1
|
Jalali A, Kabiri M, Hashemi S, Abdi Ardekani A, Zarshenas MM. Medicinal plants or bioactive components with antioxidant/anti-apoptotic effects as a potential therapeutic approach in heart failure prevention and management: a literature review. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2025; 27:275-291. [PMID: 39576713 DOI: 10.1080/10286020.2024.2414196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 11/24/2024]
Abstract
Heart failure is described as a complicated syndrome, which is estimated that 56.2 million people were living with HF globally in 2019. Oxidative stress and apoptosis play a major role on HF development via targeting several signaling pathways in cardiac cells. This study investigated medicinal plants or their bioactive components with positive effects on HF management. In this research, keywords "heart failure," "plant," "antioxidant" or "radical scavenging," "herbal" and "apoptosis" were synchronously searched through popular databases from 1990 up to 2023. Finally, the role of oxidative stress and apoptosis in HF development was searched and related signaling pathways were investigated.
Collapse
Affiliation(s)
- Atefeh Jalali
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil 56189-85991, Iran
| | - Maryam Kabiri
- Arnold and Marie Schwarts College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA
- Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345-1583, Iran
| | - Shima Hashemi
- Department of Pharmacognosy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Ramsar Campus, Ramsar 4847193698, Iran
| | - Alireza Abdi Ardekani
- Department of Cardiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Anesthesiology and Critical Care Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Mohammad M Zarshenas
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil 56189-85991, Iran
- Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345-1583, Iran
| |
Collapse
|
2
|
Zhang C, Chang X, Zhao D, He Y, Dong G, Gao L. Mitochondria and myocardial ischemia/reperfusion injury: Effects of Chinese herbal medicine and the underlying mechanisms. J Pharm Anal 2025; 15:101051. [PMID: 39931135 PMCID: PMC11808734 DOI: 10.1016/j.jpha.2024.101051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 02/03/2025] Open
Abstract
Ischemic heart disease (IHD) is associated with high morbidity and mortality rates. Reperfusion therapy is the best treatment option for this condition. However, reperfusion can aggravate myocardial damage through a phenomenon known as myocardial ischemia/reperfusion (I/R) injury, which has recently gained the attention of researchers. Several studies have shown that Chinese herbal medicines and their natural monomeric components exert therapeutic effects against I/R injury. This review outlines the current knowledge on the pathological mechanisms through which mitochondria participate in I/R injury, focusing on the issues related to energy metabolism, mitochondrial quality control disorders, oxidative stress, and calcium. The mechanisms by which mitochondria mediate cell death have also been discussed. To develop a resource for the prevention and management of clinical myocardial I/R damage, we compiled the most recent research on the effects of Chinese herbal remedies and their monomer components.
Collapse
Affiliation(s)
- Chuxin Zhang
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xing Chang
- Guang'anmen Hospital of Chinese Academy of Traditional Chinese Medicine, Beijing, 100053, China
| | - Dandan Zhao
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yu He
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Guangtong Dong
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Lin Gao
- Beijing University of Chinese Medicine, Beijing, 100029, China
| |
Collapse
|
3
|
Xu X, Lu F, Yu D, Wang Y, Chen P, Hu W, Wo J, Jia S, Liu S. Cortex Dictamni induces retinitis pigmentosa in zebrafish by inhibiting pde6a post-transcriptional activity via mmu-mir-6240-p3_2. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119282. [PMID: 39716511 DOI: 10.1016/j.jep.2024.119282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 12/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cortex Dictamni (CD) is the dried root skin of Dictamnus dasycarpus Turcz, widely used in the field of traditional Chinese medicine. Recent adverse reactions to CD limited the clinical application in combination with other traditional Chinese medicines. AIM OF THE STUDY To investigate the retinitis pigmentosa (RP) effects of CD using the zebrafish model and elucidate the underlying molecular mechanism of CD-induced RP in zebrafish. MATERIALS AND METHODS The 3-dpf zebrafish larvae were divided into the control group and the CD group. RNA sequencing was conducted, followed by qRT-PCR to validate the expression of miRNAs and mRNAs. The dual luciferase reporter assay confirmed the interaction between mmu-mir-6240-p3_2 and pde6a. HT22 cells were transfected, treated with CD, and then evaluated for migration, invasion, malondialdehyde levels, superoxide dismutase activity, and acetylcholine activity. RESULTS The results showed 6228 differentially expressed genes and 66 miRNAs differentially expressed in zebrafish exposed to CD. The person correlation coefficient results showed that mmu-mir-6240-p3_2 had the highest correlation coefficient with pde6a, indicating a negative regulatory relationship. Furthermore, the results of dual luciferase reporter gene further showed that pde6a gene was the direct target of mmu-mir-6240-p3_2. Cell experiment results showed that inhibiting mir-6240-p3_2 can upregulate pde6a expression, alleviate HT22 cell injury, and reverse the inhibition of cell migration and invasion induced by CD. CONCLUSIONS CD induces RP in zebrafish by inhibiting pde6a post-transcriptional activity via mmu-mir-6240-p3_2. These findings have important implications for understanding the potential side effects of CD and for developing safer therapeutic strategies involving traditional Chinese medicines.
Collapse
Affiliation(s)
- Xiaomin Xu
- College of Traditional Chinese Medicine, Heilongjiang University of Chinese Medical, Heping Road, Harbin, 150030, China
| | - Fang Lu
- College of Traditional Chinese Medicine, Heilongjiang University of Chinese Medical, Heping Road, Harbin, 150030, China
| | - Donghua Yu
- College of Traditional Chinese Medicine, Heilongjiang University of Chinese Medical, Heping Road, Harbin, 150030, China
| | - Yu Wang
- College of Traditional Chinese Medicine, Heilongjiang University of Chinese Medical, Heping Road, Harbin, 150030, China
| | - Pingping Chen
- College of Traditional Chinese Medicine, Heilongjiang University of Chinese Medical, Heping Road, Harbin, 150030, China
| | - Wenkai Hu
- College of Traditional Chinese Medicine, Heilongjiang University of Chinese Medical, Heping Road, Harbin, 150030, China
| | - Jiameixue Wo
- College of Traditional Chinese Medicine, Heilongjiang University of Chinese Medical, Heping Road, Harbin, 150030, China
| | - Suxia Jia
- College of Traditional Chinese Medicine, Heilongjiang University of Chinese Medical, Heping Road, Harbin, 150030, China
| | - Shumin Liu
- College of Traditional Chinese Medicine, Heilongjiang University of Chinese Medical, Heping Road, Harbin, 150030, China.
| |
Collapse
|
4
|
Huang Q, Shi W, Wang M, Zhang L, Zhang Y, Hu Y, Pan S, Ling B, Zhu H, Xiao W, Hua T, Yang M. Canagliflozin attenuates post-resuscitation myocardial dysfunction in diabetic rats by inhibiting autophagy through the PI3K/Akt/mTOR pathway. iScience 2024; 27:110429. [PMID: 39104415 PMCID: PMC11298657 DOI: 10.1016/j.isci.2024.110429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/03/2024] [Accepted: 06/28/2024] [Indexed: 08/07/2024] Open
Abstract
This study investigated the effects of canagliflozin on myocardial dysfunction after cardiac arrest and cardiopulmonary resuscitation in diabetic rats and the underlying mechanisms. Male rats with type 2 diabetes mellitus (T2DM) were subjected to a modified epicardial fibrillation model. Pretreatment with canagliflozin (10 mg/kg/day) for four weeks improved ATP levels, post-resuscitation ejection fraction, acidosis, and hemodynamics. Canagliflozin also reduced myocardial edema, mitochondrial damage and, post-resuscitation autophagy levels. In vitro analyses showed that canagliflozin significantly reduced reactive oxygen species and preserved mitochondrial membrane potential. Using the PI3K/Akt pathway inhibitor Ly294002, canagliflozin was shown to attenuate hyperautophagy and cardiac injury induced by high glucose and hypoxia-reoxygenation through activation of the PI3K/Akt/mTOR pathway. This study highlights the therapeutic potential of canagliflozin in post-resuscitation myocardial dysfunction in diabetes, providing new insights for clinical treatment and experimental research.
