1
|
Tian S, Su R, Wu K, Zhou X, Vadgama JV, Wu Y. Diaporine Potentiates the Anticancer Effects of Oxaliplatin and Doxorubicin on Liver Cancer Cells. J Pers Med 2022; 12:1318. [PMID: 36013267 PMCID: PMC9410505 DOI: 10.3390/jpm12081318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/13/2022] [Accepted: 08/13/2022] [Indexed: 11/26/2022] Open
Abstract
Recent studies have shown that diaporine, a novel fungal metabolic product, has a strong in vitro and in vivo anticancer effect on human non-small-cell lung and breast cancers. In this study, three human hepatocarcinoma cell lines (HepG2, Hep3B, and Huh7) were used to evaluate the efficacy of diaporine alone and in combination with the standard cytotoxic drugs oxaliplatin and doxorubicin for the treatment of liver cancer. We demonstrated that diaporine, oxaliplatin, and doxorubicin triggered a concentration- and time-dependent decrease in the number of HepG2 cells. Diaporine at a concentration of 2.5 μM showed almost 100% inhibition of cell counts at 72 h. Similar effects were observed only with much higher concentrations (100 μM) of oxaliplatin or doxorubicin. Decreases in cell numbers after 48 h treatment with diaporine, oxaliplatin, and doxorubicin were also demonstrated in two additional hepatoma cell lines, Hep3B and Huh7. The combination of these drugs at low concentration for 48 h in vitro noticeably showed that diaporine improved the inhibitory effect on the number of cancer cells induced by oxaliplatin or doxorubicin. Additionally, this combination effectively inhibited colony growth in vitro. We found that inhibition of phosphorylation of ERK1/2 significantly increased when diaporine was used in combination with other agents. In addition, we also found that when diaporine was used in combination with doxorubicin or oxaliplatin, their proapoptotic effect greatly increased. We further revealed that the induction of apoptosis in hepatoma cells after treatment is due, at least in part, to the inhibition of phosphorylation of AKT, leading to the activation of caspase-3, inactivation of poly (ADP-ribose) polymerase (PARP), and subsequently to DNA damage, as indicated by the increased level of H2AX. Based on these findings, we suggest that diaporine in combination with the standard cytotoxic drugs oxaliplatin and doxorubicin may play a role in the treatment of liver cancer.
Collapse
Affiliation(s)
- Shiliu Tian
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
- Fujian Sports Vocational Education and Technical College, Fuzhou 350001, China
| | - Rui Su
- College of Engineering, University of California, Berkeley, CA 94720, USA
| | - Ke Wu
- David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, Los Angeles, CA 90095, USA
| | - Xuhan Zhou
- Fulgent Life Inc., Irvine, CA 92620, USA
| | - Jaydutt V. Vadgama
- David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, Los Angeles, CA 90095, USA
| | - Yong Wu
- David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, Los Angeles, CA 90095, USA
| |
Collapse
|
2
|
Vrabl P, Siewert B, Winkler J, Schöbel H, Schinagl CW, Knabl L, Orth-Höller D, Fiala J, Meijer MS, Bonnet S, Burgstaller W. Xanthoepocin, a photolabile antibiotic of Penicillium ochrochloron CBS 123823 with high activity against multiresistant gram-positive bacteria. Microb Cell Fact 2022; 21:1. [PMID: 34983506 PMCID: PMC8725544 DOI: 10.1186/s12934-021-01718-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/06/2021] [Indexed: 11/23/2022] Open
Abstract
Background With the steady increase of antibiotic resistance, several strategies have been proposed in the scientific community to overcome the crisis. One of many successful strategies is the re-evaluation of known compounds, which have been early discarded out of the pipeline, with state-of-the-art know-how. Xanthoepocin, a polyketide widespread among the genus Penicillium with an interesting bioactivity spectrum against gram-positive bacteria, is such a discarded antibiotic. The purpose of this work was to (i) isolate larger quantities of this metabolite and chemically re-evaluate it with modern technology, (ii) to explore which factors lead to xanthoepocin biosynthesis in P. ochrochloron, and (iii) to test if it is beside its known activity against methicillin-resistant Staphylococcus aureus (MRSA), also active against linezolid and vancomycin-resistant Enterococcus faecium (LVRE)—a very problematic resistant bacterium which is currently on the rise. Results In this work, we developed several new protocols to isolate, extract, and quantify xanthoepocin out of bioreactor batch and petri dish-grown mycelium of P. ochrochloron. The (photo)chemical re-evaluation with state-of-the-art techniques revealed that xanthoepocin is a photolabile molecule, which produces singlet oxygen under blue light irradiation. The intracellular xanthoepocin content, which was highest under ammonium-limited conditions, varied