1
|
Starke S, Velleman L, Dobbert B, Seibert L, Witte J, Jung S, Meyer V. The antifungal peptide AnAFP from Aspergillus niger promotes nutrient mobilization through autophagic recycling during asexual development. Front Microbiol 2025; 15:1490293. [PMID: 39925883 PMCID: PMC11802824 DOI: 10.3389/fmicb.2024.1490293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/05/2024] [Indexed: 02/11/2025] Open
Abstract
Antifungal peptides are promising drug candidates to fight fungal infections in the clinics and agriculture. However, recent data suggest that antifungal peptides might also play a role within their own producing organism to survive nutrient limiting conditions. We have therefore studied the function of the antifungal AnAFP in Aspergillus niger in more detail. To achieve this, we established a Tet-on controlled anafp expression system, which allowed us to study a null and an overexpression phenotype in the same isolate. We observed that increased intracellular AnAFP expression reduces growth of A. niger and prematurely activates autophagy. Comparative transcriptome analyses of glucose-starving mycelium demonstrated that increased anafp expression strongly impacts expression of genes important for cell wall integrity and remodeling, as well as genes with a predicted function in metabolism and transport of carbohydrates, proteins, and lipids. Notably, genes encoding regulators of conidiophore development such as flbC and flbD became induced upon anafp overexpression. Fluorescent analyses of a Tet-on driven AnAFP::eGFP fusion protein congruently unraveled that AnAFP localizes to cell walls and septa of A. niger. Moreover, AnAFP::eGFP expression is spatially restricted to selected compartments only and affected cells displayed a sudden reduction in hyphal diameter. From these data we conclude that AnAFP is important to drive vegetative growth and sporulation in A. niger during nutrient limitation through autophagic recycling. We predict that AnAFP drives nutrient mobilization through selective cell lysis to ensure the survival of the whole colony during phases of starvation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Vera Meyer
- *Correspondence: Sascha Jung, ; Vera Meyer,
| |
Collapse
|
2
|
Yang F, Ma Y. The application and prospects of antimicrobial peptides in antiviral therapy. Amino Acids 2024; 56:68. [PMID: 39630161 PMCID: PMC11618130 DOI: 10.1007/s00726-024-03427-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/09/2024] [Indexed: 12/08/2024]
Abstract
Antimicrobial peptides (AMPs) have broad-spectrum antimicrobial activity, enabling them to rapidly detect and eliminate targets. In addition, many AMPs are natural peptides, making them promising candidates for therapeutic drugs. This review discusses the basic properties and mechanisms of action of AMPs, highlighting their ability to disrupt microbial membranes and modulate host immune responses. It also reviews the current state of research into using AMPs against various viral infections, focusing on their therapeutic potential against viruses that contribute to the global health crisis. Despite promising developments, therapies based on AMPs still face challenges such as stability, toxicity, and production costs. In this text, we will discuss these challenges and the latest technological advances aimed at overcoming them. The combination of nanotechnology and bioengineering approaches offers new ways to enhance the delivery, efficacy, and safety of AMPs. We emphasize the importance of further research to fully exploit the potential of AMPs in antiviral therapy, advocating a multifaceted approach that includes optimizing clinical use and exploring synergies with existing antiviral drugs.
Collapse
Affiliation(s)
- Fei Yang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Yunqi Ma
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
3
|
Yang K, Hu B, Zhang W, Yuan T, Xu Y. Recent progress in the understanding of Citrus Huanglongbing: from the perspective of pathogen and citrus host. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:77. [PMID: 39525404 PMCID: PMC11541981 DOI: 10.1007/s11032-024-01517-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
Citrus Huanglongbing (HLB) is a devastating disease spread by citrus psyllid, causing severe losses to the global citrus industry. The transmission of HLB is mainly influenced by both the pathogen and the citrus psyllid. The unculturable nature of the HLB bacteria (Candidatus Liberibacter asiaticus, CLas) and the susceptibility of all commercial citrus varieties made it extremely difficult to study the mechanisms of resistance and susceptibility. In recent years, new progress has been made in understanding the virulence factors of CLas as well as the defense strategies of citrus host against the attack of CLas. This paper reviews the recent advances in the pathogenic mechanisms of CLas, the screening of agents targeting the CLas, including antimicrobial peptides, metabolites and chemicals, the citrus host defense response to CLas, and strategies to enhance citrus defense. Future challenges that need to be addressed are also discussed.
Collapse
Affiliation(s)
- Kun Yang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China
| | - Bin Hu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China
| | - Wang Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China
| | - Tao Yuan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yuantao Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
4
|
Mallawarachchi S, Wang H, Mulgaonkar N, Irigoyen S, Padilla C, Mandadi K, Borneman J, Fernando S. Specifically targeting antimicrobial peptides for inhibition of Candidatus Liberibacter asiaticus. J Appl Microbiol 2024; 135:lxae061. [PMID: 38509024 DOI: 10.1093/jambio/lxae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/21/2024] [Accepted: 03/19/2024] [Indexed: 03/22/2024]
Abstract
AIMS Huanglongbing (citrus greening) is a plant disease putatively caused by the unculturable Gram-negative bacterium Candidatus Liberibacter asiaticus (CLas), and it has caused severe damage to citrus plantations worldwide. There are no definitive treatments for this disease, and conventional disease control techniques have shown limited efficacy. This work presents an in silico evaluation of using specifically targeting anti-microbial peptides (STAMPs) consisting of a targeting segment and an antimicrobial segment to inhibit citrus greening by inhibiting the BamA protein of CLas, which is an outer membrane protein crucial for bacterial viability. METHODS AND RESULTS Initially, a set of peptides with a high affinity toward BamA protein were screened and evaluated via molecular docking and molecular dynamics simulations and were verified in vitro via bio-layer interferometry (BLI). In silico studies and BLI experiments indicated that two peptides, HASP2 and HASP3, showed stable binding to BamA. Protein structures for STAMPs were created by fusing known anti-microbial peptides (AMPs) with the selected short peptides. The binding of STAMPs to BamA was assessed using molecular docking and binding energy calculations. The attachment of high-affinity short peptides significantly reduced the free energy of binding for AMPs, suggesting that it would make it easier for the STAMPs to bind to BamA. Efficacy testing in vitro using a closely related CLas surrogate bacterium showed that STAMPs had greater inhibitory activity than AMP alone. CONCLUSIONS In silico and in vitro results indicate that the STAMPs can inhibit CLas surrogate Rhizobium grahamii more effectively compared to AMPs, suggesting that STAMPs can achieve better inhibition of CLas, potentially via enhancing the site specificity of AMPs.
Collapse
Affiliation(s)
- Samavath Mallawarachchi
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, United States
| | - Haoqi Wang
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, United States
| | - Nirmitee Mulgaonkar
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, United States
| | - Sonia Irigoyen
- Texas A&M AgriLife Research & Extension Center, Texas A&M University System, 2415 E Highway 83, Weslaco, TX 78596, United States
| | - Carmen Padilla
- Texas A&M AgriLife Research & Extension Center, Texas A&M University System, 2415 E Highway 83, Weslaco, TX 78596, United States
| | - Kranthi Mandadi
- Texas A&M AgriLife Research & Extension Center, Texas A&M University System, 2415 E Highway 83, Weslaco, TX 78596, United States
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, United States
- Institute for Advancing Health through Agriculture, Texas A&M AgriLife, College Station, TX 77843, United States
| | - James Borneman
- Department of Microbiology & Plant Pathology, University of California Riverside, Riverside, CA 92521, United States
| | - Sandun Fernando
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, United States
| |
Collapse
|
5
|
Sani MA, Rajput S, Keizer DW, Separovic F. NMR techniques for investigating antimicrobial peptides in model membranes and bacterial cells. Methods 2024; 224:10-20. [PMID: 38295893 DOI: 10.1016/j.ymeth.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 02/05/2024] Open
Abstract
AMPs are short, mainly cationic membrane-active peptides found in all living organism. They perform diverse roles including signaling and acting as a line of defense against bacterial infections. AMPs have been extensively investigated as templates to facilitate the development of novel antimicrobial therapeutics. Understanding the interplay between these membrane-active peptides and the lipid membranes is considered to be a significant step in elucidating the specific mechanism of action of AMPs against prokaryotic and eukaryotic cells to aid the development of new therapeutics. In this review, we have provided a brief overview of various NMR techniques commonly used for studying AMP structure and AMP-membrane interactions in model membranes and whole cells.