Collapse
Affiliation(s)
- Qihui Huang
- The Second Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
| | - Wei Shi
- The Second Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
| | - Minjie Wang
- The Second Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
| | - Liangliang Zhang
- The Second Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
| | - Yijun Zhang
- The Second Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
| | - Yan Hu
- The Second Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
| | - Sinong Pan
- The Second Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
| | - Bingrui Ling
- The Second Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
| | - Huaqing Zhu
- Laboratory of Molecular, Biology and Department of Biochemistry, Anhui Medical University, Hefei 230022, Anhui, People’s Republic of China
| | - Wenyan Xiao
- The Second Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
| | - Tianfeng Hua
- The Second Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
| | - Min Yang
- The Second Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
- The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, People’s Republic of China
| |
Collapse
|
5
|
Al-Masri A. Apoptosis and long non-coding RNAs: Focus on their roles in Heart diseases. Pathol Res Pract 2023; 251:154889. [PMID: 38238070 DOI: 10.1016/j.prp.2023.154889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 01/23/2024]
Abstract
Heart disease is one of the principal death reasons around the world and there is a growing requirement to discover novel healing targets that have the potential to avert or manage these illnesses. On the other hand, apoptosis is a strongly controlled, cell removal procedure that has a crucial part in numerous cardiac problems, such as reperfusion injury, MI (myocardial infarction), consecutive heart failure, and inflammation of myocardium. Completely comprehending the managing procedures of cell death signaling is critical as it is the primary factor that influences patient mortality and morbidity, owing to cardiomyocyte damage. Indeed, the prevention of heart cell death appears to be a viable treatment approach for heart illnesses. According to current researches, a number of long non-coding RNAs cause the heart cells death via different methods that are embroiled in controlling the activity of transcription elements, the pathways that signals transmission within cells, small miRNAs, and the constancy of proteins. When there is too much cell death in the heart, it can cause problems like reduced blood flow, heart damage after restoring blood flow, heart disease in diabetics, and changes in the heart after reduced blood flow. Therefore, studying how lncRNAs control apoptosis could help us find new treatments for heart diseases. In this review, we present recent discoveries about how lncRNAs are involved in causing cell death in different cardiovascular diseases.
Collapse
Affiliation(s)
- Abeer Al-Masri
- Department of Physiology, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
6
|
Syed Abd Halim SA, Abd Rashid N, Woon CK, Abdul Jalil NA. Natural Products Targeting PI3K/AKT in Myocardial Ischemic Reperfusion Injury: A Scoping Review. Pharmaceuticals (Basel) 2023; 16:739. [PMID: 37242521 PMCID: PMC10221447 DOI: 10.3390/ph16050739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
This scoping review aimed to summarize the effects of natural products targeting phosphoinositide-3-kinases/serine/threonine kinase (PI3K/AKT) in myocardial ischemia-reperfusion injury (MIRI). The review details various types of natural compounds such as gypenoside (GP), gypenoside XVII (GP-17), geniposide, berberine, dihydroquercetin (DHQ), and tilianin which identified to reduce MIRI in vitro and in vivo by regulating the PI3K/AKT signaling pathway. In this study, 14 research publications that met the inclusion criteria and exclusion criteria were shortlisted. Following the intervention, we discovered that natural products effectively improved cardiac functions through regulation of antioxidant status, down-regulation of Bax, and up-regulation of Bcl-2 and caspases cleavage. Furthermore, although comparing outcomes can be challenging due to the heterogeneity in the study model, the results we assembled here were consistent, giving us confidence in the intervention's efficacy. We also discussed if MIRI is associated with multiple pathological condition such as oxidative stress, ERS, mitochondrial injury, inflammation, and apoptosis. This brief review provides evidence to support the huge potential of natural products used in the treatment of MIRI due to their various biological activities and drug-like properties.
Collapse
Affiliation(s)
| | - Norhashima Abd Rashid
- Department of Biomedical Science, Faculty of Applied Science, Lincoln University College, Petaling Jaya 47301, Selangor, Malaysia;
| | - Choy Ker Woon
- Department of Anatomy, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia
| | - Nahdia Afiifah Abdul Jalil
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Kuala Lumpur, Malaysia;
| |
Collapse
|
7
|
Yang N, Shao H, Deng J, Liu Y. Network pharmacology-based analysis to explore the therapeutic mechanism of Cortex Dictamni on atopic dermatitis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 304:116023. [PMID: 36535327 DOI: 10.1016/j.jep.2022.116023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dermatitis is a common clinical chronic inflammatory skin disease, which incidence has been on the rise in recent years. It not only seriously affects the physical and mental health of patients but also increase economic burden. Currently, commonly used drugs such as corticosteroids, anti-histamines have certain side effects or are expensive. Therefore, the search for an alternative therapy for dermatitis has important clinical significance. Cortex Dictamni is a commonly used traditional Chinese medicine for expelling wind and itching, but its mechanism for treating dermatitis is still unclear. MATERIALS AND METHODS Network pharmacological analysis was performed to predict the potential targets and pathways of Cortex Dictamni against dermatitis. Molecular docking was used to assess the binding affinity of active compounds and core targets. By repeatedly stimulating the ears with 1-fluoro-2,4-dinitrobenzene (DNFB), an atopic dermatitis (AD) mouse model was established in order to study the anti-dermatitis effect of Cortex Dictamni. The skin thickness and inflammatory cell infiltration in mouse ears were assessed by tissue staining and flow cytometric. The levels of inflammatory factors were detected by enzyme-linked immunosorbent assay (ELISA), and the total protein and phosphorylation levels of related pathways were analyzed by western blotting. RESULTS In this study, 11 active ingredients, 122 Cortex Dictamni and dermatitis intersection targets were identified. The results from Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the core targets were mainly enriched in immune response and inflammatory signaling pathways. AD mice treated with ethanol extract of Cortex Dictamni (ECD) improved the symptoms of ear skin lesions, alleviated epidermis and dermis thickening of the AD mice ears, decreased pathological immune cell infiltration and attenuated the levels of inflammatory cytokines (TLR4, IL-6, IL-17), and inhibited the hyperactivation of the PI3K-AKT, JAK1-STAT3/STAT6 signal pathways. CONCLUSIONS Cortex Dictamni can improve the symptoms of skin lesions and the degree of inflammation caused by AD, and may inhibit AD through multiple pathways, such as regulating PI3K-AKT and JAK1-STAT3/STAT6 pathways. These results not only provide experimental evidence for the clinical application of Cortex Dictamni but also provide some help for the research and development of dermatitis drugs.
