1
|
Liao Y, Lv F, Quan T, Wang C, Li J. Flavonoids in natural products for the therapy of liver diseases: progress and future opportunities. Front Pharmacol 2024; 15:1485065. [PMID: 39512816 PMCID: PMC11540641 DOI: 10.3389/fphar.2024.1485065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024] Open
Abstract
The liver is the largest, important organ and the site for essential biochemical reactions in the human body. It has the function to detoxify toxic substances and synthesize useful biomolecules. Liver diseases related complications represent a significant source of morbidity and mortality worldwide, creating a substantial economic burden. Oxidative stress, excessive inflammation, and dysregulated energy metabolism significantly contributed to liver diseases. Therefore, discovery of novel therapeutic drugs for the treatment of liver diseases are urgently required. For centuries, flavonoids and their preparations which have the beneficial health effects in chronic diseases have been used to treat various human illnesses. Flavonoids mainly include flavones, isoflavones, flavanols, dihydroflavones, dihydroflavonols, anthocyanins and chalcones. The primary objective of this review is to assess the efficacy and safety of flavonoids, mainly from a clinical point of view and considering clinically relevant end-points. We summarized the recent progress in the research of hepatoprotective and molecular mechanisms of different flavonoids bioactive ingredients and also outlined the networks of underlying molecular signaling pathways. Further pharmacology and toxicology research will contribute to the development of natural products in flavonoids and their derivatives as medicines with alluring prospect in the clinical application.
Collapse
Affiliation(s)
- Yanmei Liao
- Department of Pharmacy, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Fei Lv
- Department of Pharmacy, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Tianwen Quan
- Department of Pharmacy, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Chuan Wang
- Scientific Research and Teaching Department, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Jike Li
- Scientific Research and Teaching Department, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Zhao B, Liu K, Liu X, Li Q, Li Z, Xi J, Xie F, Li X. Plant-derived flavonoids are a potential source of drugs for the treatment of liver fibrosis. Phytother Res 2024; 38:3122-3145. [PMID: 38613172 DOI: 10.1002/ptr.8193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/28/2024] [Accepted: 03/10/2024] [Indexed: 04/14/2024]
Abstract
Liver fibrosis is a dynamic pathological process that can be triggered by any chronic liver injury. If left unaddressed, it will inevitably progress to the severe outcomes of liver cirrhosis or even hepatocellular carcinoma. In the past few years, the prevalence and fatality of hepatic fibrosis have been steadily rising on a global scale. As a result of its intricate pathogenesis, the quest for pharmacological interventions targeting liver fibrosis has remained a formidable challenge. Currently, no pharmaceuticals are exhibiting substantial clinical efficacy in the management of hepatic fibrosis. Hence, it is of utmost importance to expedite the development of novel therapeutics for the treatment of this condition. Various research studies have revealed the ability of different natural flavonoid compounds to alleviate or reverse hepatic fibrosis through a range of mechanisms, which are related to the regulation of liver inflammation, oxidative stress, synthesis and secretion of fibrosis-related factors, hepatic stellate cells activation, and proliferation, and extracellular matrix synthesis and degradation by these compounds. This review summarizes the progress of research on different sources of natural flavonoids with inhibitory effects on liver fibrosis over the last decades. The anti-fibrotic effects of natural flavonoids have been increasingly studied, making them a potential source of drugs for the treatment of liver fibrosis due to their good efficacy and biosafety.
Collapse
Affiliation(s)
- Bolin Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kai Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiuxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhibei Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingjing Xi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine 610032, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Deng Z, Zhao L, Li X, Wang CY, Zhou Y, Li M, Li Y, Fu X. Folium crataegi boosts skin regeneration for burn injury in rats through multiple ways. Biomed Pharmacother 2023; 167:115457. [PMID: 37690389 DOI: 10.1016/j.biopha.2023.115457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023] Open
Abstract
Appropriate topical dressings for burn treatments are important to accelerate skin wound recovery and prevent external infections. This study aimed to evaluate the effect and investigate the mechanism of folium crataegi (Crataegus pinnatifida Bge.) for the treatment of burn wounds, as well as to compare the therapeutic effects of aqueous extracts (HLW) and alcoholic extracts (HLE) from folium crataegi. The results demonstrated that both HLW and HLE groups exhibited a higher wound contraction rate than the silver sulfadiazine (SSD) ointment group. Moreover, HLW showed more significant wound repair effects than HLE. HLW significantly increased levels of EGF and FGF-2 in wound tissue, as well as TGF-β1, VEGF, CAT and IL-10 in serum. Folium crataegi extract, especially aqueous extracts, exerted good anti-inflammatory, anti-oxidant and anti-bacterial effects by upregulating the expression of lag3, txn1 and slpi, respectively. Folium crataegi extract significantly inhibits the expression of npas2, a key gene in the circadian rhythm pathway. In conclusion, this research illustrated that the folium crataegi extract, especially aqueous extracts, had better therapeutic effects on skin burns through multiple ways, possibly including a novel mechanism related to circadian rhythm pathway. These findings suggest that folium crataegi could be a valuable source of compounds for enhancing skin regeneration through multiple ways.