Collapse
Affiliation(s)
- Marc-Antoine Sani
- Bio21 Institute, University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Sunnia Rajput
- Bio21 Institute, University of Melbourne, Melbourne, VIC 3010, Australia
| | - David W Keizer
- Bio21 Institute, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Frances Separovic
- Bio21 Institute, University of Melbourne, Melbourne, VIC 3010, Australia; School of Chemistry, University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
6
|
Ramos C, Lorenz K, Putrinš M, Hind CK, Meos A, Laidmäe I, Tenson T, Sutton JM, Mason AJ, Kogermann K. Fibrous matrices facilitate pleurocidin killing of wound associated bacterial pathogens. Eur J Pharm Sci 2024; 192:106648. [PMID: 37992909 DOI: 10.1016/j.ejps.2023.106648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/20/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023]
Abstract
Conventional wound infection treatments neither actively promote wound healing nor address the growing problem of antibacterial resistance. Antimicrobial peptides (AMPs) are natural defense molecules, released from host cells, which may be rapidly bactericidal, modulate host-immune responses, and/or act as endogenous mediators for wound healing. However, their routine clinical use has hitherto been hindered due to their instability in the wound environment. Here we describe an electrospun carrier system for topical application of pleurocidin, demonstrating sufficient AMP release from matrices to kill wound-associated pathogens including Acinetobacter baumannii and Pseudomonas aeruginosa. Pleurocidin can be incorporated into polyvinyl alcohol (PVA) fiber matrices, using coaxial electrospinning, without major drug loss with a peptide content of 0.7% w/w predicted sufficient to kill most wound associated species. Pleurocidin retains its activity on release from the electrospun fiber matrix and completely inhibits growth of two strains of A. baumannii (AYE; ATCC 17978) and other ESKAPE pathogens. Inhibition of P. aeruginosa strains (PAO1; NCTC 13437) is, however, matrix weight per volume dependent, with only larger/thicker matrices maintaining complete inhibition. The resulting estimation of pleurocidin release from the matrix reveals high efficiency, facilitating a greater AMP potency. Wound matrices are often applied in parallel or sequentially with the use of standard wound care with biocides, therefore the presence and effect of biocides on pleurocidin potency was tested. It was revealed that combinations displayed additive or modestly synergistic effects depending on the biocide and pathogens which should be considered during the therapy. Taken together, we show that electrospun, pleurocidin-loaded wound matrices have potential to be investigated for wound infection treatment.
Collapse
Affiliation(s)
- Celia Ramos
- Institute of Pharmacy, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; Technology Development Group, UK Health Security Agency, Research and Evaluation, Porton Down, Salisbury SP4 0JG, United Kingdom; Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King´s College London, Franklin-Wilkins Building 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Kairi Lorenz
- Institute of Pharmacy, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Marta Putrinš
- Institute of Pharmacy, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Charlotte K Hind
- Technology Development Group, UK Health Security Agency, Research and Evaluation, Porton Down, Salisbury SP4 0JG, United Kingdom
| | - Andres Meos
- Institute of Pharmacy, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Ivo Laidmäe
- Institute of Pharmacy, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Tanel Tenson
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - J Mark Sutton
- Technology Development Group, UK Health Security Agency, Research and Evaluation, Porton Down, Salisbury SP4 0JG, United Kingdom; Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King´s College London, Franklin-Wilkins Building 150 Stamford Street, London SE1 9NH, United Kingdom
| | - A James Mason
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King´s College London, Franklin-Wilkins Building 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Karin Kogermann
- Institute of Pharmacy, University of Tartu, Nooruse 1, 50411 Tartu, Estonia.
| |
Collapse
|
7
|
Silva GBL, Campos FV, Guimarães MCC, Oliveira JP. Recent Developments in Lateral Flow Assays for Salmonella Detection in Food Products: A Review. Pathogens 2023; 12:1441. [PMID: 38133324 PMCID: PMC10747123 DOI: 10.3390/pathogens12121441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Salmonellosis is a disease transmitted by contaminated food and is one of the leading causes of infections worldwide, making the early detection of Salmonella of crucial importance for public health. However, current detection methods are laborious and time-consuming, thus impacting the entire food supply chain and leading to production losses and economic sanctions. To mitigate these issues, a number of different biosensors have been developed, including lateral flow assays (LFAs), which have emerged as valuable tools in pathogen detection due to their portability, ease of use, time efficiency, and cost effectiveness. The performance of LFAs has been considerably enhanced by the development of new nanomaterials over the years. In this review, we address the principles and formats of the assay and discuss future prospects and challenges with an emphasis on LFAs developed for the detection of different Salmonella serovars in food.
Collapse
Affiliation(s)
| | | | | | - Jairo P. Oliveira
- Morphology Department, Health Sciences Center, Federal University of Espírito Santo, Av Marechal Campos 1468, Vitória 29040-090, Brazil; (G.B.L.S.); (F.V.C.); (M.C.C.G.)
| |
Collapse
|
8
|
Zhao E, Dong L, Zhao H, Zhang H, Zhang T, Yuan S, Jiao J, Chen K, Sheng J, Yang H, Wang P, Li G, Qin Q. A Relationship Prediction Method for Magnaporthe oryzae-Rice Multi-Omics Data Based on WGCNA and Graph Autoencoder. J Fungi (Basel) 2023; 9:1007. [PMID: 37888263 PMCID: PMC10607591 DOI: 10.3390/jof9101007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/02/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023] Open
Abstract
Magnaporthe oryzae Oryzae (MoO) pathotype is a devastating fungal pathogen of rice; however, its pathogenic mechanism remains poorly understood. The current research is primarily focused on single-omics data, which is insufficient to capture the complex cross-kingdom regulatory interactions between MoO and rice. To address this limitation, we proposed a novel method called Weighted Gene Autoencoder Multi-Omics Relationship Prediction (WGAEMRP), which combines weighted gene co-expression network analysis (WGCNA) and graph autoencoder to predict the relationship between MoO-rice multi-omics data. We applied WGAEMRP to construct a MoO-rice multi-omics heterogeneous interaction network, which identified 18 MoO small RNAs (sRNAs), 17 rice genes, 26 rice mRNAs, and 28 rice proteins among the key biomolecules. Most of the mined functional modules and enriched pathways were related to gene expression, protein composition, transportation, and metabolic processes, reflecting the infection mechanism of MoO. Compared to previous studies, WGAEMRP significantly improves the efficiency and accuracy of multi-omics data integration and analysis. This approach lays out a solid data foundation for studying the biological process of MoO infecting rice, refining the regulatory network of pathogenic markers, and providing new insights for developing disease-resistant rice varieties.
Collapse
Affiliation(s)
- Enshuang Zhao
- College of Computer Science and Technology, Jilin University, Changchun 130012, China; (E.Z.); (L.D.); (H.Z.); (T.Z.); (J.J.); (K.C.); (J.S.)
| | - Liyan Dong
- College of Computer Science and Technology, Jilin University, Changchun 130012, China; (E.Z.); (L.D.); (H.Z.); (T.Z.); (J.J.); (K.C.); (J.S.)
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China
| | - Hengyi Zhao
- College of Computer Science and Technology, Jilin University, Changchun 130012, China; (E.Z.); (L.D.); (H.Z.); (T.Z.); (J.J.); (K.C.); (J.S.)
| | - Hao Zhang
- College of Computer Science and Technology, Jilin University, Changchun 130012, China; (E.Z.); (L.D.); (H.Z.); (T.Z.); (J.J.); (K.C.); (J.S.)
- College of Software, Jilin University, Changchun 130012, China; (S.Y.); (H.Y.); (P.W.)
| | - Tianyue Zhang
- College of Computer Science and Technology, Jilin University, Changchun 130012, China; (E.Z.); (L.D.); (H.Z.); (T.Z.); (J.J.); (K.C.); (J.S.)
| | - Shuai Yuan
- College of Software, Jilin University, Changchun 130012, China; (S.Y.); (H.Y.); (P.W.)
| | - Jiao Jiao
- College of Computer Science and Technology, Jilin University, Changchun 130012, China; (E.Z.); (L.D.); (H.Z.); (T.Z.); (J.J.); (K.C.); (J.S.)
| | - Kang Chen
- College of Computer Science and Technology, Jilin University, Changchun 130012, China; (E.Z.); (L.D.); (H.Z.); (T.Z.); (J.J.); (K.C.); (J.S.)
| | - Jianhua Sheng
- College of Computer Science and Technology, Jilin University, Changchun 130012, China; (E.Z.); (L.D.); (H.Z.); (T.Z.); (J.J.); (K.C.); (J.S.)
| | - Hongbo Yang
- College of Software, Jilin University, Changchun 130012, China; (S.Y.); (H.Y.); (P.W.)
| | - Pengyu Wang
- College of Software, Jilin University, Changchun 130012, China; (S.Y.); (H.Y.); (P.W.)
