1
|
Cai S, Liu T, Zhao J, Liu R, Yao L, Wei R, Liu H, Guo J, Li B. Blocking MSI2 alleviated radiation-induced pulmonary fibrosis through inhibiting epithelial-mesenchymal transition. Int J Radiat Biol 2025; 101:475-486. [PMID: 40227576 DOI: 10.1080/09553002.2025.2451617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 04/15/2025]
Abstract
PURPOSE Ionizing radiation (IR) has been shown to induce epithelial-mesenchymal transition (EMT) of alveolar epithelial cells (AECs), which is a critical cause of radiation-induced pulmonary fibrosis (RIPF). In this study, we investigated the role and molecular mechanisms of musashi2 (MSI2), an RNA-binding protein, in IR-induced EMT of AECs for aiming at potential therapeutic strategies to prevent RIPF. MATERIALS AND METHODS Changes in the expression levels of MSI2 and EMT markers (E-cadherin, N-cadherin, and Vimentin) induced by IR in AECs were detected by western blot (WB). Then, the effect of MSI2 on IR-induced EMT of AECs was investigated by observing morphological changes and detecting expression of MSI2 and EMT markers by WB and immunofluorescence (IF). RNA-Seq analysis, WB and RT-qPCR were used to identify the targets of MSI2. RESULTS We observed that IR could cause a significant increase of MSI2 protein expression, a down-regulation of E-cadherin and an up-regulation of Vimentin and N-cadherin in AECs (MLE-12 and RLE-6TN cells). We also revealed that MSI2 was involved in regulating the alteration of morphology and EMT-related markers in AECs after irradiation, suggesting the occurrence of EMT regulated by MSI2. Moreover, we found the mechanism of MSI2 participating in EMT by regulating the expression of transcription factor ZEB1, acting as a downstream target of MSI2 in IR-induced EMT of AECs. CONCLUSIONS Our study unveils the critical role of MSI2 in IR-induced EMT of AECs and preliminarily elucidates its molecular mechanisms, providing new insights into the process of IR-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Shanlin Cai
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
- Department of Special Medical services, General Hospital of Central Theater Command, Wuhan, Hubei, China
| | - Tingting Liu
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Jianpeng Zhao
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Ruling Liu
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Liuhuan Yao
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Rongbing Wei
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Hu Liu
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Jiaming Guo
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Bailong Li
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| |
Collapse
|
2
|
Li J, Huang N, Zhang X, Wang H, Chen J, Wei Q. Functional analysis of yak alveolar type II epithelial cells at high and low altitudes based on single-cell sequencing. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119889. [PMID: 39681250 DOI: 10.1016/j.bbamcr.2024.119889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/28/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024]
Abstract
The adaptation of lung cells to high-altitude environments represents a notable gap in our understanding of how animals cope with hypoxic conditions. Alveolar epithelial cells type II (AEC II) are crucial for lung development and repair. However, their, specific role in the adaptation of yaks to high-altitude environments remains unclear. In this study, we aimed to address this gap by investigating the differential responses of AEC II in yaks at high and low altitudes (4000 m and 2600 m, respectively). We used the 10 × scRNA-seq technology to construct a comprehensive cell atlas of yak lung tissue, and identified 15 distinct cell classes. AEC II in high-altitude yaks revealed increased immunomodulatory, adhesive, and metabolic activities, which are crucial for maintaining lung tissue stability and energy supply under hypoxic conditions. Furthermore, alveolar epithelial progenitor cells within AEC II can differentiate into both Alveolar epithelial cell type I (AEC I) and AEC II. SHIP1 and other factors are promoters of AEC I transdifferentiation, whereas SFTPC and others promote AEC II transdifferentiation. This study provides new insights into the evolutionary adaptation of lung cells in plateau animals by elucidating the molecular mechanisms underlying AEC II adaptation to high-altitude environments.
Collapse
Affiliation(s)
- Jingyi Li
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Nating Huang
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Xun Zhang
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Huizhen Wang
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Jiarui Chen
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Qing Wei
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China.
| |
Collapse
|
3
|
Shi Z, Zhou M, Zhai J, Sun J, Wang X. Novel therapeutic strategies and drugs for idiopathic pulmonary fibrosis. Arch Pharm (Weinheim) 2024; 357:e2400192. [PMID: 38961537 DOI: 10.1002/ardp.202400192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 07/05/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung disease of unknown etiology. Currently, drugs used to treat IPF in clinical practice exhibit severe side effects and limitations. To address these issues, this paper discusses the therapeutic effects of preclinical targeted drugs (such as STAT3 and TGF-β/Smad pathway inhibitors, chitinase inhibitors, PI3K and phosphodiesterase inhibitors, etc.) and natural products on IPF. Through a summary of current research progress, it is found that natural products possess multitarget effects, stable therapeutic efficacy, low side effects, and nondrug dependence. Furthermore, we discuss the significant prospects of natural product molecules in combating fibrosis by influencing the immune system, expecting that current analytical data will aid in the development of new drugs or the investigation of active ingredients in natural products for potential IPF treatments in the future.
Collapse
Affiliation(s)
- Zezhou Shi
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan, China
| | - Min Zhou
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan, China
| | - Jingfang Zhai
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan, China
| | - Jie Sun
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan, China
| | - Xiaojing Wang
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan, China
| |
Collapse
|
4
|
Guo L, Yue M, Ma C, Wang Y, Hou J, Li H. Baicalin reduces inflammation to inhibit lung cancer via targeting SOCS1/NF-κB/STAT3 axis. Heliyon 2024; 10:e29361. [PMID: 38628726 PMCID: PMC11019232 DOI: 10.1016/j.heliyon.2024.e29361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/19/2024] Open
Abstract
Inflammation affects several aspects of lung cancer progression including cell proliferation, metastasis, apoptosis, angiogenesis, and drug resistance. Baicalin, an active component of Scutellaria baicalensis Georgi, exhibits anticancer activity in various cancers. However, the effects of baicalin on lung cancer and the underlying molecular mechanisms remain largely unknown. This study is to explore the effect and mechanism of baicalin on lung cancer cell A549 and urethane-induced mouse lung cancer. A cell viability assay, colony formation assay, wound healing assay, acridine orange/ethidium bromide (AO/EB) staining assay, Western blot assay, urethane-induced mouse lung cancer model, hematoxylin and eosin (HE) staining, immunohistochemistry (IHC), and ELISA assay were performed to investigate the effects of baicalin on lung cancer in vitro and in vivo. Network pharmacology analysis, molecular docking, gene silencing assays, and LPS-induced inflammation model were utilized to explore the molecular mechanisms underlying the effect of baicalin on lung cancer. Baicalin showed significant anti-proliferative, anti-migratory, anti-inflammatory and pro-apoptotic effects in vitro; it also inhibited the progression of urethane-induced mouse lung cancer in vivo. Mechanistically, suppressor of cytokine signaling 1 (SOCS1) was the key determinant for baicalin-induced inhibition of lung cancer. Baicalin increased SOCS1 expression to inactivate the NF-κB/STAT3 pathway to inhibit lung cancer in vitro and in vivo. Taken together, baicalin reduces inflammation to inhibit lung cancer via targeting SOCS1/NF-κB/STAT3 axis, providing a prospective compound and novel target for lung cancer treatment.