Collapse
Affiliation(s)
- Niuniu Yang
- Department of Traditional Chinese and Western Medicine, Medical College, Yangzhou University, Yangzhou, 225002, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University, Yangzhou, 225002, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225002, China.
| | - Haifeng Shao
- Department of Traditional Chinese and Western Medicine, Medical College, Yangzhou University, Yangzhou, 225002, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University, Yangzhou, 225002, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225002, China
| | - Jialin Deng
- Department of Traditional Chinese and Western Medicine, Medical College, Yangzhou University, Yangzhou, 225002, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University, Yangzhou, 225002, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225002, China
| | - Yanqing Liu
- Department of Traditional Chinese and Western Medicine, Medical College, Yangzhou University, Yangzhou, 225002, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University, Yangzhou, 225002, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225002, China.
| |
Collapse
|
8
|
Xiang M, Zhao X, Lu Y, Zhang Y, Ding F, Lv L, Wang Y, Shen Z, Li L, Cui X. Modified Linggui Zhugan Decoction protects against ventricular remodeling through ameliorating mitochondrial damage in post-myocardial infarction rats. Front Cardiovasc Med 2023; 9:1038523. [PMID: 36704451 PMCID: PMC9872118 DOI: 10.3389/fcvm.2022.1038523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction Modified Linggui Zhugan Decoction (MLZD) is a Traditional Chinese Medicine prescription developed from Linggui Zhugan Decoction (LZD) that has been used for the clinical treatment of ischemic cardiovascular diseases. However, the cardioprotective mechanism of MLZD against post-myocardial infarction (MI) ventricular remodeling remains unclear. Methods We explored the effects of MLZD on ventricular remodeling and their underlying mechanisms, respectively, in SD rats with MI models and in H9c2 cardiomyocytes with oxygen-glucose deprivation (OGD) models. The cardiac structure and function of rats were measured by echocardiography, HE staining, and Masson staining. Apoptosis, inflammation, mitochondrial structure and function, and sirtuin 3 (SIRT3) expression were additionally examined. Results MLZD treatment significantly ameliorated cardiac structure and function, and thus reversed ventricular remodeling, compared with the control. Further research showed that MLZD ameliorated mitochondrial structural disruption, protected against mitochondrial dynamics disorder, restored impaired mitochondrial function, inhibited inflammation, and thus inhibited apoptosis. Moreover, the decreased expression level of SIRT3 was enhanced after MLZD treatment. The protective effects of MLZD on SIRT3 and mitochondria, nevertheless, were blocked by 3-TYP, a selective inhibitor of SIRT3. Discussion These findings together revealed that MLZD could improve the ventricular remodeling of MI rats by ameliorating mitochondrial damage and its associated apoptosis, which might exert protective effects by targeting SIRT3.
Collapse
Affiliation(s)
- Mi Xiang
- Department of Cardiovascular, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xin Zhao
- Department of Cardiovascular, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingdong Lu
- Department of Pathology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Zhang
- Department of Cardiovascular, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China,First Clinical Medical School, Shandong University of Chinese Medicine, Shandong, China
| | - Fan Ding
- Department of Cardiovascular, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lifei Lv
- Department of Cardiovascular, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuling Wang
- Department of Cardiovascular, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zihuan Shen
- Department of Cardiovascular, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Li
- Department of Pathology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China,Li Li,
| | - Xiangning Cui
- Department of Cardiovascular, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China,*Correspondence: Xiangning Cui,
| |
Collapse
|
9
|
Su X, Zhou M, Li Y, Zhang J, An N, Yang F, Zhang G, Yuan C, Chen H, Wu H, Xing Y. Protective effects of natural products against myocardial ischemia/reperfusion: Mitochondria-targeted therapeutics. Biomed Pharmacother 2022; 149:112893. [PMID: 35366532 DOI: 10.1016/j.biopha.2022.112893] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Patients with ischemic heart disease receiving reperfusion therapy still need to face left ventricular remodeling and heart failure after myocardial infarction. Reperfusion itself paradoxically leads to further cardiomyocyte death and systolic dysfunction. Ischemia/reperfusion (I/R) injury can eliminate the benefits of reperfusion therapy in patients and causes secondary myocardial injury. Mitochondrial dysfunction and structural disorder are the basic driving force of I/R injury. We summarized the basic relationship and potential mechanisms of mitochondrial injury in the development of I/R injury. Subsequently, this review summarized the natural products (NPs) that have been proven to targeting mitochondrial therapeutic effects during I/R injury in recent years and related cellular signal transduction pathways. We found that these NPs mainly protected the structural integrity of mitochondria and improve dysfunction, such as reducing mitochondrial division and fusion abnormalities, improving mitochondrial Ca2+ overload and inhibiting reactive oxygen species overproduction, thereby playing a role in protecting cardiomyocytes during I/R injury. This data would deepen the understanding of I/R-induced mitochondrial pathological process and suggested that NPs are expected to be transformed into potential therapies targeting mitochondria.
Collapse
Affiliation(s)
- Xin Su
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Mingyang Zhou
- Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Yingjian Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Jianzhen Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Na An
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Fan Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Guoxia Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Chao Yuan
- Dezhou Second People's Hospital, Dezhou 253000, China
| | - Hengwen Chen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Hongjin Wu
- Beijing Haidian Hospital, Haidian Section of Peking University Third Hospital, Beijing 100191, China.
| | - Yanwei Xing
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
10
|
Role of Oxidative Stress in Reperfusion following Myocardial Ischemia and Its Treatments. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6614009. [PMID: 34055195 PMCID: PMC8149218 DOI: 10.1155/2021/6614009] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/21/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022]
Abstract
Myocardial ischemia is a disease with high morbidity and mortality, for which reperfusion is currently the standard intervention. However, the reperfusion may lead to further myocardial damage, known as myocardial ischemia/reperfusion injury (MI/RI). Oxidative stress is one of the most important pathological mechanisms in reperfusion injury, which causes apoptosis, autophagy, inflammation, and some other damage in cardiomyocytes through multiple pathways, thus causing irreversible cardiomyocyte damage and cardiac dysfunction. This article reviews the pathological mechanisms of oxidative stress involved in reperfusion injury and the interventions for different pathways and targets, so as to form systematic treatments for oxidative stress-induced myocardial reperfusion injury and make up for the lack of monotherapy.
Collapse
|
11
|
Yu C, Qiu M, Zhang Z, Song X, Du H, Peng H, Li Q, Yang L, Xiong X, Xia B, Hu C, Chen J, Jiang X, Yang C. Transcriptome sequencing reveals genes involved in cadmium-triggered oxidative stress in the chicken heart. Poult Sci 2021; 100:100932. [PMID: 33652545 PMCID: PMC7936198 DOI: 10.1016/j.psj.2020.12.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 01/11/2023] Open
Abstract
As a ubiquitous heavy metal, cadmium (Cd) is highly toxic to various organs. However, the effects and molecular mechanism of Cd toxicity in the chicken heart remain largely unknown. The goal of our study was to investigate the cardiac injury in chickens' exposure to Cd. We detected the levels of oxidative stress-related molecules in the Cd-induced chicken heart, and assessed the histopathological changes by hematoxylin and eosin staining. RNA sequencing was performed to identify differentially expressed mRNAs between the Cd-induced group and control group. The expression of candidate genes involved in oxidative stress was certified by quantitative reverse transcription PCR. Our results showed that the expression of glutathione, peroxidase, and superoxide dismutase was significantly decreased and malondialdehyde was increased in the heart of chickens by Cd induction. The disorderly arranged cardiomyocytes, swelled and enlarged cells, partial cardiomyocyte necrosis, blurred morphological structure, and notable inflammatory cell infiltration were observed in the Cd-induced chicken heart. RNA sequencing identified 23 upregulated and 11 downregulated mRNAs in the heart tissues of the chicken in the Cd-induced group, and functional pathways indicated that they were associated with oxidative stress. Moreover, CREM, DUSP8, and ITGA11 expressions were significantly reduced, whereas LAMA1 expression was induced in heart tissue of chickens by Cd treatment. Overall, our findings revealed that oxidative stress and pathological changes in the chicken heart could be triggered by Cd. The mRNA transcriptional profiles identified differentially expressed genes in the chicken heart by Cd induction, revealing oxidative stress-related key genes and enhancing our understanding of Cd toxicity in the chicken heart.