| | - Guihua Li
- College of Plant Science, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130012, China;
| | - Qingming Qin
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MI 65211-7310, USA;
| |
Collapse
|
9
|
Falcón-Ruiz EA, López-Meza JE, Ochoa-Zarzosa A. The plant defensins PaDef and γ-thionin inhibit the endothelial cell response to VEGF. Peptides 2023; 165:171008. [PMID: 37054894 DOI: 10.1016/j.peptides.2023.171008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/26/2023] [Accepted: 04/09/2023] [Indexed: 04/15/2023]
Abstract
Angiogenesis is involved in wound repair and tissue maintenance but is associated with diverse diseases. Pro-angiogenic factors such as vascular endothelial growth factor (VEGF) regulate this process. Therefore, searching for treatments to inhibit or promote angiogenesis is attractive. Reports from our group showed that plant antimicrobial peptides (PAPs) PaDef from avocado and γ-thionin from habanero pepper are cytotoxic on cancer cells. However, their functions as angiogenic regulators are unknown. In this work, we evaluate the effect of PaDef and γ-thionin on the angiogenic processes of two different endothelial cell lines: bovine endothelial cells (BUVEC) and the human endothelial cell line EA.hy926. The results showed that VEGF (10ng/mL) stimulated the BUVEC (40 ± 7%) and EA.hy926 cell proliferation (30 ± 9%); however, peptides (5-500ng/mL) reverted this effect. Besides, VEGF increased the migration of BUVEC (20 ± 8%) and EA.hy926 cells (50 ± 6%), but both PAPs (5ng/mL) inhibited the VEGF stimulus (100%). Furthermore, DMOG 50μM (an inhibitor of HIF-hydroxylase) was used in BUVEC and EA.hy926 cells to determine the effect of hypoxia on VEGF and peptide activities. The DMOG reverted the inhibitory action of both peptides (100%), indicating that peptides act through a HIF-independent pathway. Also, the PAPs do not affect the tube formation but decrease it in EA.hy926 cells stimulated with VEGF (100%). Additionally, docking assays showed a possible interaction between PAPs and the VEGF receptor. These results suggest that plant defensins PaDef and γ-thionin are potential angiogenic modulators of the VEGF activity on endothelial cells.
Collapse
Affiliation(s)
- Elba Andrea Falcón-Ruiz
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo. Km 9.5 Carretera Morelia-Zinapécuaro. Posta Veterinaria. C.P. 58893, Morelia, Michoacán, Mexico
| | - Joel Edmundo López-Meza
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo. Km 9.5 Carretera Morelia-Zinapécuaro. Posta Veterinaria. C.P. 58893, Morelia, Michoacán, Mexico
| | - Alejandra Ochoa-Zarzosa
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo. Km 9.5 Carretera Morelia-Zinapécuaro. Posta Veterinaria. C.P. 58893, Morelia, Michoacán, Mexico.
| |
Collapse
|
10
|
Antiviral Peptides in Antimicrobial Surface Coatings—From Current Techniques to Potential Applications. Viruses 2023; 15:v15030640. [PMID: 36992349 PMCID: PMC10051592 DOI: 10.3390/v15030640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
The transmission of pathogens through contact with contaminated surfaces is an important route for the spread of infections. The recent outbreak of COVID-19 highlights the necessity to attenuate surface-mediated transmission. Currently, the disinfection and sanitization of surfaces are commonly performed in this regard. However, there are some disadvantages associated with these practices, including the development of antibiotic resistance, viral mutation, etc.; hence, a better strategy is necessary. In recent years, peptides have been studied to be utilized as a potential alternative. They are part of the host immune defense and have many potential in vivo applications in drug delivery, diagnostics, immunomodulation, etc. Additionally, the ability of peptides to interact with different molecules and membrane surfaces of microorganisms has made it possible to exploit them in ex vivo applications such as antimicrobial (antibacterial and antiviral) coatings. Although antibacterial peptide coatings have been studied extensively and proven to be effective, antiviral coatings are a more recent development. Therefore, this study aims to highlight antiviral coating strategies and the current practices and application of antiviral coating materials in personal protective equipment, healthcare devices, and textiles and surfaces in public settings. Here, we have presented a review on potential techniques to incorporate peptides in current surface coating strategies that will serve as a guide for developing cost-effective, sustainable and coherent antiviral surface coatings. We further our discussion to highlight some challenges of using peptides as a surface coating material and to examine future perspectives.
Collapse
|
11
|
O’Brien DK, Ribot WJ, Chabot DJ, Scorpio A, Tobery SA, Jelacic TM, Wu Z, Friedlander AM. The capsule of Bacillus anthracis protects it from the bactericidal activity of human defensins and other cationic antimicrobial peptides. PLoS Pathog 2022; 18:e1010851. [PMID: 36174087 PMCID: PMC9560598 DOI: 10.1371/journal.ppat.1010851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/13/2022] [Accepted: 09/04/2022] [Indexed: 12/04/2022] Open
Abstract
During infection, Bacillus anthracis bacilli encounter potent antimicrobial peptides (AMPs) such as defensins. We examined the role that B. anthracis capsule plays in protecting bacilli from defensins and other cationic AMPs by comparing their effects on a fully virulent encapsulated wild type (WT) strain and an isogenic capsule-deficient capA mutant strain. We identified several human defensins and non-human AMPs that were capable of killing B. anthracis. The human alpha defensins 1–6 (HNP-1-4, HD-5-6), the human beta defensins 1–4 (HBD-1-4), and the non-human AMPs, protegrin, gramicidin D, polymyxin B, nisin, and melittin were all capable of killing both encapsulated WT and non-encapsulated capA mutant B. anthracis. However, non-encapsulated capA mutant bacilli were significantly more susceptible than encapsulated WT bacilli to killing by nearly all of the AMPs tested. We demonstrated that purified capsule bound HBD-2, HBD-3, and HNP-1 in an electrophoretic mobility shift assay. Furthermore, we determined that the capsule layer enveloping WT bacilli bound and trapped HBD-3, substantially reducing the amount reaching the cell wall. To assess whether released capsule might also play a protective role, we pre-incubated HBD-2, HBD-3, or HNP-1 with purified capsule before their addition to non-encapsulated capA mutant bacilli. We found that free capsule completely rescued the capA mutant bacilli from killing by HBD-2 and -3 while killing by HNP-1 was reduced to the level observed with WT bacilli. Together, these results suggest an immune evasion mechanism by which the capsule, both that enveloping the bacilli and released fragments, contributes to virulence by binding to and inhibiting the antimicrobial activity of cationic AMPs. Bacillus anthracis causes anthrax after spores infect the skin, respiratory tract, or gastrointestinal tract. Antimicrobial peptides (AMPs), such as defensins, are a first line of host defense that B. anthracis encounters in all of these tissues. B. anthracis bacteria are covered by a capsule that protects them from being engulfed and destroyed by phagocytic immune cells. In this study, we found that the capsule also provides protection from AMPs. An encapsulated B. anthracis strain is resistant to killing by multiple AMPs from humans and other species compared to an otherwise identical strain that is not encapsulated. By binding defensins the capsule surrounding the bacilli reduces the amount that gets to the bacterial cell wall where it can do damage. B. anthracis bacteria release large fragments of capsule in the host during infection and during growth in culture. We found that purified released capsule can bind defensins and reduce killing of non-encapsulated B. anthracis. Thus, both capsule covering the bacteria and capsule shed by the bacteria can contribute to the pathogenicity of B. anthracis by providing protection from AMPs. Our study reveals a new mechanism by which B. anthracis capsule contributes to virulence.
Collapse
Affiliation(s)
- David K. O’Brien
- United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Wilson J. Ribot
- United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Donald J. Chabot
- United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Angelo Scorpio
- United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Steven A. Tobery
- United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Tanya M. Jelacic
- United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Zhibin Wu
- Institute of Human Virology, University of Maryland Biotechnology Institute, Baltimore, Maryland, United States of America
| | - Arthur M. Friedlander
- United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
- Department of Medicine, Uniformed University of Health Services, Bethesda, Maryland, United States of America
- * E-mail: ,
| |
Collapse
|
12
|
Exploration of bioactive peptides from various origin as promising nutraceutical treasures: In vitro, in silico and in vivo studies. Food Chem 2022; 373:131395. [PMID: 34710682 DOI: 10.1016/j.foodchem.2021.131395] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/24/2021] [Accepted: 10/09/2021] [Indexed: 01/08/2023]
Abstract
The current health scenarios describe growing public health problems, such as diabetes, hypertension and cancer. Therefore, researchers focused on studying these health issues are interested in exploring bioactive compounds from different food sources. Among them, bioactive peptides have garnered huge scientific interest because of their multifunctional biological activities such as antioxidative, antimicrobial, antihypertensive, anticancer, antidiabetic, immunomodulatory effect. They can be used as food and pharmaceutical ingredients with a great potential against disease targets. This review covers methods of production in general for several peptides obtained from various food sources including seed, milk and meat, and described their biological activities. Particular focus was given to bioinformatic tools to advance quantification, detection and characterize each peptide sequence obtained from different protein sources with predicted biological activity. Besides, various in vivo studies have been discussed to provide a better understanding of their physiological functions, which altogether could provide valuable information for their commercialization in future foods.