Collapse
Affiliation(s)
| | | | - Chengyuan Ma
- School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Yunjing Wang
- School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Jiejie Hou
- School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Hong Li
- School of Pharmacy, Henan University, Kaifeng, 475004, China
| |
Collapse
|
5
|
Yan Z, Shi Y, Yang R, Xue J, Fu C. ELABELA-derived peptide ELA13 attenuates kidney fibrosis by inhibiting the Smad and ERK signaling pathways. J Zhejiang Univ Sci B 2024; 25:341-353. [PMID: 38584095 PMCID: PMC11009446 DOI: 10.1631/jzus.b2300033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/13/2023] [Indexed: 04/09/2024]
Abstract
Kidney fibrosis is an inevitable result of various chronic kidney diseases (CKDs) and significantly contributes to end-stage renal failure. Currently, there is no specific treatment available for renal fibrosis. ELA13 (amino acid sequence: RRCMPLHSRVPFP) is a conserved region of ELABELA in all vertebrates; however, its biological activity has been very little studied. In the present study, we evaluated the therapeutic effect of ELA13 on transforming growth factor-β1 (TGF-β1)-treated NRK-52E cells and unilateral ureteral occlusion (UUO) mice. Our results demonstrated that ELA13 could improve renal function by reducing creatinine and urea nitrogen content in serum, and reduce the expression of fibrosis biomarkers confirmed by Masson staining, immunohistochemistry, real-time polymerase chain reaction (RT-PCR), and western blot. Inflammation biomarkers were increased after UUO and decreased by administration of ELA13. Furthermore, we found that the levels of essential molecules in the mothers against decapentaplegic (Smad) and extracellular signal-regulated kinase (ERK) pathways were reduced by ELA13 treatment in vivo and in vitro. In conclusion, ELA13 protected against kidney fibrosis through inhibiting the Smad and ERK signaling pathways and could thus be a promising candidate for anti-renal fibrosis treatment.
Collapse
Affiliation(s)
- Zhibin Yan
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ying Shi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Runling Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Jijun Xue
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Caiyun Fu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
6
|
Kim SY, Park S, Cui R, Lee H, Choi H, Farh MEA, Jo HI, Lee JH, Song HJ, Lee YJ, Lee YS, Lee BY, Cho J. NXC736 Attenuates Radiation-Induced Lung Fibrosis via Regulating NLRP3/IL-1β Signaling Pathway. Int J Mol Sci 2023; 24:16265. [PMID: 38003456 PMCID: PMC10671169 DOI: 10.3390/ijms242216265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Radiation-induced lung fibrosis (RILF) is a common complication of radiotherapy in lung cancer. However, to date no effective treatment has been developed for this condition. NXC736 is a novel small-molecule compound that inhibits NLRP3, but its effect on RILF is unknown. NLRP3 activation is an important trigger for the development of RILF. Thus, we aimed to evaluate the therapeutic effect of NXC736 on lung fibrosis inhibition using a RILF animal model and to elucidate its molecular signaling pathway. The left lungs of mice were irradiated with a single dose of 75 Gy. We observed that NXC736 treatment inhibited collagen deposition and inflammatory cell infiltration in irradiated mouse lung tissues. The damaged lung volume, evaluated by magnetic resonance imaging, was lower in NXC736-treated mice than in irradiated mice. NXC736-treated mice exhibited significant changes in lung function parameters. NXC736 inhibited inflammasome activation by interfering with the NLRP3-ASC-cleaved caspase-1 interaction, thereby reducing the expression of IL-1β and blocking the fibrotic pathway. In addition, NXC736 treatment reduced the expression of epithelial-mesenchymal transition markers such as α-SMA, vimentin, and twist by blocking the Smad 2,3,4 signaling pathway. These data suggested that NXC736 is a potent therapeutic agent against RILF.
Collapse
Affiliation(s)
- Sang Yeon Kim
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sunjoo Park
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Ronglan Cui
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hajeong Lee
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hojung Choi
- Nextgen Bioscience, Bundang-gu, Seongnam-si 13487, Gyeonggi-do, Republic of Korea
| | - Mohamed El-Agamy Farh
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hai In Jo
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jae Hee Lee
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hyo Jeong Song
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Yoon-Jin Lee
- Korea Institute of Radiological and Medical Science, Seoul 01812, Republic of Korea
| | - Yun-Sil Lee
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Bong Yong Lee
- Nextgen Bioscience, Bundang-gu, Seongnam-si 13487, Gyeonggi-do, Republic of Korea
| | - Jaeho Cho
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
7
|
Qin S, Tan P, Xie J, Zhou Y, Zhao J. A systematic review of the research progress of traditional Chinese medicine against pulmonary fibrosis: from a pharmacological perspective. Chin Med 2023; 18:96. [PMID: 37537605 PMCID: PMC10398979 DOI: 10.1186/s13020-023-00797-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023] Open
Abstract
Pulmonary fibrosis is a chronic progressive interstitial lung disease caused by a variety of etiologies. The disease can eventually lead to irreversible damage to the lung tissue structure, severely affecting respiratory function and posing a serious threat to human health. Currently, glucocorticoids and immunosuppressants are the main drugs used in the clinical treatment of pulmonary fibrosis, but their efficacy is limited and they can cause serious adverse effects. Traditional Chinese medicines have important research value and potential for clinical application in anti-pulmonary fibrosis. In recent years, more and more scientific researches have been conducted on the use of traditional Chinese medicine to improve or reduce pulmonary fibrosis, and some important breakthroughs have been made. This review paper systematically summarized the research progress of pharmacological mechanism of traditional Chinese medicines and their active compounds in improving or reducing pulmonary fibrosis. We conducted a systematic search in several main scientific databases, including PubMed, Web of Science, and Google Scholar, using keywords such as idiopathic pulmonary fibrosis, pulmonary fibrosis, interstitial pneumonia, natural products, herbal medicine, and therapeutic methods. Ultimately, 252 articles were included and systematically evaluated in this analysis. The anti-fibrotic mechanisms of these traditional Chinese medicine studies can be roughly categorized into 5 main aspects, including inhibition of epithelial-mesenchymal transition, anti-inflammatory and antioxidant effects, improvement of extracellular matrix deposition, mediation of apoptosis and autophagy, and inhibition of endoplasmic reticulum stress. The purpose of this article is to provide pharmaceutical researchers with information on the progress of scientific research on improving or reducing Pulmonary fibrosis with traditional Chinese medicine, and to provide reference for further pharmacological research.
Collapse
Affiliation(s)
- Shanbo Qin
- Key Laboratory of Biological Evaluation of TCM Quality of State Administration of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China
| | - Peng Tan
- Key Laboratory of Biological Evaluation of TCM Quality of State Administration of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China.
| | - Junjie Xie
- Key Laboratory of Biological Evaluation of TCM Quality of State Administration of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China
| | - Yongfeng Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Junning Zhao
- Key Laboratory of Biological Evaluation of TCM Quality of State Administration of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China.
| |
Collapse
|
8
|
Ba X, Wang H, Huang Y, Yan J, Han L, Lin W, Shen P, Huang Y, Yang S, Qin K, Tu S, Chen Z. Simiao pill attenuates collagen-induced arthritis and bleomycin-induced pulmonary fibrosis in mice by suppressing the JAK2/STAT3 and TGF-β/Smad2/3 signalling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116274. [PMID: 36841380 DOI: 10.1016/j.jep.2023.116274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/03/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHAMACOLOGICAL RELEVANCE Simiao Pill (SM) as a classic prescription of traditional Chinese medicine treatment of damp-heat arthralgia, the earliest from 'Cheng Fan Bian Du ', written by the Qing Dynasty doctor Zhang Bingcheng. Previous studies have shown that SM has obvious curative effect on rheumatoid arthritis, which provides a basis for the application of SM in rheumatoid arthritis related complications. AIM OF THE STUDY Interstitial lung disease (ILD), as the most severe complication of rheumatoid arthritis (RA), lacks effective clinical treatments and a corresponding animal model. Simiao pill (SM) is a traditional Chinese medicine prescription extensively used as a complementary and alternative treatment for RA. However, the effect and mechanism of SM on RA-ILD have not yet been reported. This study aimed to investigate an appropriate animal model that can simulate RA-ILD, and the efficacy, safety, and mechanism of SM on RA-ILD. METHODS Collagen-induced arthritis (CIA) and bleomycin-induced pulmonary fibrosis model were combined to construct the CIA-BLM model. After the intervention of SM, the protective effects of SM on RA-ILD were determined by detecting the CIA mouse arthritis index (AI), Spleen index, and the extent of pulmonary fibrosis. The joint inflammation and pulmonary fibrosis were detected by immunohistochemistry, H&E staining, safranin- O fast green Sirius red staining, trap staining, and Masson staining. Finally, the mechanism was verified by Western blot and immunohistochemistry. RESULTS Our work showed that SM significantly reduced joint swelling, arthritis index, pulmonary fibrosis score, and spleen index in CIA mice. The pathological examination results indicated Si-Miao Pill suppressed inflammation, pulmonary fibrosis, bone erosion, and cartilage degradation of the ankle joint. Besides, SM up-regulated expressions of E-cadherin, whereas down-regulated expressions of α-SMA. Further studies confirmed that SM regulated JAK2/STAT3 and TGF-β/SMAD2/3. CONCLUSION SM can not only effectively improve joint inflammation by JAK2/STAT3 Pathway but also inhibit pulmonary fibrosis by TGF-β/SMAD2/3. The fibrosis induced by CIA-BLM model was more stable and obvious than that induced by CIA model alone.
