1
|
Arrari F, Ortiz-Flores RM, Lhamyani S, Garcia-Fuentes E, Jabri MA, Sebai H, Bermudez-Silva FJ. Protective Effects of Spirulina Against Lipid Micelles and Lipopolysaccharide-Induced Intestinal Epithelium Disruption in Caco-2 Cells: In Silico Molecular Docking Analysis of Phycocyanobilin. Nutrients 2024; 16:4074. [PMID: 39683467 DOI: 10.3390/nu16234074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Damage to intestinal epithelial cells is present in obesity and other diseases because of inflammatory and oxidative processes. This damage compromises the gastrointestinal barrier, killing enterocytes, altering intestinal permeability, and eliciting abnormal immune responses that promote chronic inflammation. Recent evidence shows that spirulina is a potent natural agent with antioxidant and anti-inflammatory properties. OBJECTIVES This study was conducted to evaluate the effect of spirulina aqueous extract (SPAE) on the alterations of the intestinal epithelium induced by lipid micelles (LMs) and/or inflammation induced by lipopolysaccharides (LPSs) in the Caco-2 cell line. METHODS In the current research, we assessed the protective actions of SPAE against cytotoxicity, oxidative stress, inflammation, and epithelial barrier perturbation by using an in vitro model, the intestinal Caco-2 cells, treated with LPSs and/or LMs. We also performed an in silico molecular docking analysis with spirulina's bioactive compound, phycocyanobilin. RESULTS Our results showed that SPAE has no cytotoxic effect on Caco-2 cells. On the contrary, it improved cell viability and exhibited anti-inflammatory and antioxidant actions. SPAE also protected against endoplasmic reticulum stress and tight junction proteins, thus improving the epithelial barrier. The in silico study revealed a strong binding affinity of the phycocyanobilin compound with human SOD and NADPH oxidase and a good binding affinity towards COX-2 and iNOS. CONCLUSIONS Taken together, these findings demonstrate the beneficial actions of SPAE on Caco-2 cells, suggesting it may be useful in preserving the epithelial intestinal barrier in human conditions involving oxidative stress and inflammation such as obesity.
Collapse
Affiliation(s)
- Fatma Arrari
- Laboratory of Functional Physiology and Valorization of Bio-Resources, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja 9000, Tunisia
| | - Rodolfo-Matias Ortiz-Flores
- Centro de Investigacion Biomedica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERDEM), Instituto de Investigacion Biomedica de Malaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Regional Universitario de Malaga, UGC Endocrinología y Nutricion, 29009 Malaga, Spain
| | - Said Lhamyani
- Centro de Investigacion Biomedica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERDEM), Instituto de Investigacion Biomedica de Malaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Regional Universitario de Malaga, UGC Endocrinología y Nutricion, 29009 Malaga, Spain
| | - Eduardo Garcia-Fuentes
- Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas (CIBERehd), Instituto de Investigacion Biomedica de Malaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Universitario Virgen de la Victoria, UGC de Aparato Digestivo, 29010 Malaga, Spain
| | - Mohamed-Amine Jabri
- Laboratory of Functional Physiology and Valorization of Bio-Resources, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja 9000, Tunisia
| | - Hichem Sebai
- Laboratory of Functional Physiology and Valorization of Bio-Resources, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja 9000, Tunisia
| | - Francisco-Javier Bermudez-Silva
- Centro de Investigacion Biomedica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERDEM), Instituto de Investigacion Biomedica de Malaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Regional Universitario de Malaga, UGC Endocrinología y Nutricion, 29009 Malaga, Spain
| |
Collapse
|
2
|
Semenescu I, Avram S, Similie D, Minda D, Diaconeasa Z, Muntean D, Lazar AE, Gurgus D, Danciu C. Phytochemical, Antioxidant, Antimicrobial and Safety Profile of Glycyrrhiza glabra L. Extract Obtained from Romania. PLANTS (BASEL, SWITZERLAND) 2024; 13:3265. [PMID: 39683057 DOI: 10.3390/plants13233265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 12/18/2024]
Abstract
Glycyrrhiza glabra L., also known as licorice, belongs to the Fabaceae family and is one of the most commercially valuable plants worldwide, being used in the pharmaceutical, cosmetic, and food industries, both for its therapeutic benefits as well as for the sweetening properties of the extract. This study evaluates the phytochemical composition, the biological activities, and the safety profile of a methanolic extract of licorice root (LRE) obtained from Romania. Ten phytocompounds were quantified by the HPLC-DAD-ESI+, the most abundant being the triterpene glycyrrhizin (13.927 mg/g dry extract.), followed by these flavonoids: liquiritin, liquiritigenin-apiosyl-glucoside, and apigenin-rutinoside liquiritigenin. The total phenolic content of the LRE was found to be 169.83 mg gallic acid/g dry extract. (GAE/g d.e.), and the extract showed a maximum of 79.29% antioxidant activity in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. Good antimicrobial activity of the LRE was observed for Gram-negative bacteria, especially for S. pneumoniae and S. pyogenes. The mineral content of the LRE was indicative of the lack of toxicity; heavy metals such as lead, cadmium, arsenic, nickel, and cobalt were below the detection limit. The safety profile of the licorice extract was assessed using the in vivo hen egg test-chorioallantoic membrane (HET-CAM protocol), indicating no irritability, good tolerability, and biocompatibility. The phytochemical and biological characterization of the Romanian licorice root extract reveals a good source of glycyrrhizin and polyphenols with antioxidant and antimicrobial potential, along with a safety profile that may be useful for future therapeutic applications.
