1
|
Wen M, Sun X, Pan L, Jing S, Zhang X, Liang L, Xiao H, Liu P, Xu Z, Zhang Q, Huang H. Dihydromyricetin ameliorates diabetic renal fibrosis via regulating SphK1 to suppress the activation of NF-κB pathway. Eur J Pharmacol 2024; 978:176799. [PMID: 38945289 DOI: 10.1016/j.ejphar.2024.176799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/19/2024] [Accepted: 06/28/2024] [Indexed: 07/02/2024]
Abstract
Dihydromyricetin (DHM) is a flavonoid from vine tea with broad pharmacological benefits, which improve inflammation by blocking the NF-κB pathway. A growing body of research indicates that chronic kidney inflammation is vital to the pathogenesis of diabetic renal fibrosis. Sphingosine kinase-1 (SphK1) is a key regulator of diabetic renal inflammation, which triggers the NF-κB pathway. Hence, we evaluated whether DHM regulates diabetic renal inflammatory fibrosis by acting on SphK1. Here, we demonstrated that DHM effectively suppressed the synthesis of fibrotic and inflammatory adhesion factors like ICAM-1, and VCAM-1 in streptozotocin-treated high-fat diet-induced diabetic mice and HG-induced glomerular mesangial cells (GMCs). Moreover, DHM significantly suppressed NF-κB pathway activation and reduced SphK1 activity and protein expression under diabetic conditions. Mechanistically, the results of molecular docking, molecular dynamics simulation, and cellular thermal shift assay revealed that DHM stably bound to the binding pocket of SphK1, thereby reducing sphingosine-1-phosphate content and SphK1 enzymatic activity, which ultimately inhibited NF-κB DNA binding, transcriptional activity, and nuclear translocation. In conclusion, our data suggested that DHM inhibited SphK1 phosphorylation to prevent NF-κB activation thus ameliorating diabetic renal fibrosis. This supported the clinical use and further drug development of DHM as a potential candidate for treating diabetic renal fibrosis.
Collapse
Affiliation(s)
- Min Wen
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, 510801, China
| | - Xiaohong Sun
- Department of Pharmacy, Shenzhen Children's Hospital, Shenzhen, 518026, China
| | - Linjie Pan
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Shujin Jing
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xuting Zhang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Liyin Liang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Haiming Xiao
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Peiqing Liu
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhanchi Xu
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Qun Zhang
- Good Clinical Practice Development, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China.
| | - Heqing Huang
- Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, 510801, China.
| |
Collapse
|
2
|
Sulaiman MK. Molecular mechanisms and therapeutic potential of natural flavonoids in diabetic nephropathy: Modulation of intracellular developmental signaling pathways. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2024; 7:100194. [PMID: 39071051 PMCID: PMC11276931 DOI: 10.1016/j.crphar.2024.100194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024] Open
Abstract
Recognized as a common microvascular complication of diabetes mellitus (DM), diabetic nephropathy (DN) is the principal cause of chronic end-stage renal disease (ESRD). Patients with diabetes have an approximately 25% risk of developing progressive renal disease. The underlying principles of DN control targets the dual outcomes of blood glucose regulation through sodium glucose cotransporter 2 (SGLT 2) blockade and hypertension management through renin-angiotensin-aldosterone inhibition. However, these treatments are ineffective in halting disease progression to kidney failure and cardiovascular comorbidities. Recently, the dysregulation of subcellular signaling pathways has been increasingly implicated in DN pathogenesis. Natural compounds are emerging as effective and side-effect-free therapeutic agents that target intracellular pathways. This narrative review synthesizes recent insights into the dysregulation of maintenance pathways in DN, drawing from animal and human studies. To compile this review, articles reporting DN signaling pathways and their treatment with natural flavonoids were collected from PubMed, Cochrane Library Web of Science, Google Scholar and EMBASE databases since 2000. As therapeutic interventions are frequently based on the results of clinical trials, a brief analysis of data from current phase II and III clinical trials on DN is discussed.
Collapse
|
3
|
Wen X, Lv C, Zhou R, Wang Y, Zhou X, Qin S. The Molecular Mechanism Underlying the Therapeutic Effect of Dihydromyricetin on Type 2 Diabetes Mellitus Based on Network Pharmacology, Molecular Docking, and Transcriptomics. Foods 2024; 13:344. [PMID: 38275711 PMCID: PMC10815645 DOI: 10.3390/foods13020344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic and complex disease, and traditional drugs have many side effects. The active compound dihydromyricetin (DHM), derived from natural plants, has been shown in our previous study to possess the potential for reducing blood glucose levels; however, its precise molecular mechanism remains unclear. In the present study, network pharmacology and transcriptomics were performed to screen the molecular targets and signaling pathways of DHM disturbed associated with T2DM, and the results were partially verified by molecular docking, RT-PCR, and Western blotting at in vivo levels. Firstly, the effect of DHM on blood glucose, lipid profile, and liver oxidative stress in db/db mice was explored and the results showed that DHM could reduce blood glucose and improve oxidative stress in the liver. Secondly, GO analysis based on network pharmacology and transcriptomics results showed that DHM mainly played a significant role in anti-inflammatory, antioxidant, and fatty acid metabolism in biological processes, on lipoprotein and respiratory chain on cell components, and on redox-related enzyme activity, iron ion binding, and glutathione transferase on molecular functional processes. KEGG system analysis results showed that the PI3K-Akt signaling pathway, IL17 signaling pathway, HIF signaling pathway, MAPK signaling pathway, AGE-RAGE signaling pathway in diabetic complications, and TNF signaling pathway were typical signaling pathways disturbed by DHM in T2DM. Thirdly, molecular docking results showed that VEGFA, SRC, HIF1A, ESR1, KDR, MMP9, PPARG, and MAPK14 are key target genes, five genes of which were verified by RT-PCR in a dose-dependent manner. Finally, Western blotting results revealed that DHM effectively upregulated the expression of AKT protein and downregulated the expression of MEK protein in the liver of db/db mice. Therefore, our study found that DHM played a therapeutic effect partially by activation of the PI3K/AKT/MAPK signaling pathway. This study establishes the foundation for DHM as a novel therapeutic agent for T2DM. Additionally, it presents a fresh approach to utilizing natural plant extracts for chemoprevention and treatment of T2DM.