Collapse
Affiliation(s)
- Xin Ba
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Wang
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yao Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - JiaHui Yan
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Han
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - WeiJi Lin
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Shen
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - SiSi Yang
- Division of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Qin
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - ShengHao Tu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhe Chen
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
9
|
Yang F, Du W, Tang Z, Wei Y, Dong J. Protective effects of Qing-Re-Huo-Xue formula on bleomycin-induced pulmonary fibrosis through the p53/IGFBP3 pathway. Chin Med 2023; 18:33. [PMID: 36997948 PMCID: PMC10061820 DOI: 10.1186/s13020-023-00730-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 02/22/2023] [Indexed: 03/31/2023] Open
Abstract
Abstract
Background
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive fibrosing lung disease with high mortality. Inflammation and epithelial mesenchymal transformation (EMT) may play an important role in the occurrence and development of IPF. Qing-Re-Huo-Xue formula (QRHXF) has been used clinically by our team for half a century and has obvious therapeutic effects on lung disease. Nevertheless, the role and mechanism of QRHXF in the treatment of IPF have never been studied.
Methods
A mouse pulmonary fibrosis model was established by intratracheal injection of BLM. The effects of QRHXF on the treatment of pulmonary fibrosis were studied by pulmonary function testing, imaging examination, pathological staining, transmission electron microscopy (TEM) observation and mRNA expression. Tandem mass tag (TMT)-based quantitative proteomics was carried out to analyse the lung protein expression profiles between the control (CTL), bleomycin (BLM) and QRHXF (BLM + QRHXF) groups. Immunohistochemistry and qRT-PCR were used to verify the possible existence of drug target proteins and signalling pathways.
Results
The results of pulmonary function, lung pathology and imaging examinations showed that QRHXF could significantly alleviate BLM-induced pulmonary fibrosis in vivo. Additionally, inflammatory cell infiltration and EMT were markedly reduced in BLM-induced PF mice administered QRHXF. Proteomics detected a total of 35 proteins, of which 17 were upregulated and 18 were downregulated. A total of 19 differentially expressed proteins (DEPs) overlapped between the BLM versus CTL groups and the BLM + QRHXF versus BLM groups. The expression of p53 and IGFBP3 was reversed in the QRHXF intervention group, which was verified by immunohistochemistry and qRT-PCR.
Conclusions
QRHXF attenuated BLM-induced pulmonary fibrosis, and regulation of the p53/IGFBP3 pathway might be associated with its efficacy, which holds promise as a novel treatment strategy for pulmonary fibrosis patients.
Graphical Abstract
Collapse
|
10
|
Song S, Ding L, Liu G, Chen T, Zhao M, Li X, Li M, Qi H, Chen J, Wang Z, Wang Y, Ma J, Wang Q, Li X, Wang Z. The protective effects of baicalin for respiratory diseases: an update and future perspectives. Front Pharmacol 2023; 14:1129817. [PMID: 37007037 PMCID: PMC10060540 DOI: 10.3389/fphar.2023.1129817] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/13/2023] [Indexed: 03/17/2023] Open
Abstract
Background: Respiratory diseases are common and frequent diseases. Due to the high pathogenicity and side effects of respiratory diseases, the discovery of new strategies for drug treatment is a hot area of research. Scutellaria baicalensis Georgi (SBG) has been used as a medicinal herb in China for over 2000 years. Baicalin (BA) is a flavonoid active ingredient extracted from SBG that BA has been found to exert various pharmacological effects against respiratory diseases. However, there is no comprehensive review of the mechanism of the effects of BA in treating respiratory diseases. This review aims to summarize the current pharmacokinetics of BA, baicalin-loaded nano-delivery system, and its molecular mechanisms and therapeutical effects for treating respiratory diseases.Method: This review reviewed databases such as PubMed, NCBI, and Web of Science from their inception to 13 December 2022, in which literature was related to “baicalin”, “Scutellaria baicalensis Georgi”, “COVID-19”, “acute lung injury”, “pulmonary arterial hypertension”, “asthma”, “chronic obstructive pulmonary disease”, “pulmonary fibrosis”, “lung cancer”, “pharmacokinetics”, “liposomes”, “nano-emulsions”, “micelles”, “phospholipid complexes”, “solid dispersions”, “inclusion complexes”, and other terms.Result: The pharmacokinetics of BA involves mainly gastrointestinal hydrolysis, the enteroglycoside cycle, multiple metabolic pathways, and excretion in bile and urine. Due to the poor bioavailability and solubility of BA, liposomes, nano-emulsions, micelles, phospholipid complexes, solid dispersions, and inclusion complexes of BA have been developed to improve its bioavailability, lung targeting, and solubility. BA exerts potent effects mainly by mediating upstream oxidative stress, inflammation, apoptosis, and immune response pathways. It regulates are the NF-κB, PI3K/AKT, TGF-β/Smad, Nrf2/HO-1, and ERK/GSK3β pathways.Conclusion: This review presents comprehensive information on BA about pharmacokinetics, baicalin-loaded nano-delivery system, and its therapeutic effects and potential pharmacological mechanisms in respiratory diseases. The available studies suggest that BA has excellent possible treatment of respiratory diseases and is worthy of further investigation and development.
Collapse
Affiliation(s)
- Siyu Song
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Lu Ding
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Guangwen Liu
- GCP Department, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Tian Chen
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Meiru Zhao
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xueyan Li
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Min Li
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Hongyu Qi
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jinjin Chen
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Ziyuan Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Ying Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jing Ma
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Qi Wang
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xiangyan Li
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
- *Correspondence: Xiangyan Li, ; Zeyu Wang,
| | - Zeyu Wang
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
- *Correspondence: Xiangyan Li, ; Zeyu Wang,
| |
Collapse
|
11
|
Liu HJ, Miao H, Yang JZ, Liu F, Cao G, Zhao YY. Deciphering the role of lipoproteins and lipid metabolic alterations in ageing and ageing-associated renal fibrosis. Ageing Res Rev 2023; 85:101861. [PMID: 36693450 DOI: 10.1016/j.arr.2023.101861] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/07/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
Fibrosis is the ultimate pathological feature of many chronic diseases, and ageing a major risk factor for fibrotic diseases. Current therapies are limited to those that reduce the rate of functional decline in patients with mild to moderate disease, but few interventions are available to specifically target the pathogenesis of fibrosis. In this context, new treatments that can significantly improve survival time and quality of life for these patients are urgently needed. In this review, we outline both the synthesis and metabolism of lipids and lipoproteins associated with ageing-associated renal fibrosis and the prominent contribution of lipids and lipidomics in the discovery of biomarkers that can be used for the prevention, diagnosis, and treatment of renal ageing and fibrosis. Next, we describe the effect of dyslipidaemia on ageing-related renal fibrosis and the pathophysiological changes in the kidney caused by dyslipidaemia. We then summarize the enzymes, transporters, transcription factors, and RNAs that contribute to dysregulated lipid metabolism in renal fibrosis and discuss their role in renal fibrosis in detail. We conclude by discussing the progress in research on small molecule therapeutic agents that prevent and treat ageing and ageing-associated renal fibrosis by modulating lipid metabolism. A growing number of studies suggest that restoring aberrant lipid metabolism may be a novel and promising therapeutic strategy to combat ageing and ageing-associated renal fibrosis.