Collapse
Affiliation(s)
- Chunlin Yu
- Sichuan Animal Science Academy, Chengdu, Sichuan 610066 China; Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, Sichuan 610066 China
| | - Mohan Qiu
- Sichuan Animal Science Academy, Chengdu, Sichuan 610066 China; Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, Sichuan 610066 China
| | - Zengrong Zhang
- Sichuan Animal Science Academy, Chengdu, Sichuan 610066 China; Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, Sichuan 610066 China
| | - Xiaoyan Song
- Sichuan Animal Science Academy, Chengdu, Sichuan 610066 China; Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, Sichuan 610066 China
| | - Huarui Du
- Sichuan Animal Science Academy, Chengdu, Sichuan 610066 China; Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, Sichuan 610066 China
| | - Han Peng
- Sichuan Animal Science Academy, Chengdu, Sichuan 610066 China; Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, Sichuan 610066 China
| | - Qingyun Li
- Sichuan Animal Science Academy, Chengdu, Sichuan 610066 China; Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, Sichuan 610066 China
| | - Li Yang
- Sichuan Animal Science Academy, Chengdu, Sichuan 610066 China; Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, Sichuan 610066 China
| | - Xia Xiong
- Sichuan Animal Science Academy, Chengdu, Sichuan 610066 China; Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, Sichuan 610066 China
| | - Bo Xia
- Sichuan Animal Science Academy, Chengdu, Sichuan 610066 China; Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, Sichuan 610066 China
| | - Chenming Hu
- Sichuan Animal Science Academy, Chengdu, Sichuan 610066 China; Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, Sichuan 610066 China
| | - Jialei Chen
- Sichuan Animal Science Academy, Chengdu, Sichuan 610066 China; Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, Sichuan 610066 China
| | - Xiaosong Jiang
- Sichuan Animal Science Academy, Chengdu, Sichuan 610066 China; Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, Sichuan 610066 China
| | - Chaowu Yang
- Sichuan Animal Science Academy, Chengdu, Sichuan 610066 China; Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, Sichuan 610066 China.
| |
Collapse
|
12
|
miR-126-5p regulates H9c2 cell proliferation and apoptosis under hypoxic conditions by targeting IL-17A. Exp Ther Med 2020; 21:67. [PMID: 33365067 DOI: 10.3892/etm.2020.9499] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 06/19/2020] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence has indicated that microRNAs (miRNAs/miRs) regulate the occurrence and development of various diseases, including diabetes, osteoporosis and cardiovascular conditions. However, the role of miRNAs in acute myocardial infarction (AMI) is not completely understood. The present study aimed to evaluate the therapeutic efficacy and mechanisms underlying the effects of miR-126-5p on H9c2 cell proliferation and apoptosis by targeting interleukin (IL)-17A. A total of 40 patients with AMI and 40 healthy volunteers were recruited in the present study and the expression levels of serum miR-126-5p and IL-17A were determined. Following confirmation that IL-17A was a target of miR-126-5p via a dual-luciferase reporter assay, H9c2 cells were exposed to hypoxic conditions. H9c2 cell viability and apoptosis were subsequently assessed. Additionally, the protein expression levels of apoptosis-associated proteins were detected following transfection. Compared with healthy individuals, miR-126-5p expression was significantly decreased in the serum samples of patients with AMI, whereas IL-17A, the target of miR-126-5p, was significantly increased. Following hypoxic treatment, miR-126-5p overexpression enhanced H9c2 cell viability compared with the NC group, which was subsequently reversed following co-transfection with pcDNA3.1-IL-17A. Additionally, the results indicated that hypoxia-induced H9c2 cell apoptosis was significantly reduced following transfection with miR-126-5p mimics via the PI3K/AKT signaling pathway compared with the NC group. The present study indicated that miR-126-5p may serve as a novel miRNA that regulates H9c2 cell viability and apoptosis by targeting IL-17A under hypoxic conditions. Therefore, miR-126-5p may serve as a crucial biomarker for the diagnosis of AMI.
Collapse
|
13
|
Li L, Li J, Wang Q, Zhao X, Yang D, Niu L, Yang Y, Zheng X, Hu L, Li Y. Shenmai Injection Protects Against Doxorubicin-Induced Cardiotoxicity via Maintaining Mitochondrial Homeostasis. Front Pharmacol 2020; 11:815. [PMID: 32581790 PMCID: PMC7289952 DOI: 10.3389/fphar.2020.00815] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022] Open
Abstract
Shenmai injection (SMI), as a patented traditional Chinese medicine, is extracted from Panax ginseng and Ophiopogon japonicus. It commonly used in the treatment of cardiovascular disease and in the control of cardiac toxicity induced by doxorubicin (DOX) treatment. However, its anti-cardiotoxicity mechanism remains unknown. The purpose of this study was to investigate the underlying mitochondrial protective mechanisms of SMI on DOX-induced myocardial injury. The cardioprotective effect of SMI against DOX-induced myocardial damage was evaluated in C57BL/6 mice and H9c2 cardiomyocytes. In vivo, myocardial injury, apoptosis and phosphoinositide 3-kinase (PI3K)/protein kinase B (PKB/Akt)/glycogen synthase kinase 3 beta (GSK-3β) signaling pathway related proteins were measured. In vitro, apoptosis, mitochondrial superoxide, mitochondrial membrane potential, mitochondrial morphology, levels of mitochondrial fission/fusion associated proteins, mitochondrial respiratory function, and AMP-activated protein kinase (AMPK) activity were assessed. To further elucidate the regulating effects of SMI on AMPK and PI3K/Akt/GSK-3β signaling pathway, compound C and LY294002 were utilized. In vivo, SMI decreased mortality rate, levels of creatine kinase, and creatine kinase-MB. SMI significantly prevented DOX-induced cardiac dysfunction and apoptosis, decreased levels of Bax/Bcl-2 and cleaved-Caspase3, increased levels of PI3K, p-Akt, and p-GSK-3β. In vitro, SMI rescued DOX-injured H9c2 cardiomyocytes from apoptosis, excessive mitochondrial reactive oxygen species production and descending mitochondrial membrane potential, which were markedly suppressed by LY294002. SMI increased ratio of L-OPA1 to S-OPA1, levels of AMPK phosphorylation, and DRP1 phosphorylation (Ser637) in order to prevent DOX-induced excessive mitochondrial fission and insufficient mitochondrial fusion. In conclusion, SMI prevents DOX-induced cardiotoxicity, inhibits mitochondrial oxidative stress and mitochondrial fragmentation through activation of AMPK and PI3K/Akt/GSK-3β signaling pathway.
