Y, Su Y, Zhang M, Gao Y, Jiang L, Zhang H, Lian X, Zhu X, Ke J, Peng Q, Chen X. Sodium Polyoxotungstate Inhibits the Replication of Influenza Virus by Blocking the Nuclear Import of vRNP. Microorganisms 2024; 12:1017. [PMID: 38792846 PMCID: PMC11124062 DOI: 10.3390/microorganisms12051017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Both pandemic and seasonal influenza are major health concerns, causing significant mortality and morbidity. Current influenza drugs primarily target viral neuraminidase and RNA polymerase, which are prone to drug resistance. Polyoxometalates (POMs) are metal cation clusters bridged by oxide anions. They have exhibited potent anti-tumor, antiviral, and antibacterial effects. They have remarkable activity against various DNA and RNA viruses, including human immunodeficiency virus, herpes simplex virus, hepatitis B and C viruses, dengue virus, and influenza virus. In this study, we have identified sodium polyoxotungstate (POM-1) from an ion channel inhibitor library. In vitro, POM-1 has been demonstrated to have potent antiviral activity against H1N1, H3N2, and oseltamivir-resistant H1N1 strains. POM-1 can cause virion aggregation during adsorption, as well as endocytosis. However, the aggregation is reversible; it does not interfere with virus adsorption and endocytosis. Our results suggest that POM-1 exerts its antiviral activity by inhibiting the nuclear import of viral ribonucleoprotein (vRNP). This distinct mechanism of action, combined with its wide range of efficacy, positions POM-1 as a promising therapeutic candidate for influenza treatment and warrants further investigation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Xulin Chen
- Institute of Medical Microbiology, Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (Z.L.); (Y.D.); (Y.Y.); (Y.S.); (M.Z.); (Y.G.); (L.J.); (H.Z.); (X.L.); (X.Z.); (J.K.); (Q.P.)
| |
Collapse
|
5
|
Chen L, Zhao Z, Diarimalala RO, Chen Z, Wang Y, Zhan T, Zhao Y, Ma C, Wang X, Zhao C, Xiao Z, Hu K, Wu P. Tris-Functionalized Polyoxotungstovanadate-Mediated Antitumor Efficacy Involves Multiple Cell Death Pathways. Chem Biodivers 2024; 21:e202301898. [PMID: 38369765 DOI: 10.1002/cbdv.202301898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/27/2023] [Accepted: 02/17/2024] [Indexed: 02/20/2024]
Abstract
Polyoxometalates (POMs) are promising inorganic drug candidates for cancer chemotherapy. They are becoming attractive because of their easy accessibility and low cost. Herein, we report the synthesis and antitumor activity studies of four Lindqvist-type POMs with mixed-addenda atoms Na2[V4W2O16{(OCH2)3CR}] (R=-CH2OH, -CH3, -CH2CH3) and (Bu4N)2[V3W3{(OCH2)3CH2OOCCH2CH3}]. Compared with the current clinical applied antitumor drug 5-fluorouracil (5-FU) or Gemcitabine, analysis of MTT/CCK-8 assay, colony formation and wound healing assay revealed that the {V4W2} POMs had acceptable cytotoxicity in normal cells (293T) and significant inhibitory effects on cell proliferation and migration in three human tumor cell lines: human lung carcinoma cells (A549), human cervical carcinoma cells (HeLa), and human breast cancer cells (MCF-7). Interestingly, among the POMs analyzed, the therapeutic index (TI) of the {V4W2} POM with R= -CH2OH was relatively the most satisfactory. Thus, it was subsequently used for further studies. Flow cytometry analysis showed it prompted cellular apoptosis rate. qRT-PCR and Western blotting analysis indicated that multiple cell death pathways were activated including apoptosis, autophagy, necroptosis and pyroptosis during the POM-mediated antitumor process. In conclusion, our study shows that the polyoxotungstovanadate has great potential to be developed into a broad-spectrum antitumor chemotherapeutic drug.
Collapse
Affiliation(s)
- Lihong Chen
- Institute of POM-based Materials, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, 430068, Hubei, PR China
| | - Zijia Zhao
- Sino-German Biomedical Center, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, 430068, Hubei, PR China
| | - Rominah Onintsoa Diarimalala
- Sino-German Biomedical Center, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, 430068, Hubei, PR China
| | - Zhongwei Chen
- Sino-German Biomedical Center, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, 430068, Hubei, PR China
| | - Yu Wang
- Institute of POM-based Materials, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, 430068, Hubei, PR China
| | - Taozhu Zhan
- Institute of POM-based Materials, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, 430068, Hubei, PR China
| | - Yanchao Zhao
- Institute of POM-based Materials, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, 430068, Hubei, PR China
| | - Chunhui Ma
- Institute of POM-based Materials, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, 430068, Hubei, PR China
| | - Xingyue Wang
- Institute of POM-based Materials, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, 430068, Hubei, PR China
| | - Chenqi Zhao
- Institute of POM-based Materials, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, 430068, Hubei, PR China
| | - Zicheng Xiao
- Institute of POM-based Materials, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, 430068, Hubei, PR China
| | - Kanghong Hu
- Sino-German Biomedical Center, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, 430068, Hubei, PR China
| | - Pingfan Wu
- Institute of POM-based Materials, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, 430068, Hubei, PR China
| |
Collapse
|
6
|
Korenev VS, Burilova EA, Volchek VV, Benassi E, Amirov RR, Sokolov MN, Abramov PA. NMR-Relaxometric Investigation of Mn(II)-Doped Polyoxometalates in Aqueous Solutions. Int J Mol Sci 2023; 24:ijms24087308. [PMID: 37108471 PMCID: PMC10139238 DOI: 10.3390/ijms24087308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Solution behavior of K;5[(Mn(H2O))PW11O39]·7H2O (1), Na3.66(NH4)4.74H3.1[(MnII(H2O))2.75(WO(H2O))0.25(α-B-SbW9O33)2]·27H2O (2), and Na4.6H3.4[(MnII(H2O)3)2(WO2)2(β-B-TeW9O33)2]·19H2O (3) was studied with NMR-relaxometry and HPLC-ICP-AES (High Performance Liquid Chromatography coupled with Inductively Coupled Plasma Atomic Emission Spectroscopy). According to the data, the [(Mn(H2O))PW11O39]5- Keggin-type anion is the most stable in water among the tested complexes, even in the presence of ethylenediaminetetraacetic acid (EDTA) or diethylenetriaminepentaacetic acid (DTPA). Aqueous solutions of 2 and 3 anions are less stable and contain other species resulting from dissociation of Mn2+. Quantum chemical calculations show the change in Mn2+ electronic state between [Mn(H2O)6]2+ and [(Mn(H2O))PW11O39]5-.
Collapse
Affiliation(s)
- Vladimir S Korenev
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Evgenia A Burilova
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya Str. 18, Kazan 420008, Russia
- A.E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Street 8, Kazan 420088, Russia
| | - Victoria V Volchek
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Enrico Benassi
- Faculty of Natural Sciences, Novosibirsk State University, 1 Pirogova Str., Novosibirsk 630090, Russia
| | - Rustem R Amirov
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya Str. 18, Kazan 420008, Russia
| | - Maxim N Sokolov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Pavel A Abramov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad. Lavrentiev Ave., Novosibirsk 630090, Russia
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634034, Russia
| |
Collapse
|
7
|
Raabe JC, Aceituno Cruz J, Albert J, Poller MJ. Comparative Spectroscopic and Electrochemical Study of V(V)-Substituted Keggin-Type Phosphomolybdates and -Tungstates. INORGANICS 2023. [DOI: 10.3390/inorganics11040138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Vanadium-substituted Keggin-type heteropolyanions have been studied for a wide variety of applications, ranging from catalysis to antiviral/antimicrobial agents. While the V-substituted phosphomolybdates [PVxMo12−xO40](3+x)− have been well investigated in this context, comparatively little is known about the corresponding phosphotungstates [PVxW12-xO40](3+x)−. We have succeeded in synthesizing the sodium salts of the whole series [PVxW12−xO40](3+x)−, for x = 1 to 6, and characterised them spectroscopically (FT-IR, UV-Vis, 31P-, and 51V-NMR) and electrochemically (CV and SWV). Thereby, direct comparisons between the vanadium-substituted phosphomolybdates and -tungstates, with substitution degrees from 1 to 6, can be established, which provides a solid basis for further investigations of potential applications.
