1
|
Maharana SR, Mahapatra K, Mir SA, Mukherjee V, Nayak B. Malyngamide C a potential inhibitor of protein synthesis Machinery targeting peptide deformylase enzyme. Biochem Biophys Res Commun 2025; 767:151910. [PMID: 40319818 DOI: 10.1016/j.bbrc.2025.151910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/05/2025] [Accepted: 04/25/2025] [Indexed: 05/07/2025]
Abstract
Due to the rising incidence of antibiotic-resistant and bacterial illnesses, new therapeutic drugs are essential to target vital bacterial enzymes. Peptide deformylase is an attractive antibacterial target because it plays a pivotal role in protein synthesis. The present study was guided to identify the potential inhibitors of peptide deformylase (PDF), viz., computational methods such as molecular docking, molecular dynamics (MD) simulations, thermodynamic stability, free energy calculations, and ADMET analysis. Here we observed the toxicity profile and drug-likeness of the in-house cyanopeptides database. The malyngamide C showed good oral bioavailability. Molecular docking experiments revealed that malyngamide C showed a better binding affinity of -8.81 kcal/mol than reference actinonin -7.08 kcal/mol. Next, MD simulations revealed that malyngamide C, tumonoic acid A, borophycin, and actinonin were found stable in the binding pocket of PDF observed for 300 ns. The binding posture was well-retained, with negligible RMSD, and found within permissible limits observed throughout the simulations. From the MM/PBSA calculations, the free binding energy of malyngamide C was found to be -145.281 kJ/mol, significantly exceeding other selected molecules, including actinonin. The malyngamide C could be a lead antibacterial candidate with a good safety profile. These computational findings strongly support its experimental validation and further clinical investigations as a novel antibacterial agent to combat drug-resistant bacterial infections.
Collapse
Affiliation(s)
| | - Kiran Mahapatra
- School of Life Sciences, Sambalpur University, Jyotivihar, 768019, Odisha, India.
| | - Showkat Ahmad Mir
- School of Life Sciences, Sambalpur University, Jyotivihar, 768019, Odisha, India.
| | - Vishwajeet Mukherjee
- Sambalpur University Institute of Information Technology, Jyotivihar, 768019, Odisha, India.
| | - Binata Nayak
- School of Life Sciences, Sambalpur University, Jyotivihar, 768019, Odisha, India.
| |
Collapse
|
2
|
Zhao Z, Gao H, Yang Y, Deng Y, Ju F. Fungi as a Critical Component of Lake Microbiota in Response to Cyanobacterial Harmful Algal Blooms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40434797 DOI: 10.1021/acs.est.4c09164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
Cyanobacterial Harmful Algal Blooms (CyanoHABs) pose a growing threat to lake ecosystems. While microbial communities constitute the resilient power of lake ecosystems to CyanoHAB disturbances, the role of fungi remains underexplored. Here, the dynamics of size-fractionated fungal and associated bacterial communities were tracked across the peak and decline stages of a CyanoHAB event in shallow subtropical Lake Taihu. The results revealed that the composition of fungal and bacterial communities in separated size fractions varied between bloom stages, with enrichment patterns likely influenced by their reliance on algal-derived nutrients. Null model-based analysis revealed a shift in fungal community assembly, from dominance by dispersal limitation (44%) and drift (30%) at the peak stage to increased homogeneous selection (44%) at the early decline stage, whereas bacterial communities remained predominantly shaped by stochastic processes, highlighting their distinct responses to cyanobacterial biomass decomposition. Comparative topological analysis of microbial co-occurrence networks showed strengthened cross-kingdom fungi-bacteria interactions as the bloom declined, especially within decomposing cyanobacterial colonies, facilitating nutrient cycling and accelerating cyanobacterial biomass removal. These findings led to a conceptual model proposing fungi as critical members of the freshwater microbiome in eutrophic lakes, driving biogeochemical cycling and potentially contributing to the resilience of the lake ecosystem against CyanoHABs.
Collapse
Affiliation(s)
- Ze Zhao
- Zhejiang Provincial Key Laboratory of Intelligent Low-Carbon Biosynthesis, Westlake Center of Synthetic Biology and Integrated Bioengineering, School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou 310030, Zhejiang, China
| | - Han Gao
- Zhejiang Provincial Key Laboratory of Intelligent Low-Carbon Biosynthesis, Westlake Center of Synthetic Biology and Integrated Bioengineering, School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Ye Deng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing 100085, China
| | - Feng Ju
- Zhejiang Provincial Key Laboratory of Intelligent Low-Carbon Biosynthesis, Westlake Center of Synthetic Biology and Integrated Bioengineering, School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou 310030, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
| |
Collapse
|
3
|
Virgolino R, Siqueira A, Cassoli J, Aguiar D, Gonçalves E. Insilico molecular characterization of a cyanobacterial lytic polysaccharide monooxygenase. J Mol Graph Model 2025; 136:108970. [PMID: 39904117 DOI: 10.1016/j.jmgm.2025.108970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 12/27/2024] [Accepted: 01/29/2025] [Indexed: 02/06/2025]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes that catalyze the oxidative cleavage of β(1-4) glycosidic bonds and have attracted considerable attention because of their potential for enhancing efficiency in degrading recalcitrant polymeric substrates, in synergism with hydrolytic enzymes. Fungal-derived LPMOs are the most prevalent type, while other taxonomic groups have been described as potential alternative sources of these enzymes. In the present study, we aimed to identify and characterize in silico a LPMO of cyanobacterial origin with putative functions in chitin depolymerization. A similarity search of sequences and conservation of domains with characterized LPMOs identified a 289 amino acid protein from the cyanobacterium Mastigocoleus testarum (Order Nostocales), likely belonging to the CAZy-AA10 class. This protein is referred to as MtLPMO10. Phylogenetic analysis revealed that MtLPMO10 is homologous to the protein Tma12 from the fern Tectaria macrodonta, with 52.11 % sequence identity, which was the first LPMO characterized as originating from the plant kingdom. The protein tertiary structure predicted by the AlphaFold server indicates structural features common to LPMOs, such as a histidine brace formed by His31 and His132 and an immunoglobulin-like domain composed of antiparallel beta strands. Molecular dynamics (MD) simulation allowed the assessment of the enzyme-substrate affinity, using an initial pose based on literature data. The MtLPMO10-chitin complex remained stable during 100ns of MD, while the MtLPMO10-cellulose complex dissociated within 30ns of MD. Additionally, there was a shorter Cu(I)-H4 distance in the protein-substrate complex compared to the Cu(I)-H1 distance (averages of 6.0 ± 0.7 Å and 7.9 ± 0.7 Å, respectively), suggesting a C4 regioselectivity. This study highlights the existence of lytic polysaccharide monooxygenases in cyanobacteria and paves the way for further investigations related to this enigmatic class of enzymes and their potential use in biotechnological applications.
Collapse
Affiliation(s)
- Rodrigo Virgolino
- Biomolecular Technology Laboratory/Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil.
| | - Andrei Siqueira
- Biomolecular Technology Laboratory/Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Juliana Cassoli
- Laboratory of Omics Science, Institute of Biological Science, Federal University of Pará, Belém, PA, Brazil
| | - Délia Aguiar
- Biomolecular Technology Laboratory/Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Evonnildo Gonçalves
- Biomolecular Technology Laboratory/Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| |
Collapse
|
4
|
Sahoo A, Paidesetty SK, Panda M. Target-specific high-throughput screening of anti-inflammatory phytosteroids for autoimmune diseases: A molecular docking-dynamics simulation approach. Steroids 2025; 217:109601. [PMID: 40120839 DOI: 10.1016/j.steroids.2025.109601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Without proper pathophysiology and recommended therapy, synthetic steroids are widely used as a first-line option for the management of autoimmune diseases. However, their prolonged use often leads to severe side effects such as osteoporosis, hypertension, cardiovascular, gastrointestinal complications, etc. To search for potential and safer therapeutic options, the present study aims to explore the potency and drug-ability profiles of anti-inflammatory phytosteroids (PSs). In a target-specific approach, we have selected three key molecular targets: glucocorticoid receptor/GR (PDB ID: 4P6W), cyclooxygenase-2/COX2 (PDB ID: 5F1A), and inducible nitric oxide synthase/iNOS (PDB ID: 4NOS) for a docking study of 167) selected PSs. The drug-chemistry profiles (physicochemical, toxicity, pharmacokinetic, drug-ability, etc.) of PSs were also assessed using various bioinformatics and chemoinformatics tools. The above assessment suggested that withaminilide B (PS46) is a lead candidate with higher drug-ability properties. Further, the drug stability and kinetic behaviour of the lead with the GR target 'GR-withaminilide B' in comparison with the control drug, 'GR-triamcinolone acetonide' docking complex, were studied through molecular dynamics (MD) simulation at 200 nanosecond with free energy calculation (MM/PBSA). Overall findings suggested that PSs exhibit distinct drug-ability profiles based on their functional attachments with a steroidal core moiety, where withaminilide B is a lead PSs among all to be used as alternative/ complementary candidates expected with limited adverse effects. Further experimentation is essential before mainstream application, but the study provided a platform to select drug-able candidates with a higher chance of experimental success and accelerate the drug discovery process within limited resources.
Collapse
Affiliation(s)
- Alaka Sahoo
- Department of Skin & VD, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar 751003 Odisha, India; Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar 751003 Odisha, India
| | - Sudhir Kumar Paidesetty
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar 751003 Odisha, India
| | - Maitreyee Panda
- Department of Skin & VD, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar 751003 Odisha, India.
| |
Collapse
|
5
|
Jiang J, Li J, Dong H, Chen X, Tang Y, Ma X, Li H, Chi X, Yang X, Liu Z. Xanthocillin X combats Burkholderia pseudomallei by targeting UDP-N-acetylglucosamine acyltransferase. Microbiol Res 2025; 298:128195. [PMID: 40319663 DOI: 10.1016/j.micres.2025.128195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/15/2025] [Accepted: 04/24/2025] [Indexed: 05/07/2025]
Abstract
Drug-resistance in Burkholderia pseudomallei (B. pseudomallei) and the limited ability of antibiotics to eradicate biofilms underscore the urgent need for alternative therapeutic options. New drugs which suppress the biofilm formation without emergence of antimicrobial resistance have clearly attracted global attention. We report a deep-sea-derived natural product xanthocillin X (Xan) for the therapeutic of B. pseudomallei 1 induced infections. Xan possesses superior antibacterial ability over commercial ceftazidime even at an ultralow concentration of 62.5 ng/mL, and can inhibit the formation of biofilm with high efficiency without drug resistance. Specially, Xan demonstrates stable binding ability with LpxA which is responsible for lipopolysaccharide synthesis, and thus disrupting the formation of biofilm. In two murine models, Xan exhibits therapeutic potency for combating B. pseudomallei 1 induced infections. Taken together, Xan that specifically interacts with LpxA impairs the formation of biofilm without drug resistance, endowing the compound with dominant antibacterial activity and accelerating tissue repair after infection.
Collapse
Affiliation(s)
- Jiayang Jiang
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Juanjuan Li
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Haoyu Dong
- Hainan Academy of Medical Sciences, Hainan Pharmaceutical Research and Development Science Park, Hainan Medical University, 3 Xueyuan Road, Haikou 571199, China
| | - Xinping Chen
- Department of Medical Laboratory, Hainan Cancer Hospital, Affiliated Cancer Hospital of Hainan Medical University, No.6, Changbin West 4th Street, Xiuying district, Haikou, Hainan 570312, China.
| | - Yanqiong Tang
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Xiang Ma
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Hong Li
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Xue Chi
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Xianwen Yang
- Hainan Academy of Medical Sciences, Hainan Pharmaceutical Research and Development Science Park, Hainan Medical University, 3 Xueyuan Road, Haikou 571199, China.
| | - Zhu Liu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
6
|
Shen G, Cheng Q, Liang L, Qin Y, Cao Y, Li Q, Xiao S. Tubercidin enhances apoptosis in serum-starved and hypoxic mouse cardiomyocytes by inducing nuclear speckle condensation. BMC Cardiovasc Disord 2025; 25:211. [PMID: 40121465 PMCID: PMC11929321 DOI: 10.1186/s12872-025-04661-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/12/2025] [Indexed: 03/25/2025] Open
Abstract
Tubercidin, known for its antimicrobial, antiparasitic, and anticancer effects, faces clinical limitations due to adverse effects, especially cardiotoxicity risks for those with ischemic cardiomyopathy. This study aims to clarify the molecular pathways of Tubercidin-induced cardiotoxicity, focusing on nuclear speckles (NSs) disruption in cardiomyocytes under serum deprivation and/or hypoxia. To simulate ischemic cardiomyopathy in vitro, we utilized FMC84 and HL-1 murine cardiomyocyte cell lines, exposing them to conditions of serum limitation and/or hypoxia to evaluate the cardiotoxic impact of Tubercidin and the contributing mechanisms. Apoptosis was quantified using flow cytometry, NSs condensation was visualized via immunofluorescence with an anti-SC35 antibody, and the expression levels of key apoptotic transcripts (RFFL, RIF1, and RNF144B) were analyzed by RT-PCR. Our findings revealed that Tubercidin significantly increased apoptosis in both HL-1 and FMC84 cell lines under conditions mimicking serum deprivation (21% O2 with 1% FBS), hypoxia (1% O2 with 10% FBS), or a combination of both. Furthermore, Tubercidin treatment led to a pronounced enlargement of NSs, as detected by immunofluorescence. Concurrently, we documented significant alterations in the expression of critical apoptotic regulatory genes, implying that Tubercidin may modulate the apoptotic pathway in stressed cardiomyocytes. It is hypothesized that Tubercidin induces NSs condensation, affecting alternative splicing of cell death genes, potentially worsening ischemic cardiomyocytes' damage. Therefore, a cautious clinical use of Tubercidin for ischemic cardiomyopathy patients is advised to reduce cardiotoxicity risks.