Collapse
Affiliation(s)
- Lin Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jinghao Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qilong Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xin Zhao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Dongli Yang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lu Niu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanze Yang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xianxian Zheng
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Limin Hu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuhong Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
14
|
Li L, Yang D, Li J, Niu L, Chen Y, Zhao X, Oduro PK, Wei C, Xu Z, Wang Q, Li Y. Investigation of cardiovascular protective effect of Shenmai injection by network pharmacology and pharmacological evaluation. BMC Complement Med Ther 2020; 20:112. [PMID: 32293408 PMCID: PMC7158159 DOI: 10.1186/s12906-020-02905-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/26/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Shenmai injection (SMI) has been used in the treatment of cardiovascular disease (CVD), such as heart failure, myocardial ischemia and coronary heart disease. It has been found to have efficacy on doxorubicin (DOX)-induced cardiomyopathy. The aims of this study were to explore the underlying molecular mechanisms of SMI treatment on CVD by using network pharmacology and its protective effect on DOX-induced cardiotoxicity by in vitro and in vivo experiment based on network pharmacology prediction. METHODS Network pharmacology method was used to reveal the relationship between ingredient-target-disease and function-pathway of SMI on the treatment of CVD. Chemical ingredients of SMI were collected form TCMSP, BATMAN-TCM and HIT Database. Drugbank, DisGeNET and OMIM Database were used to obtain potential targets for CVD. Networks were visualized utilizing Cytoscape software, and the enrichment analysis was performed using IPA system. Finally, cardioprotective effects and predictive mechanism confirmation of SMI were investigated in H9c2 rat cardiomyocytes and DOX-injured C57BL/6 mice. RESULTS An ingredient-target-disease & function-pathway network demonstrated that 28 ingredients derived from SMI modulated 132 common targets shared by SMI and CVD. The analysis of diseases & functions, top pathways and upstream regulators indicated that the cardioprotective effects of SMI might be associated with 28 potential ingredients, which regulated the 132 targets in cardiovascular disease through regulation of G protein-coupled receptor signaling. In DOX-injured H9c2 cardiomyocytes, SMI increased cardiomyocytes viability, prevented cell apoptosis and increased PI3K and p-Akt expression. This protective effect was markedly weakened by PI3K inhibitor LY294002. In DOX-treated mice, SMI treatment improved cardiac function, including enhancement of ejection fraction and fractional shortening. CONCLUSIONS Collectively, the protective effects of SMI on DOX-induced cardiotoxicity are possibly related to the activation of the PI3K/Akt pathway, as the downstream of G protein-coupled receptor signaling pathway.
Collapse
Affiliation(s)
- Lin Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Dongli Yang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jinghao Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lu Niu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Ye Chen
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xin Zhao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Patrick Kwabena Oduro
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Chun Wei
- Tianjin Medical University Cancer Hospital, Tianjin, 300060, China
| | - Zongpei Xu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Qilong Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yuhong Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
15
|
Shu Z, Yang Y, Ding Z, Wang W, Zhong R, Xia T, Li W, Kuang H, Wang Y, Sun X. Structural characterization and cardioprotective activity of a novel polysaccharide from Fructus aurantii. Int J Biol Macromol 2020; 144:847-856. [DOI: 10.1016/j.ijbiomac.2019.09.162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/22/2019] [Accepted: 09/22/2019] [Indexed: 12/18/2022]
|
16
|
Blockade of Transient Receptor Potential Vanilloid 4 Enhances Antioxidation after Myocardial Ischemia/Reperfusion. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7283683. [PMID: 31308876 PMCID: PMC6604422 DOI: 10.1155/2019/7283683] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/07/2019] [Accepted: 05/16/2019] [Indexed: 02/06/2023]
Abstract
Antioxidative stress provides a cardioprotective effect during myocardial ischemia/reperfusion (I/R). Previous research has demonstrated that the blockade of transient receptor potential vanilloid 4 (TRPV4) attenuates myocardial I/R injury. However, the underlying mechanism remains unclear. The current study is aimed at investigating the antioxidative activity of TRPV4 inhibition and elucidating the underlying mechanisms in vitro and ex vivo. We found that the inhibiting TRPV4 by the selective TRPV4 blocker HC-067047 or specific TRPV4-siRNA significantly reduces reactive oxygen species (ROS) and methane dicarboxylic aldehyde (MDA) levels in H9C2 cells exposed to hypoxia/reoxygenation (H/R). Meanwhile, the activity of antioxidative enzymes, particularly superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), is enhanced. Furthermore, after H/R, HC-067047 treatment increases the expression of P-Akt and the translocation of nuclear factor E2-related factor 2 (Nrf2) and related antioxidant response element (ARE) mainly including SOD, GSH-Px, and catalase (CAT). LY294002, an Akt inhibitor, suppresses HC-067047 and specific TRPV4-siRNA-induced Nrf2 expression and its nuclear accumulation. Nrf2 siRNA attenuates HC-067047 and specific TRPV4-siRNA-induced ARE expression. In addition, treatment with LY294002 or Nrf2 siRNA significantly attenuates the antioxidant and anti-injury effects of HC-067047 in vitro. Finally, in experiments on isolated rat hearts, we confirmed the antioxidative stress roles of TRPV4 inhibition during myocardial I/R and the application of exogenous H2O2. In conclusion, the inhibition of TRPV4 exerts cardioprotective effects through enhancing antioxidative enzyme activity and expressions via the Akt/Nrf2/ARE pathway.
Collapse
|
17
|
Huang C, Wen C, Yang M, Gan D, Fan C, Li A, Li Q, Zhao J, Zhu L, Lu D. Lycopene protects against t-BHP-induced neuronal oxidative damage and apoptosis via activation of the PI3K/Akt pathway. Mol Biol Rep 2019; 46:3387-3397. [PMID: 31006097 DOI: 10.1007/s11033-019-04801-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/05/2019] [Indexed: 12/18/2022]
Abstract
Oxidative stress is a key factor of and closely implicated in the pathogenesis of Alzheimer's disease (AD). We herein used tert-butyl hydroperoxide (t-BHP) to induce oxidative stress and mimic oxidative neurotoxicity in vitro. Lycopene is a natural antioxidant that has a strong ability to eliminate free radicals and shows effective protection in some neurodegenerative disease models. However, the effect of lycopene on t-BHP-induced neuronal damage in primary mouse neurons is unknown. This study aimed to investigate the effects of lycopene on t-BHP-induced neuronal damage and the related mechanisms. We found that lycopene pretreatment effectively enhanced the cell viability, improved the neuron morphology, increased the GSH/GSSG level, restored the mitochondrial membrane potential (ΔΨm) and decreased reactive oxygen species generation. Furthermore, lycopene reduced the ratios of Bax:Bcl-2 and cleaved caspase-3:caspase-3 and the level of cytochrome C, increased the levels of synaptophysin (SYP) and postsynaptic density 95 (PSD95) and activated the PI3K/Akt pathway. In conclusion, lycopene attenuated oxidative stress and reduced t-BHP-induced cell apoptosis, and the mechanism is likely related to activation of the PI3K/Akt pathway. Therefore, lycopene is a potential agent for preventing oxidative stress-mediated AD.
Collapse
Affiliation(s)
- Cuiqin Huang
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Caiyan Wen
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Mei Yang
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Danhui Gan
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
- Department of Pathology, Guangzhou Overseas Chinese Hospital, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, China
| | - Chongzhu Fan
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - An Li
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Qin Li
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Jiayi Zhao
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Lihong Zhu
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Daxiang Lu
- Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
18
|
Zeng B, Liu L, Liao X, Zhang C, Ruan H. Thyroid hormone protects cardiomyocytes from H 2O 2-induced oxidative stress via the PI3K-AKT signaling pathway. Exp Cell Res 2019; 380:205-215. [PMID: 31059699 DOI: 10.1016/j.yexcr.2019.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 01/14/2023]
Abstract
Oxidative stress plays an important role in the progression of cardiac diseases, including acute myocardial infarction, ischemia/reperfusion (I/R) injury and heart failure. Growing evidence indicates that thyroid hormone has protective properties against cardiovascular diseases. However, little is known about its effect on oxidative stress in cardiomyocytes or the underlying mechanisms. This study showed that T3 pretreatment in vivo significantly reduced cardiac dysfunction by increasing the left ventricular ejection function and ameliorating the pathological changes induced by I/R-induced injury. In an in vitro experiment, T3 inhibited apoptosis in H2O2-treated cardiomyocytes, as evidenced by the decreased expression of Bax, cleaved caspase 3 and 9, and increased expression of Bcl-2. In addition, oxidative stress observed in hearts of mice with I/R injury was significantly alleviated by T3 pretreatment, intracellular ROS and mitochondrial ROS overproduction were effectively inhibited, and similar results were also detected in H2O2-treated cardiomyocytes in vitro. T3 significantly increased antioxidant protein (Nrf2 and HO-1) expression levels, and inhibited NOX2 and NOX4 protein expression levels in H2O2-treated cardiomyocytes. Moreover, T3 preserved mitochondrial functions upon H2O2-induced oxidative stress by increasing mitochondrial membrane potential and promoting the expression of mitochondrial biogenesis genes. Notably, the PI3K/AKT signaling was significantly activated by T3 pretreatment in H2O2-induced cardiomyocytes. Together, these findings revealed that T3 could be served as potential therapeutic target for protection against cardiac oxidative stress injury through its antioxidant and anti-apoptosis effects, which are mediated by the activation of the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Bin Zeng
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, Hubei, PR China.