Collapse
Affiliation(s)
- Zhihong Deng
- Qingdao Academy of Chinese Medical Sciences Shandong University of Traditional Chinese Medicine, Qingdao Key Laboratory of Research in Marine Traditional Chinese Medicine, Qingdao Key Technology Innovation Center of Marine Traditional Chinese Medicine's Deep Development and Industrialization, Qingdao 266114, China; Marine Traditional Chinese Medicine Research Center, Key Laboratory of Marine Traditional Chinese Medicine in Shandong Universities, Shandong Engineering and Technology Research Center on Omics of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lifeng Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiuxue Li
- Qingdao Academy of Chinese Medical Sciences Shandong University of Traditional Chinese Medicine, Qingdao Key Laboratory of Research in Marine Traditional Chinese Medicine, Qingdao Key Technology Innovation Center of Marine Traditional Chinese Medicine's Deep Development and Industrialization, Qingdao 266114, China; Marine Traditional Chinese Medicine Research Center, Key Laboratory of Marine Traditional Chinese Medicine in Shandong Universities, Shandong Engineering and Technology Research Center on Omics of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, the Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yue Zhou
- Key Laboratory of Marine Drugs, the Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Mengfei Li
- Qingdao Academy of Chinese Medical Sciences Shandong University of Traditional Chinese Medicine, Qingdao Key Laboratory of Research in Marine Traditional Chinese Medicine, Qingdao Key Technology Innovation Center of Marine Traditional Chinese Medicine's Deep Development and Industrialization, Qingdao 266114, China; Marine Traditional Chinese Medicine Research Center, Key Laboratory of Marine Traditional Chinese Medicine in Shandong Universities, Shandong Engineering and Technology Research Center on Omics of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yingfei Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Xianjun Fu
- Qingdao Academy of Chinese Medical Sciences Shandong University of Traditional Chinese Medicine, Qingdao Key Laboratory of Research in Marine Traditional Chinese Medicine, Qingdao Key Technology Innovation Center of Marine Traditional Chinese Medicine's Deep Development and Industrialization, Qingdao 266114, China; Marine Traditional Chinese Medicine Research Center, Key Laboratory of Marine Traditional Chinese Medicine in Shandong Universities, Shandong Engineering and Technology Research Center on Omics of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
4
|
Chen L, Zhou M, Li H, Liu D, Liao P, Zong Y, Zhang C, Zou W, Gao J. Mitochondrial heterogeneity in diseases. Signal Transduct Target Ther 2023; 8:311. [PMID: 37607925 PMCID: PMC10444818 DOI: 10.1038/s41392-023-01546-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/21/2023] [Accepted: 06/13/2023] [Indexed: 08/24/2023] Open
Abstract
As key organelles involved in cellular metabolism, mitochondria frequently undergo adaptive changes in morphology, components and functions in response to various environmental stresses and cellular demands. Previous studies of mitochondria research have gradually evolved, from focusing on morphological change analysis to systematic multiomics, thereby revealing the mitochondrial variation between cells or within the mitochondrial population within a single cell. The phenomenon of mitochondrial variation features is defined as mitochondrial heterogeneity. Moreover, mitochondrial heterogeneity has been reported to influence a variety of physiological processes, including tissue homeostasis, tissue repair, immunoregulation, and tumor progression. Here, we comprehensively review the mitochondrial heterogeneity in different tissues under pathological states, involving variant features of mitochondrial DNA, RNA, protein and lipid components. Then, the mechanisms that contribute to mitochondrial heterogeneity are also summarized, such as the mutation of the mitochondrial genome and the import of mitochondrial proteins that result in the heterogeneity of mitochondrial DNA and protein components. Additionally, multiple perspectives are investigated to better comprehend the mysteries of mitochondrial heterogeneity between cells. Finally, we summarize the prospective mitochondrial heterogeneity-targeting therapies in terms of alleviating mitochondrial oxidative damage, reducing mitochondrial carbon stress and enhancing mitochondrial biogenesis to relieve various pathological conditions. The possibility of recent technological advances in targeted mitochondrial gene editing is also discussed.