Collapse
Affiliation(s)
- Iulia Semenescu
- Department of Pharmacognosy, "Victor Babes" University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
- Research and Processing Center for Medicinal and Aromatic Plants, "Victor Babes" University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Stefana Avram
- Department of Pharmacognosy, "Victor Babes" University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
- Research and Processing Center for Medicinal and Aromatic Plants, "Victor Babes" University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Diana Similie
- Department of Pharmacognosy, "Victor Babes" University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
- Research and Processing Center for Medicinal and Aromatic Plants, "Victor Babes" University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Daliana Minda
- Department of Pharmacognosy, "Victor Babes" University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
- Research and Processing Center for Medicinal and Aromatic Plants, "Victor Babes" University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Zorita Diaconeasa
- Department of Food Science and Technology, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine, Calea Manastur, 3-5, 400372 Cluj-Napoca, Romania
| | - Delia Muntean
- Department of Microbiology, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
- Multidisciplinary Research Center on Antimicrobial Resistance, "Victor Babes" University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Antonina Evelina Lazar
- National Institute of Research and Development for Electrochemistry and Condensed Matter, 144 Dr. A. P. Podeanu, 300569 Timisoara, Romania
| | - Daniela Gurgus
- Department of Balneology, Medical Recovery and Rheumatology, Family Discipline, Center for Preventive Medicine, "Victor Babes" University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Corina Danciu
- Department of Pharmacognosy, "Victor Babes" University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
- Research and Processing Center for Medicinal and Aromatic Plants, "Victor Babes" University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| |
Collapse
|
3
|
Quispe-Díaz IM, Ybañez-Julca RO, Pino-Ríos R, Quispe-Rodríguez JD, Asunción-Alvarez D, Mantilla-Rodríguez E, Rengifo-Penadillos RA, Vásquez-Corales E, de Albuquerque RDDG, Gutiérrez-Alvarado WO, Benites J. Chemical Composition, Antioxidant Activities, Antidepressant Effect, and Lipid Peroxidation of Peruvian Blueberry: Molecular Docking Studies on Targets Involved in Oxidative Stress and Depression. PLANTS (BASEL, SWITZERLAND) 2024; 13:1643. [PMID: 38931078 PMCID: PMC11207408 DOI: 10.3390/plants13121643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
Blueberries (Vaccinium corymbosum L.) are cultivated worldwide and are among the best dietary sources of bioactive compounds with beneficial health effects. This study aimed to investigate the components of Peruvian blueberry using high-performance liquid chromatography coupled to electrospray ionization and quadrupole time-of-flight mass spectrometry (HPLC-ESI-QTOF-MS/MS), identifying 11 compounds. Furthermore, we assessed in vitro the antioxidant activity and in vivo the antidepressant effect using a rat model and protective effect on lipid peroxidation (in the serum, brain, liver, and stomach). We also conducted molecular docking simulations with proteins involved in oxidative stress and depression for the identified compounds. Antioxidant activity was assessed by measuring total phenolic and flavonoid contents, as well as using 1,1-diphenyl-2-picrylhydrazin (DPPH), 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic) acid (ABTS•+), and ferric-reducing antioxidant power (FRAP) assays. Peruvian blueberries demonstrated higher antioxidant activity than Vaccinium corymbosum fruits from Chile, Brazil, the United States, Turkey, Portugal, and China. The results showed that oral administration of Peruvian blueberries (10 and 20 mg/kg) for 28 days significantly (p < 0.001) increased swimming and reduced immobility in the forced swimming test (FST). Additionally, at doses of 40 and 80 mg/kg, oxidative stress was reduced in vivo (p < 0.001) by decreasing lipid peroxidation in brain, liver, stomach, and serum. Molecular docking and absorption, distribution, metabolism, excretion, and toxicity (ADMET) predictions were performed. In the molecular docking studies, quercitrin and 3,5-di-O-caffeoylquinic acid showed the best docking scores for nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, superoxide dismutase, and xanthine oxidase; while 3,5-dicaffeoylquinic acid methyl ester and caffeoyl coumaroylquinic acid had the best docking scores for monoamine oxidase and serotonin receptor 5-HT2. In summary, our results suggest that the antidepressant and protective effects against lipid peroxidation might be related to the antioxidant activity of Peruvian Vaccinium corymbosum L.
Collapse
Affiliation(s)
- Iván M. Quispe-Díaz
- Facultad de Farmacia y Bioquímica, Universidad Nacional de Trujillo, Trujillo 13011, Peru; (I.M.Q.-D.); (J.D.Q.-R.); (D.A.-A.); (E.M.-R.); (R.A.R.-P.); (R.D.D.G.d.A.)
| | - Roberto O. Ybañez-Julca
- Facultad de Farmacia y Bioquímica, Universidad Nacional de Trujillo, Trujillo 13011, Peru; (I.M.Q.-D.); (J.D.Q.-R.); (D.A.-A.); (E.M.-R.); (R.A.R.-P.); (R.D.D.G.d.A.)
| | - Ricardo Pino-Ríos
- Laboratorio de Química Medicinal, Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Casilla 121, Iquique 1100000, Chile;
- Instituto de Química Medicinal, Universidad Arturo Prat, Casilla 121, Iquique 1100000, Chile
| | - José D. Quispe-Rodríguez
- Facultad de Farmacia y Bioquímica, Universidad Nacional de Trujillo, Trujillo 13011, Peru; (I.M.Q.-D.); (J.D.Q.-R.); (D.A.-A.); (E.M.-R.); (R.A.R.-P.); (R.D.D.G.d.A.)
| | - Daniel Asunción-Alvarez
- Facultad de Farmacia y Bioquímica, Universidad Nacional de Trujillo, Trujillo 13011, Peru; (I.M.Q.-D.); (J.D.Q.-R.); (D.A.-A.); (E.M.-R.); (R.A.R.-P.); (R.D.D.G.d.A.)
| | - Elena Mantilla-Rodríguez
- Facultad de Farmacia y Bioquímica, Universidad Nacional de Trujillo, Trujillo 13011, Peru; (I.M.Q.-D.); (J.D.Q.-R.); (D.A.-A.); (E.M.-R.); (R.A.R.-P.); (R.D.D.G.d.A.)
| | - Roger A. Rengifo-Penadillos
- Facultad de Farmacia y Bioquímica, Universidad Nacional de Trujillo, Trujillo 13011, Peru; (I.M.Q.-D.); (J.D.Q.-R.); (D.A.-A.); (E.M.-R.); (R.A.R.-P.); (R.D.D.G.d.A.)