Collapse
Affiliation(s)
- Jan-Christian Raabe
- Institute for Technical and Macromolecular Chemistry, Universität Hamburg, Bundesstraße 45, 20146 Hamburg, Germany
| | - José Aceituno Cruz
- Institute for Technical and Macromolecular Chemistry, Universität Hamburg, Bundesstraße 45, 20146 Hamburg, Germany
| | - Jakob Albert
- Institute for Technical and Macromolecular Chemistry, Universität Hamburg, Bundesstraße 45, 20146 Hamburg, Germany
| | - Maximilian J. Poller
- Institute for Technical and Macromolecular Chemistry, Universität Hamburg, Bundesstraße 45, 20146 Hamburg, Germany
| |
Collapse
|
8
|
Faleiro L, Marques A, Martins J, Jordão L, Nogueira I, Gumerova NI, Rompel A, Aureliano M. The Preyssler-Type Polyoxotungstate Exhibits Anti-Quorum Sensing, Antibiofilm, and Antiviral Activities. BIOLOGY 2022; 11:994. [PMID: 36101375 PMCID: PMC9311568 DOI: 10.3390/biology11070994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 12/31/2022]
Abstract
The increase in bacterial resistance to antibiotics has led researchers to find new compounds or find combinations between different compounds with potential antibacterial action and with the ability to prevent the development of antibiotic resistance. Polyoxotungstates (POTs) are inorganic clusters that may fulfill that need, either individually or in combination with antibiotics. Herein, we report the ability of the polyoxotungstates (POTs) with Wells-Dawson P2W18, P2W17, P2W15, and Preyssler P5W30 type structures to differently affect Gram-negative and Gram-positive microorganisms, either susceptible or resistant to antibiotics. The compound P5W30 showed the highest activity against the majority of the tested bacterial strains in comparison with the other tested POTs (P2W15, P2W17 and P2W18) that did not show inhibition zones for the Gram-negative bacteria, A. baumanii I73775, E. coli DSM 1077, E. coli I73194, K. pneumoniae I7092374, and P. aeruginosa C46281). Generally, the results evidenced that Gram-positive bacteria are more susceptible to the POTs tested. The compound P5W30 was the one most active against S. aureus ATCC 6538 and MRSA16, reaching <0.83 mg·mL−1 (100 μM) and 4.96 mg·mL−1 (600 μM), respectively. Moreover, it was verified by NMR spectroscopy that the most promising POT, P5W30, remains intact under all the experimental conditions, after 24 h at 37 °C. This prompted us to further evaluate the anti-quorum sensing activity of P5W30 using the biosensor Chromobacterium violaceum CV026, as well as its antibiofilm activity both individually and in combination with the antibiotic cefoxitin against the methicillin-resistant Staphylococcus aureus 16 (MRSA16). P5W30 showed a synergistic antibacterial effect with the antibiotic cefoxitin and chloramphenicol against MRSA16. Moreover, the antibiofilm activity of P5W30 was more pronounced when used individually, in comparison with the combination with the antibiotic cefoxitin. Finally, the antiviral activity of P5W30 was tested using the coliphage Qβ, showing a dose-dependent response. The maximum inactivation was observed at 750 μM (6.23 mg·mL−1). In sum, P5W30 shows anti-quorum sensing and antibiofilm activities besides being a potent antibacterial agent against S. aureus and to exhibit antiviral activities against enteric viruses.
Collapse
Affiliation(s)
- Leonor Faleiro
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (A.M.); (J.M.)
- Algarve Biomedical Center—Research Institute, 8005-139 Faro, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Ana Marques
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (A.M.); (J.M.)
- Algarve Biomedical Center—Research Institute, 8005-139 Faro, Portugal
| | - João Martins
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (A.M.); (J.M.)
- Centro de Ciências do Mar (CCMar), Universidade do Algarve, 8005-139 Faro, Portugal
| | - Luísa Jordão
- Departamento de Saúde Ambiental (DSA), Instituto Nacional de Saúde Doutor Ricardo Jorge (INSA), Unidade de Investigação e Desenvolvimento, 1649-016 Lisboa, Portugal;
| | - Isabel Nogueira
- MicroLab, Instituto Superior Técnico, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal;
| | - Nadiia I. Gumerova
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, 1090 Wien, Austria; (N.I.G.); (A.R.)
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, 1090 Wien, Austria; (N.I.G.); (A.R.)
| | - Manuel Aureliano
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (A.M.); (J.M.)
- Centro de Ciências do Mar (CCMar), Universidade do Algarve, 8005-139 Faro, Portugal
| |
Collapse
|
9
|
Wang X, Wei S, Zhao C, Li X, Jin J, Shi X, Su Z, Li J, Wang J. Promising application of polyoxometalates in the treatment of cancer, infectious diseases and Alzheimer's disease. J Biol Inorg Chem 2022; 27:405-419. [PMID: 35713714 PMCID: PMC9203773 DOI: 10.1007/s00775-022-01942-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 05/09/2022] [Indexed: 11/28/2022]
Abstract
As shown in studies conducted in recent decades, polyoxometalates (POMs), as inorganic metal oxides, have promising biological activities, including antitumor, anti-infectious and anti-Alzheimer’s activities, due to their special structures and properties. However, some side effects impede their clinical applications to a certain extent. Compared with unmodified POMs, POM-based inorganic–organic hybrids and POM-based nanocomposite structures show significantly enhanced bioactivity and reduced side effects. In this review, we introduce the biological activities of POMs and their derivatives and highlight the side effects of POMs on normal cells and organisms and their possible mechanisms of action. We then propose a development direction for overcoming their side effects. POMs are expected to constitute a new generation of inorganic metal drugs for the treatment of cancer, infectious diseases, and Alzheimer's disease. Graphical abstract![]()
Collapse
Affiliation(s)
- Xuechen Wang
- School of Public Health, Jilin University, Changchun, Jilin, China
| | - Shengnan Wei
- School of Public Health, Jilin University, Changchun, Jilin, China
| | - Chao Zhao
- School of Public Health, Jilin University, Changchun, Jilin, China
| | - Xin Li
- School of Public Health, Jilin University, Changchun, Jilin, China
| | - Jin Jin
- School of Public Health, Jilin University, Changchun, Jilin, China
| | - Xuening Shi
- School of Public Health, Jilin University, Changchun, Jilin, China
| | - Zhenyue Su
- School of Public Health, Jilin University, Changchun, Jilin, China
| | - Juan Li
- School of Public Health, Jilin University, Changchun, Jilin, China.
| | - Juan Wang
- School of Public Health, Jilin University, Changchun, Jilin, China.
| |
Collapse
|
10
|
Favre D, Harmon JF, Zhang A, Miller MS, Kaltashov IA. Decavanadate interactions with the elements of the SARS-CoV-2 spike protein highlight the potential role of electrostatics in disrupting the infectivity cycle. J Inorg Biochem 2022; 234:111899. [PMID: 35716549 PMCID: PMC9183239 DOI: 10.1016/j.jinorgbio.2022.111899] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/02/2022] [Accepted: 06/05/2022] [Indexed: 12/15/2022]
Abstract
Polyoxidometalates (POMs) exhibit a range of biological properties that can be exploited for a variety of therapeutic applications. However, their potential utility as antivirals has been largely overlooked in the ongoing efforts to identify safe, effective and robust therapeutic agents to combat COVID-19. We focus on decavanadate (V10), a paradigmatic member of the POM family, to highlight the utility of electrostatic forces as a means of disrupting molecular processes underlying the SARS-CoV-2 entry into the host cell. While the departure from the traditional lock-and-key approach to the rational drug design relies on less-specific and longer-range interactions, it may enhance the robustness of therapeutic agents by making them less sensitive to the viral mutations. Native mass spectrometry (MS) not only demonstrates the ability of V10 to associate with the receptor-binding domain of the SARS-CoV-2 spike protein, but also provides evidence that this association disrupts the protein binding to its host cell-surface receptor. Furthermore, V10 is also shown to be capable of binding to the polybasic furin cleavage site within the spike protein, which is likely to decrease the effectiveness of the proteolytic processing of the latter (a pre-requisite for the viral fusion with the host cell membrane). Although in vitro studies carried out with SARS-CoV-2 infected cells identify V10 cytotoxicity as a major factor limiting its utility as an antiviral agent, the collected data provide a compelling stimulus for continuing the search for effective, robust and safe therapeutics targeting the novel coronavirus among members of the POM family.