Collapse
Affiliation(s)
- Guowen Shen
- Department of Pathology, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
- Department of Anesthesiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Qingni Cheng
- Department of Cardiology, Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Lunmin Liang
- Department of Cardiology, Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Yaping Qin
- Department of Pathology, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Yunzhu Cao
- Department of Physiology, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, 541199, China
| | - Quanzhong Li
- Department of Cardiology, Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin, 541001, China.
| | - Shengjun Xiao
- Department of Pathology, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China.
| |
Collapse
|
7
|
Vasquez-Moscoso CA, Merlano JAR, Olivera Gálvez A, Volcan Almeida D. Antimicrobial peptides (AMPs) from microalgae as an alternative to conventional antibiotics in aquaculture. Prep Biochem Biotechnol 2025; 55:26-35. [PMID: 38970798 DOI: 10.1080/10826068.2024.2365357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
The excessive use of conventional antibiotics has resulted in significant aquatic pollution and a concerning surge in drug-resistant bacteria. Efforts have been consolidated to explore and develop environmentally friendly antimicrobial alternatives to mitigate the imminent threat posed by multi-resistant pathogens. Antimicrobial peptides (AMPs) have gained prominence due to their low propensity to induce bacterial resistance, attributed to their multiple mechanisms of action and synergistic effects. Microalgae, particularly cyanobacteria, have emerged as promising alternatives with antibiotic potential to address these challenges. The aim of this review is to present some AMPs extracted from microalgae, emphasizing their activity against common pathogens and elucidating their mechanisms of action, as well as their potential application in the aquaculture industry. Likewise, the biosynthesis, advantages and disadvantages of the use of AMPs are described. Currently, biotechnology tolls are used to enhance the action of these peptides, such as genetically modified microalgae and recombinant proteins. Cyanobacteria are also mentioned as major producers of peptides, among them, the genus Lyngbya is described as the most important producer of bioactive peptides with potential therapeutic use. The majority of cyanobacterial AMPs are of the cyclic type, meaning that they have cysteine and disulfide bridges, thanks to this, their greater antimicrobial activity and selectivity. Likewise, we found that large hydrophobic aromatic amino acid residues increase specificity, and improve antibacterial efficacy. However, based on the results of this review, it is possible to highlight that while microalgae show potential as a source of AMPs, further research in this field is necessary to achieve safe and competitive production. Therefore, the data presented here can aid in the selection of microalgal species, peptide structures, and target bacteria, with the goal of establishing biotechnological platforms for aquaculture applications.
Collapse
Affiliation(s)
- Camila A Vasquez-Moscoso
- Grupo de Investigación sobre Reproducción y Toxicología de Organismos Acuáticos - GRITOX, Instituto de Acuicultura y Pesca de los Llanos- IALL, Facultad de Ciencias Agropecuarias y Recursos Naturales, Universidad de los Llanos, Villavicencio, Colombia
| | - Juan Antonio Ramírez Merlano
- Grupo de Investigación sobre Reproducción y Toxicología de Organismos Acuáticos - GRITOX, Instituto de Acuicultura y Pesca de los Llanos- IALL, Facultad de Ciencias Agropecuarias y Recursos Naturales, Universidad de los Llanos, Villavicencio, Colombia
| | - Alfredo Olivera Gálvez
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | | |
Collapse
|
8
|
Nakatani H, Homma M. [Production and biological activity of the triazine derivatives: focusing on antibiotics produced by bacteria]. Nihon Saikingaku Zasshi 2025; 80:1-13. [PMID: 40044155 DOI: 10.3412/jsb.80.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
Heterocyclic triazines and their derivatives have excellent biological activity and have been used as herbicides and anticancer drugs. A large number of derivatives were synthesized and their biological activity was investigated. Some bacteria synthesize the triazine derivatives such as Nostocine A, Toxoflavin, and Fluviol from GTP using enzymes similar to those in the synthesis pathway of Riboflavin (vitamin B2). These triazine derivatives show antibiotic activity. In particular, research on Toxoflavin has progressed as a toxin produced by bacteria that cause seedling rot and rice grain blight in rice. It has recently been revealed that Fluviol, which is produced by bacteria, acts to suppress the growth of pathogenic bacteria. This review will focus on triazine derivatives produced by bacteria.
Collapse
Affiliation(s)
- Hajime Nakatani
- Department of Biomolecular Engineering, Graduated School of Engineering, Nagoya University
| | - Michio Homma
- Department of Biomolecular Engineering, Graduated School of Engineering, Nagoya University
- Division of Physics, Graduate School of Science, Nagoya University
| |
Collapse
|
9
|
Krátký M, Houngbedji NH, Vinšová J. Hidden potential of hydrazinecarboxamides (semicarbazides) as potential antimicrobial agents: A review. Biomed Pharmacother 2024; 180:117556. [PMID: 39405901 DOI: 10.1016/j.biopha.2024.117556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/20/2024] [Accepted: 10/08/2024] [Indexed: 11/14/2024] Open
Abstract
Hydrazinecarboxamides (semicarbazides) are increasingly recognized as a versatile scaffold in developing potential antimicrobial agents. In addition to a brief overview of the synthetic methods to prepare them, this review comprehensively analyses their antimicrobial properties. These derivatives have demonstrated potent activity against a broad spectrum of mycobacteria, bacterial and fungal pathogens, highlighting their potential to address critical human health challenges, including neglected diseases, and to combat growing antimicrobial resistance. They have also been investigated for their antiviral and antiparasitic properties. The review also summarizes structure-activity relationships, known mechanisms of action and emphasizes the crucial role of the hydrazinecarboxamide moiety in facilitating interactions with biological targets. The combination of hydrazinecarboxamides with other bioactive scaffolds (primaquine, isoniazid, etc.) has led to an identification of promising drug candidates, including those active against resistant strains, offering a promising approach for future innovations in the field of antimicrobial therapy. Attention is also drawn to limitations of hydrazinecarboxamides (poor physicochemical properties, cytotoxicity to human cells, and insufficient target selectivity), which may hinder their clinical application.
Collapse
Affiliation(s)
- Martin Krátký
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 03 Hradec Králové, Czech Republic.
| | - Neto-Honorius Houngbedji
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 03 Hradec Králové, Czech Republic
| | - Jarmila Vinšová
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 03 Hradec Králové, Czech Republic
| |
Collapse
|
10
|
Sandybayeva SK, Kossalbayev BD, Zayadan BK, Kopecký J, Kakimova AB, Bolatkhan K, Allakhverdiev SI. Isolation, Identification and Pigment Analysis of Novel Cyanobacterial Strains from Thermal Springs. PLANTS (BASEL, SWITZERLAND) 2024; 13:2951. [PMID: 39519869 PMCID: PMC11547633 DOI: 10.3390/plants13212951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Cyanobacterial pigments have attracted considerable attention in industry due to their bioactive potential and natural origin. In the present study, the growth dynamics and pigment composition, in terms of chlorophyll a, total carotenoids and phycobiliprotein content, of four cyanobacterial strains isolated from thermal springs, namely Oscillatoria subbrevis CZS 2201, Phormidium ambiguum CZS 2205, Nostoc calcicola TSZ 2203, and Synechococcus sp. CZS 2204, were investigated. The analysis revealed that the maximum quantity of chlorophyll a and total carotenoids was observed in Oscillatoria subbrevis CZS 2201 (26.49 and 3.44 µg mL-1), followed by Phormidium ambiguum CZS 2205 (18.64 and 2.32 µg mL-1), whereas a minimum amount was detected in Synechococcus sp. CZS 2204 (12.13 and 1.24 µg mL-1), respectively. In addition, Oscillatoria subbrevis CZS 2201 showed higher quantity of phycobiliproteins, especially C-phycocyanin (45.81 mg g-1), C-phycoerythrin (64.17 mg g-1) and C-allophycocyanin (27.45 mg g-1). Moreover, carotenoid derivatives of Oscillatoria subbrevis CZS 2201 were also identified, among which β-carotene was the dominant form (1.94 µg mL-1), while the accumulation of zeaxanthin and myxoxanthophyll was relatively high (0.53 and 0.41 µg mL-1, respectively) compared with echinenone and cryptoxanthin (0.34 and 0.23 µg mL-1, respectively). The study revealed that Oscillatoria subbrevis CZS 2201 was a potent producer of secondary carotenoids, including myxoxanthophyll.
Collapse
Affiliation(s)
- Sandugash K. Sandybayeva
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty 050038, Kazakhstan; (S.K.S.); (K.B.)
- Department of Chemical and Biochemical Engineering, Geology and Oil-Gas Business Institute Named after K. Turyssov, Satbayev University, Satpaev 22, Almaty 050043, Kazakhstan;
| | - Bekzhan D. Kossalbayev
- Department of Chemical and Biochemical Engineering, Geology and Oil-Gas Business Institute Named after K. Turyssov, Satbayev University, Satpaev 22, Almaty 050043, Kazakhstan;
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, West 7th Road, Tianjin Airport Economic Area, Tianjin 300308, China
- Ecology Research Institute, Khoja Akhmet Yassawi International Kazakh-Turkish University, Turkistan 161200, Kazakhstan
| | - Bolatkhan K. Zayadan
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty 050038, Kazakhstan; (S.K.S.); (K.B.)
| | - Jiří Kopecký
- Laboratory of Algal Biotechnology, Centre ALGATECH, Institute of Microbiology, Czech Academy of Sciences, Novohradská 237—Opatovický mlýn, 37981 Třebon, Czech Republic;
| | - Ardak B. Kakimova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty 050038, Kazakhstan; (S.K.S.); (K.B.)
- Department of Chemical and Biochemical Engineering, Geology and Oil-Gas Business Institute Named after K. Turyssov, Satbayev University, Satpaev 22, Almaty 050043, Kazakhstan;
| | - Kenzhegul Bolatkhan
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty 050038, Kazakhstan; (S.K.S.); (K.B.)
| | - Suleyman I. Allakhverdiev
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia;
| |
Collapse
|
11
|
Barone ME, Murphy E, Fierli D, Campanile F, Fleming GTA, Thomas OP, Touzet N. Bioactivity of Amphidinol-Containing Extracts of Amphidinium carterae Grown Under Varying Cultivation Conditions. Curr Microbiol 2024; 81:353. [PMID: 39264405 DOI: 10.1007/s00284-024-03862-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024]
Abstract
Microalgae are of great interest due to their ability to produce valuable compounds, such as pigments, omega-3 fatty acids, antioxidants, and antimicrobials. The dinoflagellate genus Amphidinium is particularly notable for its amphidinol-like compounds, which exhibit antibacterial and antifungal properties. This study utilized a two-stage cultivation method to grow Amphidinium carterae CCAP 1102/8 under varying conditions, such as blue LED light, increased salinity, and the addition of sodium carbonate or hydrogen peroxide. After cultivation, the biomass was extracted and fractionated using solid-phase extraction, yielding six fractions per treatment. These fractions were analyzed using Liquid Chromatography-High-Resolution Mass Spectrometry (LC-HRMS/MS) to identify their chemical components. Key amphidinol compounds (AM-B, AM-C, AM-22, and AM-A) were identified, with AM-B being the most abundant in Fraction 4, followed by AM-C. Fraction 5 also contained a significant amount of AM-C along with an unknown compound. Fraction 4 returned the highest antimicrobial activity against the pathogens Staphylococcus aureus, Enterococcus faecalis, and Candida albicans, with Minimal Biocidal Concentrations (MBCs) ranging from 1 to 512 µg/mL. Results indicate that the modulation of both amphidinol profile and fraction bioactivity can be induced by adjusting the cultivation parameters used to grow two-stage batch cultures of A. carterae.
Collapse
Affiliation(s)
- Maria Elena Barone
- Department of Environmental Science, Centre for Environmental Research, Sustainability and Innovation, School of Science, Atlantic Technological University Sligo, Ash Ln, Ballytivnan, Sligo, F91 YW50, Ireland.
| | - Elliot Murphy
- School of Biological and Chemical Sciences, Ryan Institute, University of Galway, University Road, Galway, H91 TK33, Ireland
| | - David Fierli
- School of Engineering and Applied Science, George Washington University, 800 22Nd St NW, Washington, DC, 20052, USA
| | - Floriana Campanile
- Department of Biomedical and Biotechnological Sciences, Medical Molecular Microbiology and Antibiotic Resistance Laboratory (MMARLab), University of Catania, Via Santa Sofia N. 97, 95123, Catania, Italy
| | - Gerard T A Fleming
- School of Biological and Chemical Sciences, Ryan Institute, University of Galway, University Road, Galway, H91 TK33, Ireland
| | - Olivier P Thomas
- School of Biological and Chemical Sciences, Ryan Institute, University of Galway, University Road, Galway, H91 TK33, Ireland
| | - Nicolas Touzet
- Department of Environmental Science, Centre for Environmental Research, Sustainability and Innovation, School of Science, Atlantic Technological University Sligo, Ash Ln, Ballytivnan, Sligo, F91 YW50, Ireland
| |
Collapse
|
12
|
Swain SS, Sahoo SK. Piperlongumine and its derivatives against cancer: A recent update and future prospective. Arch Pharm (Weinheim) 2024; 357:e2300768. [PMID: 38593312 DOI: 10.1002/ardp.202300768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
Piperlongumine, or piplartine (PL), is a bioactive alkaloid isolated from Piper longum L. and a potent phytoconstituent in Indian Ayurveda and traditional Chinese medicine with a lot of therapeutic benefits. Apart from all of its biological activities, it demonstrates multimodal anticancer activity by targeting various cancer-associated pathways and being less toxic to normal cells. According to their structure-activity relationship (SAR), the trimethylphenyl ring (cinnamoyl core) and 5,6-dihydropyridin-2-(1H)-one (piperdine core) are responsible for the potent anticancer activity. However, it has poor intrinsic properties (low aqueous solubility, poor bioavailability, etc.). As a result, pharmaceutical researchers have been trying to optimise or modify the structure of PL to improve the drug-likeness profiles. The present review selected 26 eligible research articles on PL derivatives published between 2012 and 2023, followed by the preferred reporting items for systematic reviews and meta-analyses (PRISMA) format. We have thoroughly summarised the anticancer potency, mode of action, SAR and drug chemistry of the proposed PL-derivatives against different cancer cells. Overall, SAR analyses with respect to anticancer potency and drug-ability revealed that substitution of methoxy to hydroxyl, attachment of ligustrazine and 4-hydroxycoumarin heterocyclic rings in place of phenyl rings, and attachment of heterocyclic rings like indole at the C7-C8 olefin position in native PL can help to improve anticancer activity, aqueous solubility, cell permeability, and bioavailability, making them potential leads. Hopefully, the large-scale collection and critical drug-chemistry analyses will be helpful to pharmaceutical and academic researchers in developing potential, less-toxic and cost-effective PL-derivatives that can be used against different cancers.