| | - Edison Vásquez-Corales
- Escuela de Farmacia y Bioquímica, Universidad Católica Los Ángeles de Chimbote, Chimbote 02801, Peru;
| | - Ricardo D. D. G. de Albuquerque
- Facultad de Farmacia y Bioquímica, Universidad Nacional de Trujillo, Trujillo 13011, Peru; (I.M.Q.-D.); (J.D.Q.-R.); (D.A.-A.); (E.M.-R.); (R.A.R.-P.); (R.D.D.G.d.A.)
| | | | - Julio Benites
- Laboratorio de Química Medicinal, Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Casilla 121, Iquique 1100000, Chile;
- Instituto de Química Medicinal, Universidad Arturo Prat, Casilla 121, Iquique 1100000, Chile
| |
Collapse
|
4
|
Sahu R, Gupta PK, Mishra A, Kumar A. Ayurveda and in silico Approach: A Challenging Proficient Confluence for Better Development of Effective Traditional Medicine Spotlighting Network Pharmacology. Chin J Integr Med 2022; 29:470-480. [PMID: 36094769 PMCID: PMC9465656 DOI: 10.1007/s11655-022-3584-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2022] [Indexed: 11/03/2022]
Abstract
Coalescence of traditional medicine Ayurveda and in silico technology is a rigor for supplementary development of future-ready effective traditional medicine. Ayurveda is a popular traditional medicine in South Asia, emanating worldwide for the treatment of metabolic disorders and chronic illness. Techniques of in silico biology are not much explored for the investigation of a variety of bioactive phytochemicals of Ayurvedic herbs. Drug repurposing, reverse pharmacology, and polypharmacology in Ayurveda are areas in silico explorations that are needed to understand the rich repertoire of herbs, minerals, herbo-minerals, and assorted Ayurvedic formulations. This review emphasizes exploring the concept of Ayurveda with in silico approaches and the need for Ayurinformatics studies. It also provides an overview of in silico studies done on phytoconstituents of some important Ayurvedic plants, the utility of in silico studies in Ayurvedic phytoconstituents/formulations, limitations/challenges, and prospects of in silico studies in Ayurveda. This article discusses the convergence of in silico work, especially in the least explored field of Ayurveda. The focused coalesce of these two domains could present a predictive combinatorial platform to enhance translational research magnitude. In nutshell, it could provide new insight into an Ayurvedic drug discovery involving an in silico approach that could not only alleviate the process of traditional medicine research but also enhance its effectiveness in addressing health care.
Collapse
Affiliation(s)
- Rashmi Sahu
- Department of Balroga, Shri NPA Govt. Ayurveda College, Raipur, Chhattisgarh, 492010, India
| | - Prashant Kumar Gupta
- Department of Balroga, Shri NPA Govt. Ayurveda College, Raipur, Chhattisgarh, 492010, India.,Ayurinformatics Lab, Department of Kaumarabhritya, All India Institute of Ayurveda, Sarita Vihar, New Delhi, 110076, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology, Jodhpur, Rajasthan, 342037, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, Chhattisgarh, 492010, India.
| |
Collapse
|
5
|
Mallikarjuna Reddy G, Zyryanov GV, Mahaboob Basha N, Venkata Subbaiah M, Jet‐Chau W, Gollakota ARK, Shu C, Venkatesh BC. Synthesis of pyrazole tethered oxadiazole and their analogs as potent antioxidant agents. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Grigory V. Zyryanov
- Ural Federal University Chemical Engineering Institute Yekaterinburg Russian Federation
- Ural Division of the Russian Academy of Sciences, I. Ya. Postovskiy Institute of Organic Synthesis, 22 S. Kovalevskoy Street Yekaterinburg Russian Federation
| | - N. Mahaboob Basha
- Department of Basic science and Humanities School of Engineering and Technology, Sri Padmavathi Mahila Viswavidhyalayam Tirupati India
| | - Munagapati Venkata Subbaiah
- Research Centre for Soil & Water Resources and Natural Disaster Prevention (SWAN) National Yunlin University of Science and Technology, Douliou, Yunlin County Taiwan, ROC
| | - Wen Jet‐Chau
- Research Centre for Soil & Water Resources and Natural Disaster Prevention (SWAN) National Yunlin University of Science and Technology, Douliou, Yunlin County Taiwan, ROC
- Department of Safety, Health, and Environmental Engineering National Yunlin University of Science and Technology, Douliou, Yunlin County Taiwan, ROC
| | - Anjani R. K. Gollakota
- Department of Safety, Health, and Environmental Engineering National Yunlin University of Science and Technology, Douliou, Yunlin County Taiwan, ROC
| | - Chin‐Min Shu
- Department of Safety, Health, and Environmental Engineering National Yunlin University of Science and Technology, Douliou, Yunlin County Taiwan, ROC
| | - B. C. Venkatesh
- Medha Degree College, Mydukur YSR Kadapa Andhra Pradesh India
| |
Collapse
|
6
|
Comparative In Vitro Cytotoxicity Study of Carbon Dot-Based Organometallic Nanoconjugates: Exploration of Their Cell Proliferation, Uptake, and Localization in Cancerous and Normal Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3483073. [PMID: 35340219 PMCID: PMC8941570 DOI: 10.1155/2022/3483073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/03/2022] [Accepted: 02/10/2022] [Indexed: 11/18/2022]
Abstract
Organometallic nanoconjugates have raised great interest due to their bimodal properties and high stability. In the present study, we analyzed the cytotoxicity property of carbon dots (CDs) and a series of organometallic nanoconjugates including gold@carbon dots (Au@CDs) and silver@carbon dots (Ag@CDs) synthesized via an aqueous mode. We aimed to divulge a comparative analysis of cell proliferation, uptake, and localization of the particles in HeLa and HEK293 cell lines. Our results showed dose-dependent cytotoxicity of Au@CDs, Ag@CDs, and CDs. However, Ag@CDs showed the highest inhibition through HeLa cells with an IC50 value of around 50 ± 1.0 μg/mL. Confocal imaging signified the uptake of the particles suggested by blue fluorescence in the interior region of HeLa cells. Furthermore, the TEM micrographs depicted that the particles are entrapped by endocytosis assisted through the cell microvilli. The CDs and Au@CDs were thus observed to be relatively safe up to a concentration of 100 μg/mL and did not induce any morphological changes in the cells. Moreover, the cell proliferation assay of these nanoconjugates against HEK 293 cells signified the nontoxic nature of the nanoconjugates. The results thus revealed two major facts: firstly, the Ag@CDs had potent therapeutic potential, signifying their potential as a promising anticancer drug, and secondly, the CDs and Au@CDs at a defined dose could be used as probes for detection and also bioimaging agents.