Collapse
Affiliation(s)
- Daniel Favre
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA 01003, United States of America
| | - Jackson F Harmon
- Institute for Applied Life Sciences, University of Massachusetts-Amherst, Amherst, MA 01003, United States of America
| | - Ali Zhang
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Matthew S Miller
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Igor A Kaltashov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA 01003, United States of America; Institute for Applied Life Sciences, University of Massachusetts-Amherst, Amherst, MA 01003, United States of America.
| |
Collapse
|
11
|
Kovalevskiy SA, Lopatina OA, Gushchina EA, Isaeva EI, Fedyakina IT, Baklanova OV, Mezentseva MV, Balashov EM, Ivashkevich NM, Kulak AI, Dalidchik FI. Destruction of the Shell of Influenza Viruses by Heteropoly Acids with Keggin Structure. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2022. [DOI: 10.1134/s1990793121060051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Semiz S. Vanadium as potential therapeutic agent for COVID-19: A focus on its antiviral, antiinflamatory, and antihyperglycemic effects. J Trace Elem Med Biol 2022; 69:126887. [PMID: 34798510 PMCID: PMC8555110 DOI: 10.1016/j.jtemb.2021.126887] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/13/2022]
Abstract
An increasing evidence suggests that vanadium compounds are novel potential drugs in the treatment of diabetes, atherosclerosis, and cancer. Vanadium has also demonstrated activities against RNA viruses and is a promising candidate for treating acute respiratory diseases. The antidiabetic, antihypertensive, lipid-lowering, cardioprotective, antineoplastic, antiviral, and other potential effects of vanadium are summarized here. Given the beneficial antihyperglycemic and antiinflammatory effects as well as the potential mechanistic link between the COVID-19 and diabetes, vanadium compounds could be considered as a complement to the prescribed treatment of COVID-19. Thus, further clinical trials are warranted to confirm these favorable effects of vanadium treatment in COVID-19 patients, which appear not to be studied yet.
Collapse
Affiliation(s)
- Sabina Semiz
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates; Association South East European Network for Medical Research-SOVE.
| |
Collapse
|
13
|
Aureliano M, Gumerova NI, Sciortino G, Garribba E, Rompel A, Crans DC. Polyoxovanadates with emerging biomedical activities. Coord Chem Rev 2021; 447:214143. [DOI: 10.1016/j.ccr.2021.214143] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Enderle AG, Bosso M, Groß R, Heiland M, Bollini M, Culzoni MJ, Kirchhoff F, Münch J, Streb C. Increased in vitro Anti-HIV Activity of Caffeinium-Functionalized Polyoxometalates. ChemMedChem 2021; 16:2727-2730. [PMID: 33908695 PMCID: PMC8518980 DOI: 10.1002/cmdc.202100281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Indexed: 11/10/2022]
Abstract
Polyoxometalates (POMs), molecular metal oxide anions, are inorganic clusters with promising antiviral activity. Herein we report increased anti-HIV-1 activity of a POM when electrostatically combined with organic counter-cations. To this end, Keggin-type cerium tungstate POMs have been combined with organic methyl-caffeinium (Caf) cations, and their cytotoxicity, antiviral activity and mode of action have been studied. The novel compound, Caf4 K[β2 -CeSiW11 O39 ]×H2 O, exhibits sub-nanomolar antiviral activity and inhibits HIV-1 infectivity by acting on an early step of the viral infection cycle. This work demonstrates that combination of POM anions and organic bioactive cations can be a powerful new strategy to increase antiviral activity of these inorganic compounds.
Collapse
Affiliation(s)
- Ana G. Enderle
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
- Medicinal Chemistry LabCentro de Investigaciones en Bionanociencias (CIBION), CONICETGodoy Cruz, 2390C1425FQDCiudad de Buenos AiresArgentina
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ)Universidad Nacional del Litoral – CONICETCiudad UniversitariaParaje El Pozo, CC242S3000Santa FeArgentina
| | - Matteo Bosso
- Institute of Molecular VirologyUlm University Medical CenterMeyerhofstraße 189081UlmGermany
| | - Rüdiger Groß
- Institute of Molecular VirologyUlm University Medical CenterMeyerhofstraße 189081UlmGermany
| | - Magdalena Heiland
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Mariela Bollini
- Medicinal Chemistry LabCentro de Investigaciones en Bionanociencias (CIBION), CONICETGodoy Cruz, 2390C1425FQDCiudad de Buenos AiresArgentina
| | - María J. Culzoni
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ)Universidad Nacional del Litoral – CONICETCiudad UniversitariaParaje El Pozo, CC242S3000Santa FeArgentina
| | - Frank Kirchhoff
- Institute of Molecular VirologyUlm University Medical CenterMeyerhofstraße 189081UlmGermany
| | - Jan Münch
- Institute of Molecular VirologyUlm University Medical CenterMeyerhofstraße 189081UlmGermany
| | - Carsten Streb
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| |
Collapse
|
15
|
Xiao W, Li S, Zhao Y, Ma Y, Li N, Zhang J, Chen X. Multinuclear transition metal-containing polyoxometalates constructed from Nb/W mixed-addendum precursors: synthesis, structures and catalytic performance. Dalton Trans 2021; 50:8690-8695. [PMID: 33989369 DOI: 10.1039/d1dt00924a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four new transition metal-containing Nb/W mixed-addendum POM trimers with the formula H19[M4(H2O)x(P2W15Nb3O62)3]·m(HCOOH)·nH2O (M = Cu, x = 15, m = 0, and n = 21, Cu-POM; M = Co, x = 7, m = 0, and n = 15, Co-POM; M = Mn, x = 7, m = 6, and n = 18, Mn-POM; and M = Zn, x = 7, m = 0, and n = 23, Zn-POM) have been synthesized by a solvothermal method in a water-ethanol mixed solvent. All the four compounds were characterized by single-crystal X-ray diffraction, powder X-ray diffraction (XRD), IR spectroscopy, thermogravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS). These compounds can serve as efficient heterogeneous catalysts for the cyanosilylation of different carbonyl compounds under ambient temperature and solvent-free conditions, and Cu-POM shows much better catalytic performance than the other three compounds. The cycle experiment showed that Cu-POM can be reused for at least five cycles without significant loss of catalytic activity. The IR spectroscopy and XRD analysis revealed that Cu-POM can retain its integrity after catalysis.
Collapse
Affiliation(s)
- Wanru Xiao
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, 453007, China.
| | - Shujun Li
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, 453007, China.
| | - Yue Zhao
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, 453007, China.
| | - Yubin Ma
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, 453007, China.
| | - Na Li
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, 453007, China.
| | - Jie Zhang
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, 453007, China.
| | - Xuenian Chen
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, 453007, China. and College of Chemistry and Molecular Engineering Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
16
|
Xue YR, Wang Y, Chen G, Sun B, Li B, Wu L, Wu Y. A hybrid HPV capsid protein L1 with giant Mo-containing polyoxometalate improves the stability of virus-like particles and the anti-tumor effect of [Mo 154]. Biomater Sci 2021; 9:3875-3883. [PMID: 33890954 DOI: 10.1039/d1bm00138h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a bio-inorganic hybrid system, [Mo154]@VLPs, constructed from the virus-like particles (VLPs) of the HPV capsid protein L1 and a giant disc-shaped, molybdenum-containing polyoxometalate of [Mo154]. The hybrid was purified by CsCl gradient centrifugation and further validated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), dynamic light scattering (DLS) and transmission electron microscopy (TEM). An assembly with [Mo154] improved the tolerance of VLPs to pH, temperature, and storage time, thereby defining an opportunity to reduce the cost of HPV vaccines. Moreover, the ability of [Mo154] to kill cancer cells was improved by 6% after being encapsulated inside the VLPs, which is mainly attributed to the enhanced biocompatibility of [Mo154]. The irradiation of both [Mo154] and [Mo154]@VLPs with an infrared light of 808 nm further enhanced their ability to destroy cancer cells by 3- and 2-fold, respectively, confirming that [Mo154] is an effective anti-tumor photo-thermal agent. Therefore, the successful hybrid of L1-p and [Mo154] improves the stability of VLPs and simultaneously paves the way to enhance the anti-tumor ability of [Mo154] and further extends its application prospects as a future anti-tumor drug.
Collapse
Affiliation(s)
- Ya-Rong Xue
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
| | - Yu Wang
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
| | - Gang Chen
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
| | - Bo Sun
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
| | - Yuqing Wu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
17
|
Scior T, Abdallah HH, Mustafa SFZ, Guevara-García JA, Rehder D. Are vanadium complexes druggable against the main protease M pro of SARS-CoV-2? - A computational approach. Inorganica Chim Acta 2021; 519:120287. [PMID: 33589845 PMCID: PMC7875704 DOI: 10.1016/j.ica.2021.120287] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/16/2022]
Abstract
In silico techniques helped explore the binding capacities of the SARS-CoV-2 main protease (Mpro) for a series of metalloorganic compounds. Along with small size vanadium complexes a vanadium-containing derivative of the peptide-like inhibitor N3 (N-[(5-methylisoxazol-3-yl)carbonyl]alanyl-l-valyl-N1-((1R,2Z)-4-(benzyloxy)-4-oxo-1-{[(3R)-2-oxopyrrolidin-3-yl] methyl }but-2-enyl)-l-leucinamide) was designed from the crystal structure with PDB entry code 6LU7. On theoretical grounds our consensus docking studies evaluated the binding affinities at the hitherto known binding site of Chymotrypsin-like protease (3CLpro) of SARS-CoV-2 for existing and designed vanadium complexes. This main virus protease (Mpro) has a Cys-His dyad at the catalytic site that is characteristic of metal-dependent or metal-inhibited hydrolases. Mpro was compared to the human protein-tyrosine phosphatase 1B (hPTP1B) with a comparable catalytic dyad. HPTP1B is a key regulator at an early stage in the signalling cascade of the insulin hormone for glucose uptake into cells. The vanadium-ligand binding site of hPTP1B is located in a larger groove on the surface of Mpro. Vanadium constitutes a well-known phosphate analogue. Hence, its study offers possibilities to design promising vanadium-containing binders to SARS-CoV-2. Given the favourable physicochemical properties of vanadium nuclei, such organic vanadium complexes could become drugs not only for pharmacotherapy but also diagnostic tools for early infection detection in patients. This work presents the in silico design of a potential lead vanadium compound. It was tested along with 20 other vanadium-containing complexes from the literature in a virtual screening test by docking to inhibit Mpro of SARS-CoV-2.