Collapse
Affiliation(s)
- Long Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mengnan Zhou
- Department of Pathogenic Biology, School of Basic Medical Science, China Medical University, Shenyang, 110001, China
| | - Hao Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Delin Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Peng Liao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Shanghai Sixth People's Hospital Fujian, No. 16, Luoshan Section, Jinguang Road, Luoshan Street, Jinjiang City, Quanzhou, Fujian, China.
| |
Collapse
|
5
|
Yang Y, Li W, Liu C, Liu J, Yang L, Yue W, Yang L, Xue R, Zhang K, Zhang H, Chang N, Li L. Single-cell RNA seq identifies Plg-R KT-PLG as signals inducing phenotypic transformation of scar-associated macrophage in liver fibrosis. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166754. [PMID: 37207518 DOI: 10.1016/j.bbadis.2023.166754] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/21/2023]
Abstract
Hepatic macrophages play a central role in liver fibrosis. Scar-associated macrophages (SAMs), a recently identified subgroup of macrophages, play an important role in this process. However, the mechanism by which SAMs transform during liver fibrosis is still unclear. In this study, we aimed to characterize SAMs and elucidate the underlying mechanism of SAM transformation. Bile duct ligation (BDL) and carbon tetrachloride (CCl4) were used to induce mouse liver fibrosis. Non-parenchymal cells were isolated from normal/fibrotic livers and were analyzed using single cell RNA sequencing (scRNA-seq) or mass cytometry (CyTOF). The glucan-encapsulated siRNA particles (siRNA-GeRPs) was employed to perform macrophage selective gene knockdown. The results of scRNA-seq and CyTOF revealed that SAMs, which derived from bone marrow-derived macrophages (BMMs), accumulated in mouse fibrotic livers. Further analysis showed that SAMs highly expressed genes related to fibrosis, indicating the pro-fibrotic functions of SAMs. Moreover, plasminogen receptor Plg-RKT was highly expressed by SAMs, suggesting the role of Plg-RKT and plasminogen (PLG) in SAM transformation. In vitro, PLG-treated BMMs transformed into SAMs and expressed SAM functional genes. Knockdown of Plg-RKT blocked the effects of PLG. In vivo, selective knockdown of Plg-RKT in intrahepatic macrophages of BDL- and CCl4-treated mice reduced the number of SAMs and alleviated BDL- and CCl4-induced liver fibrosis, suggesting that Plg-RKT-PLG played an important role in liver fibrosis by mediating SAM transformation. Our findings reveal that SAMs are crucial participants in liver fibrosis. Inhibition of SAM transformation by blocking Plg-RKT might be a potential therapeutic target for liver fibrosis.
Collapse
Affiliation(s)
- Yuanru Yang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Weiyang Li
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Chang Liu
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Jing Liu
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Lin Yang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Wenhui Yue
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Le Yang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Renmin Xue
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Kai Zhang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Hang Zhang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Na Chang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China.