Collapse
|
13
|
Natural Peptides Inducing Cancer Cell Death: Mechanisms and Properties of Specific Candidates for Cancer Therapeutics. Molecules 2021; 26:molecules26247453. [PMID: 34946535 PMCID: PMC8708364 DOI: 10.3390/molecules26247453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 01/10/2023] Open
Abstract
Nowadays, cancer has become the second highest leading cause of death, and it is expected to continue to affect the population in forthcoming years. Additionally, treatment options will become less accessible to the public as cases continue to grow and disease mechanisms expand. Hence, specific candidates with confirmed anticancer effects are required to develop new drugs. Among the novel therapeutic options, proteins are considered a relevant source, given that they have bioactive peptides encrypted within their sequences. These bioactive peptides, which are molecules consisting of 2–50 amino acids, have specific activities when administered, producing anticancer effects. Current databases report the effects of peptides. However, uncertainty is found when their molecular mechanisms are investigated. Furthermore, analyses addressing their interaction networks or their directly implicated mechanisms are needed to elucidate their effects on cancer cells entirely. Therefore, relevant peptides considered as candidates for cancer therapeutics with specific sequences and known anticancer mechanisms were accurately reviewed. Likewise, those features which turn certain peptides into candidates and the mechanisms by which peptides mediate tumor cell death were highlighted. This information will make robust the knowledge of these candidate peptides with recognized mechanisms and enhance their non-toxic capacity in relation to healthy cells and further avoid cell resistance.
Collapse
|
14
|
Trinidad-Calderón PA, Varela-Chinchilla CD, García-Lara S. Natural Peptides Inducing Cancer Cell Death: Mechanisms and Properties of Specific Candidates for Cancer Therapeutics. Molecules 2021. [DOI: https://doi.org/10.3390/molecules26247453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Nowadays, cancer has become the second highest leading cause of death, and it is expected to continue to affect the population in forthcoming years. Additionally, treatment options will become less accessible to the public as cases continue to grow and disease mechanisms expand. Hence, specific candidates with confirmed anticancer effects are required to develop new drugs. Among the novel therapeutic options, proteins are considered a relevant source, given that they have bioactive peptides encrypted within their sequences. These bioactive peptides, which are molecules consisting of 2–50 amino acids, have specific activities when administered, producing anticancer effects. Current databases report the effects of peptides. However, uncertainty is found when their molecular mechanisms are investigated. Furthermore, analyses addressing their interaction networks or their directly implicated mechanisms are needed to elucidate their effects on cancer cells entirely. Therefore, relevant peptides considered as candidates for cancer therapeutics with specific sequences and known anticancer mechanisms were accurately reviewed. Likewise, those features which turn certain peptides into candidates and the mechanisms by which peptides mediate tumor cell death were highlighted. This information will make robust the knowledge of these candidate peptides with recognized mechanisms and enhance their non-toxic capacity in relation to healthy cells and further avoid cell resistance.
Collapse
|
15
|
Hansen BT, Maschkowitz G, Podschun R, Fickenscher H. The Kinocidin Interleukin-26 Shows Immediate Antimicrobial Effects Even to Multi-resistant Isolates. Front Microbiol 2021; 12:757215. [PMID: 34733265 PMCID: PMC8558509 DOI: 10.3389/fmicb.2021.757215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/28/2021] [Indexed: 11/24/2022] Open
Abstract
The cationic proinflammatory cytokine Interleukin 26 (IL-26) shows antibacterial activity and inhibits the replication of cytomegalovirus and hepatitis C virus. This study evaluates the early microbicidal activities of IL-26 against major bacterial species including multi-resistant variants and Candida albicans. Recombinant IL-26 was bacterially expressed and studied for its microbicidal effects in culture. We show that IL-26 has strong 90% bactericidal activities against Enterococcus faecalis, Enterococcus faecium, Staphylococcus aureus, and Acinetobacter baumannii. Similarly, IL-26 sensitivity was also detectable in vancomycin-resistant Enterococcus species, methicillin-resistant S. aureus, and carbapenem-resistant A. baumannii clinical isolates. Additionally, a significant, albeit weak fungicidal effect against Candida albicans was observed. Activities against Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa were not detectable. The proinflammatory cytokine and kinocidin IL-26 shows strong bactericidal activities against A. baumannii and, almost selectively, against Gram-positive bacteria.
Collapse
Affiliation(s)
- Bjoern-Thore Hansen
- Institute for Infection Medicine, Christian-Albrecht University of Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Gregor Maschkowitz
- Institute for Infection Medicine, Christian-Albrecht University of Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Rainer Podschun
- Institute for Infection Medicine, Christian-Albrecht University of Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Helmut Fickenscher
- Institute for Infection Medicine, Christian-Albrecht University of Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
16
|
Sáenz-Martínez DE, Santana PA, Aróstica M, Forero JC, Guzmán F, Mercado L. Immunodetection of rainbow trout IL-8 cleaved-peptide: Tissue bioavailability and potential antibacterial activity in a bacterial infection context. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 124:104182. [PMID: 34166719 DOI: 10.1016/j.dci.2021.104182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/20/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Chemokines such as IL-8 are part of an important group of proinflammatory response molecules, as well as cell recruitment. However, it has been described in both higher vertebrates and fish that IL-8 has an additional functional role by acting as an antimicrobial effector, either directly or by cleavage of a peptide derived from its C-terminal end. Nevertheless, it is still unknown whether this fragment is released in the context of infection by bacterial pathogens and if it could be immunodetected in tissues of infected salmonids. Therefore, the objective of this research was to demonstrate that the C-terminal end of IL-8 from Oncorhynchus mykiss is cleaved, retaining its antibacterial properties, and that is detectable in tissues of infected rainbow trout. SDS-PAGE and mass spectrometry demonstrated the cleavage of a fragment of about 2 kDa when the recombinant IL-8 was subjected to acidic conditions. By chemical synthesis, it was possible to synthesize this fragment called omIL-8α80-97 peptide, which has antibacterial activity against Gram-negative and Gram-positive bacteria at concentrations over 10 μM. Besides, by fluorescence microscopy, it was possible to locate the omIL-8α80-97 peptide both on the cell surface and in the cytoplasm of the bacteria, as well as inside the monocyte/macrophage-like cell. Finally, by indirect ELISA, Western blot, and mass spectrometry, the presence of the fragment derived from the C-terminal end of IL-8 was detected in the spleen of trout infected with Piscirickettsia salmonis. The results reported in this work present the first evidence about the immunodetection of an antibacterial, and probably cell-penetrating peptide cleaved from the C-terminal end of IL-8 in monocyte/macrophage-like cell and tissue of infected rainbow trout.
Collapse
Affiliation(s)
- Daniel E Sáenz-Martínez
- Doctorado en Biotecnología, Pontificia Universidad Católica de Valparaíso, Universidad Técnico Federico Santa María, Valparaíso, Chile.
| | - Paula A Santana
- Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, El Llano Subercaseaux 2801, San Miguel, Santiago 8910060, Chile.
| | - Mónica Aróstica
- Doctorado en Biotecnología, Pontificia Universidad Católica de Valparaíso, Universidad Técnico Federico Santa María, Valparaíso, Chile.
| | - Juan C Forero
- Núcleo Biotecnología Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Avenida Universidad #330, 2373223,Valparaíso, Chile.
| | - Fanny Guzmán
- Núcleo Biotecnología Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Avenida Universidad #330, 2373223,Valparaíso, Chile.
| | - Luis Mercado
- Núcleo Biotecnología Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Avenida Universidad #330, 2373223,Valparaíso, Chile; Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Avenida Universidad #330, 2373223,Valparaíso, Chile.
| |
Collapse
|
17
|
Advancement in Salmonella Detection Methods: From Conventional to Electrochemical-Based Sensing Detection. BIOSENSORS-BASEL 2021; 11:bios11090346. [PMID: 34562936 PMCID: PMC8468554 DOI: 10.3390/bios11090346] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023]
Abstract
Large-scale food-borne outbreaks caused by Salmonella are rarely seen nowadays, thanks to the advanced nature of the medical system. However, small, localised outbreaks in certain regions still exist and could possess a huge threat to the public health if eradication measure is not initiated. This review discusses the progress of Salmonella detection approaches covering their basic principles, characteristics, applications, and performances. Conventional Salmonella detection is usually performed using a culture-based method, which is time-consuming, labour intensive, and unsuitable for on-site testing and high-throughput analysis. To date, there are many detection methods with a unique detection system available for Salmonella detection utilising immunological-based techniques, molecular-based techniques, mass spectrometry, spectroscopy, optical phenotyping, and biosensor methods. The electrochemical biosensor has growing interest in Salmonella detection mainly due to its excellent sensitivity, rapidity, and portability. The use of a highly specific bioreceptor, such as aptamers, and the application of nanomaterials are contributing factors to these excellent characteristics. Furthermore, insight on the types of biorecognition elements, the principles of electrochemical transduction elements, and the miniaturisation potential of electrochemical biosensors are discussed.