Collapse
Affiliation(s)
- Xinnian Wen
- Laboratory of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.W.); (R.Z.); (Y.W.)
| | - Chenghao Lv
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China;
| | - Runze Zhou
- Laboratory of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.W.); (R.Z.); (Y.W.)
| | - Yixue Wang
- Laboratory of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.W.); (R.Z.); (Y.W.)
| | - Xixin Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China;
| | - Si Qin
- Laboratory of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.W.); (R.Z.); (Y.W.)
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China;
| |
Collapse
|
4
|
Fraga CG, Oteiza PI, Hid EJ, Galleano M. (Poly)phenols and the regulation of NADPH oxidases. Redox Biol 2023; 67:102927. [PMID: 37857000 PMCID: PMC10587761 DOI: 10.1016/j.redox.2023.102927] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/21/2023] Open
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) are enzymes that generate superoxide anion (O2•-) and hydrogen peroxide (H2O2), and that are widely distributed in mammalian tissues. Many bioactives, especially plant (poly)phenols are being studied for their capacity to regulate NOXs. The modulation of these enzymes are of central relevance to maintain redox homeostasis and regulate cell signaling. In in vitro and ex vivo assays, and in experimental animal models, different (poly)phenols are able to modulate NOX-dependent generation of O2•- and H2O2. Mechanistically, most of the known effects of (poly)phenols and of their metabolites on NOX1, NOX2, and NOX4, include the modulation of: i) the expression of the different constituent subunits, and/or ii) posttranslational modifications involved in the assembly and translocation of the protein complexes. Very limited evidence is available on a direct action of (poly)phenols on NOX active site (electron-transferring protein). Moreover, it is suggested that the regulation by (poly)phenols of systemic events, e.g. inflammation, is frequently associated with their capacity to regulate NOX activation. Although of physiological significance, more studies are needed to understand the specific targets/mechanisms of NOX regulation by (poly)phenols, and the (poly)phenol chemical structures and moieties directly involved in the observed effects. It should be kept in mind the difficulties of NOX's studies associated with the complexity of NOXs biochemistry and the methodological limitations of O2•- and H2O2 the determinations. Studies relating human ingestion of specific (poly)phenols, with NOX activity and disease conditions, are guaranteed to better understand the health importance of (poly)phenol consumption and the involvement of NOXs as biological targets.
Collapse
Affiliation(s)
- Cesar G Fraga
- Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular (IBIMOL), UBA-CONICET, Buenos Aires, Argentina; Department of Nutrition University of California, Davis, USA
| | - Patricia I Oteiza
- Department of Nutrition University of California, Davis, USA; Department of Environmental Toxicology, University of California, Davis, USA
| | - Ezequiel J Hid
- Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular (IBIMOL), UBA-CONICET, Buenos Aires, Argentina
| | - Monica Galleano
- Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular (IBIMOL), UBA-CONICET, Buenos Aires, Argentina.
| |
Collapse
|
5
|
Liang D, Liu L, Zhao Y, Luo Z, He Y, Li Y, Tang S, Tang J, Chen N. Targeting extracellular matrix through phytochemicals: a promising approach of multi-step actions on the treatment and prevention of cancer. Front Pharmacol 2023; 14:1186712. [PMID: 37560476 PMCID: PMC10407561 DOI: 10.3389/fphar.2023.1186712] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/11/2023] [Indexed: 08/11/2023] Open
Abstract
Extracellular matrix (ECM) plays a pivotal and dynamic role in the construction of tumor microenvironment (TME), becoming the focus in cancer research and treatment. Multiple cell signaling in ECM remodeling contribute to uncontrolled proliferation, metastasis, immune evasion and drug resistance of cancer. Targeting trilogy of ECM remodeling could be a new strategy during the early-, middle-, advanced-stages of cancer and overcoming drug resistance. Currently nearly 60% of the alternative anticancer drugs are derived from natural products or active ingredients or structural analogs isolated from plants. According to the characteristics of ECM, this manuscript proposes three phases of whole-process management of cancer, including prevention of cancer development in the early stage of cancer (Phase I); prevent the metastasis of tumor in the middle stage of cancer (Phase II); provide a novel method in the use of immunotherapy for advanced cancer (Phase III), and present novel insights on the contribution of natural products use as innovative strategies to exert anticancer effects by targeting components in ECM. Herein, we focus on trilogy of ECM remodeling and the interaction among ECM, cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs), and sort out the intervention effects of natural products on the ECM and related targets in the tumor progression, provide a reference for the development of new drugs against tumor metastasis and recurrence.
Collapse
Affiliation(s)
- Dan Liang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunjie Zhao
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Zhenyi Luo
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Yadi He
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanping Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiyun Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianyuan Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nianzhi Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Hu Q, Jiang L, Yan Q, Zeng J, Ma X, Zhao Y. A natural products solution to diabetic nephropathy therapy. Pharmacol Ther 2023; 241:108314. [PMID: 36427568 DOI: 10.1016/j.pharmthera.2022.108314] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/02/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Diabetic nephropathy is one of the most common complications in diabetes. It has been shown to be the leading cause of end-stage renal disease. However, due to their complex pathological mechanisms, effective therapeutic drugs other than angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs), which have been used for 20 years, have not been developed so far. Recent studies have shown that diabetic nephropathy is characterized by multiple signalling pathways and multiple targets, including inflammation, apoptosis, pyroptosis, autophagy, oxidative stress, endoplasmic reticulum stress and their interactions. It definitely exacerbates the difficulty of therapy, but at the same time it also brings out the chance for natural products treatment. In the most recent two decades, a large number of natural products have displayed their potential in preclinical studies and a few compounds are under invetigation in clinical trials. Hence, many compounds targeting these singals have been emerged as a comprehensive blueprint for treating strategy of diabetic nephropathy. This review focuses on the cellular and molecular mechanisms of natural prouducts that alleviate this condition, including preclinical studies and clinical trials, which will provide new insights into the treatment of diabetic nephropathy and suggest novel ideas for new drug development.