Collapse
|
7
|
Usmani J, Khan T, Ahmad R, Sharma M. Potential role of herbal medicines as a novel approach in sepsis treatment. Biomed Pharmacother 2021; 144:112337. [PMID: 34688080 DOI: 10.1016/j.biopha.2021.112337] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/09/2021] [Accepted: 10/11/2021] [Indexed: 12/17/2022] Open
Abstract
The growing number of deaths related to sepsis has become a major concern for past few years. Sepsis is a complex pathological reactions that is explained by series of host response to microbial insult. The resulted systemic reactions are manifested by early appearance of proinflammatory cytokines leading to hyperinflammatory phase which is followed by septic shock and death of the patient. The present study has revealed that antibiotics are not self-sufficient to control the complex mechanism of sepsis. Moreover prolonged and unnecessary administration of antibiotics may lead to antibiotic resistance to pathogens. In addition to this, immunosuppressive medications are selective and have targeted approach to certain study population. Drugs from herbal origin have shown to possess a mammoth of immunomodulatory potential by suppressing proinflammatory and anti-inflammatory cytokines exhibiting no or minimal unwanted secondary responses. Concomitantly, herbal plants tend to modulate oxidative stress level and haematological imbalance during inflammatory diseased conditions. Natural compounds have gained much attention for the treatment of several clinical complications. Considering the promising responses of medicinal plants with less/no side effects and easy procurement, comprehensive research on herbal plants to treat sepsis should be contemplated.
Collapse
Affiliation(s)
- Juveria Usmani
- Department of Pharmacology, School of Pharmaceutical Sciences & Research, Jamia Hamdard, New Delhi, India
| | - Tahira Khan
- Department of Pharmacology, School of Pharmaceutical Sciences & Research, Jamia Hamdard, New Delhi, India
| | - Razi Ahmad
- Department of Pharmacology, Hamdard Institute of Medical Sciences & Research, Jamia Hamdard, New Delhi 110019, India.
| | - Manju Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences & Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
8
|
Fungicidal Activity and Mechanism of Action of Glabridin from Glycyrrhiza glabra L. Int J Mol Sci 2021; 22:ijms222010966. [PMID: 34681623 PMCID: PMC8537655 DOI: 10.3390/ijms222010966] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 11/16/2022] Open
Abstract
Glycyrrhiza glabra (Licorice) belongs to the Fabaceae family and its extracts have exhibited significant fungicidal activity against phytopathogenic fungi, which has mainly been attributed to the presence of phenolic compounds such as flavonoids, isoflavonoids and chalcones. In this study, a series of licorice flavonoids, isoflavonoids and chalcones were evaluated for their fungicidal activity against phytopathogenic fungi. Among them, glabridin exhibited significant fungicidal activity against ten kinds of phytopathogenic fungi. Notably, glabridin displayed the most active against Sclerotinia sclerotiorum with an EC50 value of 6.78 µg/mL and was 8-fold more potent than azoxystrobin (EC50, 57.39 µg/mL). Moreover, the in vivo bioassay also demonstrated that glabridin could effectively control S. sclerotiorum. The mechanism studies revealed that glabridin could induce reactive oxygen species accumulation, the loss of mitochondrial membrane potential and cell membrane destruction through effecting the expression levels of phosphatidylserine decarboxylase that exerted its fungicidal activity. These findings indicated that glabridin exhibited pronounced fungicidal activities against S. sclerotiorum and could be served as a potential fungicidal candidate.
Collapse
|
9
|
Mousa AM, Aldebasi YH. L-carnosine mitigates interleukin-1α-induced dry eye disease in rabbits via its antioxidant, anti-inflammatory, antiapoptotic, and antifibrotic effects. Cutan Ocul Toxicol 2021; 40:241-251. [PMID: 34056995 DOI: 10.1080/15569527.2021.1935995] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To elucidate the implications of L-carnosine on interleukin-1α (IL-1α)-induced inflammation of lacrimal glands (LGs). MATERIALS AND METHODS Forty rabbits were divided equally into four groups: control group (G1), IL-1α (G2), L-carnosine (G3), and L-carnosine plus IL-1α (G4). Several clinical, histopathological, immunohistochemical, morphometric, and biochemical investigations were performed, followed by statistical analysis to diagnose the presence of dry eye disease (DED). RESULTS The LGs of G2 rabbits showed degeneration of the acinar cells, increased deposition of collagen fibers, and marked immunoexpression of FasL; elevated levels of interferon-γ, tumor necrosis factor-α, transforming growth factor-β1, and malondialdehyde; and decreased levels of glutathione peroxidase, superoxide dismutase, catalase, and reactive oxygen species compared with those of G1 rabbits. In contrast, administration of L-carnosine to G4 rabbits revealed marked improvement of all previously harmful changes in G2 rabbits, indicating the cytoprotective effects of L-carnosine against IL-1α-induced inflammation of LGs. CONCLUSIONS IL-1α induced inflammation of LGs and eye dryness via oxidative stress, proinflammatory, apoptotic, and profibrotic effects, whereas L-carnosine mitigated DED through antioxidant, anti-inflammatory, antiapoptotic, and antifibrotic effects on LGs. Therefore, this work demonstrates for the first time that L-carnosine may be used as adjuvant therapy for the preservation of visual integrity in patients with DED.HighlightsIL-1α induced dry eye disease through its oxidative stress, proinflammatory, apoptotic and profibrotic effects on the lacrimal glands of rabbit.L-carnosine has antioxidant, anti-inflammatory, antiapoptotic and antifibrotic effects.L-carnosine mitigated IL-1α induced dry eye disease via elevating the levels of FasL, IFN-γ, TNF-α, TGFβ1 and MDA as well as reducing the levels of antioxidants (GPx, SOD, and catalase) and ROS in the lacrimal glands of rabbit.L-carnosine could be used as a novel adjuvant therapy for the treatment of dry eye disease.