Collapse
Affiliation(s)
- Shasank S Swain
- Biotechnology Research and Innovation Council-Institute of Life Sciences (BRIC-ILS), Nalco Square, Odisha, India
| | - Sanjeeb K Sahoo
- Biotechnology Research and Innovation Council-Institute of Life Sciences (BRIC-ILS), Nalco Square, Odisha, India
| |
Collapse
|
13
|
Viana C, Genevace M, Gama F, Coelho L, Pereira H, Varela J, Reis M. Chlorella vulgaris and Tetradesmus obliquus Protect Spinach ( Spinacia oleracea L.) against Fusarium oxysporum. PLANTS (BASEL, SWITZERLAND) 2024; 13:1697. [PMID: 38931129 PMCID: PMC11207641 DOI: 10.3390/plants13121697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/14/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Chlorella vulgaris and Tetradesmus obliquus were tested as biocontrol agents against the phytopathogenic fungus Fusarium oxysporum. This evaluation was conducted through in vitro and in vivo trials with spinach (Spinacia oleracea L.). The in vitro trials showed that C. vulgaris and T. obliquus were able to inhibit the phytopathogen, showing a similar inhibitory effect to that of the positive controls (Rovral, BASF® and Biocontrol T34, Biocontrol Technologies® S.L.). C. vulgaris aqueous suspensions at 3.0 g L-1 led to a hyphal growth of 0.55 cm, each corresponding to a reduction of 63% of fungal growth. With T. obliquus, the hyphal growth was 0.53 cm when applied at a concentration of 0.75 g L-1, having an inhibition of fungus growth of 64%. Thereafter, these results were validated in an in vivo trial on spinach using the same controls. The results revealed a lower severity and disease incidence and a reduction in the disease's AUDPC (area under the disease progress curve) when spinach was treated with the microalgae suspensions. Overall, these findings highlight the potential of C. vulgaris and T. obliquus suspensions as promising biocontrol agents against F. oxysporum in spinach when applied through irrigation.
Collapse
Affiliation(s)
- Catarina Viana
- Faculty of Sciences and Technology, University of Algarve, Campus of Gambelas, 8005-139 Faro, Portugal; (J.V.); (M.R.)
- GreenCoLab-Associação Oceano Verde, University of Algarve, Campus of Gambelas, 8005-139 Faro, Portugal; (F.G.); (L.C.); (H.P.)
| | - Méanne Genevace
- Faculty of Environmental Innovations, HAS University of Applied Sciences, Onderwijsboulevard 22, 15223 DE ’s-Hertogenbosch, The Netherlands
| | - Florinda Gama
- GreenCoLab-Associação Oceano Verde, University of Algarve, Campus of Gambelas, 8005-139 Faro, Portugal; (F.G.); (L.C.); (H.P.)
- Centre of Marine Sciences, Faculty of Sciences and Technology, University of Algarve, Campus of Gambelas, 8005-139 Faro, Portugal
| | - Luísa Coelho
- GreenCoLab-Associação Oceano Verde, University of Algarve, Campus of Gambelas, 8005-139 Faro, Portugal; (F.G.); (L.C.); (H.P.)
- MED—Mediterranean Institute for Agriculture, Environment and Development, University of Algarve, Campus of Gambelas, 8005-139 Faro, Portugal
- CHANGE—Global Change and Sustainability Institute, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Hugo Pereira
- GreenCoLab-Associação Oceano Verde, University of Algarve, Campus of Gambelas, 8005-139 Faro, Portugal; (F.G.); (L.C.); (H.P.)
- Centre of Marine Sciences, Faculty of Sciences and Technology, University of Algarve, Campus of Gambelas, 8005-139 Faro, Portugal
| | - João Varela
- Faculty of Sciences and Technology, University of Algarve, Campus of Gambelas, 8005-139 Faro, Portugal; (J.V.); (M.R.)
- GreenCoLab-Associação Oceano Verde, University of Algarve, Campus of Gambelas, 8005-139 Faro, Portugal; (F.G.); (L.C.); (H.P.)
- Centre of Marine Sciences, Faculty of Sciences and Technology, University of Algarve, Campus of Gambelas, 8005-139 Faro, Portugal
| | - Mário Reis
- Faculty of Sciences and Technology, University of Algarve, Campus of Gambelas, 8005-139 Faro, Portugal; (J.V.); (M.R.)
- MED—Mediterranean Institute for Agriculture, Environment and Development, University of Algarve, Campus of Gambelas, 8005-139 Faro, Portugal
- CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
14
|
Tanty DK, Sahu PR, Mohapatra R, Sahu SK. Antidiabetic potency and molecular insights of natural products bearing indole moiety: A systematic bioinformatics investigation targeting AKT1. Comput Biol Chem 2024; 110:108059. [PMID: 38608439 DOI: 10.1016/j.compbiolchem.2024.108059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024]
Abstract
Diabetic mellitus (DM) is a chronic disorder, and type 2 DM (T2DM) is the most prevalent among all categories (nearly 90%) across the globe every year. With the availability of potential drugs, the prevalence rate has remained uncontrollable, while natural resources showed a promising potency, and exploring such potential candidates at the preclinical stage is essential. An extensive literature search selected 89 marine and plant-derived indole derivatives with anti-inflammatory, antioxidant, lipid-lowering, etc., activities. However, as we know, drugs have not been able to convert from 'lead' to 'mainstream' due to inadequate drug-ability profiles, as our systematic investigation proved and selected herdmanine_A (HERD_A) and penerpene_D (PENE_D) as the most potential antidiabetic candidates from the library of indole derivatives. Based on our previous network pharmacology study, we selected three new target enzymes: Acetyl-CoA carboxylase 2 (ACACB; PDB ID: 3JRX), cyclin-dependent kinase 4 (CDK4; PDB ID: 3G33), and alpha serine/threonine-protein kinase 1 (AKT1; PDB ID: 3O96) to assess the antidiabetic potency of selected indole derivatives through binding energy or docking score. To conduct molecular docking studies with these enzymes, we used the PyRx-AutoDock platform. Furthermore, molecular dynamic simulation at 100 ns, physicochemical analysis, pharmacokinetics, toxicity assessment, and drug-likeness evaluation suggested that HERD_A and penerpene PENE_D were the most potent inhibitors against AKT1 compared to koenimbine (most potential based on the recorded IC50 value) and murrayakonine_A (most potential based on the docking score). In summary, HERD_A and/or PENE_D have the potential to be used as alternative therapeutic agent for the treatment of diabetes after some pharmacological investigation.
Collapse
Affiliation(s)
- Dhananjay K Tanty
- University Department of Pharmaceutical Sciences, Utkal University, Vani Vihar, Bhubaneswar, Odisha 751004, India
| | - Prachi R Sahu
- University Department of Pharmaceutical Sciences, Utkal University, Vani Vihar, Bhubaneswar, Odisha 751004, India
| | - Ranjit Mohapatra
- University Department of Pharmaceutical Sciences, Utkal University, Vani Vihar, Bhubaneswar, Odisha 751004, India
| | - Susanta K Sahu
- University Department of Pharmaceutical Sciences, Utkal University, Vani Vihar, Bhubaneswar, Odisha 751004, India.
| |
Collapse
|
15
|
Parveen S, Maurya N, Meena A, Luqman S. Cinchonine: A Versatile Pharmacological Agent Derived from Natural Cinchona Alkaloids. Curr Top Med Chem 2024; 24:343-363. [PMID: 38031797 DOI: 10.2174/0115680266270796231109171808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Cinchonine is one of the Cinchona alkaloids that is commercially extracted from the Peruvian bark of Cinchona officinalis L. (Family: Rubiaceae). It is also obtained in much lower quantities from other species of Cinchona, such as Cinchona calisaya, Cinchona succirubra, and Cinchona pubescens, and in some other plants, such as Remijia peruviana. Cinchonine has been historically used as an anti-malarial agent. It also has a wide range of other biological properties, including anti-cancer, anti-obesity, anti-inflammatory, anti-parasitic, antimicrobial, anti-platelet aggregation, and anti-osteoclast differentiation. AIM AND OBJECTIVE This review discusses the pharmacological activity of cinchonine under different experimental conditions, including in silico, in vitro, and in vivo. It also covers the compound's physicochemical properties, toxicological aspects, and pharmacokinetics. METHODOLOGY A comprehensive literature search was conducted on multiple online databases, such as PubMed, Scopus, and Google Scholar. The aim was to retrieve a wide range of review/research papers and bibliographic sources. The process involved applying exclusion and inclusion criteria to ensure the selection of relevant and high-quality papers. RESULTS Cinchonine has numerous pharmacological properties, making it a promising compound for various therapeutic applications. It induces anti-cancer activity by activating caspase-3 and PARP-1, and triggers the endoplasmic reticulum stress response. It up-regulates GRP78 and promotes the phosphorylation of PERK and ETIF-2α. Cinchonine also inhibits osteoclastogenesis, inhibiting TAK1 activation and suppressing NFATc1 expression by regulating AP-1 and NF-κB. Its potential anti-inflammatory effects reduce the impact of high-fat diets, making it suitable for targeting obesity-related diseases. However, research on cinchonine is limited, and further studies are needed to fully understand its therapeutic potential. Further investigation is needed to ensure its safety and efficacy in clinical applications. CONCLUSION Overall, this review article explains the pharmacological activity of cinchonine, its synthesis, and physicochemical properties, toxicological aspects, and pharmacokinetics.
Collapse
Affiliation(s)
- Shahnaz Parveen
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Nidhi Maurya
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| |
Collapse
|
16
|
Akmukhanova NR, Leong YK, Seiilbek SN, Konysbay A, Zayadan BK, Sadvakasova AK, Sarsekeyeva FK, Bauenova MO, Bolatkhan K, Alharby HF, Chang JS, Allakhverdiev SI. Eco-friendly biopesticides derived from CO 2-Fixing cyanobacteria. ENVIRONMENTAL RESEARCH 2023; 239:117419. [PMID: 37852466 DOI: 10.1016/j.envres.2023.117419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/10/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
There is currently an escalating global demand for the utilization of plant and natural extracts as pesticides due to their minimal health risks. Cyanobacteria are highly valuable organisms with significant potential in agriculture and are of great interest for the development of agrochemical agents as biopesticides. The flexibility and adaptability of Cyanobacteria to various environmental conditions are facilitated by the presence of specialized enzymes involved in the production of biologically active diverse secondary metabolites, including alkaloids, lipopolysaccharides, non-protein amino acids, non-ribosomal peptides, polyketides, terpenoids, and others. This review focuses on the metabolites synthesized from cyanobacteria that have demonstrated effectiveness as antibacterial, antiviral, antifungal agents, insecticides, herbicides, and more. The potential role of cyanobacteria as an alternative to chemical pesticides for environmental conservation is discussed.
Collapse
Affiliation(s)
- Nurziya R Akmukhanova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 050038, Kazakhstan
| | - Yoong Kit Leong
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan
| | - Sandugash N Seiilbek
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 050038, Kazakhstan
| | - Aigerim Konysbay
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 050038, Kazakhstan
| | - Bolatkhan K Zayadan
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 050038, Kazakhstan
| | - Assemgul K Sadvakasova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 050038, Kazakhstan
| | - Fariza K Sarsekeyeva
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 050038, Kazakhstan
| | - Meruyert O Bauenova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 050038, Kazakhstan
| | - Kenzhegul Bolatkhan
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 050038, Kazakhstan
| | - Hesham F Alharby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, 701, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, 32003, Taiwan.
| | - Suleyman I Allakhverdiev
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia; Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Turkey.
| |
Collapse
|
17
|
Xin R, Zhang K, Yu D, Zhang Y, Ma Y, Niu Z. Cyanobacterial extracellular antibacterial substances could promote the spread of antibiotic resistance: impacts and reasons. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:2139-2147. [PMID: 37947439 DOI: 10.1039/d3em00306j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Many studies have shown that antibiotic resistance genes (ARGs) can be facilitated by a variety of antibacterial substances. Cyanobacteria are photosynthetic bacteria that are widely distributed in the ocean. Some extracellular substances produced by marine cyanobacteria have been found to possess antibacterial activity. However, the impact of these extracellular substances on ARGs is unclear. Therefore, we established groups of seawater microcosms that contained different concentrations (1000, 100, 10, 1, 0.1, 0.01, and 0 μg mL-1) of cyanobacterial extracellular substances (CES), and tracked the changes of 17 types of ARGs, the integron gene (intI1), as well as the bacterial community at different time points. The results showed that CES could enrich most ARGs (15/17) in the initial stage, particularly at low concentrations (10 and 100 μg mL-1). The correlation analysis showed a positive correlation between several ARGs and intI1. It is suggested that the abundance of intI1 increased with CES may contribute to the changes of these ARGs, and co-resistance of CES may be the underlying reason for the similar variation pattern of some ARGs. Moreover, the results of qPCR and high-throughput sequencing of 16S rRNA showed that CES had an inhibitory impact on the growth of bacterial communities. High concentrations of CES were found to alter the structure of bacterial communities. Co-occurrence networks showed that bacteria elevated in the high concentration group of CES and might serve as the potential hosts for a variety of ARGs. In general, marine cyanobacteria could play an important role in the global dissemination of ARGs and antibiotic-resistant bacteria (ARBs).