| | - Liying Li
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
6
|
Multifaceted Pharmacological Potentials of Curcumin, Genistein, and Tanshinone IIA through Proteomic Approaches: An In-Depth Review. Cancers (Basel) 2022; 15:cancers15010249. [PMID: 36612248 PMCID: PMC9818426 DOI: 10.3390/cancers15010249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/03/2022] [Accepted: 12/12/2022] [Indexed: 01/03/2023] Open
Abstract
Phytochemicals possess various intriguing pharmacological properties against diverse pathological conditions. Extensive studies are on-going to understand the structural/functional properties of phytochemicals as well as the molecular mechanisms of their therapeutic function against various disease conditions. Phytochemicals such as curcumin (Cur), genistein (Gen), and tanshinone-IIA (Tan IIA) have multifaceted therapeutic potentials and various efforts are in progress to understand the molecular dynamics of their function with different tools and technologies. Cur is an active lipophilic polyphenol with pleiotropic function, and it has been shown to possess various intriguing properties including antioxidant, anti-inflammatory, anti-microbial, anticancer, and anti-genotoxic properties besides others beneficial properties. Similarly, Gen (an isoflavone) exhibits a wide range of vital functions including antioxidant, anti-inflammatory, pro-apoptotic, anti-proliferative, anti-angiogenic activities etc. In addition, Tan IIA, a lipophilic compound, possesses antioxidant, anti-angiogenic, anti-inflammatory, anticancer activities, and so on. Over the last few decades, the field of proteomics has garnered great momentum mainly attributed to the recent advancement in mass spectrometry (MS) techniques. It is envisaged that the proteomics technology has considerably contributed to the biomedical research endeavors lately. Interestingly, they have also been explored as a reliable approach to understand the molecular intricacies related to phytochemical-based therapeutic interventions. The present review provides an overview of the proteomics studies performed to unravel the underlying molecular intricacies of various phytochemicals such as Cur, Gen, and Tan IIA. This in-depth study will help the researchers in better understanding of the pharmacological potential of the phytochemicals at the proteomics level. Certainly, this review will be highly instrumental in catalyzing the translational shift from phytochemical-based biomedical research to clinical practice in the near future.
Collapse
|
7
|
Wang T, Zhu J, Gao L, Wei M, Zhang D, Chen L, Wu H, Ma J, Li L, Zhang N, Wang Y, Xing Q, He L, Hong F, Qin S. Identification of circular RNA biomarkers for Pien Tze Huang treatment of CCl4‑induced liver fibrosis using RNA‑sequencing. Mol Med Rep 2022; 26:309. [PMID: 36004475 PMCID: PMC9437966 DOI: 10.3892/mmr.2022.12825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 10/26/2021] [Indexed: 11/26/2022] Open
Abstract
Pien Tze Huang (PZH), a common hepatoprotective Traditional Chinese Medicine that has been found to be an effective treatment for carbon tetrachloride-induced hepatic damage, including liver fibrosis. Circular RNAs (circRNAs) serve a crucial role in regulating gene expression levels via circRNA/micro (mi)RNA/mRNA networks in several human diseases and biological processes. However, whether circRNAs are involved in the underlying mechanism of the therapeutic effects of PZH on liver fibrosis remains unclear. Therefore, the aim of the present study was to investigate these effects using circRNA expression profiles from PZH-treated fibrotic livers in model mice. A case-control study on >59,476 circRNAs from CCl4-induced (control group, n=6) and PZH-treated (case group, n=6) mice was performed using circRNA sequencing in liver tissues. PZH treatment resulted in the differential expression of 91 circRNAs, including 58 upregulated and 33 downregulated circRNAs. Furthermore, the construction of competing endogenous networks also indicated that differentially expressed circRNAs acted as miRNA sponges. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of miRNA targets demonstrated that PZH-affected circRNAs were mainly involved in biological processes such as ‘positive regulation of fibroblast proliferation’, ‘cellular response to interleukin-1’ and ‘regulation of DNA-templated transcription in response to stress’ and in a number of important pathways, such as ‘TNF signaling pathway’, ‘PI3K-Akt signaling pathway’, ‘IL-17 signaling pathway’ and ‘MAPK signaling pathway’. To further validate the bioinformatics data, reverse transcription–quantitative PCR was performed on seven miRNA targets in a human hepatic stellate LX-2 cell model. The results suggested that seven of the miRNAs exhibited regulatory patterns that were consistent with those of the transcriptome sequencing results. Kaplan-Meier survival analysis demonstrated that the expression levels of dihydrodiol dehydrogenase and solute carrier family 7, member 11 gene were significantly associated with patient survival, 269 patients with liver hepatocellular carcinoma from The Cancer Genome Atlas database. To the best of our knowledge, this was the first study to provide evidence that PZH affects circRNA expression levels, which may serve important roles in PZH-treated fibrotic liver through the regulation of functional gene expression. In conclusion, the present study provided new insights into the mechanism underlying the pathogenesis of liver fibrosis and identified potential novel, efficient, therapeutic targets against liver injury.