considerably with the applied irradiation conditions in petri dish and bioreactor batch cultures. Using light-protecting measures, we achieved MIC values against gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA), which were up to 5 times lower than previously published. In addition, xanthoepocin was highly active against a clinical isolate of linezolid and vancomycin-resistant Enterococcus faecium (LVRE). Conclusions This interdisciplinary work underlines that the re-evaluation of known compounds with state-of-the-art techniques is an important strategy in the combat against multiresistant bacteria and that light is a crucial factor on many levels that needs to receive more attention. With appropriate light protecting measures in the susceptibility tests, xanthoepocin proved to be a powerful antibiotic against MRSA and LVRE. Exploring the light response of other polyketides may be pivotal for re-introducing previously discarded metabolites into the antibiotic pipeline and to identify photosensitizers which might be used for (antimicrobial) photodynamic therapies. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01718-9.
Collapse
Affiliation(s)
- Pamela Vrabl
- Institute of Microbiology, University of Innsbruck, Technikerstraße 25d, 6020, Innsbruck, Austria.
| | - Bianka Siewert
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria.
| | - Jacqueline Winkler
- Institute of Microbiology, University of Innsbruck, Technikerstraße 25d, 6020, Innsbruck, Austria
| | - Harald Schöbel
- MCI - The Entrepreneurial University, Maximilianstraße 2, 6020, Innsbruck, Austria
| | - Christoph W Schinagl
- Institute of Microbiology, University of Innsbruck, Technikerstraße 25d, 6020, Innsbruck, Austria
| | - Ludwig Knabl
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Schöpfstraße 41, 6020, Innsbruck, Austria.,Tyrolpath Obrist Brunhuber GmbH, Hauptplatz 4, 6511, Zams, Austria
| | - Dorothea Orth-Höller
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Schöpfstraße 41, 6020, Innsbruck, Austria.,MB-Lab, Clinical Microbiology Laboratory, Franz Fischer Str. 7b, 6020, Innsbruck, Austria
| | - Johannes Fiala
- Institute of Microbiology, University of Innsbruck, Technikerstraße 25d, 6020, Innsbruck, Austria.,Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Michael S Meijer
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands.,Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629HZ, Delft, Netherlands
| | - Sylvestre Bonnet
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Wolfgang Burgstaller
- Institute of Microbiology, University of Innsbruck, Technikerstraße 25d, 6020, Innsbruck, Austria
| |
Collapse
|
3
|
Shikonin Promotes Apoptosis and Attenuates Migration and Invasion of Human Esophageal Cancer Cells by Inhibiting Tumor Necrosis Factor Receptor-Associated Protein 1 Expression and AKT/mTOR Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5386050. [PMID: 34812264 PMCID: PMC8605926 DOI: 10.1155/2021/5386050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 11/18/2022]
Abstract
The aim of this study was to investigate the anticancer effects of shikonin on esophageal cancer (EC) cells and explore the underlying molecular mechanism by identifying dysregulation in shikonin-induced tumor necrosis factor receptor-associated protein 1 (TRAP1) expression. The 3-(4, 5-dimethylthiazol-2-Yl)-2, 5-diphenyltetrazolium bromide assay and EDU assay were performed for cell viability determination. The reactive oxygen species level and mitochondrial membrane potential were evaluated using flow cytometry. The protein expression was detected using Western blot. In addition, cell migration and invasion were estimated. These results demonstrated that shikonin inhibited EC cell growth in a concentration-dependent manner and induced apoptosis through activation of the intracellular apoptotic signaling pathway. Moreover, TRAP1 downregulation promoted shikonin-induced reactive oxygen species release, whereas TRAP1 upregulation blocked it. Meanwhile, shikonin significantly promoted mitochondrial depolarization, accompanied by a large release of cytochrome C. Conversely, shikonin significantly decreased adenosine 5'-triphosphate release, demonstrating a significant intervention in the process of the glucose metabolism. In addition, not only shikonin but also short hairpin RNA (shRNA)-TRAP1 inhibited EC cell migration and invasion. shRNA-TRAP1 enhanced the inhibitory effect of shikonin on matrix metalloproteinase (MMP)2 and MMP9 expression. More interestingly, we demonstrated that shRNA-TRAP1 played a synergistic role in shikonin-mediated regulation of protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling. Collectively, shikonin promoted apoptosis and attenuated migration and invasion of EC cells by inhibiting TRAP1 expression and AKT/mTOR signaling, indicating that shikonin may be a new drug for treating EC.