Collapse
Affiliation(s)
- Rui Xin
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Kai Zhang
- Henan Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution, School of Geographic Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Dongjin Yu
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Ying Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yongzheng Ma
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Zhiguang Niu
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.
- The International Joint Institute of Tianjin University, Fuzhou 350207, China
| |
Collapse
|
18
|
Bishoyi AK, Lakra A, Mandhata CP, Sahoo CR, Padhy RN. Prospective Phycocompounds for Developing Therapeutics for Urinary Tract Infection. Curr Microbiol 2023; 81:35. [PMID: 38063889 DOI: 10.1007/s00284-023-03535-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 10/23/2023] [Indexed: 12/18/2023]
Abstract
Antibiotic resistance of bacteria is causing clinical and public health concerns that are challenging to treat. Infections are becoming more common in the present era, and patients admitted to hospitals often have drug-resistant bacteria that can spread nosocomial infections. Urinary tract infections (UTIs) are among the most common infectious diseases affecting all age groups. There has been an increase in the proportion of bacteria that are resistant to multiple drugs. Herein is a comprehensive update on UTI-associated diseases: cystitis, urethritis, acute urethral syndrome, pyelonephritis, and recurrent UTIs. Further emphasis on the global statistical incidence and recent advancement of the role of natural products in treating notorious infections are described. This updated compendium will inspire the development of novel phycocompounds as the prospective antibacterial candidate.
Collapse
Affiliation(s)
- Ajit Kumar Bishoyi
- Central Research Laboratory, Institute of Medical Sciences & Sum Hospital, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, Odisha, 751003, India
| | - Anjali Lakra
- Central Research Laboratory, Institute of Medical Sciences & Sum Hospital, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, Odisha, 751003, India
| | - Chinmayee Priyadarsani Mandhata
- Central Research Laboratory, Institute of Medical Sciences & Sum Hospital, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, Odisha, 751003, India
| | - Chita Ranjan Sahoo
- Central Research Laboratory, Institute of Medical Sciences & Sum Hospital, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, Odisha, 751003, India.
| | - Rabindra Nath Padhy
- Central Research Laboratory, Institute of Medical Sciences & Sum Hospital, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, Odisha, 751003, India.
| |
Collapse
|
19
|
Stiefelmaier J, Strieth D, Schaefer S, Wrabl B, Kronenberger D, Bröckel U, Ulber R. A new easy method for determination of surface adhesion of phototrophic biofilms. Biotechnol Bioeng 2023; 120:3518-3528. [PMID: 37641171 DOI: 10.1002/bit.28536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/26/2023] [Accepted: 08/12/2023] [Indexed: 08/31/2023]
Abstract
Terrestrial cyanobacteria grow as phototrophic biofilms and offer a wide spectrum of interesting products. For cultivation of phototrophic biofilms different reactor concepts have been developed in the last years. One of the main influencing factors is the surface material and the adhesion strength of the chosen production strain. In this work a flow chamber was developed, in which, in combination with optical coherence tomography and computational fluid dynamics simulation, an easy analysis of adhesion forces between different biofilms and varied surface materials is possible. Hereby, differences between two cyanobacteria strains and two surface materials were shown. With longer cultivation time of biofilms adhesion increased in all experiments. Additionally, the content of extracellular polymeric substances was analyzed and its role in surface adhesion was evaluated. To test the comparability of obtained results from the flow chamber with other methods, analogous experiments were conducted with a rotational rheometer, which proved to be successful. Thus, with the presented flow chamber an easy to implement method for analysis of biofilm adhesion was developed, which can be used in future research for determination of suitable combinations of microorganisms with cultivation surfaces on lab scale in advance of larger processes.
Collapse
Affiliation(s)
- Judith Stiefelmaier
- RPTU Kaiserslautern-Landau, Institute of Bioprocess Engineering, Kaiserslautern, Germany
| | - Dorina Strieth
- RPTU Kaiserslautern-Landau, Institute of Bioprocess Engineering, Kaiserslautern, Germany
| | - Susanne Schaefer
- Environmental Campus Birkenfeld, Institute of Microprocess Engineering and Particle Technology, University of Applied Sciences Trier, Birkenfeld, Germany
| | - Björn Wrabl
- RPTU Kaiserslautern-Landau, Institute of Bioprocess Engineering, Kaiserslautern, Germany
| | - Daniel Kronenberger
- RPTU Kaiserslautern-Landau, Institute of Bioprocess Engineering, Kaiserslautern, Germany
| | - Ulrich Bröckel
- Environmental Campus Birkenfeld, Institute of Microprocess Engineering and Particle Technology, University of Applied Sciences Trier, Birkenfeld, Germany
| | - Roland Ulber
- RPTU Kaiserslautern-Landau, Institute of Bioprocess Engineering, Kaiserslautern, Germany
| |
Collapse
|
20
|
Ricciardelli A, Pollio A, Costantini M, Zupo V. Harmful and beneficial properties of cyanotoxins: Two sides of the same coin. Biotechnol Adv 2023; 68:108235. [PMID: 37567398 DOI: 10.1016/j.biotechadv.2023.108235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 07/25/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Cyanotoxins are by definition "harmful agents" produced by cyanobacteria. Their toxicity has been extensively studied and reviewed over the years. Cyanotoxins have been commonly classified, based on their poisonous effects on mammals, into three main classes, neurotoxins, hepatotoxins and dermatotoxins, and, considering their chemical features, mainly identified as peptides, alkaloids and lipopolysaccharides. Here we propose a broader subdivision of cyanotoxins into eight distinct classes, taking into account their molecular structures, biosynthesis and modes of action: alkaloids, non-ribosomal peptides, polyketides, non-protein amino acids, indole alkaloids, organophosphates, lipopeptides and lipoglycans. For each class, the structures and primary mechanisms of toxicity of the main representative cyanotoxins are reported. Despite their powerful biological activities, only recently scientists have considered the biotechnological potential of cyanotoxins, and their applications both in medical and in industrial settings, even if only a few of these have reached the biotech market. In this perspective, we discuss the potential uses of cyanotoxins as anticancer, antimicrobial, and biocidal agents, as common applications for cytotoxic compounds. Furthermore, taking into account their mechanisms of action, we describe peculiar potential bioactivities for several cyanotoxin classes, such as local anaesthetics, antithrombotics, neuroplasticity promoters, immunomodulating and antifouling agents. In this review, we aim to stimulate research on the potential beneficial roles of cyanotoxins, which require interdisciplinary cooperation to facilitate the discovery of innovative biotechnologies.
Collapse
Affiliation(s)
- Annarita Ricciardelli
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cinthìa, 80125 Naples, Italy.
| | - Antonino Pollio
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cinthìa, 80125 Naples, Italy.
| | - Maria Costantini
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton, 80133 Naples, Italy.
| | - Valerio Zupo
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Ischia Marine Centre, Punta San Pietro, 80077 Naples, Italy.
| |
Collapse
|
21
|
do Amaral SC, Xavier LP, Vasconcelos V, Santos AV. Cyanobacteria: A Promising Source of Antifungal Metabolites. Mar Drugs 2023; 21:359. [PMID: 37367684 PMCID: PMC10300848 DOI: 10.3390/md21060359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023] Open
Abstract
Cyanobacteria are a rich source of secondary metabolites, and they have received a great deal of attention due to their applicability in different industrial sectors. Some of these substances are known for their notorious ability to inhibit fungal growth. Such metabolites are very chemically and biologically diverse. They can belong to different chemical classes, including peptides, fatty acids, alkaloids, polyketides, and macrolides. Moreover, they can also target different cell components. Filamentous cyanobacteria have been the main source of these compounds. This review aims to identify the key features of these antifungal agents, as well as the sources from which they are obtained, their major targets, and the environmental factors involved when they are being produced. For the preparation of this work, a total of 642 documents dating from 1980 to 2022 were consulted, including patents, original research, review articles, and theses.
Collapse
Affiliation(s)
- Samuel Cavalcante do Amaral
- Laboratory of Biotechnology of Enzymes and Biotransformation, Biological Sciences Institute, Federal University of Pará, Belém 66075-110, Brazil;
| | - Luciana Pereira Xavier
- Laboratory of Biotechnology of Enzymes and Biotransformation, Biological Sciences Institute, Federal University of Pará, Belém 66075-110, Brazil;
| | - Vítor Vasconcelos
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, University of Porto, 4450-208 Matosinhos, Portugal;
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| | - Agenor Valadares Santos
- Laboratory of Biotechnology of Enzymes and Biotransformation, Biological Sciences Institute, Federal University of Pará, Belém 66075-110, Brazil;
| |
Collapse
|
22
|
Casanova LM, Macrae A, de Souza JE, Neves Junior A, Vermelho AB. The Potential of Allelochemicals from Microalgae for Biopesticides. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091896. [PMID: 37176954 PMCID: PMC10181251 DOI: 10.3390/plants12091896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Improvements in agricultural productivity are required to meet the demand of a growing world population. Phytopathogens, weeds, and insects are challenges to agricultural production. The toxicity and widespread application of persistent synthetic pesticides poses a major threat to human and ecosystem health. Therefore, sustainable strategies to control pests are essential for agricultural systems to enhance productivity within a green paradigm. Allelochemicals are a less persistent, safer, and friendly alternative to efficient pest management, as they tend to be less toxic to non-target organisms and more easily degradable. Microalgae produce a great variety of allelopathic substances whose biocontrol potential against weeds, insects, and phytopathogenic fungi and bacteria has received much attention. This review provides up-to-date information and a critical perspective on allelochemicals from microalgae and their potential as biopesticides.
Collapse
Affiliation(s)
- Livia Marques Casanova
- Biotechnology Center-Bioinovar, Institute of Microbiology Paulo de Goes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
| | - Andrew Macrae
- Sustainable Biotechnology and Microbial Bioinformatics Laboratory, Institute of Microbiology Paulo de Goes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
| | - Jacqueline Elis de Souza
- Biotechnology Center-Bioinovar, Institute of Microbiology Paulo de Goes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
| | - Athayde Neves Junior
- Biotechnology Center-Bioinovar, Institute of Microbiology Paulo de Goes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
| | - Alane Beatriz Vermelho
- Biotechnology Center-Bioinovar, Institute of Microbiology Paulo de Goes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
| |
Collapse
|
23
|
Ayswaria R, Vijayan J, Nathan VK. Antimicrobial peptides derived from microalgae for combating antibiotic resistance: Current status and prospects. Cell Biochem Funct 2023; 41:142-151. [PMID: 36738178 DOI: 10.1002/cbf.3779] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 02/05/2023]
Abstract
Microalgae are photosynthetic cell factories that produce a spectrum of bioactive compounds extensively used for various applications. Owing to the increase in antibiotic resistance among microbial pathogens, there is a significant thrust for identifying new treatment strategies, and antimicrobial peptides (AMPs) generation is one such method. These AMPs have multiple roles and are active against bacteria, fungi, and viruses. Such peptides synthesized in microalgae have a significant role in medical application, managing aquaculture-associated diseases, and the food industry. To increase their effectiveness and novel peptides, genetically modified microalgae are used as cell factories. With the advancement of new technologies like the CRISPR-Cas system, new avenues are opened for developing novel AMPs using microalgae. This review gives us insight into the various AMPs produced by microalgae and multiple technologies involved in creating such therapeutically essential molecules.
Collapse
Affiliation(s)
- Reshma Ayswaria
- Department of Biotechnology, Mercy College, Palakkad, Kerala, India
| | - Jasna Vijayan
- Department of Marine Biology, School of Marine Sciences, Microbiology & Biochemistry, Cochin University of Science and Technology, Cochin, Kerala, India
| | - Vinod Kumar Nathan
- School of Chemical and Biotechnology, SASTRA Deemed to be University, Tirumalaisamudram Thanjavur, Tamilnadu, India
| |
Collapse
|
24
|
Antifungal and Antibacterial Activities of Isolated Marine Compounds. Toxins (Basel) 2023; 15:toxins15020093. [PMID: 36828408 PMCID: PMC9966175 DOI: 10.3390/toxins15020093] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/07/2023] [Accepted: 01/07/2023] [Indexed: 01/20/2023] Open
Abstract
To combat the ineffectiveness of currently available pharmaceutical medications, caused by the emergence of increasingly resistant bacterial and fungal strains, novel antibacterial and antifungal medications are urgently needed. Novel natural compounds with antimicrobial activities can be obtained by exploring underexplored habitats such as the world's oceans. The oceans represent the largest ecosystem on earth, with a high diversity of organisms. Oceans have received some attention in the past few years, and promising compounds with antimicrobial activities were isolated from marine organisms such as bacteria, fungi, algae, sea cucumbers, sea sponges, etc. This review covers 56 antifungal and 40 antibacterial compounds from marine organisms. These compounds are categorized according to their chemical structure groups, including polyketides, alkaloids, ribosomal peptides, and terpenes, and their organismal origin. The review provides the minimum inhibitory concentration MIC values and the bacterial/fungal strains against which these chemical compounds show activity. This study shows strong potential for witnessing the development of new novel antimicrobial drugs from these natural compounds isolated and evaluated for their antimicrobial activities.
Collapse
|
25
|
Witthohn M, Strieth D, Kollmen J, Schwarz A, Ulber R, Muffler K. Process Technologies of Cyanobacteria. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2022. [PMID: 36571615 DOI: 10.1007/10_2022_214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Although the handling and exploitation of cyanobacteria is associated with some challenges, these phototrophic bacteria offer great opportunities for innovative biotechnological processes. This chapter covers versatile aspects of working with cyanobacteria, starting with up-to-date in silico and in vitro screening methods for bioactive substances. Subsequently, common conservation techniques and vitality/viability estimation methods are compared and supplemented by own data regarding the non-invasive vitality evaluation via pulse amplitude modulated fluorometry. Moreover, novel findings about the influence the state of the pre-cultures have on main cultures are presented. The following sub-chapters deal with different photobioreactor-designs, with special regard to biofilm photobioreactors, as well as with heterotrophic and mixotrophic cultivation modes. The latter topic provides information from literature on successfully enhanced cyanobacterial production processes, augmented by own data.