Collapse
Affiliation(s)
- Hong-Jiao Liu
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China
| | - Hua Miao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China
| | - Jun-Zheng Yang
- Guangdong Nephrotic Drug Engineering Technology Research Center, Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, No. 71 Dongpeng Avenue, Guangzhou, Guangdong 510530, China
| | - Fei Liu
- Department of Urology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 South of Panjiayuan, Beijing 100021, China.
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China.
| | - Ying-Yong Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China.
| |
Collapse
|
12
|
Wang D, Li Y. Pharmacological effects of baicalin in lung diseases. Front Pharmacol 2023; 14:1188202. [PMID: 37168996 PMCID: PMC10164968 DOI: 10.3389/fphar.2023.1188202] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/10/2023] [Indexed: 05/13/2023] Open
Abstract
The flavonoids baicalin and baicalein were discovered in the root of Scutellaria baicalensis Georgi and are primarily used in traditional Chinese medicine, herbal supplements and healthcare. Recently, accumulated investigations have demonstrated the therapeutic benefits of baicalin in treating various lung diseases due to its antioxidant, anti-inflammatory, immunomodulatory, antiapoptotic, anticancer, and antiviral effects. In this review, the PubMed database and ClinicalTrials website were searched with the search string "baicalin" and "lung" for articles published between September 1970 and March 2023. We summarized the therapeutic role that baicalin plays in a variety of lung diseases, such as chronic obstructive pulmonary disease, asthma, pulmonary fibrosis, pulmonary hypertension, pulmonary infections, acute lung injury/acute respiratory distress syndrome, and lung cancer. We also discussed the underlying mechanisms of baicalin targeting in these lung diseases.
Collapse
Affiliation(s)
- Duoning Wang
- Chengdu Hi-tech Nanxili Jiuzheng Clinic, Chengdu, Sichuan, China
| | - Yi Li
- Chengdu Hi-tech Nanxili Jiuzheng Clinic, Chengdu, Sichuan, China
- *Correspondence: Yi Li, /
| |
Collapse
|
13
|
Protective and therapeutic effects of Scutellaria baicalensis and its main active ingredients baicalin and baicalein against natural toxicities and physical hazards: a review of mechanisms. Daru 2022; 30:351-366. [PMID: 35870110 PMCID: PMC9715893 DOI: 10.1007/s40199-022-00443-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 05/10/2022] [Indexed: 10/16/2022] Open
Abstract
OBJECTIVES Scutellaria baicalensis (SB) has been traditionally used to combat a variety of conditions ranging from ischemic heart disease to cancer. The protective effects of SB are due to the action of two main flavonoids baicalin (BA) and baicalein (BE). This paper aimed to provide a narrative review of the protective and antidotal effects of SB and its main constituents against natural toxicities and physical hazards. EVIDENCE ACQUISITION Scientific databases Medline, Scopus, and Web of Science were thoroughly searched, based on different keywords for in vivo, in vitro and clinical studies which reported protective or therapeutic effects of SB or its constituents in natural and physical toxicities. RESULTS Numerous studies have reported that treatment with BE, BA, or total SB extract prevents or counteracts the detrimental toxic effects of various natural compounds and physical hazards. The toxic agents include mycotoxins, lipopolysaccharide, multiple plants and animal-derived substances as well as physical factors which negatively affected vital organs such as CNS, liver, kidneys, lung and heart. Increasing the expression of radical scavenging enzymes and glutathione content as well as inhibition of pro-inflammatory cytokines and pro-apoptotic mediators were important mechanisms of action. CONCLUSION Different studies on the Chinese skullcap have exhibited that its total root extract, BA or BE can act as potential antidotes or protective agents against the damage induced by natural toxins and physical factors by alleviating oxidative stress and inflammation. However, the scarcity of high-quality clinical evidence means that further clinical studies are required to reach a more definitive conclusion.
Collapse
|
14
|
Baicalin Ameliorates Radiation-Induced Lung Injury by Inhibiting the CysLTs/CysLT1 Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2765354. [PMID: 35783527 PMCID: PMC9249482 DOI: 10.1155/2022/2765354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/06/2022] [Accepted: 05/23/2022] [Indexed: 11/28/2022]
Abstract
Objective Radiation-induced lung injury (RILI) is a common complication of radiotherapy for thoracic tumors. This study investigated the alleviating effect of baicalin (BA) on RILI and its possible mechanism. Methods RILI model was established by chest irradiation (IR) of C57BL/6 mice for 16 weeks. Different concentrations of BA were administered, and dexamethasone (DXM) was used as a positive control. Then, the lung pathological changes were observed by HE and Masson staining. The levels of TGF-β, TNF-α, IL-1β, IL-6, CysLT, LTC4, and LTE4 were measured by ELISA. The CysLT1 expression was detected by qPCR, immunohistochemistry, and western blot. Type II AEC cells were pretreated with LTD-4 to establish the RILI cell model and intervened with different concentrations of BA. Then, the collagen I protein level was measured by ELISA. The CysLT1 and α-SMA expression were detected by qPCR, immunofluorescence, and western blot. Results BA could effectively improve lung histopathological changes and pulmonary fibrosis. In vivo, BA could inhibit the levels of TGF-β, TNF-α, IL-1β, and IL-6 and reduce the levels of CysLT, LTC4, and LTE4. In vitro, different concentrations of LTD4 could reduce the viability of type II AEC cells, which could be reversed by the administration of different concentrations of BA. In addition, BA could reduce CysLT1 mRNA, as well as CysLT1 and α-SMA protein levels in vitro and in vivo. Conclusion BA attenuated lung inflammation and pulmonary fibrosis by inhibiting the CysLTs/CysLT1 pathway, thereby protecting against RILI.
Collapse
|
15
|
Inhaled amifostine for the prevention of radiation-induced lung injury. RADIATION MEDICINE AND PROTECTION 2022. [DOI: 10.1016/j.radmp.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
16
|
Karpiński TM, Adamczak A, Ożarowski M. Radioprotective Effects of Plants from the Lamiaceae Family. Anticancer Agents Med Chem 2022; 22:4-19. [PMID: 33121420 DOI: 10.2174/1871520620666201029120147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/29/2020] [Accepted: 08/08/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Edible and medicinal plants are still an interesting source of promising biologically active substances for drug discovery and development. At a time of increasing cancer incidence in the world, alleviating the bothersome side effects of radiotherapy in debilitated cancer patients is becoming an important challenge. OBJECTIVE The aim of the study was to overview the literature data concerning the radioprotective activity of extracts, essential oils, and some chemical compounds obtained from 12 species belonging to the Lamiaceae family, gathering of numerous spice and medicinal plants rich in valuable phytochemicals. RESULTS The analysis of available publications showed radioprotective effectiveness of essential oils and complex extracts containing phenolic acids and flavonoids in various in vitro and in vivo models. Relatively welldocumented preventive properties exhibited the following species: Mentha × piperita, Ocimum tenuiflorum, Origanum vulgare, and Rosmarinus officinalis. However, few plants such as Lavandula angustifolia, Mentha arvensis, M. spicata, Plectranthus amboinicus, Salvia miltiorrhiza, S. officinalis, Scutellaria baicalensis, and Zataria multiflora should be more investigated in the future. Among the mechanisms of radioprotective effects of well-studied extracts and phytochemicals, it can be mentioned mainly the protection against chromosomal damage, scavenging free radicals, decreasing of lipid peroxidation and elevating of glutathione, superoxide dismutase, catalase, and alkaline phosphatase enzyme levels as well as the reduction of the cell death. The plant substances protected the gastrointestinal tract, bone marrow and lung fibroblasts. CONCLUSION The studied species of Lamiaceae family and their active chemical compounds are potent in alleviating the side effects of radiotherapy and should be considered as a complementary therapy.