Collapse
Affiliation(s)
- Ayman M Mousa
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia.,Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Yousef H Aldebasi
- Department of Optometry, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
10
|
Zi Shen Decoction Inhibits Growth and Metastasis of Lung Cancer via Regulating the AKT/GSK-3 β/ β-Catenin Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6685282. [PMID: 33777320 PMCID: PMC7969097 DOI: 10.1155/2021/6685282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/15/2020] [Accepted: 02/10/2021] [Indexed: 12/11/2022]
Abstract
Lung cancer has become the leading cause of cancer-related death worldwide. Oxidative stress plays important roles in the pathogenesis of lung cancer. Many natural products show antioxidative activities in cancer treatment. Zi Shen decoction (ZSD) is a classic prescription for the treatment of lung disease. However, its effect on lung cancer lacks evidence-based efficacy. In this study, we investigated the anticancer effects of ZSD on lung cancer in vivo and in vitro. Our results showed that oral administration of ZSD suppressed the Lewis lung cancer (LLC) growth in a subcutaneous allograft model and promoted necrosis and inflammatory cell infiltration in the tumor tissues. Furthermore, ZSD not only inhibited tumor cell proliferation and migration but also induced cell apoptosis in lung cancer cells. PI3K/AKT signaling is well characterized in response to oxidative stress. The bioinformatics analysis and western blot assays suggested that ZSD decreased the enzyme activity of PI3K and AKT in vivo and in vitro. We also found that the AKT/GSK-3β/β-catenin pathway medicated anticancer effect of ZSD in lung cancer cells. In conclusion, we demonstrate for the first time that ZSD possesses antitumor properties, highlighting its potential use as an alternative strategy or adjuvant treatment for lung cancer therapy.
Collapse
|
11
|
Hejazi II, Beg MA, Imam MA, Athar F, Islam A. Glossary of phytoconstituents: Can these be repurposed against SARS CoV-2? A quick in silico screening of various phytoconstituents from plant Glycyrrhiza glabra with SARS CoV-2 main protease. Food Chem Toxicol 2021; 150:112057. [PMID: 33592201 PMCID: PMC7882218 DOI: 10.1016/j.fct.2021.112057] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/01/2021] [Accepted: 02/06/2021] [Indexed: 12/23/2022]
Abstract
World is familiar with the viral pathogen Severe Acute Respiratory Syndrome Coronavirus 2 (SARS CoV-2). The principle working enzymes of SARS CoV-2 have been identified as main proteases 3Cl pro which act as main regulators for SARS infection. The need for therapy is required immediately pertaining to the vulnerable conditions. Protein-ligand studies are imperative for understanding the functioning of biological interactions as they are crucial in providing a hypothetical origin for the design and unearthing of novel drug targets. Phytoconstituents from Glycyrrhiza glabra, earlier reported to be anticancerous in nature were used as repurposed drugs against SARS CoV-2 main protease 3Clpro. We analyzed the molecular interactions of protein-phytocompounds, by AutoDock Vina 4.2 tools. The best interactions of each algorithm were subjected to molecular dynamic (MD) simulations to have an insight of the molecular dynamic mechanisms involved. Selected phytoconstituents gave a good score for binding affinity with the main protease 6LU7 of SARS CoV-2 as compared to the antiviral drugs already being used in the disease therapy. DehydroglyasperinC(-8.7,-8.1,-6.7,-7.1)kcal/mol, Licochalcone D(-8.4,-8.2,-7.1,-7.9) kcal/mol, Liquiritin(-8.6,-9.0,-7.2,-7.8) kcal/mol have showed energy interactions with 3Clpro better than many FDA approved repurposed drugs; Remdesvir, Favipiravir, and Hydroxychloroquine. MD Simulation also corelates our findings for molecular docking studies.
Collapse
Affiliation(s)
- Iram Iqbal Hejazi
- Deen Dayal Upadhyaya Kaushal Kendra, Jamia Millia Islamia, New Delhi, 110025, India.
| | - Md Amjad Beg
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| | - Md Ali Imam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| | - Fareeda Athar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
12
|
|
13
|
Man Q, Deng Y, Li P, Ma J, Yang Z, Yang X, Zhou Y, Yan X. Licorice Ameliorates Cisplatin-Induced Hepatotoxicity Through Antiapoptosis, Antioxidative Stress, Anti-Inflammation, and Acceleration of Metabolism. Front Pharmacol 2020; 11:563750. [PMID: 33240085 PMCID: PMC7683576 DOI: 10.3389/fphar.2020.563750] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/29/2020] [Indexed: 12/14/2022] Open
Abstract
Cisplatin (CP) is one of the most effective antitumor drugs in the clinic, but has serious adverse reactions, and its hepatotoxicity has not been fully investigated. Licorice (GC), a traditional herbal medicine, has been commonly used as a detoxifier for poisons and drugs, and may be an effective drug for CP-induced hepatotoxicity. However, its mechanism and the effector molecules remain ambiguous. Therefore, in this study, a network pharmacology and proteomics-based approach was established, and a panoramic view of the detoxification of GC on CP-induced hepatotoxicity was provided. The experimental results indicated that GC can recover functional indices and pathological liver injury, inhibit hepatocyte apoptosis, upregulate B-cell lymphoma/leukemia 2 (Bcl-2) and superoxide dismutase (SOD) levels, and downregulate cellular tumor antigen p53 (p53), caspase-3, malondialdehyde high mobility group protein B1 (HMGB1), tumor necrosis factor alpha (TNF-α), and interleukin 1β (IL-1β) levels. Proteomics indicated that GC regulates phosphatidylcholine translocator ABCB1 (ABCB1B), canalicular multispecific organic anion transporter 1 (ABCC2), cytochrome P450 4A2 (CYP4A2), cytochrome P450 1A1 (CYP1A1), cytochrome P450 1A2 (CYP1A2), estrogen receptor (ESR1), and DNA topoisomerase 2-alpha (TOP2A), inhibits oxidative stress, apoptosis, and inflammatory responses, and accelerates drug metabolism. In this study, we provide the investigation of the efficacy of GC against CP-induced hepatotoxicity, and offer a promising alternative for the clinic.