Collapse
Affiliation(s)
- Marco Witthohn
- Department of Life Sciences and Engineering, University of Applied Sciences Bingen, Bingen, Germany
| | - Dorina Strieth
- Chair of Bioprocess Engineering, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Jonas Kollmen
- Chair of Bioprocess Engineering, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Anna Schwarz
- Department of Life Sciences and Engineering, University of Applied Sciences Bingen, Bingen, Germany
| | - Roland Ulber
- Chair of Bioprocess Engineering, Technical University of Kaiserslautern, Kaiserslautern, Germany.
| | - Kai Muffler
- Department of Life Sciences and Engineering, University of Applied Sciences Bingen, Bingen, Germany
| |
Collapse
|
26
|
Kar J, Ramrao DP, Zomuansangi R, Lalbiaktluangi C, Singh SM, Joshi NC, Kumar A, Kaushalendra, Mehta S, Yadav MK, Singh PK. Revisiting the role of cyanobacteria-derived metabolites as antimicrobial agent: A 21st century perspective. Front Microbiol 2022; 13:1034471. [PMID: 36466636 PMCID: PMC9717611 DOI: 10.3389/fmicb.2022.1034471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/18/2022] [Indexed: 11/23/2023] Open
Abstract
Cyanobacterial species are ancient photodiazotrophs prevalent in freshwater bodies and a natural reservoir of many metabolites (low to high molecular weight) such as non-ribosomal peptides, polyketides, ribosomal peptides, alkaloids, cyanotoxins, and isoprenoids with a well-established bioactivity potential. These metabolites enable cyanobacterial survival in extreme environments such as high salinity, heavy metals, cold, UV-B, etc. Recently, these metabolites are gaining the attention of researchers across the globe because of their tremendous applications as antimicrobial agents. Many reports claim the antimicrobial nature of these metabolites; unfortunately, the mode of action of such metabolites is not well understood and/or known limited. Henceforth, this review focuses on the properties and potential application, also critically highlighting the possible mechanism of action of these metabolites to offer further translational research. The review also aims to provide a comprehensive insight into current gaps in research on cyanobacterial biology as antimicrobials and hopes to shed light on the importance of continuing research on cyanobacteria metabolites in the search for novel antimicrobials.
Collapse
Affiliation(s)
- Joyeeta Kar
- Department of Biotechnology, Mizoram University (A Central University), Pachhunga University College Campus, Aizawl, Mizoram, India
| | - Devde Pandurang Ramrao
- Department of Biotechnology, Mizoram University (A Central University), Pachhunga University College Campus, Aizawl, Mizoram, India
| | - Ruth Zomuansangi
- Department of Biotechnology, Mizoram University (A Central University), Pachhunga University College Campus, Aizawl, Mizoram, India
| | - C. Lalbiaktluangi
- Department of Biotechnology, Mizoram University (A Central University), Pachhunga University College Campus, Aizawl, Mizoram, India
| | - Shiv Mohan Singh
- Centre of Advanced Studies in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Naveen Chandra Joshi
- Amity Institute of Microbial Technology (AIMT), Amity University, Noida, Uttar Pradesh, India
| | - Ajay Kumar
- Agriculture Research Organization (ARO) - The Volcani Center, Rishon LeZion, Israel
| | - Kaushalendra
- Department of Zoology, Mizoram University (A Central University), Pachhunga University College Campus, Aizawl, Mizoram, India
| | | | - Mukesh Kumar Yadav
- Department of Biotechnology, Mizoram University (A Central University), Pachhunga University College Campus, Aizawl, Mizoram, India
| | - Prashant Kumar Singh
- Department of Biotechnology, Mizoram University (A Central University), Pachhunga University College Campus, Aizawl, Mizoram, India
| |
Collapse
|
27
|
Swain SS, Hussain T. Combined Bioinformatics and Combinatorial Chemistry Tools to Locate Drug-Able Anti-TB Phytochemicals: A Cost-Effective Platform for Natural Product-Based Drug Discovery. Chem Biodivers 2022; 19:e202200267. [PMID: 36307750 DOI: 10.1002/cbdv.202200267] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 09/30/2022] [Indexed: 11/12/2022]
Abstract
Based on extensive experimental studies, a huge number of phytochemicals showed potential activity against tuberculosis (TB) at a lower minimum inhibitory concentration (MIC) and fewer toxicity profiles. However, these promising drugs have not been able to convert from 'lead' to 'mainstream' due to inadequate drug-ability profiles. Thus, early drug-prospective analyses are required at the primary stage to accelerate natural-product-based drug discovery with limited resources and time. In the present study, we have selected seventy-three potential anti-TB phytochemicals (MIC value ≤10 μg/mL) and assessed the drug-ability profiles using bioinformatics and combinatorial chemistry tools, systematically. Primarily, the molecular docking study was done against two putative drug targets, catalase-peroxidase enzyme (katG) and RNA polymerase subunit-β (rpoB) of Mycobacterium tuberculosis (Mtb) using AutoDock 4.2 software. Further, assessed the drug-ability score from Molsoft, toxicity profiles from ProTox, pharmacokinetics from SwisADME, hierarchical cluster analysis (HCA) by ChemMine tools and frontier molecular orbitals (FMOs) with Avogadro and structural activity relationships (SAR) analysis with ChemDraw 18.0 software. Above analyses indicated that, lower MIC exhibited anti-TB phytochemicals, abietane, 12-demethylmulticaulin exhibited poor docking and drug-ability scores, while tiliacorinine, 2-nortiliacorinine showed higher binding energy and drug-ability profiles. Overall, tiliacorinine, 2-nortiliacorinine, 7α-acetoxy-6β-hydroxyroyleanone (AHR), (2S)-naringenin and isovachhalcone were found as the most active and drug-able anti-TB candidates from 73 candidates. Phytochemicals are always a vital source of mainstream drugs, but the MIC value of a phytochemical is not sufficient for it to be promoted. An ideal drug-ability profile is therefore essential for achieving clinical success, where advanced bioinformatics tools help to assess and analyse that profile. Additionally, several natural pharmacophores found in existing anti-TB drugs in SAR analyses also provide crucial information for developing potential anti-TB drug. As a conclusion, combined bioinformatics and combinatorial chemistry are the most effective strategies to locate potent-cum-drug-able candidates in the current drug-development module.
Collapse
Affiliation(s)
- Shasank S Swain
- Division of Microbiology and NCDs, ICMR-Regional Medical Research Center, Bhubaneswar, 751023, Odisha, India
| | - Tahziba Hussain
- Division of Microbiology and NCDs, ICMR-Regional Medical Research Center, Bhubaneswar, 751023, Odisha, India
| |
Collapse
|
28
|
Das R, Rauf A, Mitra S, Emran TB, Hossain MJ, Khan Z, Naz S, Ahmad B, Meyyazhagan A, Pushparaj K, Wan CC, Balasubramanian B, Rengasamy KR, Simal-Gandara J. Therapeutic potential of marine macrolides: An overview from 1990 to 2022. Chem Biol Interact 2022; 365:110072. [PMID: 35952775 DOI: 10.1016/j.cbi.2022.110072] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 01/05/2023]
Abstract
The sea is a vast ecosystem that has remained primarily unexploited and untapped, resulting in numerous organisms. Consequently, marine organisms have piqued the interest of scientists as an abundant source of natural resources with unique structural features and fascinating biological activities. Marine macrolide is a top-class natural product with a heavily oxygenated polyene backbone containing macrocyclic lactone. In the last few decades, significant efforts have been made to isolate and characterize macrolides' chemical and biological properties. Numerous macrolides are extracted from different marine organisms such as marine microorganisms, sponges, zooplankton, molluscs, cnidarians, red algae, tunicates, and bryozoans. Notably, the prominent macrolide sources are fungi, dinoflagellates, and sponges. Marine macrolides have several bioactive characteristics such as antimicrobial (antibacterial, antifungal, antimalarial, antiviral), anti-inflammatory, antidiabetic, cytotoxic, and neuroprotective activities. In brief, marine organisms are plentiful in naturally occurring macrolides, which can become the source of efficient and effective therapeutics for many diseases. This current review summarizes these exciting and promising novel marine macrolides in biological activities and possible therapeutic applications.
Collapse
Affiliation(s)
- Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, 94640, Pakistan.
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh; Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
| | - Md Jamal Hossain
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka, 1205, Bangladesh.
| | - Zidan Khan
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh.
| | - Saima Naz
- Department of Biotechnology, Bacha Khan University, Charsadda, KPK, Pakistan.
| | - Bashir Ahmad
- Department of Biotechnology, Bacha Khan University, Charsadda, KPK, Pakistan.
| | - Arun Meyyazhagan
- Department of Life Science, CHRIST (Deemed to be University), Bengaluru, Karnataka, 560076, India.
| | - Karthika Pushparaj
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641 043, Tamil Nadu, India.
| | - Chunpeng Craig Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruit &Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruit & Vegetables, College of Agronomy, Jiangxi Agricultural University Nanchang, 330045, Jiangxi, China.
| | | | - Kannan Rr Rengasamy
- Centre for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 600077, India.
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain.
| |
Collapse
|
29
|
Zhao D, Liu H, Zhang H, Liu K, Zhang X, Liu Q, Wu Y, Zhang T, Zhang Q. Dietary supplementation with Cyberlindnera jadinii improved growth performance, serum biochemical Indices, antioxidant status, and intestinal health in growing raccoon dogs (Nyctereutes procyonoides). Front Microbiol 2022; 13:973384. [PMID: 36212816 PMCID: PMC9532689 DOI: 10.3389/fmicb.2022.973384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
This study was conducted to investigate whether different dietary Cyberlindnera jadinii levels affect growth performance, serum immunity, antioxidant capacity, and intestinal microbiota in growing raccoon dogs. Forty-five healthy male raccoon dogs were randomly assigned to three treatment groups, with 15 raccoon dogs per group. Each raccoon dog was housed in an individual cage. The raccoon dogs in the three groups were fed diets supplemented with Cyberlindnera jadinii at dosages of 0 (N group), 1 × 109 (L group) and 5 × 109 CFU/g (H group). A 7-day pretest period preceded a formal test period of 30 days. The results showed that Cyberlindnera jadinii in the L and H groups improved average daily gain (ADG) (P < 0.05) and decreased the ratio of feed to weight (F/G) (P < 0.05). Serum immunoglobulins A and G levels were increased in the L and H groups compared to the N group (P < 0.05). Cyberlindnera jadinii in the L and H groups increased serum superoxide dismutase activity (P < 0.05), and serum glutathione peroxidase activity was increased in the L group compared to the N group (P < 0.05). The relative abundance of Firmicutes and Actinobacteriota were increased, and the relative abundance of Bacteroidota was decreased in the L and H groups compared to the N group (P < 0.05). The relative abundance of Proteobacteria and Cyanobacteria was increased in the H group compared to the other two groups (P < 0.05). The ratio of Firmicutes to Bacteroidetes in the Cyberlindnera jadinii supplementation groups increased compared with the N group (P < 0.05). The relative abundance of Megasphaera and Bifidobacterium were increased, and the relative abundance of Prevotella was decreased in the L and H groups compared to the N group (P < 0.05). The relative abundance of Dialister was increased, while the relative abundance of Blautia was decreased in the H group compared to the other two groups (P < 0.05). The relative abundance of Agathobacter was decreased in the H group compared to the N group (P < 0.05). In conclusion, dietary supplementation with Cyberlindnera jadinii increased growth performance, serum immunity, antioxidant capacity, and improved intestinal microbiota in growing raccoon dogs. Cyberlindnera jadinii can therefore be used as a growth promoter in raccoon dogs.
Collapse
|
30
|
Swain SS, Singh SR, Sahoo A, Panda PK, Hussain T, Pati S. Integrated bioinformatics-cheminformatics approach toward locating pseudo-potential antiviral marine alkaloids against SARS-CoV-2-Mpro. Proteins 2022; 90:1617-1633. [PMID: 35384056 PMCID: PMC9111047 DOI: 10.1002/prot.26341] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 03/17/2022] [Accepted: 03/30/2022] [Indexed: 12/17/2022]
Abstract
The emergence of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) with the most contagious variants, alpha (B.1.1.7), beta (B.1.351), delta (B.1.617.2), and Omicron (B.1.1.529) has continuously added a higher number of morbidity and mortality, globally. The present integrated bioinformatics-cheminformatics approach was employed to locate potent antiviral marine alkaloids that could be used against SARS-CoV-2. Initially, 57 antiviral marine alkaloids and two repurposing drugs were selected from an extensive literature review. Then, the putative target enzyme SARS-CoV-2 main protease (SARS-CoV-2-Mpro) was retrieved from the protein data bank and carried out a virtual screening-cum-molecular docking study with all candidates using PyRx 0.8 and AutoDock 4.2 software. Further, the molecular dynamics (MD) simulation of the two most potential alkaloids and a drug docking complex at 100 ns (with two ligand topology files from PRODRG and ATB server, separately), the molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) free energy, and contributions of entropy were investigated. Then, the physicochemical-toxicity-pharmacokinetics-drug-likeness profiles, the frontier molecular orbitals energies (highest occupied molecular orbital, lowest unoccupied molecular orbital, and ΔE), and structural-activity relationship were assessed and analyzed. Based on binding energy, 8-hydroxymanzamine (-10.5 kcal/mol) and manzamine A (-10.1 kcal/mol) from all alkaloids with darunavir (-7.9 kcal/mol) and lopinavir (-7.4 kcal/mol) against SARS-CoV-2-Mpro were recorded. The MD simulation (RMSD, RMSF, Rg, H-bond, MM/PBSA binding energy) illustrated that the 8-hydroxymanzamine exhibits a static thermodynamic feature than the other two complexes. The predicted physicochemical, toxicity, pharmacokinetics, and drug-likeness profiles also revealed that the 8-hydroxymanzamine could be used as a potential lead candidate individually and/or synergistically with darunavir or lopinavir to combat SARS-CoV-2 infection after some pharmacological validation.