| | - Lei Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, Hubei, PR China
| | - Xiaoting Liao
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, Hubei, PR China
| | - Caixia Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, Hubei, PR China
| | - Huaiyu Ruan
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, Hubei, PR China
| |
Collapse
|
19
|
Li L, Sha Z, Wang Y, Yang D, Li J, Duan Z, Wang H, Li Y. Pre-treatment with a combination of Shenmai and Danshen injection protects cardiomyocytes against hypoxia/reoxygenation- and H 2O 2-induced injury by inhibiting mitochondrial permeability transition pore opening. Exp Ther Med 2019; 17:4643-4652. [PMID: 31086595 DOI: 10.3892/etm.2019.7462] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 02/15/2019] [Indexed: 12/14/2022] Open
Abstract
Increasing evidence has indicated that opening of the mitochondrial permeability transition pore (mPTP) has a vital role in myocardial ischemia/reperfusion (I/R) injury. Shenmai injection (SMI) plus Danshen injection (DSI) combination, termed Yiqi Yangyin Huoxue (YYH) therapy is used in the clinic to treat cardiovascular diseases, including myocardial I/R injury. Previous studies by our group have demonstrated the protective effect of pretreatment with YYH against myocardial I/R injury in isolated rat hearts. The present study aimed to examine the protective effect of YYH against hypoxia/reoxygenation (H/R)- and H2O2-induced cardiomyocyte injury, and to determine whether this effect is produced by inhibition of mPTP opening. Primary cardiomyocytes isolated from neonatal rats were cultured and randomly grouped into a control group, injury group and pretreatment group, with six duplicated wells in each group during each assay. Cardiomyocytes in the injury group were subjected to H/R to simulate I/R or exposed to H2O2 for 2 h to induce oxidative injury. Cellular injury was assessed via release of creatine kinase (CK) and lactate dehydrogenase (LDH), and cell viability was measured by an MTT assay. The mitochondrial membrane potential (ΔΨm) and cytosolic reactive oxygen species (ROS) were detected using the fluorescent probes rhodamine123 (Rh123) and chloromethyl-2,7-dichlorodihydrofluorescein diacetate (CM-H2DCFDA), respectively. Intracellular Ca2+, mitochondrial Ca2+ and mPTP opening were measured using fluo-4 acetoxymethyl (Fluo-4/AM), rhodamine-2 acetoxymethyl (Rhod-2/AM) and calcein acetoxymethyl (Calcein/AM) probes, respectively. The results indicated that pretreatment with YYH enhanced cell viability, increased ΔΨm, reduced CK and LDH release, and decreased intracellular ROS and Ca2+, thus reducing cardiomyocyte injury induced by H/R or H2O2. LY294002, a specific phosphoinositide 3-kinase (PI3K) inhibitor, and PD98059, a specific inhibitor of the extracellular signal-regulated kinase 1/2 (Erk1/2) pathway, eliminated the protective effects of the combination therapy on cell viability and the change in the ΔΨm in cardiomyocytes. In conclusion, pre-treatment with YYH has cardioprotective effects against H/R injury and oxidative stress via activation of the PI3K/Akt and Erk1/2 signaling pathways, which reduces mPTP opening, overproduction of ROS and calcium overload.
Collapse
Affiliation(s)
- Lin Li
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China.,Key Research Laboratory Prescription Compatibility among Components, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China.,Tianjin Key Laboratory of Chinese Medicine Pharmacology;, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Zhengmei Sha
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Yanyan Wang
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China.,Key Research Laboratory Prescription Compatibility among Components, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China.,Tianjin Key Laboratory of Chinese Medicine Pharmacology;, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Dongli Yang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Jinghao Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Zhenzhen Duan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Hongbo Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Yuhong Li
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China.,Key Research Laboratory Prescription Compatibility among Components, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China.,Tianjin Key Laboratory of Chinese Medicine Pharmacology;, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| |
Collapse
|
20
|
Zhuang S, Yu R, Zhong J, Liu P, Liu Z. Rhein from Rheum rhabarbarum Inhibits Hydrogen-Peroxide-Induced Oxidative Stress in Intestinal Epithelial Cells Partly through PI3K/Akt-Mediated Nrf2/HO-1 Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2519-2529. [PMID: 30779558 DOI: 10.1021/acs.jafc.9b00037] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Rheum rhabarbarum has been widely used as a herbal medicine and food in China. The objective of this study was to investigate the cytoprotective action and underlying mechanisms of rhein, one active ingredient isolated from R. rhabarbarum, on H2O2-challenged rat small intestine epithelial cells (IEC-6 cells). H2O2-challenged IEC-6 cells were incubated in the pretreatment with or without rhein or LY294002, a PI3K/Akt inhibitor. The cell viability, apoptosis, intracellular reactive oxygen species (ROS), and antioxidants were measured. The expressions of heme oxygenase 1 (HO-1), nuclear factor erythroid 2-related factor (Nrf2), Akt, and p-Akt were evaluated by western blotting. Meanwhile, LY294002 was also used to investigate the role of PI3K/Akt in the rhein-induced cytoprotective role. The results showed that pretreatment of rhein could reverse the inhibition of cell viability and suppress the apoptosis, caspase-3 activity, and intracellular ROS induced by H2O2. Rhein also supported SOD activity catalase activity, glutathione S-transferase activity, and glutathione content. Furthermore, rhein induced the protein expression of HO-1 together with its upstream mediator Nrf2 and activated the phosphorylation of Akt in IEC-6 cells. LY294002 inhibited increased cell viability, upregulated the lowered apoptotic rate, and enhanced the weakened ROS levels. Although the inhibition of PI3K/Akt did not inhibit the Nrf2 nuclear level under 4 μM rhein, LY294002 inhibited the Nrf2 nuclear level under 2 μM rhein and blocked HO-1 expression. These data demonstrated that rhein protected IEC-6 cells against oxidative damage partly via PI3K/Akt and Nrf2/HO-1 pathways.