Collapse
|
4
|
Smith R, Nadella S, Moccia R, Seymour C, Mothersill C. Copper uptake in adult rainbow trout irradiated during early life stages and in non-irradiated bystander trout which swam with the irradiated fish. Int J Radiat Biol 2021; 98:1130-1138. [PMID: 34524940 DOI: 10.1080/09553002.2021.1980627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE This investigation forms part of a wider study into the legacy effects of exposure of rainbow trout eggs 38 h after fertilization, eyed eggs, yolk sac larvae (YSL) or first feeders to a single 0.5 Gy X-ray dose, including the induction of a bystander effect, by the irradiated fish, to non-irradiated fish. Fish may be exposed to multiple environmental stressors, including waterborne metals, during their lifespan and, while there are data on how the legacy of early life stage irradiation and bystander effect induction is affected by waterborne aluminum and cadmium, there are no studies into the effects radiation or the radiation induced bystander effect on metal uptake. Therefore the aim of this investigation was to determine if the legacy of early life stage irradiation included an effect on copper uptake by adult fish and by non-irradiated bystander adult trout which swam with the irradiated fish. METHODS The four early life stages mentioned above were exposed to a single 0.5 Gy X-ray dose and then maintained, for two years with no further irradiation. At two years old the irradiated fish were allowed to swim, for 2 h with non-irradiated bystander trout (also two years old). After this time copper uptake was determined using 64Cu. RESULTS Copper uptake was increased in adult trout irradiated as eggs at 48 h after fertilization and as first feeders but eyed egg or YSL irradiation had no effect. Copper uptake was also increased in the bystander trout which swam with trout irradiated as eggs at 48 h after fertilization and as eyed eggs but there was no effect on non-irradiated adult trout which swam with trout irradiated as YSL or first feeders. CONCLUSIONS When put in context with the proteomic changes observed in these fish we propose the increased copper uptake in adult trout irradiated as eggs at 48 h after fertilization could be part of an anti-tumorigenic response and the increase in copper uptake in adult trout irradiated as first feeders could be part of a potentially protective pro-apoptotic response. Similarly we propose the increase in copper uptake in non-irradiated adult trout, induced by trout irradiated as eggs at 48 h after fertilization or as eyed eggs, was part of the universally anti-tumorigenic nature of the X-ray induced bystander effect in fish. However this was exclusive to embryonic irradiation.