Collapse
Affiliation(s)
- Tomasz M Karpiński
- Chair and Department of Medical Microbiology, Faculty of Medical Sciences, Poznań University of Medical Sciences, Poznań, Poland
| | - Artur Adamczak
- Department of Botany, Breeding and Agricultural Technology of Medicinal Plants, Institute of Natural Fibres and Medicinal Plants - National Research Institute, Poznań, Poland
| | - Marcin Ożarowski
- Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants - National Research Institute, Poznań, Poland
| |
Collapse
|
17
|
Xiang L, Gao Y, Chen S, Sun J, Wu J, Meng X. Therapeutic potential of Scutellaria baicalensis Georgi in lung cancer therapy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 95:153727. [PMID: 34535372 DOI: 10.1016/j.phymed.2021.153727] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Globally, lung cancer is the leading cause of cancer associated mortalities. The current conventional chemotherapy remains the preferred treatment option for lung cancer, as surgical resection plays little role in the treatment of over 75% of lung cancer patients. Therefore, there is a need to develop novel potential therapeutic drugs or adjuvants with a high efficiency and safety against lung cancer. Scutellaria baicalensis Georgi, a common Chinese medicinal herb that has been in use for more than 2000 years, has recently been shown to possess significant activities against lung cancer. However, current research progress on pharmacological effects and relevant molecular mechanisms of S. baicalensis in lung cancer therapy have not been systematically summarized. PURPOSE This review aimed at elucidating on the anti-lung cancer mechanisms and antitumor efficacies of S. baicalensis as well as its active ingredients, and providing a valuable reference for further investigation in this field. METHODS We used "Scutellaria baicalensis" or the name of the compound in S. baicalensis, in combination with "lung cancer" as key words to systematically search for relevant literature from the Web of Science and PubMed databases. Publications that investigated molecular mechanisms were the only ones selected for analysis. The PRISMA guidelines were followed. RESULTS Fifty-four publications met the inclusion criteria for this study. Five anti-lung cancer mechanisms of S. baicalensis and its constituent components are discussed. These mechanisms include apoptosis induction, cell-cycle arrest, suppression of proliferation, blockade of invasion and metastasis, and overcoming drug-resistance. These compounds exhibited high antitumor efficacies and safety against lung cancer xenografts. CONCLUSION Studies should aim at elucidating on the anti-cancer mechanisms of S. baicalensis to achieve the ultimate goal of lung cancer therapy.
Collapse
Affiliation(s)
- Li Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yue Gao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shiyu Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jiayi Sun
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jiasi Wu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Xianli Meng
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
18
|
Chang H, Meng HY, Bai WF, Meng QG. A metabolomic approach to elucidate the inhibitory effects of baicalin in pulmonary fibrosis. PHARMACEUTICAL BIOLOGY 2021; 59:1016-1025. [PMID: 34362286 PMCID: PMC8354164 DOI: 10.1080/13880209.2021.1950192] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
CONTEXT Baicalin, a major flavonoid extracted from Scutellaria baicalensis Georgi (Lamiaceae), has been shown to exert therapeutic effects on pulmonary fibrosis (PF). OBJECTIVE To use serum metabolomics combined with biochemical and histopathological analyses to clarify anti-PF mechanisms of baicalin on metabolic pathways and the levels of potential biomarkers. MATERIALS AND METHODS Forty male Sprague-Dawley rats were randomly divided into the control, PF model, prednisolone acetate-treated (4.2 mg/kg/day) and baicalin-treated (25 and 100 mg/kg/day) groups. A rat model of PF was established using a tracheal injection of bleomycin, and the respective drugs were administered intragastrically for 4 weeks. Histomorphology of lung tissue was examined after H&E and Masson's trichrome staining. Biochemical indicators including SOD, MDA and HYP were measured. Serum-metabonomic analysis based on UPLC-Q-TOF/MS was used to clarify the changes in potential biomarkers among different groups of PF rats. RESULTS Both doses of baicalin effectively alleviated bleomycin-induced pathological changes, and increased the levels of SOD (from 69.48 to 99.50 and 112.30, respectively), reduced the levels of MDA (from 10.91 to 5.0 and 7.53, respectively) and HYP (from 0.63 to 0.41 and 0.49, respectively). Forty-eight potential biomarkers associated with PF were identified. Meanwhile, the metabolic profiles and fluctuating metabolite levels were normalized or partially reversed after baicalin treatment. Furthermore, baicalin was found to improve PF potentially by the regulation of four key biomarkers involving taurine and hypotaurine metabolism, glutathione metabolism, and glycerophospholipid metabolism. CONCLUSIONS These findings revealed the anti-fibrotic mechanisms of baicalin and it may be considered as an effective therapy for PF.
Collapse
Affiliation(s)
- Hong Chang
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Hong-yu Meng
- Nephroendocrine Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wan-fu Bai
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Qing-gang Meng
- Department of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- CONTACT Qing-gang Meng Department of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11, North third Ring Road East, Chaoyang District, Beijing100700, China
| |
Collapse
|
19
|
Yang X, Ren H, Guo X, Hu C, Fu J. Radiation-induced skin injury: pathogenesis, treatment, and management. Aging (Albany NY) 2020; 12:23379-23393. [PMID: 33202382 PMCID: PMC7746368 DOI: 10.18632/aging.103932] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 07/30/2020] [Indexed: 12/15/2022]
Abstract
Radiation-induced skin injury (RSI) refers to a frequently occurring complication of radiation therapy. Nearly 90% of patients having received radiation therapy underwent moderate-to-severe skin reactions, severely reducing patients' quality of life and adversely affecting their disease treatment. No gold standard has been formulated for RSIs. In the present study, the mechanism of RSI and topical medications was discussed. Besides, this study can be referenced for clinicians to treat RSIs to guide subsequent clinical medicine.
Collapse
Affiliation(s)
- Xiaojing Yang
- Department of Radiation Oncology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Hanru Ren
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center, Shanghai, China
| | - Xiaomao Guo
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Shanghai Medical College, Fudan University, Shanghai, China
| | - Chaosu Hu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jie Fu
- Department of Radiation Oncology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
20
|
Zheng H, Yang Z, Xin Z, Yang Y, Yu Y, Cui J, Liu H, Chen F. Glycogen synthase kinase-3β: a promising candidate in the fight against fibrosis. Theranostics 2020; 10:11737-11753. [PMID: 33052244 PMCID: PMC7545984 DOI: 10.7150/thno.47717] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 09/12/2020] [Indexed: 02/07/2023] Open
Abstract
Fibrosis exists in almost all organs/tissues of the human body, plays an important role in the occurrence and development of diseases and is also a hallmark of the aging process. However, there is no effective prevention or therapeutic method for fibrogenesis. As a serine/threonine (Ser/Thr)-protein kinase, glycogen synthase kinase-3β (GSK-3β) is a vital signaling mediator that participates in a variety of biological events and can inhibit extracellular matrix (ECM) accumulation and the epithelial-mesenchymal transition (EMT) process, thereby exerting its protective role against the fibrosis of various organs/tissues, including the heart, lung, liver, and kidney. Moreover, we further present the upstream regulators and downstream effectors of the GSK-3β pathway during fibrosis and comprehensively summarize the roles of GSK-3β in the regulation of fibrosis and provide several potential targets for research. Collectively, the information reviewed here highlights recent advances vital for experimental research and clinical development, illuminating the possibility of GSK-3β as a novel therapeutic target for the management of tissue fibrosis in the future.