Collapse
Affiliation(s)
- Shen Zhuang
- Division of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine , China Agricultural University , 2 Yuanmingyuan West Road , Beijing 100094 , People's Republic of China
| | - Ruyang Yu
- Division of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine , China Agricultural University , 2 Yuanmingyuan West Road , Beijing 100094 , People's Republic of China
| | - Jia Zhong
- Division of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine , China Agricultural University , 2 Yuanmingyuan West Road , Beijing 100094 , People's Republic of China
| | - Ping Liu
- Division of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine , China Agricultural University , 2 Yuanmingyuan West Road , Beijing 100094 , People's Republic of China
| | - Zhongjie Liu
- Division of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine , China Agricultural University , 2 Yuanmingyuan West Road , Beijing 100094 , People's Republic of China
| |
Collapse
|
21
|
Cabbage ( Brassica oleracea var. capitata) Protects against H 2O 2-Induced Oxidative Stress by Preventing Mitochondrial Dysfunction in H9c2 Cardiomyoblasts. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:2179021. [PMID: 30158990 PMCID: PMC6109504 DOI: 10.1155/2018/2179021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 08/07/2018] [Indexed: 11/25/2022]
Abstract
Oxidative stress plays an important role in the progression of cardiac diseases, including ischemia/reperfusion injury, myocardial infarction, and heart failure. Growing evidence indicates that cabbage has various pharmacological properties against a wide range of diseases, such as cardiovascular diseases, hepatic diseases, and cancer. However, little is known about its effects on oxidative stress in cardiomyocytes or the underlying mechanisms. Therefore, the present study examined the effects of cabbage extract on oxidative stress in H9c2 cardiomyoblasts. Cell viability, reactive oxygen species (ROS) production, apoptosis, mitochondrial functions, and expression levels of mitogen-activated protein kinase (MAPK) proteins were analyzed to elucidate the antioxidant effects of this extract. Cabbage extract protected against H2O2-induced cell death and did not elicit any cytotoxic effects. In addition, cabbage extract suppressed ROS production and increased expression of antioxidant proteins (SOD-1, catalase, and GPx). Cabbage extract also inhibited apoptotic responses and activation of MAPK proteins (ERK1/2, JNK, and p-38) in oxidative stress-exposed H9c2 cells. Notably, cabbage extract preserved mitochondrial functions upon oxidative stress. These findings reveal that cabbage extract protects against oxidative stress and suggest that it can be used as an alternative therapeutic strategy to prevent the oxidative stress in the heart.
Collapse
|
22
|
The Secretion from Neural Stem Cells Pretreated with Lycopene Protects against tert-Butyl Hydroperoxide-Induced Neuron Oxidative Damage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5490218. [PMID: 30140366 PMCID: PMC6081585 DOI: 10.1155/2018/5490218] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 06/11/2018] [Indexed: 02/07/2023]
Abstract
Neural stem cells (NSCs) hold great potential for the treatment of Alzheimer's disease (AD) through both cellular replacement and their secretion of trophic factors. Lycopene is a potent β-carotenoid antioxidant that has been shown to ameliorate oxidative damage in previous studies. However, it is unclear if lycopene can interact with NSCs to induce the secretion of growth factors, and whether pretreatment with lycopene will allow NSCs to secrete enough trophic factors to reduce oxidative damage to neurons. We pretreated cultured NSCs with lycopene, then applied the lycopene-treated-NSC-conditioned media (Ly-NSC-CM) to primary neuronal cultures exposed to tert-butyl hydroperoxide (t-BHP) to induce oxidative damage. We found that lycopene promoted the secretion of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and vascular endothelial growth factor (VEGF) from NSCs. In addition, Ly-NSC-CM attenuated oxidative stress and reduced t-BHP-induced cell apoptosis. We found an antiapoptotic effect related to inhibited expression of Bax/Bcl-2, cytochrome C, and cleaved caspase-3. Moreover, Ly-NSC-CM increased the levels of synaptic proteins, including synaptophysin (SYP) and postsynaptic density 95 (PSD-95), and activated the PI3K/Akt pathway in cultured neurons. Collectively, these data indicate that Ly-NSC-CM could protect neurons from t-BHP-induced oxidative damage.
Collapse
|
23
|
Wei T, Liu L, Zhou X. Cortex Dictamni extracts inhibit over-proliferation and migration of rat airway smooth muscle cells via FAK/p38/Bcl-2 signaling pathway. Biomed Pharmacother 2018; 102:1-8. [PMID: 29547743 DOI: 10.1016/j.biopha.2018.03.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/09/2018] [Accepted: 03/09/2018] [Indexed: 02/08/2023] Open
Abstract
Airway smooth muscle (ASM) is a prominent effecter in maintaining bronchial muscle contraction and responsible for airway hyper-responsiveness (AHR); the phenotype change and over-proliferation of airway smooth muscle cells (ASMCs) play key roles in the pathogenesis of asthma. The aim of this study was to investigate the anti-proliferation effects of Cortex Dictamni aqueous extract (CDAE) and ethanol extract (CDE) on ASMCs and the possible underline mechanisms. Cell proliferation rates were determined by MTT assay; matrix metalloproteinases-2 (MMP-2) activity was examined by gelatin zymography; cell proliferation and migration were appraised by in-vitro cell-gap closure assessment; protein expressions of p38, Bcl-2 and FAK of ASMCs were evaluated by western blotting and Ca2+ influx of cells was measured by confocal laser microscope. Our data demonstrated that the proliferation, migration and MMP-2 expressions of ASMCs were inhibited by CDAE or CDE; the protein expressions of p38, Bcl-2 and FAK in ASMCs were substantially reduced by CDAE and CDE detected by western blotting or immunocytochemistry; also the increased calcium influx has been observed instantaneously after ASMCs were stimulated by CDAE or CDE. These findings suggested that Cortex Dictamni extracts might have inhibitory effects on ASMCs over-proliferation which could be one of the underline mechanisms for the therapy of asthma.
Collapse
Affiliation(s)
- Tao Wei
- The School of Pharmaceutical Engineering and Life Science, Changzhou University, Jiangsu, 213164, China
| | - Lei Liu
- The Institute of Biomedical Engineering and Health Sciences, Changzhou University, Jiangsu, 213164, China
| | - Xiaoying Zhou
- The School of Pharmaceutical Engineering and Life Science, Changzhou University, Jiangsu, 213164, China; The School of Medicine, The University of Southampton, Southampton, SO16 6YD, UK.
| |
Collapse
|
24
|
Sun M, Izumi H, Shinoda Y, Fukunaga K. Neuroprotective effects of protein tyrosine phosphatase 1B inhibitor on cerebral ischemia/reperfusion in mice. Brain Res 2018; 1694:1-12. [PMID: 29705606 DOI: 10.1016/j.brainres.2018.04.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/10/2018] [Accepted: 04/24/2018] [Indexed: 12/11/2022]
Abstract
Akt (Protein kinase B, PKB), a serine/threonine kinase, plays a critical role in cell development, growth, and survival. Akt phosphorylation mediates a neuroprotective effect against ischemic injury. Recently, a protein-tyrosine phosphatase-1B (PTP1B) inhibitor (KY-226) was developed to elicit anti-diabetic and anti-obesity effects via enhancement of insulin signaling. Previously, we reported that the nonselective PTP1B inhibitor, sodium orthovanadate, rescued neurons from delayed neuronal death during brain ischemia. In this study, we confirmed the ameliorative effects of KY-226 on ischemia/reperfusion (I/R) injury using a murine model of middle cerebral artery occlusion (MCAO). ICR mice were subjected to MCAO for 2 h followed by reperfusion. Although KY-226 permeability was poor through the blood-brain barrier (BBB) of normal mice, it could penetrate through the BBB of mice after I/R insult. Intraperitoneal KY-226 administration elicited dose-dependent reductions in infarcted brain areas and improved neurological deficits. The neuroprotective effects of KY-266 were obtained when administered within 0.5 h after reperfusion. KY-226 (10 mg/kg) also restored reduced Akt phosphorylation and eNOS phosphorylation (Ser-1177) levels following I/R insult. Moreover, 10 mg/kg of KY-226 improved I/R-induced decreased extracellular signal-regulated kinase (ERK) phosphorylation. Furthermore, KY-226 attenuated the generation of reactive oxygen species (ROS) in mouse cortex. These results suggest that KY-226 may act as a novel therapeutic candidate for ischemic stroke. Activation of Akt and ERK possibly underlie the neuroprotective mechanism of KY-226.