Collapse
Affiliation(s)
- Richard Smith
- Department of Animal Biosciences, University of Guelph, Guelph, Canada
| | - Sunita Nadella
- Department of Biology, McMaster University, Hamilton, Canada
| | - Richard Moccia
- Department of Animal Biosciences, University of Guelph, Guelph, Canada
| | - Colin Seymour
- Department of Biology, McMaster University, Hamilton, Canada
| | | |
Collapse
|
5
|
Singh G, Singh J, Singamaneni V, Singh S, Gupta P, Katoch M. Serine-glycine-betaine, a novel dipeptide from an endophyte Macrophomina phaseolina: isolation, bioactivity and biosynthesis. J Appl Microbiol 2021; 131:756-767. [PMID: 33405271 DOI: 10.1111/jam.14995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/17/2020] [Accepted: 01/04/2021] [Indexed: 12/31/2022]
Abstract
AIMS Endophytes are a rich source for structurally complex chemical scaffolds with interesting biological activities. Endophytes associated with Brugmansia aurea L. (family: Solanaceae), a medicinal plant, have not yet explored for the bioactive metabolites. METHOD AND RESULTS Hence, Macrophomina phaseolina, a fungal endophyte, was isolated from the roots of the plant. Its methanolic extract was found active against human cancer cell lines with IC50 <20 µg ml-1 . Later, a di-peptide compound, serine-glycine-betaine, was isolated and characterized. Serine-glycine-betaine consists of a unit of an N-trimethyl glycine attached to serine. It exhibited potent activity against MIA PaCa-2 and HCT-116 cell lines with IC50 8·9 and 15·16 μmol l-1 , respectively. Furthermore, it induced apoptosis in MIA PaCa-2 cells confirmed by microscopy. The apoptotic cell death in MIA PaCa-2 cells was evidenced biochemically with the generation of intracellular reactive oxygen species level and leading to loss of mitochondrial membrane potential due to activation of the intrinsic pathway. This study describes the plausible biosynthesis of serine-glycine-betaine based on genomics (genome sequencing, annotation and genes alignment). CONCLUSIONS A novel di-peptide, serine-glycine-betaine isolated from M. phaseolina induced apoptosis in MIA-Pa-Ca-2 cells. SIGNIFICANCE AND IMPACT OF THE STUDY This study confirms that dipeptides like serine-glycine-betaine and tyrosine-betaine might be specific to fungal genera, hence being used for diagnostic purposes.
Collapse
Affiliation(s)
- G Singh
- Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR, New Delhi, India
| | - J Singh
- Academy of Scientific and Innovative Research (AcSIR), CSIR, New Delhi, India.,Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - V Singamaneni
- Academy of Scientific and Innovative Research (AcSIR), CSIR, New Delhi, India.,Natural Product Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - S Singh
- Academy of Scientific and Innovative Research (AcSIR), CSIR, New Delhi, India.,Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - P Gupta
- Academy of Scientific and Innovative Research (AcSIR), CSIR, New Delhi, India.,Natural Product Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - M Katoch
- Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR, New Delhi, India
| |
Collapse
|
6
|
Lv D, Pan LH, Zhang R, Yang J, Chen H, Wen Y, Huang M, Ma X, Wang Q, Yang X. Essential oil from Euphorbia esula inhibits proliferation and induces apoptosis in HepG2 cells via mitochondrial dysfunction. BRAZ J PHARM SCI 2020. [DOI: 10.1590/s2175-97902019000317542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Dan Lv
- Wuhan University of Science and Technology, China
| | | | - Ren Zhang
- Wuhan University of Science and Technology, China
| | - Jie Yang
- South-Central University for Nationalities, China
| | - Hao Chen
- South-Central University for Nationalities, China
| | - Yanzhang Wen
- South-Central University for Nationalities, China
| | - Mi Huang
- South-Central University for Nationalities, China
| | - Xinhua Ma
- South-Central University for Nationalities, China
| | - Qiang Wang
- Wuhan University of Science and Technology, China
| | - Xinzhou Yang
- South-Central University for Nationalities, China
| |
Collapse
|
7
|
Fan S, Wang Y, Sheng N, Xie Y, Lu J, Zhang Z, Shan Q, Wu D, Sun C, Li M, Hu B, Zheng Y. Low expression of ENC1 predicts a favorable prognosis in patients with ovarian cancer. J Cell Biochem 2018; 120:861-871. [PMID: 30125994 DOI: 10.1002/jcb.27447] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 07/16/2018] [Indexed: 02/06/2023]
Abstract
Ectodermal-neural cortex 1 (ENC1) belongs to a member of the kelch family of genes. It is an actin-binding protein and plays a pivotal role in neuronal and adipocyte differentiation. Here, we found that lower expression of ENC1 in the ovarian cancer patients was associated with favorable prognosis. In addition, ENC1 was heterogeneously expressed in various ovarian cancer cells. The messenger RNA and protein expression levels of ENC1 in HO-8910PM and NIH:OVCAR-3 cells were obviously higher than that in the other types of ovarian cancer cells. Knockdown of ENC1 in HO-8910PM or NIH:OVCAR-3 cells could significantly increase the reactive oxygen species levels, resulting in inhibition of in vitro proliferation, migration, and invasion. Our findings suggest that decreasing expression of ENC1 may be a new approach that can be used for ovarian cancer treatment.