Collapse
Affiliation(s)
- Hanxue Zheng
- Lab of Tissue Engineering, Faculty of Life Sciences, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Zhi Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Zhenlong Xin
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yuan Yu
- Lab of Tissue Engineering, Faculty of Life Sciences, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Jihong Cui
- Lab of Tissue Engineering, Faculty of Life Sciences, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Hongbo Liu
- Lab of Tissue Engineering, Faculty of Life Sciences, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Fulin Chen
- Lab of Tissue Engineering, Faculty of Life Sciences, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| |
Collapse
|
21
|
Shi L, Liu BY, Wang X, Zhu MJ, Chen L, Zhou MY, Gu YJ, Cheng L, Wang Y. RUNX3-dependent oxidative epithelial-to-mesenchymal transition in methamphetamine-induced chronic lung injury. Cell Stress Chaperones 2020; 25:793-802. [PMID: 32681471 PMCID: PMC7479662 DOI: 10.1007/s12192-020-01133-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 12/18/2022] Open
Abstract
Lung toxicity is the main cause of the death from methamphetamine (MA) abuse, but its mechanism has remained unclear. The purpose of our study was to investigate if MA can induce epithelial-to-mesenchymal transition (EMT) and if RUNX3 is involved in oxidative EMT in MA-induced chronic lung injury. The rats were divided into the control group and MA group. Extracted lungs were used for morphological measurements and Western blot. The alveolar epithelial cells were cultured or transfected and then treated with MA or/and N-acetyl cysteine (NAC) followed by flow cytometry, Western blot, and immunohistochemistry. Chronic exposure to MA resulted in the lower growth ratio of weight, increased right ventricular index, thickened alveolar walls, and reduced number of alveolar sacs. Long-term administration with MA caused oxidative stress and pulmonary EMT. NAC increased RUNX3 and alleviated EMT. However, after knockdown of RUNX3, reactive oxygen species (ROS) levels were significantly upregulated, indicating that RUNX3 was closely related to oxidative stress. Knockdown of RUNX3 aggravated MA-induced EMT by activating RUNX3-dependent TGF-β signaling. Therefore, RUNX3 may be the key to oxidative EMT in methamphetamine-induced chronic lung injury.
Collapse
Affiliation(s)
- Lin Shi
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China
| | - Bing-Yang Liu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, People's Republic of China
| | - Xin Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China
| | - Mei-Jia Zhu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China
| | - Lei Chen
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China
| | - Ming-Yuan Zhou
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China
| | - Ying-Jian Gu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China
| | - Lin Cheng
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China
| | - Yun Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China.
| |
Collapse
|
22
|
Yu Gan Long Ameliorates Hepatic Fibrosis by Inhibiting PI3K/AKT, Ras/ERK and JAK1/STAT3 Signaling Pathways in CCl 4-induced Liver Fibrosis Rats. Curr Med Sci 2020; 40:539-547. [PMID: 32681257 DOI: 10.1007/s11596-020-2211-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 06/04/2020] [Indexed: 12/25/2022]
Abstract
Yu Gan Long (YGL) is a Chinese traditional herbal formula which has been reported to attenuate liver fibrosis for many years and we have explored its anti-fibrotic mechanism through blocking transforming growth factor (TGF-β) in the previous study. But the mechanisms associated with platelet-derived growth factor (PDGF)-BB remain obscure. In this study, we further investigated the mechanism of YGL reducing carbon tetrachloride (CCl4)-induced liver fibrosis in rats. Our results showed that YGL suppressed CCl4-induced upregulation of collagen IV (Col IV), type HI precollagen (PCHI), hyaluronuc acid (HA) and laminin (LN), which are implicated in liver fibrosis. Also, YGL reduced the α-smooth muscle actin (α-SMA) expression, which acts as the indicator of liver fibrosis. Furthermore, YGL decreased the serum levels of hepatic stellate cell (HSC) mitogen PDGF-BB and inflammation cytokines, including TNF-α, IL-1β, IL-6. Markers involved in liver fibrosis, such as Ras, p-Raf-1, p-ERK1/2, p-JNK, p-P38, p-PI3K, p-AKT, p-JAKl, p-STAT3 were downregulated significantly after treatment with YGL. Our results indicated that YGL ameliorated CCl4-induced liver fibrosis by reducing inflammation cytokines production, and suppressing Ras/ERK, PI3K/AKT, and JAK1/STAT3 signaling pathways, which provided further evidence towards elucidation of the anti-fibrotic mechanism of YGL.
Collapse
|
23
|
Chen H, Chen H, Liang J, Gu X, Zhou J, Xie C, Lv X, Wang R, Li Q, Mao Z, Sun H, Zuo G, Miao D, Jin J. TGF-β1/IL-11/MEK/ERK signaling mediates senescence-associated pulmonary fibrosis in a stress-induced premature senescence model of Bmi-1 deficiency. Exp Mol Med 2020; 52:130-151. [PMID: 31959867 PMCID: PMC7000795 DOI: 10.1038/s12276-019-0371-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 11/27/2019] [Accepted: 12/04/2019] [Indexed: 01/22/2023] Open
Abstract
To study whether TGF-β1/IL-11/MEK/ERK (TIME) signaling mediates senescence-associated pulmonary fibrosis (SAPF) in Bmi-1-deficient (Bmi-1-/-) mice and determines the major downstream mediator of Bmi-1 and crosstalk between p16INK4a and reactive oxygen species that regulates SAPF, phenotypes were compared among 7-week-old p16INK4a and Bmi-1 double-knockout, N-acetylcysteine (NAC)-treated Bmi-1-/-, Bmi-1-/-, and wild-type mice. Pulmonary fibroblasts and alveolar type II epithelial (AT2) cells were used for experiments. Human pulmonary tissues were tested for type Ι collagen, α-smooth muscle actin (α-SMA), p16INK4a, p53, p21, and TIME signaling by using enzyme-linked immunosorbent assay (ELISA). Our results demonstrated that Bmi-1 deficiency resulted in a shortened lifespan, ventilatory resistance, poor ventilatory compliance, and SAPF, including cell senescence, DNA damage, a senescence-associated secretory phenotype and collagen overdeposition that was mediated by the upregulation of TIME signaling. The signaling stimulated cell senescence, senescence-related secretion of TGF-β1 and IL-11 and production of collagen 1 by pulmonary fibroblasts and the epithelial-to-mesenchymal transition of AT2 cells. These processes were inhibited by anti-IL-11 or the MEK inhibitor PD98059. NAC treatment prolonged the lifespan and ameliorated pulmonary dysfunction and SAPF by downregulating TIME signaling more than p16INK4a deletion by inhibiting oxidative stress and DNA damage and promoting ubiquitin-proteasome degradation of p16INK4a and p53. Cytoplasmic p16INK4a accumulation upregulated MEK/ERK signaling by inhibiting the translocation of pERK1/2 (Thr202/Tyr204) from the cytoplasm to the nucleus in senescent fibroblasts. The accumulation of collagen 1 and α-SMA in human lungs accompanied by cell senescence may be mediated by TIME signaling. Thus, this signaling in aging fibroblasts or AT2 cells could be a therapeutic target for preventing SAPF.