Collapse
Affiliation(s)
- Meiling Sun
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai Japan
| | - Hisanao Izumi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai Japan
| | - Yasuharu Shinoda
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai Japan.
| |
Collapse
|
25
|
Li X, Bilali A, Qiao R, Paerhati T, Yang Y. Association of the PPARγ/PI3K/Akt pathway with the cardioprotective effects of tacrolimus in myocardial ischemic/reperfusion injury. Mol Med Rep 2018; 17:6759-6767. [PMID: 29488613 DOI: 10.3892/mmr.2018.8649] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 11/02/2017] [Indexed: 11/06/2022] Open
Abstract
Myocardial ischemia/reperfusion injury (MIRI) induces severe arrhythmias and has a high risk of mortality. The aim of the present study was to investigate the effect of tacrolimus on arrhythmias, cardiac function, oxidative stress and myocardium apoptosis induced by MIRI, and to elucidate the underlying mechanism. The effects of MIRI and tacrolimus on arrhythmias, cardiac function parameters, myocardial oxidative stress and apoptosis were investigated in a rat model of MIRI. The phosphorylation of peroxisome proliferator‑activated receptor γ (PPARγ) and protein kinase B (Akt) was investigated via western blotting. After rats were treated with inhibitors of PPARγ/phosphoinositide 3‑kinase (PI3K)/Akt, cardiac function parameters were measured. The results demonstrated that the MIRI procedure induced arrhythmias and significant impairment of cardiac function, oxidative stress and apoptosis in cardiomyocytes (P<0.05). Tacrolimus significantly alleviated the arrhythmias and impairment of cardiac function and inhibited the oxidative stress and apoptosis in cardiomyocytes (P<0.05). The phosphorylation of PPARγ and Akt was significantly activated by tacrolimus, whereas inhibitors of PPARγ/PI3K/Akt significantly abolished the effects of tacrolimus (P<0.05). Together, these results suggest that tacrolimus may protect rats from MIRI through activation of the PPARγ/PI3K/Akt pathway.
Collapse
Affiliation(s)
- Xiufen Li
- Cardiac Care Unit, The Traditional Hospital Affiliated to Xinjiang Medical University, Ürümqi, Xinjiang 830001, P.R. China
| | - Aishan Bilali
- Cardiac Care Unit, The Traditional Hospital Affiliated to Xinjiang Medical University, Ürümqi, Xinjiang 830001, P.R. China
| | - Rui Qiao
- Cardiac Care Unit, The Traditional Hospital Affiliated to Xinjiang Medical University, Ürümqi, Xinjiang 830001, P.R. China
| | - Tuerxun Paerhati
- Cardiac Care Unit, The Traditional Hospital Affiliated to Xinjiang Medical University, Ürümqi, Xinjiang 830001, P.R. China
| | - Yan Yang
- Cardiac Care Unit, The Traditional Hospital Affiliated to Xinjiang Medical University, Ürümqi, Xinjiang 830001, P.R. China
| |
Collapse
|
26
|
Jiang L, Qin Y, Lei F, Chen X, Zhou Z. Retinoic acid receptors α and γ are involved in antioxidative protection in renal tubular epithelial cells injury induced by hypoxia/reoxygenation. Free Radic Res 2017; 51:873-885. [PMID: 29096559 DOI: 10.1080/10715762.2017.1387655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Renal interstitial fibrosis (RIF) is a common outcome in various chronic kidney diseases. Injury to renal tubular epithelial cell (RTEC) is major link in RIF. Hypoxia is one of the common factors for RTEC damage. Retinoic acid receptors (RARs), RARα, RARβ and RARγ, are evolutionary conserved and pleiotropic proteins that have been involved in various cellular functions, including proliferation, differentiation, apoptosis, and transcription. Recently, we discovered that aberrant expression of RARs was involved in the development of RIF in rats. Here, we investigated the role of RARs in the hypoxia/reoxygenation (HR) damage model in RTEC with virus-based delivery vectors to knockdown or overexpress RARs. Relevant indicators were detected. Our results showed that HR inhibited RARα and RARγ expressions in a time-dependent manner in RTECs; however, the expression of RARβ was not changed obviously. RARα and RARγ overexpression could protect cells from oxidative stress-induced injury by inhibiting HR-induced intracellular superoxide anion (O2-) generation, cell viability and mitochondria membrane potential (MMP) decrease and transforming growth factor β1 (TGF-β1) expression and promoting endogenous antioxidant defense components, superoxide dismutase (SOD) and glutathione (GSH). Meanwhile, inhibition of RARα and RARγ expressions by small interference RNAs (siRNA) resulted in a less resistance of RTEC to HR as shown in increased O2- production and TGF-β1 expression and decreased cell viability, MMP, SOD and GSH levels. These data indicates that RARα and RARγ act as positive regulators to offset oxidative damage and profibrosis cytokine accumulation and therefore has an antioxidative effect.
Collapse
Affiliation(s)
- Ling Jiang
- a Department of Pediatrics , The First Affiliated Hospital of Guangxi Medical University , Nanning , PR China
| | - Yuanhan Qin
- a Department of Pediatrics , The First Affiliated Hospital of Guangxi Medical University , Nanning , PR China
| | - Fengying Lei
- a Department of Pediatrics , The First Affiliated Hospital of Guangxi Medical University , Nanning , PR China
| | - Xiuping Chen
- a Department of Pediatrics , The First Affiliated Hospital of Guangxi Medical University , Nanning , PR China
| | - Zhiqiang Zhou
- a Department of Pediatrics , The First Affiliated Hospital of Guangxi Medical University , Nanning , PR China
| |
Collapse
|
27
|
Hongjingtian Injection Attenuates Myocardial Oxidative Damage via Promoting Autophagy and Inhibiting Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6965739. [PMID: 28804535 PMCID: PMC5539935 DOI: 10.1155/2017/6965739] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/24/2017] [Indexed: 11/17/2022]
Abstract
Natural products with antioxidative activities are widely applied to prevent and treat various oxidative stress related diseases, including ischemic heart disease. However, the cellular and molecular mechanisms of those therapies are still needed to be illustrated. In this study, we characterized the cardioprotective effects of Hongjingtian Injection (HJT), an extensively used botanical drug for treating coronary heart disease. The H/R-induced profound elevation of oxidative stress was suppressed by HJT. HJT also attenuates oxidative injury by promoting cell viability, intracellular ATP contents, and mitochondrial oxygen consumption. Validation experiments indicated that HJT inhibited H/R-induced apoptosis and regulated the expression of apoptosis-associated proteins Bcl-2 and cleaved caspase3. Interestingly, HJT significantly regulated the expression of autophagy-related proteins LC3, Beclin, and mTOR as well as ERK and AKT. We provide evidence that the mechanism involves activation of AKT/Beclin-1, AKT, and ERK/mTOR pathway in cardiomyocyte autophagy. Histological and physiological evaluation revealed that HJT significantly decreased the infarct area of the heart, improved cardiac function, and increased the expression of LC3B in a rat model of coronary occlusion. From the obtained data, we proposed that HJT diminished myocardial oxidative damage through regulating the balance of autophagy and apoptosis and reducing oxidative stress.
Collapse
|