Collapse
Affiliation(s)
- Shaohua Fan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Yanyan Wang
- Department of Medical Ultrasonics, The Affiliated First People's Hospital of Xuzhou Medical University, Xuzhou, China
| | - Ning Sheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Ying Xie
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Zifeng Zhang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Qun Shan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Dongmei Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Chunhui Sun
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Mengqiu Li
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Bin Hu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Yuanlin Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
8
|
Smith RW, Moccia RD, Seymour CB, Mothersill CE. Irradiation of rainbow trout at early life stages results in a proteomic legacy in adult gills. Part A; proteomic responses in the irradiated fish and in non-irradiated bystander fish. ENVIRONMENTAL RESEARCH 2018; 163:297-306. [PMID: 29463416 DOI: 10.1016/j.envres.2017.12.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/19/2017] [Accepted: 12/24/2017] [Indexed: 06/08/2023]
Abstract
Exposure to a single 0.5 Gy X-ray dose of eggs at 48 h after fertilisation (48 h egg), eyed eggs, yolk sac larvae (YSL) and first feeders induces a legacy effect in adult rainbow trout. This includes the transmission of a bystander effect to non-irradiated adult trout which had swam with the irradiated fish. The aim of this study was to investigate this legacy by analysing the gill proteome of these irradiated and bystander fish. Irradiation at all of the early life stages resulted in changes to proteins which play a key role in development but are also known to be anti-tumorigenic and anti-oxidant: upregulation of haemoglobin subunit beta (48 h egg), haemoglobin, serum albumin 1 precursor (eyed eggs), clathrin heavy chain 1 isoform X10 (eyed eggs and first feeders), and actin-related protein 2/3 complex subunit 4 (first feeders), downregulation of pyruvate dehydrogenase, histone 1 (48 h egg), triosephosphate isomerase (TPI), collagen alpha-1(1) chain like proteins (YSL), pyruvate kinase PKM-like protein (YSL and first feeders), ubiquitin-40S ribosomal proteins S27 and eukaryotic translation initiation factor 4 A isoform 1B (first feeders). However irradiation of YSL and first feeders (post hatching early life stages) also induced proteomic changes which have a complex relationship with tumorigenesis or cancer progression; downregulation of alpha-1-antiprotease-like protein precursor, vigilin isoform X2 and nucleoside diphosphate kinase (YSL) and upregulation of hyperosmotic glycine rich protein (first feeders). In bystander fish some proteomic changes were similar to those induced by irradiation: upregulation of haemoglobin subunit beta (48 h egg), haemoglobin (eyed eggs), actin-related protein 2/3 complex subunit 4, hyperosmotic glycine rich protein (first feeders), and downregulation of alpha-1-antiprotease-like protein, vigilin isoform X2, nucleoside diphosphate kinase (YSL), pyruvate kinase PKM-like protein and ubiquitin-40S ribosomal protein S27a-like (first feeders). Other proteomic changes were unique to bystander fish; downregulation of TPI, ubiquitin-40S ribosomal protein S2 (eyed egg), cofilin-2, cold-inducible RNA-binding protein B-like isoform X3 (YSL) and superoxide dismutase (first feeder), and upregulation of haemoglobin subunit alpha, collagen 1a1 precursor, apolipoprotein A-1-1 and A-1-2 precursor (first feeders). These bystander effect proteomic changes have been shown to be overwhelmingly anti-tumorigenic or protective of the fish gill.