Collapse
Affiliation(s)
- Shasank S Swain
- Division of Microbiology and NCDs, ICMR-Regional Medical Research Centre, Bhubaneswar, Odisha, India
| | - Satya R Singh
- Department of Bioinformatics, Pondicherry University, Puducherry, India
| | - Alaka Sahoo
- Department of Skin & VD, Institute of Medical Sciences & SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - Tahziba Hussain
- Division of Microbiology and NCDs, ICMR-Regional Medical Research Centre, Bhubaneswar, Odisha, India
| | - Sanghamitra Pati
- Division of Public Health and Research, ICMR-Regional Medical Research Centre, Bhubaneswar, Odisha, India
| |
Collapse
|
31
|
Hassan S, Meenatchi R, Pachillu K, Bansal S, Brindangnanam P, Arockiaraj J, Kiran GS, Selvin J. Identification and characterization of the novel bioactive compounds from microalgae and cyanobacteria for pharmaceutical and nutraceutical applications. J Basic Microbiol 2022; 62:999-1029. [PMID: 35014044 DOI: 10.1002/jobm.202100477] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/08/2021] [Accepted: 12/23/2021] [Indexed: 12/21/2022]
Abstract
Microalgae and cyanobacteria (blue-green algae) are used as food by humans. They have gained a lot of attention in recent years because of their potential applications in biotechnology. Microalgae and cyanobacteria are good sources of many valuable compounds, including important biologically active compounds with antiviral, antibacterial, antifungal, and anticancer activities. Under optimal growth condition and stress factors, algal biomass produce varieties of potential bioactive compounds. In the current review, bioactive compounds production and their remarkable applications such as pharmaceutical and nutraceutical applications along with processes involved in identification and characterization of the novel bioactive compounds are discussed. Comprehensive knowledge about the exploration, extraction, screening, and trading of bioactive products from microalgae and cyanobacteria and their pharmaceutical and other applications will open up new avenues for drug discovery and bioprospecting.
Collapse
Affiliation(s)
- Saqib Hassan
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
- Division of Non-Communicable Diseases, Indian Council of Medical Research (ICMR), New Delhi, India
| | - Ramu Meenatchi
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
| | - Kalpana Pachillu
- Center for Development Research (ZEF), University of Bonn, Bonn, Germany
| | - Sonia Bansal
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Pownraj Brindangnanam
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
- Foundation for Aquaculture Innovation and Technology Transfer (FAITT), Thoraipakkam, Chennai, Tamil Nadu, India
| | - George Seghal Kiran
- Department of Food Science and Technology, Pondicherry University, Puducherry, India
| | - Joseph Selvin
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| |
Collapse
|
32
|
Gao H, Zhao Z, Zhang L, Ju F. Cyanopeptides restriction and degradation co-mediate microbiota assembly during a freshwater cyanobacterial harmful algal bloom (CyanoHAB). WATER RESEARCH 2022; 220:118674. [PMID: 35661508 DOI: 10.1016/j.watres.2022.118674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/17/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Cyanobacterial harmful algal blooms (CyanoHABs) are globally intensifying and exacerbated by climate change and eutrophication. However, microbiota assembly mechanisms underlying CyanoHABs remain elusive. Especially, cyanopeptides, as a group of bioactive secondary metabolites of cyanobacteria, could affect microbiota assembly and ecosystem function. Here, the trajectory of cyanopeptides was followed and linked to microbiota during Microcystis-dominated CyanoHABs in Lake Taihu, China. The most abundant cyanopeptide classes detected included microginin, spumigin, microcystin, nodularin and cyanopeptolin with total MC-LR-equivalent concentrations between 0.23 and 2051.54 ppb, of which cyanotoxins beyond microcystins (e.g., cyanostatin B and nodularin_R) far exceeded reported organismal IC50 and negatively correlated with microbiota diversity, exerting potential collective eco-toxicities stronger than microcystins alone. The microbial communities were differentiated by size fraction and sampling date throughout CyanoHABs, and surprisingly, their variances were better explained by cyanopeptides (19-38%) than nutrients (0-16%). Cyanopeptides restriction (e.g., inhibition) and degradation were first quantitatively verified as the deterministic drivers governing community assembly, with stochastic processes being associated with the interplay between cyanopeptide dynamics and lake microbiota. This study presents an emerging paradigm in which cyanopeptides restriction and degradation co-mediate lake water microbiota assembly, unveiling new insights into the ecotoxicological significance of CyanoHABs to freshwater ecosystems.
Collapse
Affiliation(s)
- Han Gao
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, China
| | - Ze Zhao
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, China
| | - Lu Zhang
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, China
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
| |
Collapse
|
33
|
Lin B, Yang T, Zhang D, Zhou Y, Wu L, Qiu J, Chen G, Che C, Zhang X. Gold‐Catalyzed Desymmetric Lactonization of Alkynylmalonic Acids Enabled by Chiral Bifunctional P,N ligands. Angew Chem Int Ed Engl 2022; 61:e202201739. [DOI: 10.1002/anie.202201739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Bijin Lin
- Department of Chemistry the Grubbs Institute Medi-X Pingshan Southern University of Science and Technology Shenzhen 518055 China
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong China
| | - Tilong Yang
- Department of Chemistry The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
| | - Dequan Zhang
- Department of Chemistry the Grubbs Institute Medi-X Pingshan Southern University of Science and Technology Shenzhen 518055 China
| | - Yang Zhou
- Department of Chemistry the Grubbs Institute Medi-X Pingshan Southern University of Science and Technology Shenzhen 518055 China
| | - Liangliang Wu
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong China
| | - Jingfei Qiu
- Department of Chemistry the Grubbs Institute Medi-X Pingshan Southern University of Science and Technology Shenzhen 518055 China
| | - Gen‐Qiang Chen
- Department of Chemistry the Grubbs Institute Medi-X Pingshan Southern University of Science and Technology Shenzhen 518055 China
- Academy for Advanced Interdisciplinary Studies Southern University of Science and Technology Shenzhen 518055 China
| | - Chi‐Ming Che
- Department of Chemistry the Grubbs Institute Medi-X Pingshan Southern University of Science and Technology Shenzhen 518055 China
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong China
| | - Xumu Zhang
- Department of Chemistry the Grubbs Institute Medi-X Pingshan Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|
34
|
Roy A, Gogoi N, Yasmin F, Farooq M. The use of algae for environmental sustainability: trends and future prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:40373-40383. [PMID: 35332453 DOI: 10.1007/s11356-022-19636-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Algae are photosynthetic prokaryotic or eukaryotic ubiquitously found group of organisms. Their enormous potentiality in coping up with various environmental crises has been well documented. Algae have proven to be ideal for biomonitoring of water pollution and help in removing the pollutants with their process of bioremediation apart from the production of eco-friendly sources of energy. Industries like food and pharmaceuticals are exploiting algae for producing several value-added products. The agricultural sector is also highly benefited from microalgae, as they are the good promoters of crop growth. The CO2-removing potential of algae proves to be an asset in fighting climate change. Moreover, the relatively easy and inexpensive methods of sampling and culturing of algae make them more popular. In this paper, we review the sustainable application aspects of algae in various areas like pollution control, energy production, agriculture, and fighting climate change. Critical discussions have been made on the recent trends and advances of algal technologies indicating future prospects.
Collapse
Affiliation(s)
- Amlan Roy
- Department of Environmental Science, Tezpur University, Tezpur, 784028, Assam, India
| | - Nirmali Gogoi
- Department of Environmental Science, Tezpur University, Tezpur, 784028, Assam, India.
| | - Farishta Yasmin
- Department of Botany, Nowgong College, 782001, Nagaon, Assam, India
| | - Mohammad Farooq
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud, Muscat, 123, Oman
| |
Collapse
|
35
|
Lin B, Yang T, Zhang D, Zhou Y, Wu L, Qiu J, Chen GQ, Che CM, Zhang X. Gold‐Catalyzed Desymmetric Lactonization of Alkynylmalonic Acids Enabled by Chiral Bifunctional P,N ligands. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Bijin Lin
- Southern University of Science and Technology Department of Chemistry 518000 Shenzhen CHINA
| | - Tilong Yang
- Hong Kong University of Science and Technology School of Science Department of Chemistry Hongkong CHINA
| | - Dequan Zhang
- Southern University of Science and Technology Department of Chemistry CHINA
| | - Yang Zhou
- Southern University of Science and Technology Department of Chemistry CHINA
| | - Liangliang Wu
- Hong Kong University: University of Hong Kong Department of Chemistry CHINA
| | - Jingfei Qiu
- Southern University of Science and Technology Department of Chemistry CHINA
| | - Gen-Qiang Chen
- Southern University of Science and Technology Department of Chemistry CHINA
| | - Chi-Ming Che
- The University of Hong Kong Department of Chemistry CHINA
| | - Xumu Zhang
- Southern University of Science and Technology Chemistry 1088 Xueyuan Avenue 518055 Shenzhen CHINA
| |
Collapse
|
36
|
Chambonniere P, Bronlund JE, Guieysse B. Study from microcosms and mesocosms reveals Escherichia coli removal in high rate algae ponds during domestic wastewater treatment is primarily caused by dark decay. PLoS One 2022; 17:e0265576. [PMID: 35298558 PMCID: PMC8929646 DOI: 10.1371/journal.pone.0265576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/03/2022] [Indexed: 11/24/2022] Open
Abstract
While high rate algal ponds (HRAPs) can provide efficient pathogen removal from wastewater, the mechanisms involved remain unclear. To address this knowledge gap, the mechanisms potentially causing Escherichia coli (E. coli) removal during microalgae-based wastewater treatment were successively assessed using laboratory microcosms designed to isolate known mechanisms, and bench scale assays performed in real HRAP broth. During laboratory assays, E. coli decay was only significantly increased by alkaline pH (above temperature-dependent thresholds) due to pH induced toxicity, and direct sunlight exposure via UV-B damage and/or endogenous photo-oxidation. Bench assays confirmed alkaline pH toxicity caused significant decay but sunlight-mediated decay was not significant, likely due to light attenuation in the HRAP broth. Bench assays also evidenced the existence of uncharacterized ‘dark’ decay mechanism(s) not observed in laboratory microcosms. To numerically evaluate the contribution of each mechanism and the uncertainty associated, E. coli decay was modelled assuming dark decay, alkaline pH induced toxicity, and direct sunlight-mediated decay were independent mechanisms. The simulations confirmed E. coli decay was mainly caused by dark decay during bench assays (48.2–89.5% estimated contribution to overall decay at the 95% confidence level), followed by alkaline-pH induced toxicity (8.3–46.5%), and sunlight-mediated decay (0.0–21.9%).
Collapse
Affiliation(s)
- Paul Chambonniere
- Department of Chemical and Bioprocess Engineering, School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
- * E-mail:
| | - John E. Bronlund
- Department of Chemical and Bioprocess Engineering, School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - Benoit Guieysse
- Department of Chemical and Bioprocess Engineering, School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| |
Collapse
|
37
|
Strieth D, Lenz S, Ulber R. In vivo and in silico screening for antimicrobial compounds from cyanobacteria. Microbiologyopen 2022; 11:e1268. [PMID: 35478288 PMCID: PMC8924698 DOI: 10.1002/mbo3.1268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 12/11/2022] Open
Abstract
Due to the emerging rise of multi‐drug resistant bacteria, the discovery of novel antibiotics is of high scientific interest. Through their high chemodiversity of bioactive secondary metabolites, cyanobacteria have proven to be promising microorganisms for the discovery of antibacterial compounds. These aspects make appropriate antibacterial screening approaches for cyanobacteria crucial. Up to date, screenings are mostly carried out using a phenotypic methodology, consisting of cyanobacterial cultivation, extraction, and inhibitory assays. However, the parameters of these methods highly vary within the literature. Therefore, the common choices of parameters and inhibitory assays are summarized in this review. Nevertheless, less frequently used method variants are highlighted, which lead to hits from antimicrobial compounds. In addition to the considerations of phenotypic methods, this study provides an overview of developments in the genome‐based screening area, be it in vivo using PCR technique or in silico using the recent genome‐mining method. Though, up to date, these techniques are not applied as much as phenotypic screening.
Collapse
Affiliation(s)
- Dorina Strieth
- Chair of Bioprocess Engineering University of Kaiserslautern Kaiserslautern Germany
| | - Selina Lenz
- Chair of Bioprocess Engineering University of Kaiserslautern Kaiserslautern Germany
| | - Roland Ulber
- Chair of Bioprocess Engineering University of Kaiserslautern Kaiserslautern Germany
| |
Collapse
|
38
|
A Novel Approach for Fast Screening of a Complex Cyanobacterial Extract for Immunomodulatory Properties and Antibacterial Activity. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12062847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The filamentous cyanobacteria from genus Phormidium are rich natural sources of bioactive compounds that could be exploited as pharmaceuticals or nutraceuticals. In this study, we suggest a novel approach for assessing the immunomodulatory properties of the products derived from cyanobacteria. The influence of Phormidium papyraceum extract on the human leukocyte immunophenotype was evaluated by attempting to link this activity to certain putative compounds identified in the extract. By using three staining panels and flow cytometry, we found that the cyanobacterial extract affected mainly CD4+ T cells upregulating activated CD4+CD152+ T cells (15.75 ± 1.93% treated vs. 4.65 ± 1.41% control) and regulatory CD4+CD25+ T cells (5.36 ± 0.64% treated vs. 1.03 ± 0.08% control). Furthermore, P. papyraceum extract can modulate T cell subpopulations with a CD4+ effector/memory phenotype. Extract-treated cells showed increased production of IL-2 (55 ± 12 pg/mL) and IL-6 (493 ± 64 pg/mL) compared to the untreated, 21 ± 7 pg/mL and 250 ± 39 pg/mL, respectively. No significant changes were observed in the secretion of TNF-α. In addition, P. papyraceum extract displayed antibacterial activity against both Gram-negative (inhibition zone from 18.25 ± 0.50 mm to 20.28 ± 1.50 mm) and Gram-positive (inhibition zone from 10.86 ± 0.85 mm to 17.00 ± 0.82 mm) bacteria. The chemical profile of the cyanobacterial extract was determined using LC–ESI–MS/MS analysis, where at least 112 putative compounds were detected. Many of these compounds have proven different biological activities. We speculated that compounds such as betulin and the macrolide azithromycin (or their analogues) could be responsible for the immunomodulatory potential of the investigated extract. More studies are needed to determine and validate the biological activities of the determined putative compounds.