Collapse
Affiliation(s)
- Ting Wang
- Bio‑X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Jinhang Zhu
- Bio‑X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Longhui Gao
- Bio‑X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Muyun Wei
- Bio‑X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Di Zhang
- Bio‑X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Luan Chen
- Bio‑X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Hao Wu
- Bio‑X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Jingsong Ma
- Bio‑X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Lixing Li
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Na Zhang
- Bio‑X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Yanjing Wang
- State Key Laboratory of Microbial Metabolism, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, School of Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Qinghe Xing
- Institutes of Biomedical Sciences and Children's Hospital, Fudan University, Shanghai 201102, P.R. China
| | - Lin He
- Bio‑X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Fei Hong
- Fujian Provincial Key Laboratory of Pien Tze Huang Natural Medicine Research and Development, Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd., Zhangzhou, Fujian 363000, P.R. China
| | - Shengying Qin
- Bio‑X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| |
Collapse
|
8
|
Shi J, Sun J, Liu L, Shan T, Meng H, Yang T, Wang S, Wei T, Chen B, Ma Y, Wang Q, Wang H, Liu J, Wang L. P16ink4a overexpression ameliorates cardiac remodeling of mouse following myocardial infarction via CDK4/pRb pathway. Biochem Biophys Res Commun 2022; 595:62-68. [PMID: 35093641 DOI: 10.1016/j.bbrc.2022.01.077] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/19/2022] [Indexed: 01/08/2023]
Abstract
BACKGROUND P16ink4a can accumulate in senescent cells and can be induced by different oncogenic stimulations. These functions make p16ink4a a biomarker of senescence and cancer. However, the exact role of p16ink4a remains unclear in cardiovascular disease. This study was aimed to investigate the role of p16ink4a in cardiac remodeling after myocardial infarction (MI). METHODS In vivo, gain and loss of function experiments using p16ink4a overexpression and knockdown adenovirus were induced to determine the effect of p16ink4a on cardiac structure and function after MI. The in vitro effects of p16ink4a were evaluated by overexpression and knockdown adenovirus of p16ink4a on isolated neonatal mouse cardiac myocytes (NMCMs) and neonatal mouse cardiac fibroblasts (NMCFs). RESULTS Expression level of p16ink4a was increased after MI and enriched in the infarction area. In vivo, overexpression of p16ink4a protected, while knockdown of p16ink4a worsened cardiac function. In vitro, p16ink4a did not influence the hypertrophy of NMCMs. Overexpression of p16ink4a inhibited the proliferation and migration of NMCFs and reduced the level of collagen I and α-SMA. Consistently, knockdown of p16ink4a in vitro displayed the opposite effects. Further mechanism studies revealed that p16ink4a affected the expression level of cyclin-dependent kinase 4 (CDK4) and phosphorylation of retinoblastoma (pRb), which could be a potential pathway in regulating cardiac remodeling after MI. CONCLUSION Overexpression of 16ink4a in cardiac fibroblasts can ameliorate cardiac dysfunction and attenuate pathological cardiac remodeling in mice after MI by regulating the p16ink4a/CDK4/pRb pathway.
Collapse
Affiliation(s)
- Jianzhou Shi
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jiateng Sun
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Liu Liu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Tiankai Shan
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Haoyu Meng
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Tongtong Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Sibo Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Tianwen Wei
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Bingrui Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yao Ma
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Qiming Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hao Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jiabao Liu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Liansheng Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
9
|
Surai PF, Earle-Payne K, Kidd MT. Taurine as a Natural Antioxidant: From Direct Antioxidant Effects to Protective Action in Various Toxicological Models. Antioxidants (Basel) 2021; 10:1876. [PMID: 34942978 PMCID: PMC8698923 DOI: 10.3390/antiox10121876] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/18/2022] Open
Abstract
Natural antioxidants have received tremendous attention over the last 3 decades. At the same time, the attitude to free radicals is slowly changing, and their signalling role in adaptation to stress has recently received a lot of attention. Among many different antioxidants in the body, taurine (Tau), a sulphur-containing non-proteinogenic β-amino acid, is shown to have a special place as an important natural modulator of the antioxidant defence networks. Indeed, Tau is synthesised in most mammals and birds, and the Tau requirement is met by both synthesis and food/feed supply. From the analysis of recent data, it could be concluded that the direct antioxidant effect of Tau due to scavenging free radicals is limited and could be expected only in a few mammalian/avian tissues (e.g., heart and eye) with comparatively high (>15-20 mM) Tau concentrations. The stabilising effects of Tau on mitochondria, a prime site of free radical formation, are characterised and deserve more attention. Tau deficiency has been shown to compromise the electron transport chain in mitochondria and significantly increase free radical production. It seems likely that by maintaining the optimal Tau status of mitochondria, it is possible to control free radical production. Tau's antioxidant protective action is of great importance in various stress conditions in human life, and is related to commercial animal and poultry production. In various in vitro and in vivo toxicological models, Tau showed AO protective effects. The membrane-stabilizing effects, inhibiting effects on ROS-producing enzymes, as well as the indirect AO effects of Tau via redox balance maintenance associated with the modulation of various transcription factors (e.g., Nrf2 and NF-κB) and vitagenes could also contribute to its protective action in stress conditions, and thus deserve more attention.