Collapse
Affiliation(s)
- Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacy, Chinese PLA General Hospital, Beijing 100039, China
| | - Lan Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qi Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yanling Zhao
- Department of Pharmacy, Chinese PLA General Hospital, Beijing 100039, China.
| |
Collapse
|
7
|
Molecular Mechanistic Pathways Targeted by Natural Compounds in the Prevention and Treatment of Diabetic Kidney Disease. Molecules 2022; 27:molecules27196221. [PMID: 36234757 PMCID: PMC9571643 DOI: 10.3390/molecules27196221] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 12/03/2022] Open
Abstract
Diabetic kidney disease (DKD) is one of the most common complications of diabetes, and its prevalence is still growing rapidly. However, the efficient therapies for this kidney disease are still limited. The pathogenesis of DKD involves glucotoxicity, lipotoxicity, inflammation, oxidative stress, and renal fibrosis. Glucotoxicity and lipotoxicity can cause oxidative stress, which can lead to inflammation and aggravate renal fibrosis. In this review, we have focused on in vitro and in vivo experiments to investigate the mechanistic pathways by which natural compounds exert their effects against the progression of DKD. The accumulated and collected data revealed that some natural compounds could regulate inflammation, oxidative stress, renal fibrosis, and activate autophagy, thereby protecting the kidney. The main pathways targeted by these reviewed compounds include the Nrf2 signaling pathway, NF-κB signaling pathway, TGF-β signaling pathway, NLRP3 inflammasome, autophagy, glycolipid metabolism and ER stress. This review presented an updated overview of the potential benefits of these natural compounds for the prevention and treatment of DKD progression, aimed to provide new potential therapeutic lead compounds and references for the innovative drug development and clinical treatment of DKD.
Collapse
|
8
|
Hu Q, Qu C, Xiao X, Zhang W, Jiang Y, Wu Z, Song D, Peng X, Ma X, Zhao Y. Flavonoids on diabetic nephropathy: advances and therapeutic opportunities. Chin Med 2021; 16:74. [PMID: 34364389 PMCID: PMC8349014 DOI: 10.1186/s13020-021-00485-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/29/2021] [Indexed: 12/21/2022] Open
Abstract
With the advances in biomedical technologies, natural products have attracted substantial public attention in the area of drug discovery. Flavonoids are a class of active natural products with a wide range of pharmacological effects that are used for the treatment of several diseases, in particular chronic metabolic diseases. Diabetic nephropathy is a complication of diabetes with a particularly complicated pathological mechanism that affects at least 30% of diabetic patients and represents a great burden on public health. A large number of studies have shown that flavonoids can alleviate diabetic nephropathy. This review systematically summarizes the use of common flavonoids for the treatment of diabetic nephropathy. We found that flavonoids play a therapeutic role in diabetic nephropathy mainly by regulating oxidative stress and inflammation. Nrf-2/GSH, ROS production, HO-1, TGF-β1 and AGEs/RAGE are involved in the process of oxidative stress regulation. Quercetin, apigenin, baicalin, luteolin, hesperidin, genistein, proanthocyanidin and eriodictyol were found to be capable of alleviating oxidative stress related to the aforementioned factors. Regarding inflammatory responses, IL-1, IL-6β, TNF-α, SIRT1, NF-κB, and TGF-β1/smad are thought to be essential. Quercetin, kaempferol, myricetin, rutin, genistein, proanthocyanidin and eriodictyol were confirmed to influence the above targets. As a result, flavonoids promote podocyte autophagy and inhibit the overactivity of RAAS by suppressing the upstream oxidative stress and inflammatory pathways, ultimately alleviating DN. The above results indicate that flavonoids are promising drugs for the treatment of diabetic nephropathy. However, due to deficiencies in the effect of flavonoids on metabolic processes and their lack of structural stability in the body, further research is required to address these issues. ![]()
Collapse
Affiliation(s)
- Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Caiyan Qu
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiaolin Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wenwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yinxiao Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Dan Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xi Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - YanLing Zhao
- Department of Pharmacy, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China.
| |
Collapse
|
9
|
Thakur K, Zhu YY, Feng JY, Zhang JG, Hu F, Prasad C, Wei ZJ. Morin as an imminent functional food ingredient: an update on its enhanced efficacy in the treatment and prevention of metabolic syndromes. Food Funct 2021; 11:8424-8443. [PMID: 33043925 DOI: 10.1039/d0fo01444c] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Flavonoids represent polyphenolic plant secondary metabolites with a general structure of a 15-carbon skeleton comprising two phenyl rings and a heterocyclic ring. Over 5000 natural flavonoids (flavanones, flavanonols, and flavans) from various plants have been characterized. Several studies provide novel and promising insights into morin hydrate for its different biological activities against a series of metabolic syndromes. The present review is a rendition of its sources, chemistry, functional potency, and protective effects on metabolic syndromes ranging from cancer to brain injury. Most importantly this systematic review article also highlights the mechanisms of interest to morin-mediated management of metabolic disorders. The key mechanisms (anti-oxidative and anti-inflammatory) responsible for its therapeutic potential are well featured after collating the in vitro and in vivo study reports. As a whole, based on the prevailing information rationalizing its medicinal use, morin can be identified as a therapeutic agent for the expansion of human health.