Collapse
Affiliation(s)
- Thomas Scior
- Departamento de Farmacia, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla. 72000 Puebla, Pue., Mexico,Corresponding author
| | - Hassan H. Abdallah
- Chemistry Department, College of Education, Salahaddin University Erbil, 44001 Erbil, Iraq
| | | | - José Antonio Guevara-García
- Facultad de Ciencias Básicas, Campus Ingeniería y Tecnología, Universidad Autónoma de Tlaxcala, 90401 Apizaco, Tlax., Mexico
| | - Dieter Rehder
- Chemistry Department, University of Hamburg, D-22087 Hamburg, Germany
| |
Collapse
|
18
|
Qu X, Shi D, Fu Y, Chu D, Yang Y, Liu Y. Enhanced antitumor activity of polyoxometalates loaded solid lipid nanoparticles. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2020.108411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
19
|
Therapeutic potential of vanadium complexes with 1,10-phenanthroline ligands, quo vadis? Fate of complexes in cell media and cancer cells. J Inorg Biochem 2021; 217:111350. [PMID: 33477088 DOI: 10.1016/j.jinorgbio.2020.111350] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022]
Abstract
VIVO-complexes formulated as [VIVO(OSO3)(phen)2] (1) (phen = 1,10-phenanthroline), [VIVO(OSO3)(Me2phen)2] (2) (Me2phen = 4,7-dimethyl-1,10-phenanthroline) and [VIVO(OSO3)(amphen)2] (3) (amphen = 5-amino-1,10-phenanthroline) were prepared and stability in cell incubation media evaluated. Their cytotoxicity was determined against the A2780 (ovarian), MCF7 (breast) and PC3 (prostate) human cancer cells at different incubation times. While at 3 and 24 h the cytotoxicity differs for complexes and corresponding free ligands, at 72 h incubation all compounds are equally active presenting low IC50 values. Upon incubation of A2780 cells with 1-3, cellular distribution of vanadium in cytosol, membranes, nucleus and cytoskeleton, indicate that the uptake of V is low, particularly for 1, and that the uptake pattern depends on the ligand. Nuclear microscopic techniques are used for imaging and elemental quantification in whole PC3 cells incubated with 1. Once complexes are added to cell culture media, they decompose, and with time most VIV oxidizes to VV-species. Modeling of speciation when [VIVO(OSO3)(phen)2] (1) is added to cell media is presented. At lower concentrations of 1, VIVO- and phen-containing species are mainly bound to bovine serum albumin, while at higher concentrations [VIVO(phen)n]2+-complexes become relevant, being predicted that the species taken up and mechanisms of action operating depend on the total concentration of complex. This study emphasizes that for these VIVO-systems, and probably for many others involving oxidovanadium or other labile metal complexes, it is not possible to identify active species or propose mechanisms of cytotoxic action without evaluating speciation occurring in cell media.
Collapse
|
20
|
Application of Antiviral Polyoxometalates to Living Environments—Antiviral Moist Hand Towels and Stationery Items. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10228246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Safe, secure, and environmentally friendly active substances should be developed. VB (virus block) refers to an antibacterial/antiviral mixture of two kinds of polyoxometalates (PMs), i.e., K11H[(VO)3(SbW9O33)2]·27H2O (VB2) and α-Na2[SbW9O33]9− (VB3), and polyhexamethylene biguanide (PHMB). VB was demonstrated to exert antiviral effects on cultured cells. The effects were maintained even in hygiene products or solids. The antiviral effects were analyzed by reverse transcription–polymerase chain reaction (RT–PCR), and the results were correlated with TCID50, potentially eliminating the need for handling infectious viruses. VB was demonstrated to be extremely effective (up to 99.99% inhibition) in cultured cells, with antibacterial/antiviral effects maintained in VB-containing hygiene products. VB was applied to solids, demonstrating their high applicability and versatility. VB withstands high temperatures regardless of materials because its effects are enhanced by more frequent contact with viruses and bacteria due to the increased surface area of the compound.
Collapse
|
21
|
Reversible redox activity of {Mo72Fe30} nano-polyoxometalate cluster in three crystalline forms. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Qi Y, Han L, Qi Y, Jin X, Zhang B, Niu J, Zhong J, Xu Y. Anti-flavivirus activity of polyoxometalate. Antiviral Res 2020; 179:104813. [PMID: 32376449 DOI: 10.1016/j.antiviral.2020.104813] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/09/2020] [Accepted: 04/25/2020] [Indexed: 02/07/2023]
Abstract
Viruses in the Flaviviridae family such as Zika virus (ZIKV), dengue virus (DENV), and Japanese encephalitis virus (JEV) are major public health concerns. The development of antiviral agents against these viruses is urgently needed. We have previously discovered that the Keggin structured polyoxometalate POM-12 has potent inhibitory activity against hepatitis C virus, another member of the Flaviviridae family. In this study, we tested its antiviral activity of DENV, JEV and ZIKV, and found that POM-12 dramatically inhibited their infection with IC50 value of 1.16 μM, 1.9 μM and 0.64 μM, respectively. Mechanistic studies indicated that POM-12 directly disrupted the integrity of these virions. Moreover, POM-12 also targeted the post-entry steps of viral replication of JEV, but having no similar activities on ZIKV and DENV. The differential actions of POM-12 on these viruses suggest that surface topology and charge of virion may have influence on its drug effect, and thus POM-12 may be modified to more efficiently inhibit these and other similar viruses.
Collapse
Affiliation(s)
- Yue Qi
- Department of Hepatology, First Hospital, Jilin University, Changchun, Jilin, 130021, China.
| | - Lin Han
- CAS Key Laboratory of Molecular Virology and Immunology, Unit of Viral Hepatitis, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; Shanghai Tech University, Shanghai, 201210, China
| | - Yanfei Qi
- Department of Hepatology, First Hospital, Jilin University, Changchun, Jilin, 130021, China; School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| | - Xia Jin
- CAS Key Laboratory of Molecular Virology and Immunology, Unit of Viral Hepatitis, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Bo Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Science, Wuhan, 430071, China
| | - Junqi Niu
- Department of Hepatology, First Hospital, Jilin University, Changchun, Jilin, 130021, China
| | - Jin Zhong
- CAS Key Laboratory of Molecular Virology and Immunology, Unit of Viral Hepatitis, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China; Shanghai Tech University, Shanghai, 201210, China
| | - Yongfen Xu
- CAS Key Laboratory of Molecular Virology and Immunology, Unit of Viral Hepatitis, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
23
|
Sabarinathan C, Karthikeyan M, Harisma B, Murugappan R, Arumuganathan T. One Pot Synthesis of Luminescent Polyoxometalate Supported Transition Metal Complex and biological evaluation as a potential larvicidal and anti-cancer agent. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
24
|
Čolović MB, Lacković M, Lalatović J, Mougharbel AS, Kortz U, Krstić DZ. Polyoxometalates in Biomedicine: Update and Overview. Curr Med Chem 2020; 27:362-379. [PMID: 31453779 DOI: 10.2174/0929867326666190827153532] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/30/2019] [Accepted: 08/20/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Polyoxometalates (POMs) are negatively charged metal-oxo clusters of early transition metal ions in high oxidation states (e.g., WVI, MoVI, VV). POMs are of interest in the fields of catalysis, electronics, magnetic materials and nanotechnology. Moreover, POMs were shown to exhibit biological activities in vitro and in vivo, such as antitumor, antimicrobial, and antidiabetic. METHODS The literature search for this peer-reviewed article was performed using PubMed and Scopus databases with the help of appropriate keywords. RESULTS This review gives a comprehensive overview of recent studies regarding biological activities of polyoxometalates, and their biomedical applications as promising anti-viral, anti-bacterial, anti-tumor, and anti-diabetic agents. Additionally, their putative mechanisms of action and molecular targets are particularly considered. CONCLUSION Although a wide range of biological activities of Polyoxometalates (POMs) has been reported, they are to the best of our knowledge not close to a clinical trial or a final application in the treatment of diabetes or infectious and malignant diseases. Accordingly, further studies should be directed towards determining the mechanism of POM biological actions, which would enable fine-tuning at the molecular level, and consequently efficient action towards biological targets and as low toxicity as possible. Furthermore, biomedical studies should be performed on solutionstable POMs employing physiological conditions and concentrations.