Collapse
|
39
|
Walther J, Erdmann N, Stoffel M, Wastian K, Schwarz A, Strieth D, Muffler K, Ulber R. Passively immobilized cyanobacteria Nostoc species BB 92.2 in a moving bed photobioreactor (MBPBR): design, cultivation and characterization. Biotechnol Bioeng 2022; 119:1467-1482. [PMID: 35211957 DOI: 10.1002/bit.28072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/26/2022] [Accepted: 02/20/2022] [Indexed: 01/09/2023]
Abstract
The cyanobacterium Nostoc sp. BB 92.3. had shown antibacterial activity. A cultivation as biofilm, a self-forming matrix of cells and extracellular polymeric substances, increased the antibacterial effect. A new photobioreactor system was developed that allows a surface-associated cultivation of Nostoc sp. as biofilm. High-density polyethylene carriers operated as a moving bed were selected as surface for biomass immobilization. This system, well established in heterotrophic wastewater treatment, was for the first time used for phototrophic biofilms. The aim was a cultivation on a large scale without inhibiting growth while maximizing immobilization. Cultivation in a small photobioreactor (1.5 L) with different volumetric filling degrees of carriers (13.4-53.8 %) in a batch process achieved immobilization rates of 70-85 % and growth was similar to a no-carrier-control. In a larger photobioreactor (65-liter) essentially all of the biomass was immobilized on the carriers and the space-time yield of biomass (0.018 gcell dry weight L-1 day-1 ) was competitive compared to phototrophic biofilm cultivations from literature. The use of carriers increased the gas exchange in the reactor by a factor of 2.5-3, but doubled the mixing time. Enriched gassing with carbon dioxide resulted in a short-term increase in growth rate, but unexpectedly it also adversely changed the growth morphology. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jakob Walther
- Institute of Bioprocess Engineering, University of Kaiserslautern, Gottlieb-Daimler-Str. 49, 67663, Kaiserslautern, Germany
| | - Niklas Erdmann
- Institute of Bioprocess Engineering, University of Kaiserslautern, Gottlieb-Daimler-Str. 49, 67663, Kaiserslautern, Germany
| | - Michael Stoffel
- Institute of Bioprocess Engineering, University of Kaiserslautern, Gottlieb-Daimler-Str. 49, 67663, Kaiserslautern, Germany
| | - Katharina Wastian
- Institute of Bioprocess Engineering, University of Kaiserslautern, Gottlieb-Daimler-Str. 49, 67663, Kaiserslautern, Germany
| | - Anna Schwarz
- Department of Life Sciences and Engineering, University of Applied Sciences Bingen, Berlinstr. 109, 55411, Bingen, Germany
| | - Dorina Strieth
- Institute of Bioprocess Engineering, University of Kaiserslautern, Gottlieb-Daimler-Str. 49, 67663, Kaiserslautern, Germany
| | - Kai Muffler
- Department of Life Sciences and Engineering, University of Applied Sciences Bingen, Berlinstr. 109, 55411, Bingen, Germany
| | - Roland Ulber
- Institute of Bioprocess Engineering, University of Kaiserslautern, Gottlieb-Daimler-Str. 49, 67663, Kaiserslautern, Germany
| |
Collapse
|
40
|
Swain SS, Pati S, Hussain T. Quinoline heterocyclic containing plant and marine candidates against drug-resistant Mycobacterium tuberculosis: A systematic drug-ability investigation. Eur J Med Chem 2022; 232:114173. [DOI: 10.1016/j.ejmech.2022.114173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/30/2022] [Accepted: 02/02/2022] [Indexed: 12/22/2022]
|
41
|
Uhliariková I, Matulová M, Košťálová Z, Lukavský J, Capek P. Lactylated acidic exopolysaccharide produced by the cyanobacterium Nostoc cf. linckia. Carbohydr Polym 2022; 276:118801. [PMID: 34823807 DOI: 10.1016/j.carbpol.2021.118801] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 01/15/2023]
Abstract
Cyanobacteria produce a wide range of metabolites of interest for industrial or medical use. The cultivation of freshwater Nostoc cf. linckia yielded 5.4 g/L of a crude exopolysaccharide (cEPS) with a molecular weight of 1.31 × 105 g/mol. Ion-exchange chromatography of cEPS yielded two dominant fractions, EPS-1 and EPS-2, differing in molecular weight. The lower molecular weight fraction (EPS-1) was subjected to structural studies. Results of chemical and spectroscopic analyses showed that three of the four dominant sugars, glucose, galactose and xylose are 1,4-linked in the backbone in the following order: [→4)-β-D-Xylp-(1 → 4)-β-D-Glcp-(1 → 4)-α-D-Galp-(1 → 4)-β-D-Glcp-(1→]n. Terminal mannose residues were identified as side chains linked at C3 of every third backbone xylose and every second glucose is branched at C6 by 3-O-lactyl-β-D-glucuronic acid (nosturonic acid). Antioxidant properties of EPS were tested using two in vitro methods. Both assays showed that the cEPS was more active than purified EPS-1 and EPS-2 fractions and deproteinized EPS.
Collapse
Affiliation(s)
- Iveta Uhliariková
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Mária Matulová
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Zuzana Košťálová
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Jaromír Lukavský
- Institute of Botany, National Centre of Competence, Academy of Sciences of the Czech Republic, Dukelská 135, CZ-37982 Třeboň, Czech Republic
| | - Peter Capek
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia.
| |
Collapse
|
42
|
Sahoo A, Fuloria S, Swain SS, Panda SK, Sekar M, Subramaniyan V, Panda M, Jena AK, Sathasivam KV, Fuloria NK. Potential of Marine Terpenoids against SARS-CoV-2: An In Silico Drug Development Approach. Biomedicines 2021; 9:1505. [PMID: 34829734 PMCID: PMC8614725 DOI: 10.3390/biomedicines9111505] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/17/2021] [Accepted: 10/17/2021] [Indexed: 12/11/2022] Open
Abstract
In an emergency, drug repurposing is the best alternative option against newly emerged severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. However, several bioactive natural products have shown potential against SARS-CoV-2 in recent studies. The present study selected sixty-eight broad-spectrum antiviral marine terpenoids and performed molecular docking against two novel SARS-CoV-2 enzymes (main protease or Mpro or 3CLpro) and RNA-dependent RNA polymerase (RdRp). In addition, the present study analysed the physiochemical-toxicity-pharmacokinetic profile, structural activity relationship, and phylogenetic tree with various computational tools to select the 'lead' candidate. The genomic diversity study with multiple sequence analyses and phylogenetic tree confirmed that the newly emerged SARS-CoV-2 strain was up to 96% structurally similar to existing CoV-strains. Furthermore, the anti-SARS-CoV-2 potency based on a protein-ligand docking score (kcal/mol) exposed that the marine terpenoid brevione F (-8.4) and stachyflin (-8.4) exhibited similar activity with the reference antiviral drugs lopinavir (-8.4) and darunavir (-7.5) against the target SARS-CoV-Mpro. Similarly, marine terpenoids such as xiamycin (-9.3), thyrsiferol (-9.2), liouvilloside B (-8.9), liouvilloside A (-8.8), and stachyflin (-8.7) exhibited comparatively higher docking scores than the referral drug remdesivir (-7.4), and favipiravir (-5.7) against the target SARS-CoV-2-RdRp. The above in silico investigations concluded that stachyflin is the most 'lead' candidate with the most potential against SARS-CoV-2. Previously, stachyflin also exhibited potential activity against HSV-1 and CoV-A59 within IC50, 0.16-0.82 µM. Therefore, some additional pharmacological studies are needed to develop 'stachyflin' as a drug against SARS-CoV-2.
Collapse
Affiliation(s)
- Alaka Sahoo
- Department of Skin & VD, Institute of Medical Sciences and SUM Hospital, Siksha ‘O’ Anusandhan Deemed to be University, Bhubaneswar 751003, Odisha, India; (A.S.); (M.P.); (A.K.J.)
| | - Shivkanya Fuloria
- Faculty of Pharmacy, Centre of Excellence for Biomaterials Engineering, AIMST University, Bedong 08100, Kedah, Malaysia
| | - Shasank S. Swain
- Division of Microbiology and NCDs, ICMR–Regional Medical Research Centre, Bhubaneswar 751023, Odisha, India;
| | - Sujogya K. Panda
- Center of Environment Climate Change and Public Health, Utkal University, Vani Vihar, Bhubaneswar 751004, Odisha, India;
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh 30450, Perak, Malaysia;
| | - Vetriselvan Subramaniyan
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jalan SP 2, Bandar Saujana Putra, Jenjarom 42610, Selangor, Malaysia;
| | - Maitreyee Panda
- Department of Skin & VD, Institute of Medical Sciences and SUM Hospital, Siksha ‘O’ Anusandhan Deemed to be University, Bhubaneswar 751003, Odisha, India; (A.S.); (M.P.); (A.K.J.)
| | - Ajaya K. Jena
- Department of Skin & VD, Institute of Medical Sciences and SUM Hospital, Siksha ‘O’ Anusandhan Deemed to be University, Bhubaneswar 751003, Odisha, India; (A.S.); (M.P.); (A.K.J.)
| | - Kathiresan V. Sathasivam
- Faculty of Applied Science, Centre of Excellence for Biomaterials Engineering, AIMST University, Bedong 08100, Kedah, Malaysia;
| | - Neeraj Kumar Fuloria
- Faculty of Pharmacy, Centre of Excellence for Biomaterials Engineering, AIMST University, Bedong 08100, Kedah, Malaysia
| |
Collapse
|
43
|
Ramos-Orea A, Ramírez-Apan T, Chávez-Santos RM, Aguayo-Ortiz R, Espitia C, Silva Miranda M, Torres-Ochoa RO, Martínez R. Total syntheses and antiproliferative activities of prenostodione and its analogues. Org Biomol Chem 2021; 19:8272-8280. [PMID: 34518856 DOI: 10.1039/d1ob00897h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A high-yielding total synthesis of the indole alkaloid prenostodione was completed in 4 steps and 44% overall yield from 1H-indole-3-carboxylic acid. The expedient syntheses of prenostodiones containing distinct substituents at the para position of the phenyl frame underscored the scope of this methodology. The cytotoxic activities of the tert-butyl esters of prenostodione analogues were tested using six tumor cell lines. Preliminary structure-activity studies revealed the importance of the identity of the aromatic substituent at the C-4 position for cytotoxic activity. The IC50 values of these compounds were found to compare satisfactorily with those of the commercially available drugs etoposide and cisplatin. Furthermore, the compounds with, respectively, -OMe (14d) and -NO2 (14f) groups at C-4 were more selective than these control compounds in PC-3, K-562, and MCF-7 cells. Also, computational studies were carried out to determine the ADMET profiles and passive membrane permeabilities of the compounds. The results suggested the promise of 14d and 14f as hit compounds for the development of new anticancer agents.
Collapse
Affiliation(s)
- Aldahir Ramos-Orea
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, Mexico.
| | - Teresa Ramírez-Apan
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, Mexico.
| | - Rosa María Chávez-Santos
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, Mexico.
| | - Rodrigo Aguayo-Ortiz
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, Mexico
| | - Clara Espitia
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, Mexico
| | - Mayra Silva Miranda
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, Mexico
| | - Rubén O Torres-Ochoa
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, Mexico.
| | - Roberto Martínez
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, Mexico.
| |
Collapse
|
44
|
Apostol TV, Marutescu LG, Draghici C, Socea LI, Olaru OT, Nitulescu GM, Pahontu EM, Saramet G, Enache-Preoteasa C, Barbuceanu SF. Synthesis and Biological Evaluation of New N-Acyl-α-amino Ketones and 1,3-Oxazoles Derivatives. Molecules 2021; 26:5019. [PMID: 34443608 PMCID: PMC8400786 DOI: 10.3390/molecules26165019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/18/2022] Open
Abstract
In order to develop novel bioactive substances with potent activities, some new valine-derived compounds incorporating a 4-(phenylsulfonyl)phenyl fragment, namely, acyclic precursors from N-acyl-α-amino acids and N-acyl-α-amino ketones classes, and heterocycles from the large family of 1,3-oxazole-based compounds, were synthesized. The structures of the new compounds were established using elemental analysis and spectral (UV-Vis, FT-IR, MS, NMR) data, and their purity was checked by reversed-phase HPLC. The newly synthesized compounds were evaluated for their antimicrobial and antibiofilm activities, for toxicity on D. magna, and by in silico studies regarding their potential mechanism of action and toxicity. The 2-aza-3-isopropyl-1-[4-(phenylsulfonyl)phenyl]-1,4-butanedione 4b bearing a p-tolyl group in 4-position exhibited the best antibacterial activity against the planktonic growth of both Gram-positive and Gram-negative strains, while the N-acyl-α-amino acid 2 and 1,3-oxazol-5(4H)-one 3 inhibited the Enterococcus faecium biofilms. Despite not all newly synthesized compounds showing significant biological activity, the general scaffold allows several future optimizations for obtaining better novel antimicrobial agents by the introduction of various substituents on the phenyl moiety at position 5 of the 1,3-oxazole nucleus.