Collapse
|
18
|
Effects of Substituting Arginine by Lysine in Bovine Lactoferricin Derived Peptides: Pursuing Production Lower Costs, Lower Hemolysis, and Sustained Antimicrobial Activity. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10207-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Guerrero Manriquez GG, Tuero I. Adjuvants: friends in vaccine formulations against infectious diseases. Hum Vaccin Immunother 2021; 17:3539-3550. [PMID: 34288795 DOI: 10.1080/21645515.2021.1934354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Infectious diseases represent a major cause of deaths worldwide. No vaccine or effective treatment exists nowadays, especially against intracellular pathogens. The increase in multiple drug and superbug antibiotic resistance strains, excessive medication, or misuse of drugs has prompted the search for other safe and effective alternatives. Consistent with this, adjuvants (Latin word "adjuvare": "help or aid") co-administered (Exo) in vaccines have emerged as a promising alternative to initiate and boost an innate, downstream signal that led to adaptative immune response. Nowadays, a promising model of strong immunogens and adjuvants at mucosal sites are the microbial bacterial toxins. Other adjuvants that are also used and might successfully replace aluminum salts in combination with nanotechnology are CpG-ODN, poly IC, type I IFNs, mRNA platforms. Therefore, in the present review, we focused to revisit the old to the new adjuvants compounds, the properties that make them friends in vaccine formulations against infectious diseases.
Collapse
Affiliation(s)
| | - I Tuero
- Faculty of Science and Phylosophy, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
20
|
Yu TT, Kuppusamy R, Yasir M, Hassan MM, Sara M, Ho J, Willcox MDP, Black DS, Kumar N. Polyphenylglyoxamide-Based Amphiphilic Small Molecular Peptidomimetics as Antibacterial Agents with Anti-Biofilm Activity. Int J Mol Sci 2021; 22:7344. [PMID: 34298964 PMCID: PMC8303886 DOI: 10.3390/ijms22147344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/01/2021] [Accepted: 07/04/2021] [Indexed: 01/02/2023] Open
Abstract
The rapid emergence of drug-resistant bacteria is a major global health concern. Antimicrobial peptides (AMPs) and peptidomimetics have arisen as a new class of antibacterial agents in recent years in an attempt to overcome antibiotic resistance. A library of phenylglyoxamide-based small molecular peptidomimetics was synthesised by incorporating an N-alkylsulfonyl hydrophobic group with varying alkyl chain lengths and a hydrophilic cationic group into a glyoxamide core appended to phenyl ring systems. The quaternary ammonium iodide salts 16d and 17c showed excellent minimum inhibitory concentration (MIC) of 4 and 8 μM (2.9 and 5.6 μg/mL) against Staphylococcus aureus, respectively, while the guanidinium hydrochloride salt 34a showed an MIC of 16 μM (8.5 μg/mL) against Escherichia coli. Additionally, the quaternary ammonium iodide salt 17c inhibited 70% S. aureus biofilm formation at 16 μM. It also disrupted 44% of pre-established S. aureus biofilms at 32 μM and 28% of pre-established E. coli biofilms 64 μM, respectively. A cytoplasmic membrane permeability study indicated that the synthesised peptidomimetics acted via disruption and depolarisation of membranes. Moreover, the quaternary ammonium iodide salts 16d and 17c were non-toxic against human cells at their therapeutic dosages against S. aureus.
Collapse
Affiliation(s)
- Tsz Tin Yu
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia; (T.T.Y.); (R.K.); (M.M.H.); (J.H.)
| | - Rajesh Kuppusamy
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia; (T.T.Y.); (R.K.); (M.M.H.); (J.H.)
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia; (M.Y.); (M.S.); (M.D.P.W.)
| | - Muhammad Yasir
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia; (M.Y.); (M.S.); (M.D.P.W.)
| | - Md. Musfizur Hassan
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia; (T.T.Y.); (R.K.); (M.M.H.); (J.H.)
| | - Manjulatha Sara
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia; (M.Y.); (M.S.); (M.D.P.W.)
| | - Junming Ho
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia; (T.T.Y.); (R.K.); (M.M.H.); (J.H.)
| | - Mark D. P. Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia; (M.Y.); (M.S.); (M.D.P.W.)
| | - David StC. Black
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia; (T.T.Y.); (R.K.); (M.M.H.); (J.H.)
| | - Naresh Kumar
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia; (T.T.Y.); (R.K.); (M.M.H.); (J.H.)
| |
Collapse
|
21
|
Li F, Bian C, Li D, Shi Q. Spider Silks: An Overview of Their Component Proteins for Hydrophobicity and Biomedical Applications. Protein Pept Lett 2021; 28:255-269. [PMID: 32895035 DOI: 10.2174/0929866527666200907104401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 11/22/2022]
Abstract
Spider silks have received extensive attention from scientists and industries around the world because of their remarkable mechanical properties, which include high tensile strength and extensibility. It is a leading-edge biomaterial resource, with a wide range of potential applications. Spider silks are composed of silk proteins, which are usually very large molecules, yet many silk proteins still remain largely underexplored. While there are numerous reviews on spider silks from diverse perspectives, here we provide a most up-to-date overview of the spider silk component protein family in terms of its molecular structure, evolution, hydrophobicity, and biomedical applications. Given the confusion regarding spidroin naming, we emphasize the need for coherent and consistent nomenclature for spidroins and provide recommendations for pre-existing spidroin names that are inconsistent with nomenclature. We then review recent advances in the components, identification, and structures of spidroin genes. We next discuss the hydrophobicity of spidroins, with particular attention on the unique aquatic spider silks. Aquatic spider silks are less known but may inspire innovation in biomaterials. Furthermore, we provide new insights into antimicrobial peptides from spider silk glands. Finally, we present possibilities for future uses of spider silks.
Collapse
Affiliation(s)
- Fan Li
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Chao Bian
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Daiqin Li
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Qiong Shi
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
22
|
Pierce LM, Kurata WE. Priming With Toll-Like Receptor 3 Agonist Poly(I:C) Enhances Content of Innate Immune Defense Proteins but Not MicroRNAs in Human Mesenchymal Stem Cell-Derived Extracellular Vesicles. Front Cell Dev Biol 2021; 9:676356. [PMID: 34109180 PMCID: PMC8180863 DOI: 10.3389/fcell.2021.676356] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) help fight infection by promoting direct bacterial killing or indirectly by modulating the acute phase response, thereby decreasing tissue injury. Recent evidence suggests that extracellular vesicles (EVs) released from MSCs retain antimicrobial characteristics that may be enhanced by pretreatment of parent MSCs with the toll-like receptor 3 (TLR3) agonist poly(I:C). Our aim was to determine whether poly(I:C) priming can modify EV content of miRNAs and/or proteins to gain insight into the molecular mechanisms of their enhanced antimicrobial function. Human bone marrow-derived MSCs were cultured with or without 1 μg/ml poly(I:C) for 1 h and then conditioned media was collected after 64 h of culture in EV-depleted media. Mass spectrometry and small RNA next-generation sequencing were performed to compare proteomic and miRNA profiles. Poly(I:C) priming resulted in 49 upregulated EV proteins, with 21 known to be important in host defense and innate immunity. In contrast, EV miRNA content was not significantly altered. Functional annotation clustering analysis revealed enrichment in biological processes and pathways including negative regulation of endopeptidase activity, acute phase, complement and coagulation cascades, innate immunity, immune response, and Staphylococcus aureus infection. Several antimicrobial peptides identified in EVs remained unaltered by poly(I:C) priming, including dermcidin, lactoferrin, lipocalin 1, lysozyme C, neutrophil defensin 1, S100A7 (psoriasin), S100A8/A9 (calprotectin), and histone H4. Although TLR3 activation of MSCs improves the proteomic profile of EVs, further investigation is needed to determine the relative importance of particular functional EV proteins and their activated signaling pathways following EV interaction with immune cells.