Collapse
Affiliation(s)
- Mirjana B Čolović
- Department of Physical Chemistry, "Vinca" Institute of Nuclear Sciences, University of Belgrade, Belgrade 11,000, Serbia
| | - Milan Lacković
- University Clinical Hospital Center dr Dragisa Misovic-Dedinje, Belgrade 11,000, Serbia
| | - Jovana Lalatović
- Faculty of Medicine, University of Belgrade, Belgrade 11,000, Serbia
| | - Ali S Mougharbel
- Department of Life Sciences and Chemistry, Jacobs University, Bremen, Germany
| | - Ulrich Kortz
- Department of Life Sciences and Chemistry, Jacobs University, Bremen, Germany
| | - Danijela Z Krstić
- Institute of Medical Chemistry, Faculty of Medicine, University of Belgrade, Belgrade 11,000, Serbia
| |
Collapse
|
25
|
Yudkina A, Sokolov M, Abramov P, Grin I, Zharkov D. Platinum Polyoxoniobates Form Adducts with DNA. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162019060414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Dan K, Katoh N, Matsuoka T, Fujinami K. In vitro Antimicrobial Effects of Virus Block, Which Contains Multiple Polyoxometalate Compounds, and Hygienic Effects of Virus Block-Supplemented Moist Hand Towels. Pharmacology 2019; 104:1-15. [PMID: 31170720 PMCID: PMC6604270 DOI: 10.1159/000500897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/13/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Historical evidence has verified the multifaceted antiviral efficacy of polyoxometalates (PMs). METHODS We carried out a study to investigate the antimicrobial effects of each of the 5 substances comprising virus block (VB): 3 PMs that have antibacterial and antiviral activity, an antibiotic agent, and an antibacterial agent. We also investigated the effectiveness of the addition of VB to moist hand towels in a study involving 120 volunteers. The time-dependent changes in metal ion concentrations in aqueous VB solution were analyzed using inductively coupled plasma atomic emission spectroscopy. RESULTS The metal elements in the aqueous VB solution remained stable for 12 weeks without undergoing time-dependent changes. DISCUSSION Further investigations were performed to study hand hygiene using moist hand towels in daily life settings. To this end, 120 volunteers provided 240 specimens that were used to investigate the presence of antibacterial compounds on the volunteers' hands before and after hand towel use. An aliquot of each specimen was suspended in phosphate-buffered saline and plated on agar media, and the number of colonies formed was counted. Normal bacterial flora found on the hands of the volunteers was investigated before and after the use of 4 different moist hand towels. CONCLUSIONS The effects of VB and PMs were superior to those of commercial moist hand towels, indicating that effective data were obtained that may be useful for the practical application of the tested items.
Collapse
Affiliation(s)
- Katsuaki Dan
- Research and Development Division, Research Organization of Biological Activity, Tokyo, Japan
| | | | | | | |
Collapse
|
27
|
Chitosan nanogels as nanocarriers of polyoxometalates for breast cancer therapies. Carbohydr Polym 2019; 213:159-167. [DOI: 10.1016/j.carbpol.2019.02.091] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/02/2019] [Accepted: 02/25/2019] [Indexed: 12/27/2022]
|
28
|
Francese R, Civra A, Rittà M, Donalisio M, Argenziano M, Cavalli R, Mougharbel AS, Kortz U, Lembo D. Anti-zika virus activity of polyoxometalates. Antiviral Res 2019; 163:29-33. [PMID: 30653996 DOI: 10.1016/j.antiviral.2019.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 10/27/2022]
Abstract
Zika virus (ZIKV) is an emerging infectious viral pathogen associated with severe fetal cerebral anomalies and the paralytic Guillain-Barrè syndrome in adults. It was the cause of a recent global health crisis following its entrance into a naïve population in the Americas. Nowadays, no vaccine or specific antiviral against ZIKV is available. In this study, we identified three polyoxometalates (POMs), the Anderson-Evans type [TeW6O24]6- (TeW6), and the Keggin-type [TiW11CoO40]8-_ (TiW11Co), and [Ti2PW10O40]7- (Ti2PW10), that inhibit ZIKV infection with EC50s in the low micromolar range. Ti2PW10, the POM with the greatest selectivity index (SI), was selected and the step of ZIKV replicative cycle putatively inhibited was investigated by specific antiviral assays. We demonstrated that Ti2PW10 targets the entry process of ZIKV infection and it is able to significantly reduce ZIKV progeny production. These results suggest that the polyanion Ti2PW10 could be a good starting point to develop an effective therapeutic to treat ZIKV infection.
Collapse
Affiliation(s)
- Rachele Francese
- Department of Clinical and Biological Sciences, Laboratory of Molecular Virology and Antiviral Research, University of Turin, S. Luigi Gonzaga Hospital, Orbassano Turin, Italy
| | - Andrea Civra
- Department of Clinical and Biological Sciences, Laboratory of Molecular Virology and Antiviral Research, University of Turin, S. Luigi Gonzaga Hospital, Orbassano Turin, Italy
| | - Massimo Rittà
- Department of Clinical and Biological Sciences, Laboratory of Molecular Virology and Antiviral Research, University of Turin, S. Luigi Gonzaga Hospital, Orbassano Turin, Italy
| | - Manuela Donalisio
- Department of Clinical and Biological Sciences, Laboratory of Molecular Virology and Antiviral Research, University of Turin, S. Luigi Gonzaga Hospital, Orbassano Turin, Italy
| | - Monica Argenziano
- Department of Drug Science and Technology, Innovative Pharmaceutical and Cosmetic Technology and Nanotechnology Group, University of Turin, Italy
| | - Roberta Cavalli
- Department of Drug Science and Technology, Innovative Pharmaceutical and Cosmetic Technology and Nanotechnology Group, University of Turin, Italy
| | - Ali S Mougharbel
- Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, 28759 Bremen, Germany
| | - Ulrich Kortz
- Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, 28759 Bremen, Germany.
| | - David Lembo
- Department of Clinical and Biological Sciences, Laboratory of Molecular Virology and Antiviral Research, University of Turin, S. Luigi Gonzaga Hospital, Orbassano Turin, Italy.
| |
Collapse
|
29
|
Abstract
The capsid protein is a promising target for the development of therapeutic anti-virus agents.
Collapse
Affiliation(s)
- Ding-Yi Fu
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun
- China
| | - Ya-Rong Xue
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun
- China
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine
- School of Life Sciences
- Jilin University
- Changchun
- China
| | - Yuqing Wu
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun
- China
| |
Collapse
|
30
|
Croce M, Conti S, Maake C, Patzke GR. Nanocomposites of Polyoxometalates and Chitosan-Based Polymers as Tuneable Anticancer Agents. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800268] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Matteo Croce
- Department of Chemistry; University of Zurich; Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Simona Conti
- Institute of Anatomy; University of Zurich; Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Caroline Maake
- Institute of Anatomy; University of Zurich; Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Greta R. Patzke
- Department of Chemistry; University of Zurich; Winterthurerstrasse 190 8057 Zurich Switzerland
| |
Collapse
|
31
|
Wang X, Wang J, Zhang W, Li B, Zhu Y, Hu Q, Yang Y, Zhang X, Yan H, Zeng Y. Inhibition of Human Immunodeficiency Virus Type 1 Entry by a Keggin Polyoxometalate. Viruses 2018; 10:v10050265. [PMID: 29772712 PMCID: PMC5977258 DOI: 10.3390/v10050265] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 12/20/2022] Open
Abstract
Here, we report the anti-human immunodeficiency virus (HIV) potency and underlying mechanisms of a Keggin polyoxometalate (PT-1, K6HPTi2W10O40). Our findings showed that PT-1 exhibited highly potent effects against a diverse group of HIV type 1 (HIV-1) strains and displayed low cytotoxicity and genotoxicity. The time-addition assay revealed that PT-1 acted at an early stage of infection, and these findings were supported by the observation that PT-1 had more potency against Env-pseudotyped virus than vesicular stomatitis virus glycoprotein (VSVG) pseudotyped virus. Surface plasmon resonance binding assays and flow cytometry analysis showed that PT-1 blocked the gp120 binding site in the CD4 receptor. Moreover, PT-1 bound directly to gp41 NHR (N36 peptide), thereby interrupting the core bundle formation of gp41. In conclusion, our data suggested that PT-1 may be developed as a new anti-HIV-1 agent through its effects on entry inhibition.