Collapse
Affiliation(s)
- Haiyun Chen
- Research Center for Bone and Stem Cells, Department of Human Anatomy; Key Laboratory for Aging & Disease; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Anti-aging Research Laboratory, Friendship Plastic Surgery Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Hongjie Chen
- Research Center for Bone and Stem Cells, Department of Human Anatomy; Key Laboratory for Aging & Disease; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Jialong Liang
- Research Center for Bone and Stem Cells, Department of Human Anatomy; Key Laboratory for Aging & Disease; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Xin Gu
- Research Center for Bone and Stem Cells, Department of Human Anatomy; Key Laboratory for Aging & Disease; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Jiawen Zhou
- Research Center for Bone and Stem Cells, Department of Human Anatomy; Key Laboratory for Aging & Disease; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Chunfeng Xie
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Xianhui Lv
- Research Center for Bone and Stem Cells, Department of Human Anatomy; Key Laboratory for Aging & Disease; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Rong Wang
- Research Center for Bone and Stem Cells, Department of Human Anatomy; Key Laboratory for Aging & Disease; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Qing Li
- Department of Science and Technology, Jiangsu Jiankang Vocational College, Nanjing, Jiangsu, 210029, China
| | - Zhiyuan Mao
- Research Center for Bone and Stem Cells, Department of Human Anatomy; Key Laboratory for Aging & Disease; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Haijian Sun
- Research Center for Bone and Stem Cells, Department of Human Anatomy; Key Laboratory for Aging & Disease; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Guoping Zuo
- Research Center for Bone and Stem Cells, Department of Human Anatomy; Key Laboratory for Aging & Disease; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Dengshun Miao
- Research Center for Bone and Stem Cells, Department of Human Anatomy; Key Laboratory for Aging & Disease; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Jianliang Jin
- Research Center for Bone and Stem Cells, Department of Human Anatomy; Key Laboratory for Aging & Disease; The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| |
Collapse
|
24
|
Ding Y, Liu Y, Li H, Li Y, Li M, Liu M, Wang X, Cao F, Wang X. Chinese Medicines for Preventing and Treating Radiation-Induced Pulmonary Injury: Still a Long Way to Go. Front Pharmacol 2019; 10:927. [PMID: 31616288 PMCID: PMC6763686 DOI: 10.3389/fphar.2019.00927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/22/2019] [Indexed: 11/13/2022] Open
Abstract
Thoracic radiotherapy is a mainstay of the treatment for lung, esophageal, and breast cancers. Radiation-induced pulmonary injury (RIPI) is a common side effect of thoracic radiotherapy, which may limit the radiotherapy dose and compromise the treatment results. However, the current strategies for RIPI are not satisfactory and may induce other side effects. Chinese medicines (CMs) have been used for more than a thousand years to treat a wide range of diseases, including lung disorders. In this review, we screened the literature from 2007 to 2017 in different online databases, including China National Knowledge Infrastructure (CNKI), Chongqing VIP, Wanfang, and PubMed; summarized the effectiveness of CMs in preventing and treating RIPI; explored the most frequently used drugs; and aimed to provide insights into potential CMs for RIPI. Altogether, CMs attenuated the risk of RIPI with an occurrence rate of 11.37% vs. 27.78% (P < 0.001) compared with the control groups. We also found that CMs (alone and combined with Western medical treatment) for treating RIPI exerted a higher efficacy rate than that of the control groups (78.33% vs. 28.09%, P < 0.001). In the screened literature, 38 CMs were used for the prevention and treatment of RIPI. The top five most frequently used CMs were Astragali Radix (with a frequency of 8.47%), Ophiopogonis Radix (with a frequency of 6.78%), Glycyrrhizae Radix et Rhizome (with a frequency of 5.08%), Paeoniae Radix Rubra (with a frequency of 5.08%), and Prunellae Spica (with a frequency of 5.08%). However, further high-quality investigations in CM source, pharmacological effects and underlying mechanisms, toxicological aspects, and ethical issues are warranted. Taken together, CMs might have a potential role in RIPI prevention and treatment and still have a long way to investigate.
Collapse
Affiliation(s)
- Yan Ding
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Yuechao Liu
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Hongliang Li
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Yong Li
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Minglun Li
- Department of Radiation Oncology, University Hospital, LMU, Munich, Germany
| | - Ming Liu
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Xianhe Wang
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Fengjun Cao
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Xuanbin Wang
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China.,Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
25
|
Gong L, Wu X, Li X, Ni X, Gu W, Wang X, Ji H, Hu L, Zhu L. S1PR3 deficiency alleviates radiation-induced pulmonary fibrosis through the regulation of epithelial-mesenchymal transition by targeting miR-495-3p. J Cell Physiol 2019; 235:2310-2324. [PMID: 31489649 DOI: 10.1002/jcp.29138] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 08/23/2019] [Indexed: 12/22/2022]
Abstract
Radiation-induced pulmonary fibrosis (RIPF) is a life-threatening complication of thoracic radiotherapy, which contributes to continued deterioration in pulmonary function. Sphingosine-1 phosphate receptor 3 (S1PR3) has been identified as a crucial molecule in fibrosis. Accumulating evidence indicated that the inhibition of the S1PRs ameliorates fibrogenesis. Thus, this study aims to explore whether S1PR3 participates in RIPF and elucidates the molecular mechanisms underlying S1PR3-modulated epithelial-mesenchymal transition (EMT) in transforming growth factor-β1-induced pulmonary epithelia. A recombinant adeno-associated viral-mediated S1PR3 (AAV-S1PR3) gene therapy analyzed the effect of S1PR3 gene deficiency on the altered histology structure and molecular mechanisms in the lung of mice with whole-lung irradiation. Compared with the AAV-negative control mice, AAV-mediated S1PR3 knockdown in the lung of mice attenuated pulmonary fibrosis induced by the radiation, as indicated by the alleviation of collagen accumulation, lessened histopathological alterations, and the suppression of inflammatory cells infiltration. S1PR3 deficiency reversed the RIPF concomitantly with abrogated EMT-related protein (α-smooth muscle actin). Consistently, S1PR3-deficient pulmonary epithelia inhibited the EMT process changes and fibrosis formation. Furthermore, S1PR3 was designated as one of the target genes for microRNA-495-3p (miR-495-3p). The inhibition of miR-495-3p promoted the expression of S1PR3 in pulmonary epithelia, whereas the overexpression of miR-495-3p inhibited the S1PR3/SMAD2/3 pathway and suppressed the EMT process. Collectively, miR-495-3p might be a negative regulator of the EMT process in fibrosis formation by inhibiting the targeted S1PR3 gene. These results established a link between the S1PR3 gene, the EMT process, and the fibrosis, suggesting the pharmacological blockage of S1PR3 as a potential therapeutic strategy for RIPF.
Collapse
Affiliation(s)
- Linjing Gong
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xu Wu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xinyi Li
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoying Ni
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenyu Gu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xinyuan Wang
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Haiying Ji
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lijuan Hu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lei Zhu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
26
|
Cao J, Zhu W, Yu D, Pan L, Zhong L, Xiao Y, Gao Y, Jiao Y, Zhang Q, Ji J, Yang H, Zhang S, Cao J. The Involvement of SDF-1α/CXCR4 Axis in Radiation-Induced Acute Injury and Fibrosis of Skin. Radiat Res 2019; 192:410-421. [PMID: 31390312 DOI: 10.1667/rr15384.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Radiation-induced acute skin injury and consequent fibrosis are common complications of cancer radiotherapy and radiation accidents. Stromal cell-derived factor-1α (SDF-1α) and its receptor, CXC chemokine receptor 4 (CXCR4) have been shown to be involved in multiple cellular events. However, the role of SDF-1α/CXCR4 axis in radiation-induced acute injury and fibrosis of skin has not been reported. In this study, we found that the expression of SDF-1α and CXCR4 was significantly increased in irradiated skin tissues of humans, monkeys and rats, compared to their nonirradiated counterparts. Mice with keratinocyte-specific ablation of CXCR4 showed less severe skin damage than wild-type mice after receiving a 35 Gy dose of radiation. Consistently, subcutaneous injection of AMD3100, an FDA approved SDF-1α/CXCR4 inhibitor, attenuated skin injury and fibrosis induced by exposure to radiation in a rat model. Mechanically, the SDF-1α/CXCR4 axis promotes pro-fibrotic TGF-b/Smad signaling through the PI3K-MAPK signaling cascade in human keratinocyte HaCaT cells and skin fibroblast WS1 cells. AMD3100 inhibited Smad2 nuclear translocation and transcriptional activity of Smad2/3 induced by radiation, which suppressed the pro-fibrotic TGF-b/Smad signaling pathway activated by exposure. Taken together, these findings demonstrate the involvement of SDF-1α/CXCR4 axis in radiation-induced acute injury and fibrosis of skin, and indicate that AMD3100 would be an effective countermeasure against these diseases.