Collapse
Affiliation(s)
- Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Yun-Yang Zhu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Jing-Yu Feng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Jian-Guo Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Fei Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Chandan Prasad
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, TX, USA. and Department of Medicine, LSU School of Medicine, New Orleans, LA, USA
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China. and Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| |
Collapse
|
10
|
Yan H, Xu F, Xu J, Song MA, Wang K, Wang L. Activation of Akt-dependent Nrf2/ARE pathway by restoration of Brg-1 remits high glucose-induced oxidative stress and ECM accumulation in podocytes. J Biochem Mol Toxicol 2020; 35:e22672. [PMID: 33270355 DOI: 10.1002/jbt.22672] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/29/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022]
Abstract
Brahma-related gene 1 (Brg-1) is perceived as a cytoprotective protein due to its role in alleviating oxidative stress and apoptosis. Our study aimed to explore the role and mechanism of Brg-1 in high glucose (HG)-stimulated podocytes. The HG exposure downregulated Brg-1 and inactivated the protein kinase B (Akt) pathway in podocytes. Restoration of Brg-1 inhibited HG-induced viability reduction of podocytes. The HG-induced increase of reactive oxygen species and malondialdehyde levels and decrease of superoxide dismutase activity in podocytes were reversed by the Brg-1 overexpression. The Brg-1 overexpression terminated the HG-induced production of fibronectin, collagen IV, transforming growth factor-β1, and connective tissue growth factor. In addition, the Brg-1 overexpression activated Akt-dependent nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling in HG-stimulated podocytes. However, inhibition of the Akt pathway or Nrf2 silencing counteracted the protective effects of Brg-1 in HG-stimulated podocytes. In conclusion, the Brg-1 overexpression suppressed HG-induced oxidative stress and extracellular matrix accumulation by activation of Akt-dependent Nrf2/ARE signaling in podocytes.
Collapse
Affiliation(s)
- Hao Yan
- Department of Nephrology, Nanyang First People's Hospital, Nanyang, China
| | - Fei Xu
- Department of ICU, Lianshui County People's Hospital Affiliated to Kangda College of Nanjing Medical University, Huai'an, China
| | - Jun Xu
- Department of Neonatology, Nanyang First People's Hospital, Nanyang, China
| | - Ming-Ai Song
- Department of Nephrology, Nanyang First People's Hospital, Nanyang, China
| | - Kai Wang
- Department of Nephrology, Nanyang First People's Hospital, Nanyang, China
| | - Lulu Wang
- Department of Emergency, The Second People's Hospital of Huai'an, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| |
Collapse
|
11
|
Dong C, Wu G, Li H, Qiao Y, Gao S. Ampelopsin inhibits high glucose-induced extracellular matrix accumulation and oxidative stress in mesangial cells through activating the Nrf2/HO-1 pathway. Phytother Res 2020; 34:2044-2052. [PMID: 32155298 DOI: 10.1002/ptr.6668] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/15/2020] [Accepted: 02/24/2020] [Indexed: 12/16/2022]
Abstract
Oxidative stress plays an important role in diabetic nephropathy (DN), which is a diabetic complication. Ampelopsin (AMP) is a natural flavonoid that has been found to possess antidiabetic and antioxidative activities. However, the effect of AMP on DN remains unclear. In this study, we aimed to evaluate the protective effect of AMP on glomerular mesangial cells (MCs) exposed to high glucose (HG). We found that AMP improved HG-caused cell viability reduction in MCs. AMP significantly suppressed the intracellular ROS production and expression levels of ROS producing enzymes NADPH oxidase 2 (NOX2) and NOX4. Increased of NOX activity in HG-stimulated MCs was suppressed by AMP. Pretreatment with AMP inhibited extracellular matrix (ECM) accumulation in HG-stimulated MCs with decreased expression levels of fibronectin (FN) and collagen type IV (Col IV). Furthermore, AMP elevated the expression levels of nuclear Nrf2 and heme oxygenase-1 (HO-1), as well as increased the mRNA levels of Nrf2-driven genes NAD(P)H dehydrogenase quinone-1 (NQO-1) and HO-1 in HG-treated MCs. Knockdown of Nrf2 reversed the protective effects of AMP against HG-induced oxidative stress and EMC accumulation in MCs. In conclusion, these findings indicated that AMP protected MCs from HG-induced oxidative damage and ECM accumulation, which might be mediated by Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Chunping Dong
- Department of Endocrinology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Guifu Wu
- Department of Endocrinology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Hui Li
- Department of Endocrinology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yuan Qiao
- Department of Endocrinology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Shan Gao
- Department of Endocrinology, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
12
|
Du L, Wang L, Wang B, Wang J, Hao M, Chen YB, Li XZ, Li Y, Jiang YF, Li CC, Yang H, Gu XK, Yin XX, Lu Q. A novel compound AB38b attenuates oxidative stress and ECM protein accumulation in kidneys of diabetic mice through modulation of Keap1/Nrf2 signaling. Acta Pharmacol Sin 2020; 41:358-372. [PMID: 31645661 PMCID: PMC7470857 DOI: 10.1038/s41401-019-0297-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/06/2019] [Indexed: 12/29/2022]
Abstract
Extracellular matrix (ECM) deposition following reactive oxygen species (ROS) overproduction has a key role in diabetic nephropathy (DN), thus, antioxidant therapy is considered as a promising strategy for treating DN. Here, we investigated the therapeutic effects of AB38b, a novel synthetic α, β-unsaturated ketone compound, on the oxidative stress (OS) and ECM accumulation in type 2 diabetes mice, and tried to clarify the mechanisms underlying the effects in high glucose (HG, 30 mM)-treated mouse glomerular mesangial cells (GMCs). Type 2 diabetes model was established in mice with high-fat diet feeding combined with streptozocin intraperitoneal administration. The diabetic mice were then treated with AB38b (10, 20, 40 mg· kg-1· d-1, ig) or a positive control drug resveratrol (40 mg· kg-1· d-1, ig) for 8 weeks. We showed that administration of AB38b or resveratrol prevented the increases in malondialdehyde level, lactate dehydrogenase release, and laminin and type IV collagen deposition in the diabetic kidney. Simultaneously, AB38b or resveratrol markedly lowered the level of Keap1, accompanied by evident activation of Nrf2 signaling in the diabetic kidney. The underlying mechanisms of antioxidant effect of AB38b were explored in HG-treated mouse GMCs. AB38b (2.5-10 μM) or resveratrol (10 μM) significantly alleviated OS and ECM accumulation in HG-treated GMCs. Furthermore, AB38b or resveratrol treatment effectively activated Nrf2 signaling by inhibiting Keap1 expression without affecting the interaction between Keap1 and Nrf2. Besides, AB38b treatment effectively suppressed the ubiquitination of Nrf2. Taken together, this study demonstrates that AB38b ameliorates experimental DN through antioxidation and modulation of Keap1/Nrf2 signaling pathway.