Collapse
Affiliation(s)
- Xiaoli Wang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Jiao Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Wenmei Zhang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Boye Li
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Ying Zhu
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Qin Hu
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Yishu Yang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Xiaoguang Zhang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Hong Yan
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Yi Zeng
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| |
Collapse
|
32
|
Fu DY, Zhang S, Qu Z, Yu X, Wu Y, Wu L. Hybrid Assembly toward Enhanced Thermal Stability of Virus-like Particles and Antibacterial Activity of Polyoxometalates. ACS APPLIED MATERIALS & INTERFACES 2018; 10:6137-6145. [PMID: 29381053 DOI: 10.1021/acsami.7b17082] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In an effort to improve both the stability of virus-like particles (VLPs) and the medical activity of polyoxometalates (POMs), a new hybrid assembly system between human papillomavirus (HPV) capsid protein L1 and a europium-containing POM (EuW10) has been constructed, for the first time, via the electrostatic interactions between them. The co-assembly of EuW10 and HPV 16 L1-pentamer (L1-p) in buffer solution resulted in the encapsulation of POMs in the cavity of VLPs, which was further confirmed by cesium chloride (CsCl) gradient ultracentrifugation, SDS-PAGE, dynamic light scattering, and transmission electron microscopy, whereas the post-assembly of EuW10 with the as-prepared VLPs leads to the adsorption of POMs only on the external surface of particles, and both cases improved the thermal and storage stabilities of VLPs obviously. Particularly, the encapsulation of POMs in VLPs largely improved the antibacterial activity of EuW10, and thereby, the present study will be significant for both the stability improvement of protein vaccines and the development of POM medicine.
Collapse
Affiliation(s)
- Ding-Yi Fu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, and ‡State Engineering Laboratory of AIDS Vaccine, Jilin University , No. 2699, Qianjin Street, Changchun 130012, China
| | - Simin Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, and ‡State Engineering Laboratory of AIDS Vaccine, Jilin University , No. 2699, Qianjin Street, Changchun 130012, China
| | - Zhiyu Qu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, and ‡State Engineering Laboratory of AIDS Vaccine, Jilin University , No. 2699, Qianjin Street, Changchun 130012, China
| | - Xianghui Yu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, and ‡State Engineering Laboratory of AIDS Vaccine, Jilin University , No. 2699, Qianjin Street, Changchun 130012, China
| | - Yuqing Wu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, and ‡State Engineering Laboratory of AIDS Vaccine, Jilin University , No. 2699, Qianjin Street, Changchun 130012, China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, and ‡State Engineering Laboratory of AIDS Vaccine, Jilin University , No. 2699, Qianjin Street, Changchun 130012, China
| |
Collapse
|
33
|
Ibrahim MM, Mersal GA, Ramadan AMM, Shaban SY, Mohamed MA, Al-Juaid S. Synthesis, characterization and antioxidant/cytotoxic activity of oxovanadium(IV) complexes of methyliminodiacetic acid and ethylenediaminetetracetic acid. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.02.080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
34
|
Synthesis and evaluation of pyridinium polyoxometalates as anti-HIV-1 agents. Bioorg Med Chem Lett 2017; 27:2357-2359. [DOI: 10.1016/j.bmcl.2017.04.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/01/2017] [Accepted: 04/07/2017] [Indexed: 01/26/2023]
|
35
|
Wang MM, Chen Q, Zhang DD, Chen XW, Chen ML. Tetra-nickel substituted polyoxotungsate as an efficient sorbent for the isolation of His6-tagged proteins from cell lysate. Talanta 2017; 171:173-178. [PMID: 28551125 DOI: 10.1016/j.talanta.2017.04.079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/20/2017] [Accepted: 04/30/2017] [Indexed: 12/25/2022]
Abstract
By virtue of the flexible structure of polyoxometalates, Ni2+ is encapsulated into trivacant lacunary tungstophosphate ligands by the form of [Ni4] cluster to offer a tetra-nickel substituted polyoxotungsate K6Na4[Ni4(H2O)2(PW9O34)2] (Ni4P2). The Ni4P2 is then immobilized onto the surface of SiO2 nanoparticles by self-assembly under electrostatic interactions to give the product of Ni4P2@SiO2 composites. Due to the specific affinity between substituted Ni2+ in the polyoxotungsate and the histidine residues of protein, Ni4P2@SiO2 composites exhibit highly adsorption selectivity towards histidine protein. This Ni4P2@SiO2 composite is of high stability, and SDS-PAGE assay indicates that it can be used repeatedly as an efficient sorbent for the isolation of His6-tagged proteins from cell lysate with improved performance when compared with commercial NTA-Ni2+ column.
Collapse
Affiliation(s)
- Meng-Meng Wang
- Research Center for Analytical Sciences, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Qing Chen
- Research Center for Analytical Sciences, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Dan-Dan Zhang
- Research Center for Analytical Sciences, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Xu-Wei Chen
- Research Center for Analytical Sciences, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
| | - Ming-Li Chen
- Research Center for Analytical Sciences, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
| |
Collapse
|
36
|
Sun S, Liu X, Yang L, Tan H, Wang E. Capillary Zone Electrophoresis as a Tool to Monitor the Stability and Hydrolytic Equilibria of Strandberg‐Type Polyoxometalates in Aqueous Solution. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600409] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Shucheng Sun
- Department of ChemistryNortheast Normal University5268 Renmin Street130024ChangchunJilin ProvinceP. R. China
| | - Xin Liu
- Department of ChemistryNortheast Normal University5268 Renmin Street130024ChangchunJilin ProvinceP. R. China
| | - Li Yang
- Department of ChemistryNortheast Normal University5268 Renmin Street130024ChangchunJilin ProvinceP. R. China
| | - Huaqiao Tan
- Key Laboratory of Polyoxometalate Science of Ministry of Education Faculty of ChemistryNortheast Normal University5268 Renmin Street130024ChangchunJilin ProvinceP. R. China
| | - EnBo Wang
- Key Laboratory of Polyoxometalate Science of Ministry of Education Faculty of ChemistryNortheast Normal University5268 Renmin Street130024ChangchunJilin ProvinceP. R. China
| |
Collapse
|
37
|
Roch-Marchal C, Hidalgo T, Banh H, Fischer RA, Horcajada P. A Promising Catalytic and Theranostic Agent Obtained through the In-Situ Synthesis of Au Nanoparticles with a Reduced Polyoxometalate Incorporated within Mesoporous MIL-101. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600359] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Catherine Roch-Marchal
- Institut Lavoisier; UMR CNRS 8180; Université de Versailles Saint-Quentin-en-Yvelines; 45 Av. des Etats-Unis 78035 Versailles cedex France
| | - Tania Hidalgo
- Institut Lavoisier; UMR CNRS 8180; Université de Versailles Saint-Quentin-en-Yvelines; 45 Av. des Etats-Unis 78035 Versailles cedex France
| | - Hung Banh
- Chair of Inorganic and Metal-Organic Chemistry; Technical University Munich; Lichtenbergstrasse 4 85478 Garching Germany
- Catalysis Research Centre Technical University Munich; Technical University Munich; Ernst-Otto-Fischer-Strasse 1 85478 Garching Germany
| | - Roland A. Fischer
- Chair of Inorganic and Metal-Organic Chemistry; Technical University Munich; Lichtenbergstrasse 4 85478 Garching Germany
- Catalysis Research Centre Technical University Munich; Technical University Munich; Ernst-Otto-Fischer-Strasse 1 85478 Garching Germany
| | - Patricia Horcajada
- Institut Lavoisier; UMR CNRS 8180; Université de Versailles Saint-Quentin-en-Yvelines; 45 Av. des Etats-Unis 78035 Versailles cedex France
- IMDEA Energy; Avda. Ramón de la Sagra 3 28035 Móstoles Madrid Spain
| |
Collapse
|
38
|
Li J, Zhou H, Wang J, Wang D, Shen R, Zhang X, Jin P, Liu X. Oxidative stress-mediated selective antimicrobial ability of nano-VO2 against Gram-positive bacteria for environmental and biomedical applications. NANOSCALE 2016; 8:11907-11923. [PMID: 27240639 DOI: 10.1039/c6nr02844f] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Vanadium dioxide (VO2) is a unique thermochromic material as a result of its semiconductor-metal transition, holding great promise for energy-saving intelligent windows. Herein, pure nano-VO2 from discrete nanoparticles to continuous films were successfully deposited on quartz glass by controlling the sputtering parameters. It was demonstrated that, for Gram-positive S. aureus and S. epidermidis, the nano-VO2 could effectively disrupt bacteria morphology and membrane integrity, and eventually cause death. By contrast, the nano-VO2 did not exhibit significant toxicity towards Gram-negative E. coli and P. aeruginosa. To our knowledge, this is the first report on a selective antimicrobial effect of nano-VO2 materials on Gram-positive bacteria. Based on the experimental results, a plausible mechanism was proposed for the antimicrobial selectivity, which might originate from the different sensitivity of Gram-positive and Gram-negative bacteria to intracellular reactive oxygen species (ROS) level. Elevated intracellular ROS levels exceed the threshold that bacteria can self-regulate to maintain cellular redox homeostasis and thus cause oxidative stress, which can be alleviated by the intervention of glutathione (GSH) antioxidant. In addition, nano-VO2 did not produce significant cytotoxicity (hemolysis) against human erythrocytes within 12 h. Meanwhile, potential cytotoxicity against HIBEpiC revealed a time- and dose-dependent behavior that might be controlled and balanced by careful design. The findings in the present work may contribute to understanding the antimicrobial behavior of nano-VO2, and to expanding the new applications of VO2-based nanomaterials in environmental and biomedical fields.