Collapse
Affiliation(s)
- Peter F. Surai
- Vitagene and Health Research Centre, Bristol BS4 2RS, UK
- Department of Microbiology and Biochemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
- Biochemistry and Physiology Department, Saint-Petersburg State University of Veterinary Medicine, 196084 St. Petersburg, Russia
- Department of Animal Nutrition, Faculty of Agricultural and Environmental Sciences, Szent Istvan University, H-2103 Gödöllo, Hungary
| | - Katie Earle-Payne
- NHS Greater Glasgow and Clyde, Renfrewshire Health and Social Care Centre, 10 Ferry Road, Renfrew PA4 8RU, UK;
| | - Michael T. Kidd
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
| |
Collapse
|
10
|
Zhu Q, Li H, Li K, Wang Z, Tang Z. Proteomic analysis exploring the mechanism of bladder fibrosis induced by ketamine using a rat model. Transl Androl Urol 2021; 10:3300-3311. [PMID: 34532254 PMCID: PMC8421841 DOI: 10.21037/tau-21-351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/02/2021] [Indexed: 11/18/2022] Open
Abstract
Background Long-term abuse of ketamine can cause irreversible bladder fibrosis, but the mechanism of bladder fibrosis is still under investigation. This study aims to explore the mechanism of bladder fibrosis utilizing proteomic analysis in a rat model. Methods After building a rat model, hematoxylin and eosin (HE) staining, Masson’s trichrome staining, and western blotting (WB) of collagen I were used to assess bladder pathology and fibrosis in a rat model. Next, protein expression changes in the rat bladder by proteomic technology were quantitatively detected, and reverse transcription-polymerase chain reaction (RT-PCR) and WB were used to verify the expression of proteins. Bioinformatic techniques and functional analysis were also performed. Results Compared to the control group, thinning of the bladder epithelium layer, infiltration of submucosal inflammatory cells, deposition of many collagen fibers, and an elevated expression of collagen I were observed in the experimental group. A total of 3,690 proteins were identified, of which 423 proteins were upregulated, and 304 proteins were down-regulated. Eight out of ten mRNA expressions and acyloxyacyl hydrolase (AOAH), mast cell (MC) protease 1 protein expressions were in line with the proteomic results. Sixty-five differential expression proteins (DEPs) were found to belong to the immune system, and 18 of them were involved in immune diseases, according to KEGG analysis. Conclusions We consider that MC protease 1 and platelet activation pathways may play an important role in ketamine-induced bladder fibrosis.
Collapse
Affiliation(s)
- Quan Zhu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.,Provincial Laboratory for Diagnosis and Treatment of Genitourinary System Disease, Changsha, China
| | - Haozhen Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.,Provincial Laboratory for Diagnosis and Treatment of Genitourinary System Disease, Changsha, China
| | - Kaixuan Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.,Provincial Laboratory for Diagnosis and Treatment of Genitourinary System Disease, Changsha, China
| | - Zhao Wang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.,Provincial Laboratory for Diagnosis and Treatment of Genitourinary System Disease, Changsha, China
| | - Zhengyan Tang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.,Provincial Laboratory for Diagnosis and Treatment of Genitourinary System Disease, Changsha, China
| |
Collapse
|
11
|
A Comprehensive Review of Natural Products against Liver Fibrosis: Flavonoids, Quinones, Lignans, Phenols, and Acids. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:7171498. [PMID: 33082829 PMCID: PMC7556091 DOI: 10.1155/2020/7171498] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 12/18/2022]
Abstract
Liver fibrosis resulting from continuous long-term hepatic damage represents a heavy burden worldwide. Liver fibrosis is recognized as a complicated pathogenic mechanism with extracellular matrix (ECM) accumulation and hepatic stellate cell (HSC) activation. A series of drugs demonstrate significant antifibrotic activity in vitro and in vivo. No specific agents with ideally clinical efficacy for liver fibrosis treatment have been developed. In this review, we summarized the antifibrotic effects and molecular mechanisms of 29 kinds of common natural products. The mechanism of these compounds is correlated with anti-inflammatory, antiapoptotic, and antifibrotic activities. Moreover, parenchymal hepatic cell survival, HSC deactivation, and ECM degradation by interfering with multiple targets and signaling pathways are also involved in the antifibrotic effects of these compounds. However, there remain two bottlenecks for clinical breakthroughs. The low bioavailability of natural products should be improved, and the combined application of two or more compounds should be investigated for more prominent pharmacological effects. In summary, exploration on natural products against liver fibrosis is becoming increasingly extensive. Therefore, natural products are potential resources for the development of agents to treat liver fibrosis.