Collapse
|
13
|
Lei D, Chengcheng L, Xuan Q, Yibing C, Lei W, Hao Y, Xizhi L, Yuan L, Xiaoxing Y, Qian L. Quercetin inhibited mesangial cell proliferation of early diabetic nephropathy through the Hippo pathway. Pharmacol Res 2019; 146:104320. [PMID: 31220559 DOI: 10.1016/j.phrs.2019.104320] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/16/2019] [Accepted: 06/16/2019] [Indexed: 12/11/2022]
Abstract
Diabetic nephropathy (DN) is one of the most common microvascular complications of diabetes and the leading cause of end-stage renal disease. The proliferation of glomerular mesangial cells (MCs) is a common and prominent pathological change of DN, which takes place at the early stage. Quercetin, a bioflavonoid compound, possesses therapeutic efficacy in cardiovascular and kidney diseases via anti-tumour, anti-oxidation, anti-virus, and anti-proliferation effects. However, the mechanism of quercetin in the proliferation of glomerular MCs in early DN has not been reported. In the present study, we investigated the effect of quercetin on the proliferation of glomerular MCs in high glucose-induced mouse glomerular MCs and in db/db mice. On this basis, we tried to clarify the specific mechanisms underlying these effects. The in vitro results showed that the proliferation of glomerular MCs was induced by high glucose, and the Hippo pathway was highly inactivated in high glucose-cultured MCs. Decreased phosphorylation of MST1 and Lats1 promoted expression and nuclear translocation of Yes-associated protein (YAP) and subsequently increased the combination of YAP and TEA/ATS domain (TEAD), which promoted the expression of the downstream target gene such as cyclinE. Quercetin effectively inhibited the high glucose-induced MC proliferation and reactivated the Hippo pathway. In vivo, the proliferation of glomerular MCs was increased, renal function was decreased, and blood fasting glucose was elevated in db/db mice. Furthermore, the Hippo pathway was inactivated in the renal cortex of db/db mice. Eight-week treatment of quercetin retarded MC proliferation, alleviated the renal function, and reactivated Hippo pathway in the renal cortex of db/db mice at 16 weeks. Our previous study clarified that the Hippo pathway was involved in MC proliferation of DN. The results revealed that quercetin inhibited MC proliferation in high glucose-treated mouse glomerular MCs and in DN via reactivation of the Hippo pathway.
Collapse
Affiliation(s)
- Du Lei
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, China
| | - Li Chengcheng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, China
| | - Qian Xuan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, China
| | - Chen Yibing
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, China
| | - Wang Lei
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, China
| | - Yang Hao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, China
| | - Li Xizhi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, China
| | - Li Yuan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, China
| | - Yin Xiaoxing
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, China.
| | - Lu Qian
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, China.
| |
Collapse
|
14
|
Wang Y, Xue L, Li H, Shi J, Chen B. Knockdown of FOXO6 inhibits cell proliferation and ECM accumulation in glomerular mesangial cells cultured under high glucose condition. RSC Adv 2019; 9:1741-1746. [PMID: 35518006 PMCID: PMC9059738 DOI: 10.1039/c8ra10547b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 01/08/2019] [Indexed: 12/13/2022] Open
Abstract
Forkhead box O 6 (FOXO6), a FOX transcription factor, has been found to be involved in diabetes mellitus and related complications. However, the role of FOXO6 in diabetic nephropathy (DN) has not been fully understood. In the present study, we evaluated the functions of FOXO6 in high glucose (HG)-induced glomerular mesangial cells (MCs). The results showed that FOXO6 expression was significantly elevated in MCs after HG stimulation. Knockdown of FOXO6 by transfection with small interfering RNA (siRNA) targeting FOXO6 (siRNA-FOXO6) suppressed cell proliferation in MCs. The productions of extracellular matrix (ECM) components including collagen IV (Col IV) and fibronectin (FN) were markedly decreased after FOXO6 knockdown in MCs. Furthermore, knockdown of FOXO6 inhibited HG-induced activation of p38 MAPK signaling pathway in MCs. Collectively, these findings suggested that knockdown of FOXO6 inhibited cell proliferation and ECM accumulation in HG-induced MCs via inhibiting p38 MAPK signaling pathway. FOXO6 might be a beneficial therapeutic target for the prevention and treatment of DN.