Collapse
Affiliation(s)
- Qiong Man
- School of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Yi Deng
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China.,Key Laboratory of Pharmacology and Toxicology of Traditional Chinese Medicine of Gansu Province, Lanzhou, China
| | - Pengjie Li
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jun Ma
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhijun Yang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xiujuan Yang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yan Zhou
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China.,Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiao Yan
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
14
|
Khanam R, Kumar R, Hejazi II, Shahabuddin S, Meena R, Jayant V, Kumar P, Bhat AR, Athar F. Piperazine clubbed with 2-azetidinone derivatives suppresses proliferation, migration and induces apoptosis in human cervical cancer HeLa cells through oxidative stress mediated intrinsic mitochondrial pathway. Apoptosis 2019; 23:113-131. [PMID: 29349707 DOI: 10.1007/s10495-018-1439-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Piperazine scaffolds or 2-azetidinone pharmacophores have been reported to show anti-cancer activities and apoptosis induction in different types of cancer cells. However, the mechanistic studies involve in induction of apoptosis addressing these two moieties for human cervical cancer cells remain uncertain. The present study emphasizes on the anti-proliferating properties and mechanism involved in induction of apoptosis for these structurally related azoles derivatives in HeLa cancer cells. 1-Phenylpiperazine clubbed with 2-azetidione derivatives (5a-5h) were synthesized, characterized using various spectroscopic techniques and evaluated for their in-vitro anti-proliferative activities and induction of apoptosis. Further, we also evaluated oxidative stress generated by these synthetic derivatives (5a-5h). Cell viability studies revealed that among all, the compound N-(3-chloro-2-(3-nitrophenyl)-4-oxoazetidin-1-yl)-2-(4-phenylpiperazin-1-yl) acetamide 5e remarkably inhibited the growth of HeLa cells in a concentration dependent manner having IC50 value of 29.44 ± 1.46 µg/ml. Morphological changes, colonies suppression and inhibition of migration clearly showed the antineoplasicity in HeLa cells treated with 5e. Simultaneously, phosphatidylserine externalization, DNA fragmentation and cell-cycle arrest showed ongoing apoptosis in the HeLa cancer cells induced by compound 5e in concentration dependent manner. Additionally, generation of intracellular ROS along with the decrease in mitochondrial membrane potential supported that compound 5e caused oxidative stress resulting in apoptosis through mitochondria mediated pathway. Elevation in the level of cytochrome c and upregulation in expression of caspase-3 clearly indicated the involvement of the intrinsic pathway of programmed cell death. In brief; compound 5e could serve as a promising lead for the development of an effective antitumor agent.
Collapse
Affiliation(s)
- Rashmin Khanam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Raj Kumar
- Radiation and Cancer Therapeutic Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Iram Iqbal Hejazi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Syed Shahabuddin
- Research Centre for Nano-Materials and Energy Technology (RCNMET), School of Science and Technology, Sunway University, 47500, Selangor, Malaysia
| | - Ramovatar Meena
- Radiation and Cancer Therapeutic Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Vikrant Jayant
- Radiation and Cancer Therapeutic Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Prabhat Kumar
- Radiation and Cancer Therapeutic Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Abdul Roouf Bhat
- Department of Chemistry, Sri Pratap College, Cluster University, Srinagar, 190001, India.
| | - Fareeda Athar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
15
|
Khanam R, Kumar R, Hejazi II, Shahabuddin S, Meena R, Rajamani P, Yadav N, Bhat AI, Athar F. New N-benzhydrylpiperazine/1,3,4-oxadiazoles conjugates inhibit the proliferation, migration, and induce apoptosis in HeLa cancer cells via oxidative stress-mediated mitochondrial pathway. J Cell Biochem 2019; 120:1651-1666. [PMID: 30206975 DOI: 10.1002/jcb.27472] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 07/18/2018] [Indexed: 01/24/2023]
Abstract
N-benzhydrylpiperazine and 1,3,4-oxadiazoles are pharmacologically active scaffolds which exhibits significant inhibitory growth effects against various cancer cells, however, antiproliferation effects and the underlying mechanism for inducing apoptosis for aforementioned scaffolds addressing HeLa cancer cells remains uncertain. In this study, N-benzhydrylpiperazine clubbed with 1,3,4-oxadiazoles (4a-4h) were synthesized, subsequently characterized using high resolution spectroscopic techniques and eventually evaluated for their antiproliferation potential by inducing apoptosis in HeLa cancer cells. The MTT assay screening results revealed that among all, compound 4d ( N-benzhydryl-4-((5-(4-aminophenyl)-1,3,4-oxadiazol-2-yl)methyl)piperazine) in particular, exhibited IC 50 value of 28.13 ± 0.21 μg/mL and significantly inhibited the proliferation of HeLa cancer cells in concentration-dependent manner. The in vitro anticancer assays for treated HeLa cells resulted in alterations in the cell morphology, reduction in colony formation, and inhibition of cell migration in concentration-dependent treatment. Furthermore, G2/M phase arrest, variations in the nuclear morphology, degradation of chromosomal DNA confirmed the ongoing apoptosis in treated HeLa cells. Increase in the expression of cytochrome C and caspase-3 confirmed the involvement of intrinsic mitochondrial pathway regulating the cell death. Also, elevation in reactive oxygen species level and loss of mitochondrial membrane potential signified that compound 4d induced apoptosis in HeLa cells by generating the oxidative stress. Therefore, compound 4d may act as a potent chemotherapeutic agent against human cervical cancer.