Collapse
|
12
|
Liu X, Wang D, Yang W, Wu X. Oxymatrine exerts anti-fibrotic effects in a rat model of hepatic fibrosis by suppressing endoplasmic reticulum stress. J Int Med Res 2020; 48:300060520961681. [PMID: 33044865 PMCID: PMC7556176 DOI: 10.1177/0300060520961681] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/04/2020] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE This study evaluated the anti-fibrotic effects of oxymatrine and the role of endoplasmic reticulum (ER) stress in hepatic fibrosis (HF) in animal models. METHODS The HF rat model was established by exposure to NaAsO2, followed by treatment with oxymatrine. Biomarkers of HF and ER stress were measured. The difference in protein expression between groups was evaluated using isobaric tag for relative and absolute quantification (iTRAQ) analysis. The mechanism by which oxymatrine modulated ER stress to alleviate arsenic-induced HF was evaluated using LX2 hepatic stellate cells in vitro. RESULTS The rat model mimicked the pathological and physical phenotypes of HF including ER stress, oxidative stress, impaired liver function, and fibrosis. Treatment with oxymatrine suppressed these responses. Moreover, apoptosis, inflammation, and hepatic stellate cell activation were also inhibited by oxymatrine treatment. The differentially expressed proteins and pathways related to ER stress were identified in the HF and oxymatrine-treated groups via iTRAQ analysis combined with liquid chromatography-mass spectrometry. LX2 cells were activated by NaAsO2 in vitro. Meanwhile, oxymatrine suppressed the activation of LX2 cells by alleviating ER stress and regulating cellular calcium homeostasis. CONCLUSIONS Oxymatrine could reverse NaAsO2-induced HF by alleviating ER stress.
Collapse
Affiliation(s)
- Xiaodong Liu
- Department of Pharmacy, Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Dong Wang
- Department of Medical Comprehensive, Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Wenping Yang
- Department of Medical Comprehensive, Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Xiaomeng Wu
- Department of Pharmacy, Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
13
|
Validation and functional analysis of the critical proteins in combination with taurine, epigallocatechin gallate and genistein against liver fibrosis in rats. Biomed Pharmacother 2019; 115:108975. [DOI: 10.1016/j.biopha.2019.108975] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/22/2022] Open
|
14
|
Liu X, Zhang M, Zhang H, Zhao A, Sun J, Tang W. [Role of PPAR-γ-regulated autophagy in genistein-induced inhibition of hepatic stellate cell activation]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:561-565. [PMID: 31140420 DOI: 10.12122/j.issn.1673-4254.2019.05.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the inhibitory effect of genistein on activation of hepatic stellate cells (HSCs) in vitro and the role of the autophagy pathway regulated by PPAR-γ in mediating this effect. METHODS Cultured HSC-T6 cells were exposed to different concentrations of genistein for 48 h, and HSC activation was verified by detecting the expressions of -SMA and 1(I) collagen; autophagy activation in the cells was determined by detecting the expressions of LC3-II and p62 using Western blotting. The autophagy inhibitor 3-MA was used to confirm the role of autophagy in genistein-induced inhibition of HSC activation. A PPAR-γ inhibitor was used to explore the role of PPAR-γ in activating autophagy in the HSCs. RESULTS Genistein at concentrations of 5 and 50 μmol/L significantly inhibited the expressions of -SMA and 1(I) collagen (P < 0.05), markedly upregulated the expressions of PPAR-γ and the autophagy-related protein LC3-II (P < 0.05) and significantly down-regulated the expression of the ubiqutin-binding protein p62 (P < 0.05) in HSC-T6 cells. The cells pretreated with 3-MA prior to genistein treatment showed significantly increased protein expressions of -SMA and 1(I) collagen compared with the cells treated with genistein only (P < 0.05). Treatment with the PPAR-γ inhibitor obviously lowered the expression of LC3-II and enhanced the expression p62 in genistein-treated HSC-T6 cells, suggesting the activation of the autophagy pathway. CONCLUSIONS PPAR-γ- regulated autophagy plays an important role in mediating genistein-induced inhibition of HSC activation in vitro.