Collapse
Affiliation(s)
- Yunqian Wang
- Department of Nephrology, Huaihe Hospital of Henan University No. 8 of Baobei Road Kaifeng 475000 Henan Province P. R. China +86-0371-23906686
| | - Lei Xue
- Department of Endocrinology, Huaihe Hospital of Henan University Kaifeng 475000 Henan Province P. R. China
| | - Huicong Li
- Department of Nephrology, Huaihe Hospital of Henan University No. 8 of Baobei Road Kaifeng 475000 Henan Province P. R. China +86-0371-23906686
| | - Jun Shi
- Department of Nephrology, Huaihe Hospital of Henan University No. 8 of Baobei Road Kaifeng 475000 Henan Province P. R. China +86-0371-23906686
| | - Baoping Chen
- Department of Nephrology, Huaihe Hospital of Henan University No. 8 of Baobei Road Kaifeng 475000 Henan Province P. R. China +86-0371-23906686
| |
Collapse
|
15
|
Hu TY, Li LM, Pan YZ. CTRP3 inhibits high glucose-induced human glomerular mesangial cell dysfunction. J Cell Biochem 2018; 120:5729-5736. [PMID: 30362596 DOI: 10.1002/jcb.27859] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/19/2018] [Indexed: 02/06/2023]
Abstract
C1q/tumour necrosis factor-related protein-3 (CTRP3) is a member of CTRP family, and its blood level is reduced in human and rodent models of obesity and diabetes. However, the role of CTRP3 in diabetic nephropathy remains unclear. This study was designed to examine the effects of CTRP3 on cell proliferation and extracellular matrix (ECM) accumulation in human glomerular mesangial cells (MCs) in response to high glucose (HG), and explore the potential molecular mechanisms. Our results demonstrated that the expression of CTRP3 was significantly decreased by HG stimulation in MCs. In addition, CTRP3 overexpression inhibited MCs proliferation, reactive oxygen species level, and ECM production in HG-stimulated MCs. Mechanistically, CTRP3 overexpression inhibited the activation of the Janus kinase 2/signal transducers and activators of transcription 3 (JAK2/STAT3) pathway in HG-stimulated MCs. Taken together, these findings indicated that CTRP3 attenuated HG-induced MC proliferation and ECM production through the inactivation of the JAK2/STAT3 signaling pathway. Thus, CTRP3 may be a potential therapeutic target for the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Tian-Ying Hu
- Department of Endocrinology, Weinan Central Hospital, Weinan, Shaanxi, China
| | - La-Mei Li
- Department of Infectious Diseases, Weinan Central Hospital, Weinan, Shaanxi, China
| | - Yan-Zi Pan
- Department of Nephropathy, Baoji Traditional Chinese Medicine Hospital, Baoji, Shaanxi, China
| |
Collapse
|
16
|
Kuzu M, Kandemir FM, Yildirim S, Kucukler S, Caglayan C, Turk E. Morin attenuates doxorubicin-induced heart and brain damage by reducing oxidative stress, inflammation and apoptosis. Biomed Pharmacother 2018; 106:443-453. [DOI: 10.1016/j.biopha.2018.06.161] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 12/21/2022] Open
|
17
|
Wu J, Liu J, Ding Y, Zhu M, Lu K, Zhou J, Xie X, Xu Y, Shen X, Chen Y, Shao X, Zhu C. MiR-455-3p suppresses renal fibrosis through repression of ROCK2 expression in diabetic nephropathy. Biochem Biophys Res Commun 2018; 503:977-983. [PMID: 29932921 DOI: 10.1016/j.bbrc.2018.06.105] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 06/19/2018] [Indexed: 01/19/2023]
Abstract
Emerging evidence has shown that microRNAs (miRNAs) play a mediatory role in the pathogenesis of diabetic nephropathy (DN), but the function of the involved miRNAs is still incomplete. Here, we found that miR-455-3p was down-regulated in the human mesangial cells (HMC) and human proximal tubule epithelial cells (HK-2) stimulated with high glucose (HG) or transforming growth factor beta 1 (TGF-β1). Rho-associated coiled coil-containing protein kinase 2 (ROCK2) was identified as a directed target of miR-455-3p. Overexpression of ROCK2 significantly attenuated the inhibitory effects of miR-455-3p on cell proliferation, extracellular matrix (ECM) synthesis and epithelial-mesenchymal transition (EMT) in HG-treated cells. Furthermore, the DN model was prepared by using high-fat feeding combined with Streptozotocin (STZ) induced rats, and the DN group was treated by injecting miR-455-3p agomir. The results of periodic acid-Schiff (PAS) and Masson staining showed that miR-455-3p overexpression improved the pathological changes of glomerular hypertrophy, mesangial amplification, and renal fibrosis. Additionally, miR-455-3p overexpression decreased ROCK2, proliferating cell nuclear antigen (PCNA) and Collagen I levels, and also reduced inflammatory cytokines TNF-α, MCP-1 and IL-1β levels in vivo. Altogether, these results suggest that miR-455-3p plays an essential role in the treatment of renal fibrosis through repressing ROCK2 expression; and miR-455-3p might be an effective therapy for DN.
Collapse
Affiliation(s)
- Jian Wu
- Department of Endocrinology, Shanghai TCM-Integrated Hospital Affiliated Shanghai University of Traditional Chinese Medicine, Baoding Road, Hongkou District, Shanghai, 200082, China.
| | - Jibo Liu
- Department of Endocrinology, Shanghai TCM-Integrated Hospital Affiliated Shanghai University of Traditional Chinese Medicine, Baoding Road, Hongkou District, Shanghai, 200082, China
| | - Yaqin Ding
- Department of Endocrinology, Shanghai TCM-Integrated Hospital Affiliated Shanghai University of Traditional Chinese Medicine, Baoding Road, Hongkou District, Shanghai, 200082, China
| | - Mingying Zhu
- Department of Endocrinology, Shanghai TCM-Integrated Hospital Affiliated Shanghai University of Traditional Chinese Medicine, Baoding Road, Hongkou District, Shanghai, 200082, China
| | - Kan Lu
- Department of Endocrinology, Shanghai TCM-Integrated Hospital Affiliated Shanghai University of Traditional Chinese Medicine, Baoding Road, Hongkou District, Shanghai, 200082, China
| | - Jing Zhou
- Department of Endocrinology, Shanghai TCM-Integrated Hospital Affiliated Shanghai University of Traditional Chinese Medicine, Baoding Road, Hongkou District, Shanghai, 200082, China
| | - Xin Xie
- Department of Endocrinology, Shanghai TCM-Integrated Hospital Affiliated Shanghai University of Traditional Chinese Medicine, Baoding Road, Hongkou District, Shanghai, 200082, China
| | - Yi Xu
- Department of Endocrinology, Shanghai TCM-Integrated Hospital Affiliated Shanghai University of Traditional Chinese Medicine, Baoding Road, Hongkou District, Shanghai, 200082, China
| | - Xiaoyu Shen
- Department of Endocrinology, Shanghai TCM-Integrated Hospital Affiliated Shanghai University of Traditional Chinese Medicine, Baoding Road, Hongkou District, Shanghai, 200082, China
| | - Yiyue Chen