Collapse
Affiliation(s)
- Richard W Smith
- Department of Animal Biosciences, University of Guelph, Guelph Ontario Canada; Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton Ontario Canada.
| | - Richard D Moccia
- Department of Animal Biosciences, University of Guelph, Guelph Ontario Canada
| | - Colin B Seymour
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton Ontario Canada
| | - Carmel E Mothersill
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton Ontario Canada
| |
Collapse
|
9
|
Wang Y, Xu H, Lu Z, Yu X, Lv C, Tian Y, Sui D. Pseudo-Ginsenoside Rh2 induces A549 cells apoptosis via the Ras/Raf/ERK/p53 pathway. Exp Ther Med 2018; 15:4916-4924. [PMID: 29805515 PMCID: PMC5958631 DOI: 10.3892/etm.2018.6067] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/22/2018] [Indexed: 12/18/2022] Open
Abstract
Ginsenoside Rh2, a major effective constituent of ginseng, has been suggested to have a pro-apoptotic effect in a variety of cancer cells. Pseudo-Ginsenside-Rh2 (pseudo-G-Rh2) is a novel derivative of ginsenoside Rh2. The aim of the present study was to evaluate the effect of pseudo-G-Rh2 on the apoptosis of lung adenocarcinoma A549 cells. The cytotoxicity of pseudo-G-Rh2 on A549 cells was evaluated using an MTT assay. Apoptosis was detected using DAPI staining and flow cytometry. The expression of apoptosis associated proteins was identified by western blot analysis. The results demonstrated that pseudo-G-Rh2 inhibits the proliferation of A549 cells in a dose-dependent manner. DAPI staining revealed topical morphological changes in apoptotic bodies following pseudo-G-Rh2 treatment. Flow cytometric analysis revealed that the percentage of Annexin V-fluorescein isothiocyanate-positive cells, which are apoptotic, increased with pseudo-G-Rh2 treatment in a dose-dependent manner. Furthermore, treatment with pseudo-G-Rh2 increased the level of reactive oxygen species in A549 cells as well as the activation of caspase-9, caspase-3 and poly ADP-ribose polymerase. Pseudo-G-Rh2 treatment was observed to induce mitochondrial membrane potential loss. Furthermore, the results of western blotting revealed that B-cell lymphoma 2 (Bcl-2) expression was significantly decreased while Bcl-2-associated X protein expression was significantly upregulated in A549 cells with pseudo-G-Rh2 treatment. Pseudo-G-Rh2-induced apoptosis was accompanied by sustained phosphorylation of Ras, Raf, extracellular signal-regulated kinase (ERK) and p53. In conclusion, the results of the present study suggest that pseudo-G-Rh2 induces mitochondrial apoptosis in A549 cells and is responsible for excessive activation of the Ras/Raf/ERK/p53 pathway.
Collapse
Affiliation(s)
- Yuchen Wang
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China.,School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Huali Xu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zeyuan Lu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiaofeng Yu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Chen Lv
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yuan Tian
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Dayun Sui
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
10
|
Li W, Yu KN, Ma J, Shen J, Cheng C, Zhou F, Cai Z, Han W. Non-thermal plasma induces mitochondria-mediated apoptotic signaling pathway via ROS generation in HeLa cells. Arch Biochem Biophys 2017; 633:68-77. [PMID: 28893509 DOI: 10.1016/j.abb.2017.09.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/04/2017] [Accepted: 09/07/2017] [Indexed: 12/15/2022]
Abstract
Non-thermal plasma (NTP) has been proposed as a novel therapeutic method for anticancer treatment. Although increasing evidence suggests that NTP selectively induces apoptosis in some types of tumor cells, the molecular mechanisms underlying this phenomenon remain unclear. In this study, we further investigated possible molecular mechanisms for NTP-induced apoptosis of HeLa cells. The results showed that NTP exposure significantly inhibited the growth and viability of HeLa cells. Morphological observation and flow cytometry analysis demonstrated that NTP exposure induced HeLa cell apoptosis. NTP exposure also activated caspase-9 and caspase-3, which subsequently cleaved poly (ADP- ribose) polymerase. Furthermore, NTP exposure suppressed Bcl-2 expression, enhanced Bax expression and translocation to mitochondria, activated mitochondria-mediated apoptotic pathway, followed by the release of cytochrome c. Further studies showed that NTP treatment led to ROS generation, whereas blockade of ROS generation by N-acetyl-l-cysteine (NAC, ROS scavengers) significantly prevented NTP-induced mitochondrial alteration and subsequent apoptosis of HeLa cells via suppressing Bax translocation, cytochrome c and caspase-3 activation. Taken together, our results indicated that NTP exposure induced mitochondria-mediated intrinsic apoptosis of HeLa cells was activated by ROS generation. These findings provide insights to the therapeutic potential and clinical research of NTP as a novel tool in cervical cancer treatment.