Collapse
Affiliation(s)
- Xipeng Liu
- Department of Clinical Nutrition, Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Meifang Zhang
- Department of Clinical Nutrition, Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Haifeng Zhang
- Department of Clinical Nutrition, Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Anda Zhao
- Department of Clinical Nutrition, Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Juan Sun
- Department of Clinical Nutrition, Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Wen Tang
- Department of Clinical Nutrition, Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
15
|
Li Y, Zhu M, Huo Y, Zhang X, Liao M. Anti-fibrosis activity of combination therapy with epigallocatechin gallate, taurine and genistein by regulating glycolysis, gluconeogenesis, and ribosomal and lysosomal signaling pathways in HSC-T6 cells. Exp Ther Med 2018; 16:4329-4338. [PMID: 30542382 PMCID: PMC6257822 DOI: 10.3892/etm.2018.6743] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/21/2017] [Indexed: 12/24/2022] Open
Abstract
A previous study by our group indicated that combined treatment with taurine, epigallocatechin gallate (EGCG) and genistein protects against liver fibrosis. The aim of the present study was to elucidate the antifibrotic mechanism of this combination treatment using isobaric tag for relative and absolute quantification (iTRAQ)-based proteomics in an activated rat hepatic stellate cell (HSC) line. In the present study, HSC-T6 cells were incubated with taurine, EGCG and genistein, and cellular proteins were extracted and processed for iTRAQ labeling. Quantification and identification of proteins was performed using two-dimensional liquid chromatography coupled with tandem mass spectrometry. Proteomic analysis indicated that the expression of 166 proteins were significantly altered in response to combination treatment with taurine, EGCG and genistein. A total 76 of these proteins were upregulated and 90 were downregulated. Differentially expressed proteins were grouped according to their association with specific Kyoto Encyclopedia of Genes and Genomes pathways. The results indicated that the differentially expressed proteins hexokinase-2 and lysosome-associated membrane glycoprotein 1 were associated with glycolysis, gluconeogenesis and lysosome signaling pathways. The expression of these proteins was validated using western blot analysis; the expression of hexokinase-2 was significantly decreased and the expression of lysosome-associated membrane glycoprotein 1 was significantly increased in HSC-T6 cells treated with taurine, EGCG and genistein compared with the control, respectively (P<0.05). These results were in accordance with the changes in protein expression identified using the iTRAQ approach. Therefore, the antifibrotic effect of combined therapy with taurine, EGCG and genistein may be associated with the activation of several pathways in HSCs, including glycolysis, gluconeogenesis, and the ribosome and lysosome signaling pathways. The differentially expressed proteins identified in the current study may be useful for treatment of liver fibrosis in the future.
Collapse
Affiliation(s)
- Yan Li
- Guangxi University Library, Guangxi University, Nanning, Guangxi 530004, P.R. China
| | - Min Zhu
- Guangxi University Library, Guangxi University, Nanning, Guangxi 530004, P.R. China
| | - Yani Huo
- Medical Scientific Research Centre, Key Laboratory of High-Incidence-Tumor Prevention and Treatment, Guangxi Medical University, Ministry of Education, Nanning, Guangxi 530021, P.R. China
| | - Xuerong Zhang
- Medical Scientific Research Centre, Key Laboratory of High-Incidence-Tumor Prevention and Treatment, Guangxi Medical University, Ministry of Education, Nanning, Guangxi 530021, P.R. China
| | - Ming Liao
- Medical Scientific Research Centre, Key Laboratory of High-Incidence-Tumor Prevention and Treatment, Guangxi Medical University, Ministry of Education, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|