Collapse
Affiliation(s)
- Theodora-Venera Apostol
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (T.-V.A.); (L.-I.S.); (G.M.N.); (E.M.P.); (G.S.); (S.-F.B.)
| | - Luminita Gabriela Marutescu
- Department of Botany and Microbiology, Faculty of Biology & Research Institute of the University of Bucharest (ICUB), University of Bucharest, 060101 Bucharest, Romania
| | - Constantin Draghici
- “Costin D. Nenițescu” Centre of Organic Chemistry, Romanian Academy, 202 B Splaiul Independenței, 060023 Bucharest, Romania;
| | - Laura-Ileana Socea
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (T.-V.A.); (L.-I.S.); (G.M.N.); (E.M.P.); (G.S.); (S.-F.B.)
| | - Octavian Tudorel Olaru
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (T.-V.A.); (L.-I.S.); (G.M.N.); (E.M.P.); (G.S.); (S.-F.B.)
| | - George Mihai Nitulescu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (T.-V.A.); (L.-I.S.); (G.M.N.); (E.M.P.); (G.S.); (S.-F.B.)
| | - Elena Mihaela Pahontu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (T.-V.A.); (L.-I.S.); (G.M.N.); (E.M.P.); (G.S.); (S.-F.B.)
| | - Gabriel Saramet
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (T.-V.A.); (L.-I.S.); (G.M.N.); (E.M.P.); (G.S.); (S.-F.B.)
| | | | - Stefania-Felicia Barbuceanu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (T.-V.A.); (L.-I.S.); (G.M.N.); (E.M.P.); (G.S.); (S.-F.B.)
| |
Collapse
|
45
|
Phytoplankton of the Curonian Lagoon as a New Interesting Source for Bioactive Natural Products. Special Impact on Cyanobacterial Metabolites. Biomolecules 2021; 11:biom11081139. [PMID: 34439804 PMCID: PMC8395022 DOI: 10.3390/biom11081139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 12/21/2022] Open
Abstract
The bioprospecting of marine and brackish water systems has increased during the last decades. In this respect, microalgae, including cyanobacteria, and their metabolites are one of the most widely explored resources. Most of the bioactive compounds are isolated from ex situ cultures of microorganisms; however, analysis of field samples could also supply valuable information about the metabolic and biotechnological potential of microalgae communities. In this work, the activity of phytoplankton samples from the Curonian Lagoon was studied. The samples were active against antibiotic resistant clinical and environmental bacterial strains as well as against serine proteases and T47D human breast adenocarcinoma cells. No significant effect was found on Daphnia magna. In addition, using LC-MS/MS, we documented the diversity of metabolites present in field samples. A list of 117 detected cyanopeptides was presented. Cyanopeptolins constituted the largest class of cyanopeptides. As complex bloom samples were analyzed, no link between the observed activity and a specific sample component can be established. However, the results of the study showed a biotechnological potential of natural products from the Curonian Lagoon.
Collapse
|
46
|
Venugopal VC, Thakur A, Chennabasappa LK, Mishra G, Singh K, Rathee P, Ranjan A. Phycocyanin Extracted from Oscillatoria minima Shows Antimicrobial, Algicidal, and Antiradical Activities: In silico and In vitro Analysis. Antiinflamm Antiallergy Agents Med Chem 2021; 19:240-253. [PMID: 30950358 PMCID: PMC7499352 DOI: 10.2174/1871523018666190405114524] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/24/2019] [Accepted: 03/29/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Phycocyanin is an algae-derived protein, which binds to pigment for harvesting light. It has been reported in various different species, including that of red algae, dinoflagellates, and cryptophyta. Importantly, phycocyanin has enormous applications, including cosmetic colorant, food additive, biotechnology, diagnostics, fluorescence detection probe, an anticancer agent, anti-inflammatory, immune enhancer, etc. In addition, several different algae were utilized for the isolation of cyano-phycocyanin (C-PC), but most of the purification methods consist of several steps of crude extraction. AIM To isolate C-PC from a new source of microalgae with better purity level and to evaluate its antimicrobial, algicidal, and antiradical activities. METHODS Biological activity, permeability, pharmacokinetics, and toxicity profile of C-PC were predicted by in silico studies. C-PC was purified and isolated by using ammonium sulphate precipitation, ion-exchange chromatography and gel-filtration chromatography. C-PC was characterized by SDS-PAGE and elution profile (purity ratio) analysis. Antimicrobial and algicial activities of C-PC were evaluated by the microtitre plate based assays. Antiradical activity of C-PC was evaluated by DPPH- and ABTS*+ radical scavenging assays. CONCLUSION C-PC was extracted from Oscillatoria minima for the first time, followed by its quantitative as well qualitative evaluation, indicating a new alternative source of this important protein. Furthermore, the antimicrobial, algicidal, and antiradical activities of the isolated C-PC extract have been demonstrated by both in silico as well as in vitro methods.
Collapse
Affiliation(s)
- Vaishali C Venugopal
- Faculty of Life Sciences, JSS Academy of Higher Education and Research, Mysore, India
| | - Abhimanyu Thakur
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology Mesra, Ranchi, India
| | - Latha K Chennabasappa
- Faculty of Life Sciences, JSS Academy of Higher Education and Research, Mysore, India
| | - Gaurav Mishra
- Institute of Medical Sciences, Faculty of Ayurveda, Department of Medicinal Chemistry, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Kunal Singh
- Department of Biotechnology, HIMT College (CCS University Meerut), Uttar Pradesh, India
| | - Parth Rathee
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology Mesra, Ranchi, India
| | - Anjali Ranjan
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology Mesra, Ranchi, India
| |
Collapse
|
47
|
Carvalho RL, de Miranda AS, Nunes MP, Gomes RS, Jardim GAM, Júnior ENDS. On the application of 3d metals for C-H activation toward bioactive compounds: The key step for the synthesis of silver bullets. Beilstein J Org Chem 2021; 17:1849-1938. [PMID: 34386103 PMCID: PMC8329403 DOI: 10.3762/bjoc.17.126] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/28/2021] [Indexed: 01/24/2023] Open
Abstract
Several valuable biologically active molecules can be obtained through C-H activation processes. However, the use of expensive and not readily accessible catalysts complicates the process of pharmacological application of these compounds. A plausible way to overcome this issue is developing and using cheaper, more accessible, and equally effective catalysts. First-row transition (3d) metals have shown to be important catalysts in this matter. This review summarizes the use of 3d metal catalysts in C-H activation processes to obtain potentially (or proved) biologically active compounds.
Collapse
Affiliation(s)
- Renato L Carvalho
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Amanda S de Miranda
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Mateus P Nunes
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Roberto S Gomes
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, United States
| | - Guilherme A M Jardim
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
- Centre for Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos – UFSCar, CEP 13565-905, São Carlos, SP, Brazil
| | - Eufrânio N da Silva Júnior
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
| |
Collapse
|
48
|
Hofbauer WK. Toxic or Otherwise Harmful Algae and the Built Environment. Toxins (Basel) 2021; 13:465. [PMID: 34209446 PMCID: PMC8310063 DOI: 10.3390/toxins13070465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 12/30/2022] Open
Abstract
This article gives a comprehensive overview on potentially harmful algae occurring in the built environment. Man-made structures provide diverse habitats where algae can grow, mainly aerophytic in nature. Literature reveals that algae that is potentially harmful to humans do occur in the anthropogenic environment in the air, on surfaces or in water bodies. Algae may negatively affect humans in different ways: they may be toxic, allergenic and pathogenic to humans or attack human structures. Toxin-producing alga are represented in the built environment mainly by blue green algae (Cyanoprokaryota). In special occasions, other toxic algae may also be involved. Green algae (Chlorophyta) found airborne or growing on manmade surfaces may be allergenic whereas Cyanoprokaryota and other forms may not only be toxic but also allergenic. Pathogenicity is found only in a special group of algae, especially in the genus Prototheca. In addition, rare cases with infections due to algae with green chloroplasts are reported. Algal action may be involved in the biodeterioration of buildings and works of art, which is still discussed controversially. Whereas in many cases the disfigurement of surfaces and even the corrosion of materials is encountered, in other cases a protective effect on the materials is reported. A comprehensive list of 79 taxa of potentially harmful, airborne algae supplemented with their counterparts occurring in the built environment, is given. Due to global climate change, it is not unlikely that the built environment will suffer from more and higher amounts of harmful algal species in the future. Therefore, intensified research in composition, ecophysiology and development of algal growth in the built environment is indicated.
Collapse
Affiliation(s)
- Wolfgang Karl Hofbauer
- Umwelt, Hygiene und Sensorik, Fraunhofer-Institut für Bauphysik, 83626 Valley, Bavaria, Germany
| |
Collapse
|
49
|
Dose B, Niehs SP, Scherlach K, Shahda S, Flórez LV, Kaltenpoth M, Hertweck C. Biosynthesis of Sinapigladioside, an Antifungal Isothiocyanate from Burkholderia Symbionts. Chembiochem 2021; 22:1920-1924. [PMID: 33739557 PMCID: PMC8252389 DOI: 10.1002/cbic.202100089] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/19/2021] [Indexed: 11/15/2022]
Abstract
Sinapigladioside is a rare isothiocyanate-bearing natural product from beetle-associated bacteria (Burkholderia gladioli) that might protect beetle offspring against entomopathogenic fungi. The biosynthetic origin of sinapigladioside has been elusive, and little is known about bacterial isothiocyanate biosynthesis in general. On the basis of stable-isotope labeling, bioinformatics, and mutagenesis, we identified the sinapigladioside biosynthesis gene cluster in the symbiont and found that an isonitrile synthase plays a key role in the biosynthetic pathway. Genome mining and network analyses indicate that related gene clusters are distributed across various bacterial phyla including producers of both nitriles and isothiocyanates. Our findings support a model for bacterial isothiocyanate biosynthesis by sulfur transfer into isonitrile precursors.
Collapse
Affiliation(s)
- Benjamin Dose
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstr. 11a07745JenaGermany
| | - Sarah P. Niehs
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstr. 11a07745JenaGermany
| | - Kirstin Scherlach
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstr. 11a07745JenaGermany
| | - Sophie Shahda
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstr. 11a07745JenaGermany
| | - Laura V. Flórez
- Department for Evolutionary EcologyInstitute of Organismic and Molecular EvolutionJohannes Gutenberg UniversityJohann-Joachim-Becher-Weg 1355128MainzGermany
| | - Martin Kaltenpoth
- Department for Evolutionary EcologyInstitute of Organismic and Molecular EvolutionJohannes Gutenberg UniversityJohann-Joachim-Becher-Weg 1355128MainzGermany
| | - Christian Hertweck
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology, HKIBeutenbergstr. 11a07745JenaGermany
- Faculty of Biological SciencesFriedrich Schiller University Jena07743JenaGermany
| |
Collapse
|
50
|
Jones MR, Pinto E, Torres MA, Dörr F, Mazur-Marzec H, Szubert K, Tartaglione L, Dell'Aversano C, Miles CO, Beach DG, McCarron P, Sivonen K, Fewer DP, Jokela J, Janssen EML. CyanoMetDB, a comprehensive public database of secondary metabolites from cyanobacteria. WATER RESEARCH 2021; 196:117017. [PMID: 33765498 DOI: 10.1016/j.watres.2021.117017] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/26/2021] [Accepted: 03/06/2021] [Indexed: 05/06/2023]
Abstract
Harmful cyanobacterial blooms, which frequently contain toxic secondary metabolites, are reported in aquatic environments around the world. More than two thousand cyanobacterial secondary metabolites have been reported from diverse sources over the past fifty years. A comprehensive, publically-accessible database detailing these secondary metabolites would facilitate research into their occurrence, functions and toxicological risks. To address this need we created CyanoMetDB, a highly curated, flat-file, openly-accessible database of cyanobacterial secondary metabolites collated from 850 peer-reviewed articles published between 1967 and 2020. CyanoMetDB contains 2010 cyanobacterial metabolites and 99 structurally related compounds. This has nearly doubled the number of entries with complete literature metadata and structural composition information compared to previously available open access databases. The dataset includes microcytsins, cyanopeptolins, other depsipeptides, anabaenopeptins, microginins, aeruginosins, cyclamides, cryptophycins, saxitoxins, spumigins, microviridins, and anatoxins among other metabolite classes. A comprehensive database dedicated to cyanobacterial secondary metabolites facilitates: (1) the detection and dereplication of known cyanobacterial toxins and secondary metabolites; (2) the identification of novel natural products from cyanobacteria; (3) research on biosynthesis of cyanobacterial secondary metabolites, including substructure searches; and (4) the investigation of their abundance, persistence, and toxicity in natural environments.
Collapse
Affiliation(s)
- Martin R Jones
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Duebendorf, Switzerland
| | - Ernani Pinto
- Centre for Nuclear Energy in Agriculture, University of São Paulo, CEP 13418-260 Piracicaba, SP, Brazil
| | - Mariana A Torres
- School of Pharmaceutical Sciences, University of São Paulo, CEP 05508-900, São Paulo - SP, Brazil
| | - Fabiane Dörr
- School of Pharmaceutical Sciences, University of São Paulo, CEP 05508-900, São Paulo - SP, Brazil
| | - Hanna Mazur-Marzec
- Division of Marine Biotechnology, University of Gdansk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Karolina Szubert
- Division of Marine Biotechnology, University of Gdansk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Luciana Tartaglione
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Carmela Dell'Aversano
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Christopher O Miles
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford Street, Nova Scotia, Halifax B3H 3Z1, Canada
| | - Daniel G Beach
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford Street, Nova Scotia, Halifax B3H 3Z1, Canada
| | - Pearse McCarron
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford Street, Nova Scotia, Halifax B3H 3Z1, Canada
| | - Kaarina Sivonen
- Department of Microbiology, University of Helsinki, 00014 Helsinki, Finland
| | - David P Fewer
- Department of Microbiology, University of Helsinki, 00014 Helsinki, Finland
| | - Jouni Jokela
- Department of Microbiology, University of Helsinki, 00014 Helsinki, Finland
| | - Elisabeth M-L Janssen
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Duebendorf, Switzerland.
| |
Collapse
|