Collapse
Affiliation(s)
- Lisa M Pierce
- Department of Clinical Investigation, Tripler Army Medical Center, Honolulu, HI, United States
| | - Wendy E Kurata
- Department of Clinical Investigation, Tripler Army Medical Center, Honolulu, HI, United States
| |
Collapse
|
23
|
Olmos-Ortiz A, Olivares-Huerta A, García-Quiroz J, Zariñán T, Chavira R, Zaga-Clavellina V, Avila E, Halhali A, Durand M, Larrea F, Díaz L. Placentas associated with female neonates from pregnancies complicated by urinary tract infections have higher cAMP content and cytokines expression than males. Am J Reprod Immunol 2021; 86:e13434. [PMID: 33905581 DOI: 10.1111/aji.13434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/17/2022] Open
Abstract
PROBLEM The cAMP pathway is involved in important biological processes including immune regulation and hormone signaling. At the feto-maternal unit, cAMP participates in placental function/physiology and the establishment of immunoendocrine networks. Low cAMP in male fetuses cord blood has been linked to poorer perinatal outcomes; however, cAMP placental content and its relationship with immune factors and fetal sex in an infectious condition have not been investigated. METHOD OF STUDY Sex-dependent changes in cAMP content and its association with cytokines and antimicrobial peptides expression were studied in human placentas collected from normal pregnancies and with urinary tract infections (UTI). Radioimmunoassay was used to quantify cAMP in placental tissue, while immune markers expression was studied by qPCR. Additionally, cAMP effect on antimicrobial peptides expression was studied in cultured trophoblasts challenged with lipopolysaccharide, to mimic an infection. RESULTS In UTI, placentas from female neonates had higher cAMP tissue content and increased expression of TNFA, IL1B, and IL10 than those from males, where IFNG was more elevated. While cAMP negatively correlated with maternal bacteriuria and IFNG, it positively correlated with the antimicrobial peptide S100A9 expression in a sex-specific fashion. In cultured trophoblasts, cAMP significantly stimulated β-defensin-1 while reduced the lipopolysaccharide-dependent stimulatory effect on β-defensin-2, β-defensins-3, and S100A9. CONCLUSION Our results showed higher cAMP content and defense cytokines expression in placentas associated with female neonates from pregnancies complicated by UTI. The associations between cAMP and bacteriuria/immune markers, together with cAMP's ability to differentially regulate placental antimicrobial peptides expression, suggest a dual modulatory role for cAMP in placental immunity.
Collapse
Affiliation(s)
- Andrea Olmos-Ortiz
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México.,Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, México
| | - Alberto Olivares-Huerta
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - Janice García-Quiroz
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - Teresa Zariñán
- Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México, México
| | - Roberto Chavira
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - Verónica Zaga-Clavellina
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes (INPer), Ciudad de México, México
| | - Euclides Avila
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - Ali Halhali
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - Marta Durand
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - Fernando Larrea
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - Lorenza Díaz
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| |
Collapse
|
24
|
Liang X, Yan J, Lu Y, Liu S, Chai X. The Antimicrobial Peptide Melectin Shows Both Antimicrobial and Antitumor Activity via Membrane Interference and DNA Binding. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:1261-1273. [PMID: 33776423 PMCID: PMC7989573 DOI: 10.2147/dddt.s288219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/05/2021] [Indexed: 12/17/2022]
Abstract
Purpose Increasingly complex diseases require novel drugs for their treatment. Antimicrobial peptides (AMPs) are promising candidate treatments due to their broad existence and special characteristics. However, the current understanding of AMPs is not sufficient to allow them to be produced commercially for clinical use. Materials and Methods Melectin, from the venom of the cleptoparasitic bee Melecta albifrons, does not exhibit sequence homology with other wasp venom peptides. To investigate this more deeply, we explored the antibacterial and antitumor activities of Melectin and related mechanisms. Results Our results demonstrate that Melectin possesses antimicrobial properties against standard sensitive/clinical drug-resistant bacteria strains as well as antitumor activity. It has an α-helix form and exhibits moderate cytotoxicity. Its action mechanisms are involved with membrane interfering and DNA binding. The membrane interfering effect was distinct between different phospholipid compositions. Conclusion We found that Melectin may serve as a new potential template in the battle against multidrug resistance, and our study indicated that there are promising prospects for medically applicable drugs based on AMPs.
Collapse
Affiliation(s)
- Xiaolei Liang
- Key Laboratory for Gynecologic Oncology Gansu Province, Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Lanzhou, People's Republic of China
| | - Jiexi Yan
- The Precision Medicine Laboratory, The First Hospital of Lanzhou University, Lanzhou, People's Republic of China
| | - Yingwei Lu
- Gansu Provincial Center for Disease Control and Prevention, Lanzhou, People's Republic of China
| | - Shan Liu
- The First Clinical Medicine School, Lanzhou University, Lanzhou, People's Republic of China
| | - Xiaojing Chai
- The Key Laboratory, The First Hospital of Lanzhou University, Lanzhou, People's Republic of China
| |
Collapse
|
25
|
Bass GA, Seamon MJ, Schwab CW. A surgeon's history of the omentum: From omens to patches to immunity. J Trauma Acute Care Surg 2021; 89:e161-e166. [PMID: 32925575 DOI: 10.1097/ta.0000000000002945] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Gary Alan Bass
- From the Division of Traumatology, Emergency Surgery, and Surgical Critical Care, Penn Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | |
Collapse
|
26
|
Cheng R, Xu Q, Hu F, Li H, Yang B, Duan Z, Zhang K, Wu J, Li W, Luo Z. Antifungal activity of MAF-1A peptide against Candida albicans. Int Microbiol 2021; 24:233-242. [PMID: 33452940 PMCID: PMC8046747 DOI: 10.1007/s10123-021-00159-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/25/2020] [Accepted: 01/04/2021] [Indexed: 12/30/2022]
Abstract
Invasive candidiasis is a major threat to human health, and Candida albicans is the most common pathogenic species responsible for this condition. The incidence of drug-resistant strains of C. albicans is rising, necessitating the development of new antifungal drugs. Antimicrobial peptides (AMPs) have recently attracted attention due to their unique ability to evade the drug resistance of microorganisms. However, the mechanism of their activity has not yet been identified. The current study analyzed the mode of action of MAF-1A by confocal microscopy, scanning electron microscopy, fluorescent staining, flow cytometry, and qRT-PCR. The results indicate that MAF-1A disrupts the cell membrane of C. albicans and enters the cell where it binds and interacts with nucleic acids. qRT-PCR demonstrated that the expression of several sterol biosynthesis–related genes in C. albicans was increased after MAF-1A treatment. Together, these findings suggest that MAF-1A exerts antifungal action by affecting both the cell membrane and intracellular components. The antifungal mechanism of MAF-1A is unique, and its identification has great research and clinical significance.
Collapse
Affiliation(s)
- Rong Cheng
- Department of Central Lab, Guizhou Provincial People's Hospital, Guiyang, 550002, China
- NHC Key Laboratory of Pulmonary Immune-related Diseases, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Qiang Xu
- Department of Central Lab, Guizhou Provincial People's Hospital, Guiyang, 550002, China
- NHC Key Laboratory of Pulmonary Immune-related Diseases, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Fangfang Hu
- Department of Laboratory, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Hongling Li
- Department of Laboratory, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Bin Yang
- Department of Central Lab, Guizhou Provincial People's Hospital, Guiyang, 550002, China
- NHC Key Laboratory of Pulmonary Immune-related Diseases, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Zonggang Duan
- Department of Cardiovascular Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Kai Zhang
- Department of Cardiovascular Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Jianwei Wu
- Key and Characteristic Laboratory of Modern Pathogen Biology, Department of Human Parasitology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550004, China
| | - Wei Li
- Department of Cardiovascular Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| | - Zhenhua Luo
- Department of Central Lab, Guizhou Provincial People's Hospital, Guiyang, 550002, China.