Collapse
Affiliation(s)
- Jinming Cao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China.,State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Wei Zhu
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China.,State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Daojiang Yu
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.,Departments of Plastic Surgery
| | - Lu Pan
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China.,State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Li Zhong
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China.,State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yuji Xiao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China.,State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yiying Gao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China.,State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yang Jiao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China.,State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Qi Zhang
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China.,State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jiang Ji
- Departments of Dermatology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Hongying Yang
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China.,State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Shuyu Zhang
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.,Department of Oncology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213100, China.,Department of Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu 610051, China
| | - Jianping Cao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China.,State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
27
|
Baicalin suppresses lung cancer growth by targeting PDZ-binding kinase/T-LAK cell-originated protein kinase. Biosci Rep 2019; 39:BSR20181692. [PMID: 30898980 PMCID: PMC6454021 DOI: 10.1042/bsr20181692] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 02/07/2019] [Accepted: 03/05/2019] [Indexed: 01/17/2023] Open
Abstract
Baicalin is the main bioactive component extracted from the traditional Chinese medicine Baical Skullcap Root, and its anti-tumor activity has been studied in previous studies. PDZ-binding kinase/T-LAK cell-originated protein kinase (PBK/TOPK), a serine/threonine protein kinase, is highly expressed in many cancer cells and stimulates the tumorigenic properties, and so, it is a pivotal target for agent to cure cancers. We reported for the first time that baicalin suppressed PBK/TOPK activities by directly binding with PBK/TOPK in vitro and in vivo. Ex vivo studies showed that baicalin suppressed PBK/TOPK activity in JB6 Cl41 cells and H441 lung cancer cells. Moreover, knockdown of PBK/TOPK in H441 cells decreased their sensitivity to baicalin. In vivo study indicated that injection of baicalin in H441 tumor-bearing mice effectively suppressed cancer growth. The PBK/TOPK downstream signaling molecules Histone H3 and ERK2 in tumor tissues were also decreased after baicalin treatment. Taken together, baicalin can inhibit proliferation of lung cancer cells as a PBK/TOPK inhibitor both in vitro and in vivo.
Collapse
|
28
|
Liu Z, Liang X, Li X, Liu X, Zhu M, Gu Y, Zhou P. MiRNA-21 functions in ionizing radiation-induced epithelium-to-mesenchymal transition (EMT) by downregulating PTEN. Toxicol Res (Camb) 2019; 8:328-340. [PMID: 31160967 DOI: 10.1039/c9tx00019d] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 02/26/2019] [Indexed: 12/19/2022] Open
Abstract
Radiation-induced pulmonary fibrosis (RIPF) results from thoracic radiotherapy and severely limits the use of radiotherapy. Recent studies suggest that epithelium-to-mesenchymal transition (EMT) contributes to pulmonary fibrosis. Although miRNA dysregulation participates in a variety of pathophysiologic processes, their roles in fibrotic lung diseases and EMT are unclear. In this study, we aimed to identify key miRNAs involved in this process using a mouse model of RIPF previously established by irradiation with a single dose (20 Gy) of 60Co γ-rays. At 2-weeks post-irradiation, a set of significantly upregulated miRNAs was identified in lung tissue by miRNA array analysis. This included miR-21, which has been reported to contribute to the pulmonary fibrotic response induced by stereotactic body radiotherapy. Here, we showed that miR-21 expression increased in parallel with EMT progression in the lungs of irradiated mice. Ectopic miR-21 expression promoted EMT progression in lung epithelial cells. Furthermore, downregulation of miR-21 expression by transfection of its inhibitor inhibited ionizing radiation (IR)-induced EMT. Knockdown of PTEN, which is the functional target of miR-21, reversed the attenuation of IR-induced EMT mediated by miR-21 downregulation. Radiation treatment decreased PTEN expression and increased Akt phosphorylation; these effects were abolished by the miR-21 inhibitor. MiR-21 overexpression in lung epithelial cell also downregulated PTEN expression and upregulated Akt phosphorylation. In conclusion, we have demonstrated that miR-21 functions as a key regulator of IR-induced EMT in lung epithelial cells via the PTEN/Akt pathway. Targeting miR-21 is implicated as a novel therapeutic strategy for the prevention of RIPF.
Collapse
Affiliation(s)
- Zheng Liu
- School of Public Health , University of South China , Hengyang , Hunan Province 421001 , P. R. China . ; .,Beijing Key Laboratory for Radiobiology , Beijing Institute of Radiation Medicine , Beijing 100850 , P. R. China
| | - Xin Liang
- Graduate School , Anhui Medical University , Hefei , Anhui province 230032 , P. R. China
| | - Xueping Li
- School of Life Science , Shihezi University , Shihezi , Xinjiang Province 832003 , P. R. China
| | - Xiaodan Liu
- Beijing Key Laboratory for Radiobiology , Beijing Institute of Radiation Medicine , Beijing 100850 , P. R. China
| | - Maoxiang Zhu
- Beijing Key Laboratory for Radiobiology , Beijing Institute of Radiation Medicine , Beijing 100850 , P. R. China
| | - Yongqing Gu
- School of Public Health , University of South China , Hengyang , Hunan Province 421001 , P. R. China . ; .,Beijing Key Laboratory for Radiobiology , Beijing Institute of Radiation Medicine , Beijing 100850 , P. R. China
| | - Pingkun Zhou
- School of Public Health , University of South China , Hengyang , Hunan Province 421001 , P. R. China . ; .,Beijing Key Laboratory for Radiobiology , Beijing Institute of Radiation Medicine , Beijing 100850 , P. R. China
| |
Collapse
|
29
|
Chen DQ, Feng YL, Cao G, Zhao YY. Natural Products as a Source for Antifibrosis Therapy. Trends Pharmacol Sci 2018; 39:937-952. [PMID: 30268571 DOI: 10.1016/j.tips.2018.09.002] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/29/2018] [Accepted: 09/04/2018] [Indexed: 01/15/2023]
Abstract
Although fibrosis is a final pathological feature of many chronic diseases, few interventions are available that specifically target the pathogenesis of fibrosis. Natural products are becoming increasingly recognized as effective therapies for fibrosis. The highlights of common cellular and molecular mechanisms of fibrosis facilitate the discovery of effective antifibrotic drugs. We describe some new profibrotic mechanisms and corresponding therapeutic targets using natural products. Interleukin, ephrin-B2, Gas6/TAM, Wnt/β-catenin, hedgehog pathway, PPARγ, lysophosphatidic acid, and CTGF are promising therapeutic targets. Natural products can target these mediators and inhibit chronic inflammation, myofibroblast activation, epithelial-mesenchymal transition, and extracellular matrix accumulation to alleviate fibrosis. Of note, natural products have the potential to inhibit fibrosis in one organ, simultaneously targeting fibrosis in multiple other organs, which provides us new strategies to find antifibrotic drugs.
Collapse
Affiliation(s)
- Dan-Qian Chen
- School of Life Science, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Ya-Long Feng
- School of Life Science, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China
| | - Ying-Yong Zhao
- School of Life Science, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
30
|
Tao J, Zhang M, Wen Z, Wang B, Zhang L, Ou Y, Tang X, Yu X, Jiang Q. Inhibition of EP300 and DDR1 synergistically alleviates pulmonary fibrosis in vitro and in vivo. Biomed Pharmacother 2018; 106:1727-1733. [DOI: 10.1016/j.biopha.2018.07.132] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/15/2018] [Accepted: 07/24/2018] [Indexed: 12/25/2022] Open
|