- Department of Endocrinology, Shanghai TCM-Integrated Hospital Affiliated Shanghai University of Traditional Chinese Medicine, Baoding Road, Hongkou District, Shanghai, 200082, China
| | - Xiaohong Shao
- Department of Endocrinology, Shanghai TCM-Integrated Hospital Affiliated Shanghai University of Traditional Chinese Medicine, Baoding Road, Hongkou District, Shanghai, 200082, China
| | - Chunling Zhu
- Department of Endocrinology, Shanghai TCM-Integrated Hospital Affiliated Shanghai University of Traditional Chinese Medicine, Baoding Road, Hongkou District, Shanghai, 200082, China
| |
Collapse
|
18
|
Li H, Wang Y, Chen B, Shi J. Silencing of PAQR3 suppresses extracellular matrix accumulation in high glucose-stimulated human glomerular mesangial cells via PI3K/AKT signaling pathway. Eur J Pharmacol 2018; 832:50-55. [PMID: 29787774 DOI: 10.1016/j.ejphar.2018.05.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 05/18/2018] [Indexed: 01/12/2023]
Abstract
Progestin and AdipoQ Receptor 3 (PAQR3), a member of the PAQR family, was involved in multiple biological processes, including tumorigenesis, cholesterol homeostasis, autophagy, obesity, insulin sensitivity and energy metabolism. However, the role of PAQR3 in diabetic nephropathy is still unclear. Therefore, in this study, we investigated the effects of PAQR3 on cell proliferation and extracellular matrix (ECM) accumulation in human glomerular mesangial cells (MCs) cultured under high glucose (HG), and explored the underlying mechanism. Our results demonstrated that HG significantly up-regulated the expression of PAQR3 in human MCs. In addition, knockdown of PAQR3 efficiently suppressed MC proliferation and ECM production in HG-stimulated MCs. Furthermore, knockdown of PAQR3 markedly reversed HG-induced PI3K/AKT activation in MCs. In summary, our present study demonstrated that knockdown of PAQR3 suppressed HG-induced the proliferation and ECM accumulation in human MCs, via inhibiting the PI3K/AKT signaling pathway. Thus, PAQR3 may be a potential therapeutic target for the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Huicong Li
- Department of Nephrology, Huaihe Hospital of Henan University, Kaifeng 475000, Henan, China.
| | - Yunqian Wang
- Department of Nephrology, Huaihe Hospital of Henan University, Kaifeng 475000, Henan, China
| | - Baoping Chen
- Department of Nephrology, Huaihe Hospital of Henan University, Kaifeng 475000, Henan, China
| | - Jun Shi
- Department of Nephrology, Huaihe Hospital of Henan University, Kaifeng 475000, Henan, China
| |
Collapse
|
19
|
Chen F, Ma Y, Sun Z, Zhu X. Tangeretin inhibits high glucose-induced extracellular matrix accumulation in human glomerular mesangial cells. Biomed Pharmacother 2018; 102:1077-1083. [PMID: 29710524 DOI: 10.1016/j.biopha.2018.03.169] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 03/28/2018] [Accepted: 03/28/2018] [Indexed: 01/01/2023] Open
Abstract
Tangeretin (5, 6, 7, 8, 4'-pentamethoxyflavone), a natural compound extracted from citrus plants, has been shown to possess a variety of pharmacological activities, including anti-oxidant, anti-tumor, cytostatic and anti-diabetic properties. However, the role of tangeretin in diabetic nephropathy (DN) has not yet been investigated. This study was undertaken to elucidate the effects of tangeretin on high glucose (HG)-induced oxidative stress and extracellular matrix (ECM) accumulation in human glomerular mesangial cells (MCs) and explore the underlying mechanisms. Our results showed that tangeretin significantly inhibited HG-induced the proliferation of MCs. In addition, tangeretin dramatically reduced the levels of reactive oxygen species (ROS) and malondialdhyde (MDA), and induced SOD activity, as well as inhibited the expression of fibronectin (FN) and collagen IV in HG-stimulated MCs. Furthermore, tangeretin efficiently prevented the activation of ERK signaling pathway in HG-stimulated MCs. Taken together, these data indicated that tangeretin inhibits HG-induced cell proliferation, oxidative stress and ECM expression in glomerular MCs, at least in part, through the inactivation of ERK signaling pathway. Therefore, tangeretin may be a potential agent in the treatment of DN.
Collapse
Affiliation(s)
- Fang Chen
- Department of Nephrology, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan, PR China
| | - Yali Ma
- Department of Nephrology, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan, PR China.
| | - Zhiqiang Sun
- Department of Nephrology, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan, PR China
| | - Xiaoguang Zhu
- Department of Nephrology, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan, PR China
| |
Collapse
|
20
|
Wang X, Li D, Fan L, Xiao Q, Zuo H, Li Z. CAPE- pNO 2 ameliorated diabetic nephropathy through regulating the Akt/NF-κB/ iNOS pathway in STZ-induced diabetic mice. Oncotarget 2017; 8:114506-114525. [PMID: 29383098 PMCID: PMC5777710 DOI: 10.18632/oncotarget.23016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/14/2017] [Indexed: 02/07/2023] Open
Abstract
Diabetic nephropathy (DN) is one of the most severe complications of diabetes mellitus. This study aimed to determine the effects and potential mechanism of caffeic acid para-nitro phenethyl ester (CAPE-pNO2), a derivative of caffeic acid phenethyl ester (CAPE), on DN; In vivo, intraperitoneal injections of streptozotocin (STZ) were used to induce diabetes in mice; then, the mice were intraperitoneally injected daily with CAPE or CAPE-pNO2 for 8 weeks. The mice were sacrificed, and blood samples and kidney tissues were collected to measure biological indexes. The results showed that CAPE and CAPE-pNO2 could lower serum creatinine, blood urea nitrogen, 24-h albumin excretion, malondialdehyde and myeloperoxidase levels and increase superoxide dismutase activity in diabetic mice. According to HE, PAS and Masson staining, these two compounds ameliorated structural changes and fibrosis in the kidneys. In addition, the immunohistochemical and western blot results showed that CAPE and CAPE-pNO2 inhibited inflammation through the Akt/NF-κB pathway and prevented renal fibrosis through the TGF-β/Smad pathway. In vitro, CAPE and CAPE-pNO2 inhibited glomerular mesangial cell (GMC) proliferation, arrested cell cycle progression and suppressed ROS generation. These compounds also inhibited ECM accumulation via regulating the TGF-β1, which was a similar effect to that of the NF-κB inhibitor PDTC. More importantly, CAPE and CAPE-pNO2 could up-regulate nitric oxide synthase expression in STZ-induced diabetic mice and HG-induced GMCs. CAPE-pNO2 had stronger effects than CAPE both in vivo and in vitro. These data suggest that CAPE-pNO2 ameliorated DN by suppressing oxidative stress, inflammation, and fibrosis via the Akt/NF-κB/ iNOS pathway.