- NHC Key Laboratory of Pulmonary Immune-related Diseases, Guizhou Provincial People's Hospital, Guiyang, 550002, China.
| |
Collapse
|
27
|
Aguieiras MCL, Resende LM, Souza TAM, Nagano CS, Chaves RP, Taveira GB, Carvalho AO, Rodrigues R, Gomes VM, Mello ÉO. Potent Anti-Candida Fraction Isolated from Capsicum chinense Fruits Contains an Antimicrobial Peptide That is Similar to Plant Defensin and is Able to Inhibit the Activity of Different α-Amylase Enzymes. Probiotics Antimicrob Proteins 2021; 13:862-872. [PMID: 33454869 DOI: 10.1007/s12602-020-09739-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2020] [Indexed: 10/22/2022]
Abstract
Antimicrobial peptides (AMPs) are molecules present in several life forms, possess broad-spectrum of inhibitory activity against pathogenic microorganisms, and are a promising alternative to combat the multidrug resistant pathogens. The aim of this work was to identify and characterize AMPs from Capsicum chinense fruits and to evaluate their inhibitory activities against yeasts of the genus Candida and α-amylases. Initially, after protein extraction from fruits, the extract was submitted to anion exchange chromatography resulting two fractions. Fraction D1 was further fractionated by molecular exclusion chromatography, and three fractions were obtained. These fractions showed low molecular mass peptides, and in fraction F3, only two protein bands of approximately 6.5 kDa were observed. Through mass spectrometry, we identified that the lowest molecular mass protein band of fraction F3 showed similarity with AMPs from plant defensin family. We named this peptide CcDef3 (Capsicum chinense defensin 3). The antifungal activity of these fractions was analyzed against yeasts of the genus Candida. At 200 μg/mL, fraction F1 inhibited the growth of C. tropicalis by 26%, fraction F2 inhibited 35% of the growth of C. buinensis, and fraction F3 inhibited all tested yeasts, exhibiting greater inhibition activity on the growth of the yeast C. albicans (86%) followed by C. buinensis (69%) and C. tropicalis (21%). Fractions F1 and F2 promoted membrane permeabilization of all tested yeasts and increased the endogenous induction of reactive oxygen species (ROS) in C. buinensis and C. tropicalis, respectively. We also observed that fraction F3 at a concentration of 50 µg/mL inhibited the α-amylase activities of Tenebrio molitor larvae by 96% and human salivary by 100%. Thus, our results show that fraction F3, which contains CcDef3, is a very promising protein fraction because it has antifungal potential and is able to inhibit the activity of different α-amylase enzymes.
Collapse
Affiliation(s)
- Mariana C L Aguieiras
- Laboratório de Fisiologia E Bioquímica de Microrganismos, Centro de Biociências E Biotecnologia, Universidade Estadual Do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes, RJ, Brazil
| | - Larissa M Resende
- Laboratório de Fisiologia E Bioquímica de Microrganismos, Centro de Biociências E Biotecnologia, Universidade Estadual Do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes, RJ, Brazil
| | - Thaynã A M Souza
- Laboratório de Fisiologia E Bioquímica de Microrganismos, Centro de Biociências E Biotecnologia, Universidade Estadual Do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes, RJ, Brazil
| | - Celso S Nagano
- Laboratório de Bioquímica Marinha, Departamento de Engenharia de Pesca, Universidade Federal Do Ceará, Fortaleza, CE, Brazil
| | - Renata P Chaves
- Laboratório de Bioquímica Marinha, Departamento de Engenharia de Pesca, Universidade Federal Do Ceará, Fortaleza, CE, Brazil
| | - Gabriel B Taveira
- Laboratório de Fisiologia E Bioquímica de Microrganismos, Centro de Biociências E Biotecnologia, Universidade Estadual Do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes, RJ, Brazil
| | - André O Carvalho
- Laboratório de Fisiologia E Bioquímica de Microrganismos, Centro de Biociências E Biotecnologia, Universidade Estadual Do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes, RJ, Brazil
| | - Rosana Rodrigues
- Laboratório de Melhoramento E Genética Vegetal, Centro de Ciências E Tecnologias Agropecuárias, Universidade Estadual Do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Valdirene M Gomes
- Laboratório de Fisiologia E Bioquímica de Microrganismos, Centro de Biociências E Biotecnologia, Universidade Estadual Do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes, RJ, Brazil.
| | - Érica O Mello
- Laboratório de Fisiologia E Bioquímica de Microrganismos, Centro de Biociências E Biotecnologia, Universidade Estadual Do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes, RJ, Brazil.
| |
Collapse
|
28
|
Sperotto VR, Denardi LB, Weiblen C, de Jesus FPK, Dorneles MR, Ianiski LB, Santurio JM. Short communication: Algicide activity of antimicrobial peptides compounds against Prototheca bovis. J Dairy Sci 2021; 104:3554-3558. [PMID: 33455795 DOI: 10.3168/jds.2020-18171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 10/16/2020] [Indexed: 11/19/2022]
Abstract
This study evaluated the in vitro activity of antimicrobial peptides pexiganan (MSI-78), h-Lf1-11, LL-37, cecropin B, magainin-2, and fengycin B against the veterinary mastitis agent Prototheca bovis. The results showed that pexiganan, h-Lf1-11, LL-37, and cecropin B were able to inhibit the growth and had effect on algicide P. bovis isolates (n = 32). The minimum inhibitory concentration ranged from 5 to 10 µg/mL for pexiganan, and algicide effect was detected from 5 to 20 µg/mL. The minimum inhibitory concentration ranged from 10 to 80 µg/mL for h-Lf1-11, 20 to 80 µg/mL for LL-37, and 40 to 160 µg/mL for cecropin B. These findings present a promising and novel alternative for P. bovis treatment and growth control.
Collapse
Affiliation(s)
- V R Sperotto
- Pharmacology Postgraduate Program, Federal University of Santa Maria, Rio Grande do Sul, Brazil, 97105-900; University of Cruz Alta, Cruz Alta, Rio Grande do Sul, Brazil, 98005-972.
| | - L B Denardi
- Pharmacology Postgraduate Program, Federal University of Santa Maria, Rio Grande do Sul, Brazil, 97105-900; Department of Microbiology and Parasitology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil, 97105-900
| | - C Weiblen
- Department of Microbiology and Parasitology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil, 97105-900
| | - F P K de Jesus
- Department of Microbiology and Parasitology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil, 97105-900
| | - M R Dorneles
- University of Cruz Alta, Cruz Alta, Rio Grande do Sul, Brazil, 98005-972
| | - L B Ianiski
- Department of Microbiology and Parasitology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil, 97105-900; Postgraduate Program in Pharmaceutical Sciences, Federal University of Santa Maria, Rio Grande do Sul, Brazil, 97105-900
| | - J M Santurio
- Pharmacology Postgraduate Program, Federal University of Santa Maria, Rio Grande do Sul, Brazil, 97105-900; Department of Microbiology and Parasitology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil, 97105-900
| |
Collapse
|
29
|
Human β-Defensin 118 Attenuates Escherichia coli K88-Induced Inflammation and Intestinal Injury in Mice. Probiotics Antimicrob Proteins 2020; 13:586-597. [PMID: 33185791 DOI: 10.1007/s12602-020-09725-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2020] [Indexed: 01/22/2023]
Abstract
Antibiotics are widely used to treat various inflammatory bowel diseases caused by enterotoxigenic Escherichia coli (ETEC). However, continuous use of antibiotics may lead to drug resistance. In this study, we investigated the role of human β-defensin 118 (DEFB118) in regulating the ETEC-induced inflammation and intestinal injury. ETEC-challenged or non-challenged mice were treated by different concentrations of DEFB118. We show that ETEC infection significantly increased fecal score (P < 0.05) and serum concentrations of interlukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Moreover, the concentrations of D-lactic acid, C-reactive protein (CRP), creatinine (CREA), and urea (P < 0.05) were both increased in the ETEC-challenged mice. However, DEFB118 significantly decreased their concentrations in the serum (P < 0.05). DEFB118 not only alleviated tissue damage in spleen upon ETEC challenge, but also increased the villus height in duodenum and ileum (P < 0.05). Moreover, DEFB118 improved the localization and abundance of tight junction protein ZO-1 in jejunal epithelium. Interestingly, DEFB118 decreased the expression levels of critical genes involving in mucosal inflammatory responses (NF-κB, TLR4, IL-1β, and TNF-α) and the apoptosis (caspase3) upon ETEC challenge (P < 0.05), whereas DEFB118 significantly upregulated the expression of mucosa functional genes such as the mucin1 (MUC1) and sodium-glucose transporter-1 (SGLT-1) in the ETEC-challenged mice (P < 0.05). These results indicated a novel function of the DEFB118. The anti-inflammatory effect of DEFB118 should make it an attractive candidate to prevent various bacteria-induced inflammatory bowel diseases.