Collapse
Affiliation(s)
- Wei Li
- Department of Urology, Sun Yat-Sen University Cancer Centre, Guangzhou 510060, China; Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518036, China.
| | - K N Yu
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
| | - Jie Ma
- Center of Medical Physics and Technology, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Anhui Province, China; University of Science and Technology of China, Hefei, Anhui, China
| | - Jie Shen
- Institute of Plasma Physics, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Anhui Province, China
| | - Cheng Cheng
- Institute of Plasma Physics, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Anhui Province, China
| | - Fangjian Zhou
- Department of Urology, Sun Yat-Sen University Cancer Centre, Guangzhou 510060, China
| | - Zhiming Cai
- Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518036, China
| | - Wei Han
- Center of Medical Physics and Technology, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Anhui Province, China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
11
|
Xu XH, Guan XW, Feng SL, Ma YZ, Chen SW, Hui L. One-pot synthesis and biological evaluation of N -(aminosulfonyl)-4-podophyllotoxin carbamates as potential anticancer agents. Bioorg Med Chem Lett 2017; 27:2890-2894. [DOI: 10.1016/j.bmcl.2017.04.082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/14/2017] [Accepted: 04/26/2017] [Indexed: 10/19/2022]
|
12
|
Li L, Sun HY, Liu W, Zhao HY, Shao ML. Silymarin protects against acrylamide-induced neurotoxicity via Nrf2 signalling in PC12 cells. Food Chem Toxicol 2017; 102:93-101. [PMID: 28137608 DOI: 10.1016/j.fct.2017.01.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/03/2017] [Accepted: 01/24/2017] [Indexed: 01/28/2023]
Abstract
Silymarin (SM) is a well-known antioxidant, anti-inflammatory and anti-cancer compound extracted from the milk thistle. Here, we investigated the protective effect of SM against acrylamide (AA)-induced neurotoxicity, mainly caused by oxidative stress, via activation of the nuclear transcription factor E2-related factor 2 (Nrf2) signalling pathway in PC12 cells. The MTT reduction assay was used to measure cell viability in various drug-treated groups and demonstrated that SM could increase cell viability in AA-treated PC12 cells. We then measured the reactive oxygen species (ROS) levels by the peroxide-sensitive fluorescent probe DCFH-DA and intracellular glutathione (GSH) and malondialdehyde (MDA) levels by absorption spectrophotometry. Our data revealed that SM could reduce ROS and MDA levels and increase GSH levels in AA-induced PC12 cells. To identify a potential mechanism for SM-induced protection, we measured the mRNA and protein expression levels of Nrf2 and its downstream target antioxidants glutathione peroxidase (Gpx), glutamate cysteine ligase catalytic subunit (GCLC) and glutamate cysteine ligase modifier subunit (GCLM) by quantitative real-time PCR and Western blot, respectively. The results suggested that SM could activate Nrf2 signalling and increase the expression of Nrf2, Gpx, GCLC and GCLM in AA-treated PC12 cells. In conclusion, SM can effectively alleviate AA-induced neurotoxicity in PC12 cells.
Collapse
Affiliation(s)
- Liang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Hong-Yang Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Wei Liu
- Tongjiang Entry-exit Inspection and Quarantine Bureau, Tongjiang, Heilongjiang 156400, China
| | - Hong-Yu Zhao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Mei-Li Shao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|