Collapse
Affiliation(s)
- Jinhua Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huaijuan Zhou
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaxing Wang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Donghui Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruxiang Shen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Xianlong Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Ping Jin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China. and Materials Research Institute for Sustainable Development, National Institute of Advanced Industrial Science and Technology, Nagoya 463-8560, Japan.
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
| |
Collapse
|
39
|
Pessoa JC, Etcheverry S, Gambino D. Vanadium compounds in medicine. Coord Chem Rev 2015; 301:24-48. [PMID: 32226091 PMCID: PMC7094629 DOI: 10.1016/j.ccr.2014.12.002] [Citation(s) in RCA: 354] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/18/2014] [Accepted: 12/02/2014] [Indexed: 12/02/2022]
Abstract
Vanadium is a transition metal that, being ubiquitously distributed in soil, crude oil, water and air, also found roles in biological systems and is an essential element in most living beings. There are also several groups of organisms which accumulate vanadium, employing it in their biological processes. Vanadium being a biological relevant element, it is not surprising that many vanadium based therapeutic drugs have been proposed for the treatment of several types of diseases. Namely, vanadium compounds, in particular organic derivatives, have been proposed for the treatment of diabetes, of cancer and of diseases caused by parasites. In this work we review the medicinal applications proposed for vanadium compounds with particular emphasis on the more recent publications. In cells, partly due to the similarity of vanadate and phosphate, vanadium compounds activate numerous signaling pathways and transcription factors; this by itself potentiates application of vanadium-based therapeutics. Nevertheless, this non-specific bio-activity may also introduce several deleterious side effects as in addition, due to Fenton's type reactions or of the reaction with atmospheric O2, VCs may also generate reactive oxygen species, thereby introducing oxidative stress with consequences presently not well evaluated, particularly for long-term administration of vanadium to humans. Notwithstanding, the potential of vanadium compounds to treat type 2 diabetes is still an open question and therapies using vanadium compounds for e.g. antitumor and anti-parasitic related diseases remain promising.
Collapse
Affiliation(s)
- Joao Costa Pessoa
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Susana Etcheverry
- Cátedra de Bioquímica Patológica and CEQUINOR, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 1900 La Plata, Argentina
| | - Dinorah Gambino
- Cátedra de Química Inorgánica, Facultad de Química, Universidad de la República, Gral. Flores 2124, 11800 Montevideo, Uruguay
| |
Collapse
|
40
|
Pandya VM, Kortz U, Joshi SA. Encapsulation and stabilization of polyoxometalates in self-assembled supramolecular hydrogels. Dalton Trans 2015; 44:58-61. [PMID: 25387278 DOI: 10.1039/c4dt01372g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have encapsulated the polyoxoanions [P2W18O62](6-) and [P2W15V3O62](9-) in a self-assembled carboxy-methyl-chitosan (CMC) hydrogel, exhibiting a regular superstructure in water at physiological pH. We performed stability studies as a function of temperature and polyoxometalate (POM) loading, and observed exceptional Tgel properties. This work is a step forward towards developing biologically active polyoxometalate-based materials.
Collapse
Affiliation(s)
- Vamangi M Pandya
- Dr. K. C. Patel Research and Development Centre, Charotar University of Science and Technology (CHARUSAT), Changa Dist., Anand 388421, Gujarat, India.
| | | | | |
Collapse
|
41
|
Jiang S, Cheng LY, Bai AM, Zhou S, Hu YJ. Novel rare earth tungstoarsenate heteropolyoxometalates K11[Ln(AsW 11O 39) 2]·xH 2O (Ln = La, Nd, Sm) binding to bovine serum albumin: spectroscopic approach. Biol Trace Elem Res 2015; 163:275-82. [PMID: 25431297 DOI: 10.1007/s12011-014-0183-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 11/16/2014] [Indexed: 01/26/2023]
Abstract
The rare earth salts of heteropoly have been widely applied in many fields. In this study, the biological activity of rare earth tungstoarsenate heteropolyoxometalates K11[Ln(AsW11O39)2]·xH2O (abbr. LnW11, Ln = La (x = 24), Nd (x = 17), and Sm (x = 19)) were investigated by spectroscopic methods including fluorescence spectroscopy and UV-vis absorption spectroscopy at different temperatures. In the mechanism discussion, it was proved that the fluorescence quenching of bovine serum albumin (BSA) by LnW11 is initiated by complex formation. The thermodynamic parameters suggested that the binding of LnW11 to BSA is spontaneous, and the mainly force is electrostatic interactions. Site marker competitive experiments demonstrated that LaW11 binds with high affinity to site I (subdomain IIA) of BSA; but SmW11 and NdW11 bind with affinity to both site I (subdomain IIA) and site II (subdomain IIIA) of BSA. The results of synchronous fluorescence spectrum indicate that the secondary structure of BSA molecules was changed in the presence of LnW11. In addition, the binding parameters, binding site number, and effect of metal ions on LnW11-BSA were also discussed.
Collapse
Affiliation(s)
- Shan Jiang
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Department of Chemistry, Hubei Normal University, Huangshi, 435002, People's Republic of China
| | | | | | | | | |
Collapse
|
42
|
Zhang DD, Chen Q, Hu LL, Chen XW, Wang JH. Preparation of a cobalt mono-substituted silicotungstic acid doped with aniline for the selective adsorption of ovalbumin. J Mater Chem B 2015; 3:4363-4369. [DOI: 10.1039/c5tb00544b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cobalt mono-substituted silicotungstic acid doped with aniline (SiW11Co–PANI composite, where PANI denotes polyaniline) possesses a porous framework structure and exhibits favorable selectivity towards ovalbumin adsorption.
Collapse
Affiliation(s)
- Dan-Dan Zhang
- Research Center for Analytical Sciences
- College of Sciences
- Northeastern University
- Shenyang
- China
| | - Qing Chen
- Research Center for Analytical Sciences
- College of Sciences
- Northeastern University
- Shenyang
- China
| | - Lin-Lin Hu
- Research Center for Analytical Sciences
- College of Sciences
- Northeastern University
- Shenyang
- China
| | - Xu-Wei Chen
- Research Center for Analytical Sciences
- College of Sciences
- Northeastern University
- Shenyang
- China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences
- College of Sciences
- Northeastern University
- Shenyang
- China
| |
Collapse
|
43
|
Kelesidis T, Mastoris I, Metsini A, Tsiodras S. How to approach and treat viral infections in ICU patients. BMC Infect Dis 2014; 14:321. [PMID: 25431007 PMCID: PMC4289200 DOI: 10.1186/1471-2334-14-321] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 06/11/2014] [Indexed: 12/21/2022] Open
Abstract
Patients with severe viral infections are often hospitalized in intensive care units (ICUs) and recent studies underline the frequency of viral detection in ICU patients. Viral infections in the ICU often involve the respiratory or the central nervous system and can cause significant morbidity and mortality especially in immunocompromised patients. The mainstay of therapy of viral infections is supportive care and antiviral therapy when available. Increased understanding of the molecular mechanisms of viral infection has provided great potential for the discovery of new antiviral agents that target viral proteins or host proteins that regulate immunity and are involved in the viral life cycle. These novel treatments need to be further validated in animal and human randomized controlled studies.
Collapse
Affiliation(s)
| | | | | | - Sotirios Tsiodras
- 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens School of Medicine, 1 Rimini Street, GR-12462 Haidari, Athens, Greece.
| |
Collapse
|
44
|
Li XX, Fang WH, Zhao JW, Yang GY. Hydrothermal Combination of Trilacunary Dawson Phosphotungstates and Hexanickel Clusters: From an Isolated Cluster to a 3D Framework. Chemistry 2014; 20:17324-32. [DOI: 10.1002/chem.201404384] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Indexed: 11/08/2022]
|
45
|
Wu CS, Zhang BS, Qiu JP, Li YX. Synthesis and crystal structure of two polyoxometalate complexes NaH3SiW12O40·17H2O and [Mn(H2O)4]2(H2SiW12O40)2·13H2O. J COORD CHEM 2014. [DOI: 10.1080/00958972.2014.973866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Chang-Sheng Wu
- Institute of Materia Medica, College of Pharmaceutics and Material Engineering, Jinhua Polytechnic, Jinhua, PR China
| | - Bi-Song Zhang
- Institute of Materia Medica, College of Pharmaceutics and Material Engineering, Jinhua Polytechnic, Jinhua, PR China
| | - Jian-Ping Qiu
- Institute of Materia Medica, College of Pharmaceutics and Material Engineering, Jinhua Polytechnic, Jinhua, PR China
| | - Yun-Xia Li
- Institute of Materia Medica, College of Pharmaceutics and Material Engineering, Jinhua Polytechnic, Jinhua, PR China
| |
Collapse
|
46
|
Synthesis and Characterization of H 3PW 12O 40 and H 3PMo 12O 40 Nanoparticles by a Simple Method. J CLUST SCI 2014; 25:1511-1524. [PMID: 32362736 PMCID: PMC7189835 DOI: 10.1007/s10876-014-0745-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Indexed: 11/25/2022]
Abstract
In this study H3PW12O40·9H2O and H3PMo12O40·6H2O (HPA) particles were changed into nano forms by heat-treatment in an autoclave as a simple, repaid, inexpensive and one step method. The particle size of these nanoparticles was around 25 nm. The as-synthesized nanostructures were characterized by dynamic light scattering, X-ray powder diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy and inductively coupled plasma analyzer. Thermal stability of nanoparticles was surveyed by thermal gravimeter analyse. Acidity of prepared nanoparticles was investigated by pyridine adsorption method. Results showed rising acidity by declining particle size of HPA.