Collapse
Affiliation(s)
- Rashmin Khanam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Raj Kumar
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Iram Iqbal Hejazi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Syed Shahabuddin
- Research Centre for Nano-Materials and Energy Technology (RCNMET), School of Science and Technology, Sunway University, Selangor, Malaysia
| | - Ramovatar Meena
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Paulraj Rajamani
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Nitin Yadav
- Department of Chemistry, Indian Institute of Technology, New Delhi, India
| | - Asif Iqbal Bhat
- Department of Chemistry, Sri Pratap College, Cluster University, Srinagar, India
| | - Fareeda Athar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
16
|
Khanam R, Hejazi II, Shahabuddin S, Bhat AR, Athar F. Pharmacokinetic evaluation, molecular docking and in vitro biological evaluation of 1, 3, 4-oxadiazole derivatives as potent antioxidants and STAT3 inhibitors. J Pharm Anal 2018; 9:133-141. [PMID: 31011470 PMCID: PMC6460303 DOI: 10.1016/j.jpha.2018.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 12/01/2018] [Accepted: 12/04/2018] [Indexed: 02/06/2023] Open
Abstract
1, 3, 4-Oxadiazole derivatives (4a–5f) were previously synthesized to investigate their anticancer properties. However, studies relating to their antioxidant potential and signal transducer and activator of transcription (STAT) inhibition have not been performed. We investigated previously synthesized 1, 3, 4-oxadiazole derivatives (4a–5f) for various radical scavenging properties using several in vitro antioxidant assays and also for direct inhibition of STAT3 through molecular docking. The data obtained from various antioxidant assays such as 2, 2,-diphenyl-1-picrylhydrazyl radical (DPPH), nitric oxide, hydrogen peroxide, and superoxide anion radical revealed that among all the derivatives, compound 5e displayed high antioxidant activities than the standard antioxidant L-ascorbic acid. Additionally, the total reduction assay and antioxidant capacity assay further confirmed the antioxidant potential of compound 5e. Furthermore, the molecular docking studies performed for all derivatives along with the standard inhibitor STX-0119 showed that binding energy released in direct binding with the SH2 domain of STAT3 was the highest for compound 5e (-9.91kcal/mol). Through virtual screening, compound 5e was found to exhibit optimum competency in inhibiting STAT3 activity. Compound 5e decreased the activation of STAT3 as observed with Western blot. In brief, compound 5e was identified as a potent antioxidant agent and STAT3 inhibitor and effective agent for cancer treatment.
Collapse
Affiliation(s)
- Rashmin Khanam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Iram I Hejazi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Syed Shahabuddin
- Research Centre for Nano-Materials and Energy Technology (RCNMET), School of Science and Technology, Sunway University, 47500 Selangor, Malaysia
| | - Abdul R Bhat
- Department of Chemistry, Sri Pratap College, Cluster University, Srinagar 190001, India
| | - Fareeda Athar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
17
|
Martin BR, Reshamwala G, Short M. Treatment of a Woman With Glycyrrhiza glabra for Acute Sinusitis: A Case Report. J Chiropr Med 2018; 17:268-274. [PMID: 30846920 PMCID: PMC6391234 DOI: 10.1016/j.jcm.2018.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 03/29/2018] [Accepted: 04/02/2018] [Indexed: 11/18/2022] Open
Abstract
Objective Clinical Features Intervention and Outcome Conclusion
Collapse
Affiliation(s)
- Brett R. Martin
- Corresponding author: Brett R. Martin DC, MSAc, MPH, 6698 68th Avenue N, Pinellas Park, FL 33781. Tel.: +1 630 254 4804.
| | | | | |
Collapse
|
18
|
Anushiravani M, Bakhshaee M, Taghipour A, Mehri MR. Comparison of the therapeutic effect of the Persian Medicine Protocol with the common treatment of chronic rhinosinusitis: a randomized clinical trial. Electron Physician 2018; 10:7017-7027. [PMID: 30128092 PMCID: PMC6092137 DOI: 10.19082/7017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/29/2017] [Indexed: 01/18/2023] Open
Abstract
Background Chronic rhinosinusitis is one of the most common diseases affecting the quality of life of patients. Patients suffer from high costs in the diagnosis and treatment of the disease. Frequent recurrence and failure of therapeutic protocols are among the most important issues in the management of this disease. In view of this, the use of traditional and complementary therapies to promote the treatment of this disease has been increasingly taken into account. Objective Comparison of the effectiveness of the Persian Medicine Protocol with the conventional therapy in the treatment of chronic rhinosinusitis. Methods A randomized clinical trial was conducted at Imam Reza Hospital in Mashhad, Iran from July 2016 to March 2017. For patients with chronic rhinosinusitis symptoms, endoscopy of the sinuses was performed by an ENT specialist and in the case of negative endoscopy, paranasal sinus CT scan was requested. A total of 42 patients with chronic rhinosinusitis were randomly assigned to two groups. The first group (classical) received systemic and intranasal cortisone, and the second group (traditional) received a therapeutic Persian medicine protocol including intranasal lavender oil, and Liquorice Marjoram Tea (L. M. tea) for six weeks. The symptoms of the patients were evaluated using the SNOT-22 questionnaire at the beginning of the study and at the sixth week. If no improvement occurs, treatment continued for 12 weeks. Data were analyzed by SPSS version 16, using ANOVA, independent-samples and paired-samples t-test, Wilcoxon signed-rank test, and simple linear regression. Results In 20 patients in the traditional group, the decrease in SNOT score was observed as 56% after 6 weeks treatment (p=0.001), which is similar to the effect of the first group (classical). Although there was no statically significant difference between the two groups, in clinical terms, the difference in mean systemic symptoms such as confusion with 1.05 (p=0.5) and fatigue with 1.63 (p=0.01) had more improvement in the traditional group, and the difference in mean local symptoms such as nasal congestion with 2.37 (p=0.78) and runny nose with 1.95 (p=0.14) had a more decrease in the classical group. Conclusion The results of this trial indicate the effectiveness of the Persian Medicine Protocol (including Lavender oil and L.M tea) in the treatment of chronic rhinosinusitis, especially on improving systemic symptoms. Nevertheless more clinical studies are necessary to support the acquired results. Trial registration This trial was registered at the Iranian Center for Clinical Trials (ID: IRCT2015112425217N1). Funding This research is part of a PhD thesis and is funded by the Vice-Chancellor for Research at Mashhad University of Medical Sciences, Grant No. 931673.