Collapse
Affiliation(s)
- Xiaoling Wang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Dejuan Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Lu Fan
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Qianhan Xiao
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Hua Zuo
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Zhubo Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| |
Collapse
|
21
|
Wang B, Zhou X, Wang Y, Li R. Trifluoperazine Inhibits Mesangial Cell Proliferation by Arresting Cell Cycle-Dependent Mechanisms. Med Sci Monit 2017; 23:3461-3469. [PMID: 28713151 PMCID: PMC5525635 DOI: 10.12659/msm.902522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background It has been reported that trifluoperazine (TFP) inhibits proliferation of cancer cells, however, the effects of TFP in renal proliferation diseases are still unclear. This study examined the effects of TFP on proliferation of human renal mesangial cells and analyzed the underlying mechanisms. Material/Methods Cell proliferation in vivo was determined by HE staining, immunohistochemistry of proliferating cell nuclear antigen (PCNA), and Western blot analysis (Ki-67 and PCNA). Effects of different TFP concentrations and treatment duration on cell proliferation and cell cycle were analyzed using the MTT assay and flow cytometry. Expression of G0/G1 phase cell cycle-related proteins and TFP-induced MAPK and PI3K/AKT signaling pathways was estimated with Western blot analysis. Results Our findings suggest that TFP inhibits cell proliferation in a dose- and time-dependent manner and decreased PCNA and Ki-67 levels in lupus MRL/lpr mice. TFP arrested the cell cycle in the G0/G1 phase, down-regulating cyclin D1, CDK2, and CDK4, and up-regulating p21 expression in a dose-dependent manner. In addition, TFP inhibited p-AKT and p-JNK, possibly by suppressing the activation of PI3K/AKT and JNK/MAPK signaling pathways. TFP treatment remarkably reduced the levels of serum creatinine (Cr) in lupus mice. Conclusions TFP exhibits inhibitory activity against mesangial cells in vivo and in vitro, which is associated with G1 cell cycle arrest by inactivation of PI3K/AKT and JNK/MAPK signaling pathways. These results suggest the potential of TFP in treatment of mesangial proliferative diseases.
Collapse
Affiliation(s)
- Baodong Wang
- Department of Nephrology, Affiliated People's Hospital of Shanxi Medical University, Shanxi Provincial People's Hospital, Shanxi Kidney Disease Institute, Taiyuan, Shanxi, China (mainland)
| | - Xiaoshuang Zhou
- Department of Nephrology, Affiliated People's Hospital of Shanxi Medical University, Shanxi Provincial People's Hospital, Shanxi Kidney Disease Institute, Taiyuan, Shanxi, China (mainland)
| | - Yanqin Wang
- Department of Nephrology, Affiliated People's Hospital of Shanxi Medical University, Shanxi Provincial People's Hospital, Shanxi Kidney Disease Institute, Taiyuan, Shanxi, China (mainland)
| | - Rongshan Li
- Department of Nephrology, Affiliated People's Hospital of Shanxi Medical University, Shanxi Provincial People's Hospital, Shanxi Kidney Disease Institute, Taiyuan, Shanxi, China (mainland)
| |
Collapse
|
22
|
Ying C, Chen L, Wang S, Mao Y, Ling H, Li W, Zhou X. Zeaxanthin ameliorates high glucose-induced mesangial cell apoptosis through inhibiting oxidative stress via activating AKT signalling-pathway. Biomed Pharmacother 2017; 90:796-805. [PMID: 28431381 DOI: 10.1016/j.biopha.2017.04.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/15/2017] [Accepted: 04/10/2017] [Indexed: 12/22/2022] Open
Abstract
Oxidative stress is a critical factor in the pathophysiology of diabetic kidney disease. Previous study shows that hyperglycaemia aggravates renal injury through oxidative stress in diabetic model, and antioxidants have beneficial effect on diabetic kidney disease. However, the role of antioxidants in the progression of diabetic kidney disease is poorly understood. The aim of this study was to clarify whether zeaxanthin, an antioxidant, could ameliorate mesangial cell injury and if so, identify the related mechanism underlying this protective effect. To that end, superoxide dismutase (SOD) activity and methane dicarboxylic aldehyde (MDA) levels were measured by an assay kit, and mesangial cell apoptosis and ROS levels were assessed using flow cytometry analysis. Furthermore, The levels of a phosphorylated ser/thr protein kinase (p-AKT), phosphorylated glycogen synthase kinase-3 beta (p-GSK-3β), Bcl-2 associated X protein (Bax) and cleaved cysteinyl aspartate-specific proteinase-3 (caspase-3) were detected by western blot. We found that zeaxanthin decreases MDA levels and increased SOD activity, as well as inhibits apoptosis and decreases ROS levels in mesangial cells in a high sugar environment. Furthermore, zeaxanthin increased p-AKT levels while decreased the levels of p-GSK-3β, Bax and cleaved-caspase-3. In addition, LY294002 reversed the protective effect of zeaxanthin on mesangial cells. In conclusion, zeaxanthin ameliorated mesangial cell apoptosis may be involved in inhibiting oxidative stress through activating of the AKT signalling pathway.
Collapse
Affiliation(s)
- Changjiang Ying
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Lei Chen
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Shanshan Wang
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Yizhen Mao
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Hongwei Ling
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Wei Li
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China.
| | - Xiaoyan Zhou
- Laboratory of Morphology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China.
| |
Collapse
|