Collapse
|
47
|
Wang J, Qu X, Qi Y, Li J, Song X, Li L, Yin D, Xu K, Li J. Pharmacokinetics of anti-HBV polyoxometalate in rats. PLoS One 2014; 9:e98292. [PMID: 24921932 PMCID: PMC4055585 DOI: 10.1371/journal.pone.0098292] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 04/30/2014] [Indexed: 01/17/2023] Open
Abstract
Polyoxometalates are non-nucleoside analogs that have been proven to exhibit broad-spectrum antiviral activity. In particular, Cs2K4Na[SiW9Nb3O40].H2O 1 shows low toxicity and high activity against HBV. The preclinical pharmacokinetics of Compound 1 in rats were characterized by establishing and applying inductively coupled plasma-mass spectrometry method to determine the concentration of W in plasma, urine, feces, bile and organ samples. The quantitative ICP-MS method demonstrated good sensitivity and application in the pharmacokinetics study of polyoxometalates. The pharmacokinetic behavior of Compound 1 after intravenous or oral administration fit a two-compartment model. Tmax ranges from 0.1 h to 3 h and the T1/2 of Compound 1 is between 20 h and 30 h. The absolute bioavailability of Compound 1 at 45, 180 and 720 mg/kg groups were 23.68%, 14.67% and 11.93%, respectively. The rates of plasma protein binding of Compound 1 at 9, 18 and 36 mg/ml of Compound 1 are 62.13±9.41%, 71.20±24.98% and 49.00±25.59%, respectively. Compound 1 was widely distributed throughout the body, and high levels of compound 1 were found in the kidney and liver. The level of Compound 1 in excretion was lower: 30% for urine, 0.28% for feces and 0.42% for bile, respectively. For elaborate pharmacokinetic characteristics to be fully understood, the metabolism of Compound 1 needs to be studied further.
Collapse
Affiliation(s)
- Juan Wang
- School of Public Health, Jilin University, Changchun, Jilin, China
| | - Xiaofeng Qu
- School of Public Health, Jilin University, Changchun, Jilin, China
| | - Yanfei Qi
- School of Public Health, Jilin University, Changchun, Jilin, China
| | - Jinhua Li
- School of Public Health, Jilin University, Changchun, Jilin, China
| | - Xiuling Song
- School of Public Health, Jilin University, Changchun, Jilin, China
| | - Li Li
- School of Public Health, Jilin University, Changchun, Jilin, China
| | - Dehui Yin
- School of Public Health, Jilin University, Changchun, Jilin, China
| | - Kun Xu
- School of Public Health, Jilin University, Changchun, Jilin, China
- * E-mail: (JL); (KX)
| | - Juan Li
- School of Public Health, Jilin University, Changchun, Jilin, China
- * E-mail: (JL); (KX)
| |
Collapse
|
48
|
|
49
|
Abstract
Vanadium is the 21st most abundant element in the Earth's crust and the 2nd-to-most abundant transition metal in sea water. The element is ubiquitous also in freshwater and nutrients. The average body load of a human individual amounts to 1 mg. The omnipresence of vanadium hampers checks directed towards its essentiality. However, since vanadate can be considered a close blueprint of phosphate with respect to its built-up, vanadate likely takes over a regulatory function in metabolic processes depending on phosphate. At common concentrations, vanadium is non-toxic. The main source for potentially toxic effects caused by vanadium is exposure to high loads of vanadium oxides in the breathing air of vanadium processing industrial enterprises. Vanadium can enter the body via the lungs or, more commonly, the stomach. Most of the dietary vanadium is excreted. The amount of vanadium resorbed in the gastrointestinal tract is a function of its oxidation state (V(V) or V(IV)) and the coordination environment. Vanadium compounds that enter the blood stream are subjected to speciation. The predominant vanadium species in blood are vanadate and vanadyl bound to transferrin. From the blood stream, vanadium becomes distributed to the body tissues and bones. Bones act as storage pool for vanadate. The aqueous chemistry of vanadium(V) at concentration <10 μM is dominated by vanadate. At higher concentrations, oligovanadates come in, decavanadate in particular, which is thermodynamically stable in the pH range 2.3-6.3, and can further be stabilized at higher pH by interaction with proteins.The similarity between vanadate and phosphate accounts for the interplay between vanadate and phosphate-dependent enzymes: phosphatases can be inhibited, kinases activated. As far as medicinal applications of vanadium compounds are concerned, vanadium's mode of action appears to be related to the phosphate-vanadate antagonism, to the direct interaction of vanadium compounds or fragments thereof with DNA, and to vanadium's contribution to a balanced tissue level of reactive oxygen species. So far vanadium compounds have not yet found approval for medicinal applications. The antidiabetic (insulin-enhancing) effect, however, of a singular vanadium complex, bis(ethylmaltolato)oxidovanadium(IV) (BEOV), has revealed encouraging results in phase IIa clinical tests. In addition, in vitro studies with cell cultures and parasites, as well as in vivo studies with animals, have revealed a broad potential spectrum for the application of vanadium coordination compounds in the treatment of cardiac and neuronal disorders, malignant tumors, viral and bacterial infections (such as influenza, HIV, and tuberculosis), and tropical diseases caused by parasites, e.g., Chagas' disease, leishmaniasis, and amoebiasis.
Collapse
Affiliation(s)
- Astrid Sigel
- Dept. of Chemistry, Inorganic Chemistry, University of Basel, Basel, Basel Stadt Switzerland
| | - Helmut Sigel
- Department of Chemistry, Inorganic Chemistry, University of Basel, Basel, Switzerland
| | - Roland K.O. Sigel
- Institute of Inorganic Chemistry, University of Zürich, Zürich, Zürich Switzerland
| |
Collapse
|
50
|
Müller WEG, Wang X, Schröder HC. Polyoxometalates active against tumors, viruses, and bacteria. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2013; 54:65-116. [PMID: 24420711 PMCID: PMC7122307 DOI: 10.1007/978-3-642-41004-8_4] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polyoxometalates (PMs) as discrete metal-oxide cluster anions with high solubility in water and photochemically and electrochemically active property have a wide variety of structures not only in molecular size from sub-nano to sub-micrometers with a various combination of metals but also in symmetry and highly negative charge. One of the reasons for such a structural variety originates from their conformation change (due to the condensed aggregation and the structural assembly) which strongly depends on environmental parameters such as solution pH, concentration, and coexistent foreign inorganic and/or organic substances. In the course of the application of the physicochemical properties of such PMs to the medical fields, antitumoral, antiviral, and antibacterial activities have been developed for realization of a novel inorganic medicine which provides a biologically excellent activity never replaced by other approved medicines. Several PMs as a candidate for clinical uses have been licensed toward the chemotherapy of solid tumors (such as human gastric cancer and pancreatic cancer), DNA and RNA viruses (such as HSV, HIV, influenza, and SARS), and drug-resistant bacteria (such as MRSA and VRSA) in recent years: [NH3Pr(i)]6[Mo7O24]∙3H2O (PM-8) and [Me3NH]6[H2Mo(V) 12O28(OH)12(Mo(VI)O3)4]∙2H2O (PM-17) for solid tumors; K7[PTi2W10O40]∙6H2O (PM-19), [Pr(i)NH3]6H[PTi2W10O38(O2)2]∙H2O (PM-523), and K11H[(VO)3(SbW9O33)2]∙27H2O (PM-1002) for viruses; and K6[P2W18O62]∙14H2O (PM-27), K4[SiMo12O40]∙3H2O (SiMo12), and PM-19 for MRSA and VRSA. The results are discussed from a point of view of the chemotherapeutic clarification in this review.
Collapse
Affiliation(s)
- Werner E. G. Müller
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Heinz C. Schröder
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|