Collapse
Affiliation(s)
- Majid Anushiravani
- MD. Ph.D. of Persian Medicine, Assistant Professor, Department of Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Bakhshaee
- MD. Associate Professor, Sinus and Surgical Endoscopic Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Taghipour
- MD. PhD in Epidemiology, Associate Professor, Department of Epidemiology and Biostatistics, School of Health, Social Determinants of Health Research, Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Mehri
- MD. PhD of Persian Medicine, Student Research Committee, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
19
|
Ahmad K, Hafeez ZB, Bhat AR, Rizvi MA, Thakur SC, Azam A, Athar F. Antioxidant and apoptotic effects of Callistemon lanceolatus leaves and their compounds against human cancer cells. Biomed Pharmacother 2018; 106:1195-1209. [PMID: 30119188 DOI: 10.1016/j.biopha.2018.07.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 07/02/2018] [Accepted: 07/02/2018] [Indexed: 12/24/2022] Open
Abstract
Callistemon lanceolatus (Myrtaceae) has been utilized in folk medicine and its pharmacological properties are widely studied. Phytochemicals are effectively recognized as bases of pharmacologically potent drugs for the development of anticancer therapeutics. The free radical scavenging potential of numerous extracts of C. lanceolatus leaves, Hexane leaf extract (HLE), Chloroform leaf extract (CLE), Ethyl acetate leaf extract (ELE), Methanol leaf extract (MLE), and Aqueous leaf extract (ALE)) were determined by Biochemical assay. We evaluated the anticancer activity of C. lanceolatus leaves extracts against different human cancer cell lines viz liver cancer cells (HepG2), breast cancer cells (MCF7), and normal human embryonic kidney (HEK 293) cell line. The ELE and MLE extracts of C. lanceolatus leaves showed potential antiproliferative effects on HepG2 cells. On the basis of free radical scavenging potential and cytotoxicity studies, ELE and MLE extracts of C. lanceolatus leaves are further evaluated in detail for numerous biological activities. ELE and MLE extracts reduced the cell growth, ROS generation, lowering the potential of cell migration and inhibits the metastatic activity in HepG2 cell lines. ELE and MLE extracts treated HepG2 cells showed down-regulation of STAT3 and up-regulation of p53 and inhibition of cdk2 and cyclin A activity. Phytochemicals analysis have shown that the ELE and MLE possess some anticancer compounds like 4-Fluoro-2-trifluoromethylbenzoic acid, neopentyl ester; fumaric acid, di(pent-4-en-2-yl) ester; 2,3-Dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one and 2-Furancarboxaldehyde,5-(hydroxymethyl). Molecular docking results demonstrate that interactions of compounds present in ELE and MLE extracts with the SH2 domain of STAT3, might be responsible for their inhibitory effects. We have further concluded that the ELE and MLE extracts of C. lanceolatus arrests the cells at S and G2/M phase and subsequently induced cell death by regulating the DNA damage in HepG2 cells.
Collapse
Affiliation(s)
- Kamal Ahmad
- Centre for Interdisciplinary Research in Basic Sciences (CIRBSc), Jamia Millia Islamia, New Delhi, 110025, India
| | | | - Abdul Roof Bhat
- Department of Chemistry, Sripartap College, Srinagar, Jammu and Kashmir, 190001, India
| | | | - Sonu C Thakur
- Centre for Interdisciplinary Research in Basic Sciences (CIRBSc), Jamia Millia Islamia, New Delhi, 110025, India
| | - Amir Azam
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Fareeda Athar
- Centre for Interdisciplinary Research in Basic Sciences (CIRBSc), Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
20
|
Hejazi II, Khanam R, Mehdi SH, Bhat AR, Rizvi MMA, Thakur SC, Athar F. Antioxidative and anti-proliferative potential of Curculigo orchioides Gaertn in oxidative stress induced cytotoxicity: In vitro, ex vivo and in silico studies. Food Chem Toxicol 2018; 115:244-259. [PMID: 29545143 DOI: 10.1016/j.fct.2018.03.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 02/14/2018] [Accepted: 03/10/2018] [Indexed: 02/07/2023]
Abstract
Plant phytoconstituents have been a valuable source of clinically important anticancer agents. Antioxidant and anticancerous activity of plant Curculigo orchioides Gaertn were explored In vitro antioxidant activity, antioxidant enzyme activity of oxidatively stressed tissue, and cell culture studies on human cancer cell lines HepG2, HeLa and MCF-7 were carried out. Active plant fractions were subjected to GC-MS analysis and compounds selected on the basis of their abundance were screened in silico with the help of Auto Dock 4.2 tools with pre-selected antioxidant enzymes. Curculigo orchioides Gaertn plant fractions exhibited significant antioxidant activities by virtue of scavenging of free radicals having IC50 value of ethylacetate fraction (EA) for DPPH radical scavenging assay to be 52.93 ± 0.66 μg/ml. Further, antioxidant enzyme defense of mammalian tissue when treated with plant fractions revealed that enzyme concentrations were refurbished which were increased during oxidative stress. MTT assay on cell lines HepG2, HeLa and MCF-7 presented IC50 values of ethylacetate (EA) fraction as 171.23 ± 2.1 μg/ml, 144.80 ± 1.08 μg/ml and 153.51 μg/ml and aqueous ethylacetate (AEA) fraction as 133.44 ± 1.1 μg/ml, 136.50 ± 0.8 μg/ml and 145.09 μg/ml respectively. Further EA and AEA plant fractions down regulated the levels of antiapoptotic Bcl-2 expression and upregulated the expression of apoptotic proteins caspase-3 and caspase-8 through an intrinsic ROS-mediated mitochondrial dysfunction pathway. KEY MESSAGE Key findings explained that fractions of Curculigo orchioides Gaertn inhibited oxidative stress by increasing the antioxidant enzyme content and have anticancerous potential on cancer cell lines HepG2, HeLa and MCF-7.
Collapse
Affiliation(s)
- Iram Iqbal Hejazi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, India.
| | - Rashmin Khanam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, India.
| | | | | | | | - Sonu Chand Thakur
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, India.
| | - Fareeda Athar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, India.
| |
Collapse
|