Collapse
|
30
|
Shen Y, Xu L, Li Y. Biosensors for rapid detection of Salmonella in food: A review. Compr Rev Food Sci Food Saf 2020; 20:149-197. [PMID: 33443806 DOI: 10.1111/1541-4337.12662] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 09/04/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022]
Abstract
Salmonella is one of the main causes of foodborne infectious diseases, posing a serious threat to public health. It can enter the food supply chain at various stages of production, processing, distribution, and marketing. High prevalence of Salmonella necessitates efficient and effective approaches for its identification, detection, and monitoring at an early stage. Because conventional methods based on plate counting and real-time polymerase chain reaction are time-consuming and laborious, novel rapid detection methods are urgently needed for in-field and on-line applications. Biosensors provide many advantages over conventional laboratory assays in terms of sensitivity, specificity, and accuracy, and show superiority in rapid response and potential portability. They are now recognized as promising alternative tools and one of the most on-site applicable and end user-accessible methods for rapid detection. In recent years, we have witnessed a flourishing of studies in the development of robust and elaborate biosensors for detection of Salmonella in food. This review aims to provide a comprehensive overview on Salmonella biosensors by highlighting different signal-transducing mechanisms (optical, electrochemical, piezoelectric, etc.) and critically analyzing its recent trends, particularly in combination with nanomaterials, microfluidics, portable instruments, and smartphones. Furthermore, current challenges are emphasized and future perspectives are discussed.
Collapse
Affiliation(s)
- Yafang Shen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas
| | - Lizhou Xu
- Department of Materials, Imperial College London, London, UK
| | - Yanbin Li
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas
| |
Collapse
|
31
|
Cerrato A, Capriotti AL, Capuano F, Cavaliere C, Montone AMI, Montone CM, Piovesana S, Zenezini Chiozzi R, Laganà A. Identification and Antimicrobial Activity of Medium-Sized and Short Peptides from Yellowfin Tuna ( Thunnus albacares) Simulated Gastrointestinal Digestion. Foods 2020; 9:foods9091185. [PMID: 32867059 PMCID: PMC7555217 DOI: 10.3390/foods9091185] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 12/13/2022] Open
Abstract
Due to the rapidly increasing resistance to conventional antibiotics, antimicrobial peptides are emerging as promising novel drug candidates. In this study, peptide fragments were obtained from yellowfin tuna muscle by simulated gastrointestinal digestion, and their antimicrobial activity towards Gram-positive and Gram-negative bacteria was investigated. In particular, the antimicrobial activity of both medium- and short-sized peptides was investigated by using two dedicated approaches. Medium-sized peptides were purified by solid phase extraction on C18, while short peptides were purified thanks to a graphitized carbon black sorbent. For medium-sized peptide characterization, a peptidomic strategy based on shotgun proteomics analysis was employed, and identification was achieved by matching protein sequence database by homology, as yellowfin tuna is a non-model organism, leading to the identification of 403 peptides. As for short peptide sequences, an untargeted suspect screening approach was carried out by means of an inclusion list presenting the exact mass to charge ratios (m/z) values for all di-, tri- and tetrapeptides. In total, 572 short sequences were identified thanks to a customized workflow dedicated to short peptide analysis implemented on Compound Discoverer software.
Collapse
Affiliation(s)
- Andrea Cerrato
- Department of Chemistry, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.C.); (A.L.C.); (C.C.); (S.P.); (A.L.)
| | - Anna Laura Capriotti
- Department of Chemistry, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.C.); (A.L.C.); (C.C.); (S.P.); (A.L.)
| | - Federico Capuano
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici (NA), Italy; (F.C.); (A.M.I.M.)
| | - Chiara Cavaliere
- Department of Chemistry, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.C.); (A.L.C.); (C.C.); (S.P.); (A.L.)
| | - Angela Michela Immacolata Montone
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici (NA), Italy; (F.C.); (A.M.I.M.)
- Department of Industrial Engineering, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy
| | - Carmela Maria Montone
- Department of Chemistry, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.C.); (A.L.C.); (C.C.); (S.P.); (A.L.)
- Correspondence: ; Tel.: +39-06-4991-3062
| | - Susy Piovesana
- Department of Chemistry, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.C.); (A.L.C.); (C.C.); (S.P.); (A.L.)
| | - Riccardo Zenezini Chiozzi
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands;
| | - Aldo Laganà
- Department of Chemistry, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.C.); (A.L.C.); (C.C.); (S.P.); (A.L.)
- CNR NANOTEC, Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
32
|
Kapil S, Sharma V. d-Amino acids in antimicrobial peptides: a potential approach to treat and combat antimicrobial resistance. Can J Microbiol 2020; 67:119-137. [PMID: 32783775 DOI: 10.1139/cjm-2020-0142] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Antimicrobial resistance is one of the leading challenges in the human healthcare segment. Advances in antimicrobial resistance have triggered exploration of natural alternatives to stabilize its seriousness. Antimicrobial peptides are small, positively charged oligopeptides that are as potent as commercially available antibiotics against a wide spectrum of organisms, such as Gram-positive bacteria, Gram-negative bacteria, viruses, and fungal strains. In addition to their antibiotic capabilities, these peptides possess anticancer activity, activate the immune response, and regulate inflammation. Peptides have distinct modes of action and fall into various categories due to their amino acid composition. Although antimicrobial peptides specifically target the bacterial cytoplasmic membrane, they can also target the cell nucleus and protein synthesis. Owing to the increasing demand for novel treatments against the threat of antimicrobial resistance, naturally synthesized peptides are a beneficial development concept. Antimicrobial peptides are pervasive and can easily be modified using de-novo synthesis technology. Antimicrobial peptides can be isolated from natural resources such as humans, plants, bacteria, and fungi. This review gives a brief overview of antimicrobial peptides and their diastereomeric composition. Other current trends, the future scope of antimicrobial peptides, and the role of d-amino acids are also discussed, with a specific emphasis on the design and development of new drugs.
Collapse
Affiliation(s)
- Shikha Kapil
- University Institute of Biotechnology, Chandigarh University, Gharuan Mohali, Punjab 140413, India.,University Institute of Biotechnology, Chandigarh University, Gharuan Mohali, Punjab 140413, India
| | - Vipasha Sharma
- University Institute of Biotechnology, Chandigarh University, Gharuan Mohali, Punjab 140413, India.,University Institute of Biotechnology, Chandigarh University, Gharuan Mohali, Punjab 140413, India
| |
Collapse
|
33
|
Ferrari L, Martelli P, Saleri R, De Angelis E, Ferrarini G, Cavalli V, Passeri B, Bazzoli G, Ogno G, Magliani W, Borghetti P. An engineered anti-idiotypic antibody-derived killer peptide (KP) early activates swine inflammatory monocytes, CD3 +CD16 + natural killer T cells and CD4 +CD8α + double positive CD8β + cytotoxic T lymphocytes associated with TNF-α and IFN-γ secretion. Comp Immunol Microbiol Infect Dis 2020; 72:101523. [PMID: 32758800 DOI: 10.1016/j.cimid.2020.101523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 12/19/2022]
Abstract
This study evaluated the early modulation of the phenotype and cytokine secretion in swine immune cells treated with an engineered killer peptide (KP) based on an anti-idiotypic antibody functionally mimicking a yeast killer toxin. The influence of KP on specific immunity was investigated using porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2) as ex vivo antigens. Peripheral blood mononuclear cells (PBMC) from healthy pigs were stimulated with KP and with a scramble peptide for 20 min, 1, 4 and 20 h or kept unstimulated. The cells were analyzed using flow cytometry and ELISA. The same time-periods were used for KP pre-incubation/co-incubation to determine the effect on virus-recalled interferon-gamma (IFN-γ) secreting cell (SC) frequencies and single cell IFN-γ productivity using ELISPOT. KP induced an early dose-dependent shift to pro-inflammatory CD172α+CD14+high monocytes and an increase of CD3+CD16+ natural killer (NK) T cells. KP triggered CD8α and CD8β expression on classical CD4-CD8αβ+ cytotoxic T lymphocytes (CTL) and double positive (DP) CD4+CD8α+ Th memory cells (CD4+CD8α+low CD8β+low). A fraction of DP cells also expressed high levels of CD8α. The two identified DP CD4+CD8α+high CD8β+low/+high CTL subsets were associated with tumor necrosis factor alpha (TNF-α) and IFN-γ secretion. KP markedly boosted the reactivity and cross-reactivity of PRRSV type-1- and PCV2b-specific IFN-γ SC. The results indicate the efficacy of KP in stimulating Th1-biased immunomodulation and support studies of KP as an immunomodulator or vaccine adjuvant.
Collapse
Affiliation(s)
- Luca Ferrari
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10 - 43126, Parma, Italy.
| | - Paolo Martelli
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10 - 43126, Parma, Italy.
| | - Roberta Saleri
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10 - 43126, Parma, Italy.
| | - Elena De Angelis
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10 - 43126, Parma, Italy.
| | - Giulia Ferrarini
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10 - 43126, Parma, Italy.
| | - Valeria Cavalli
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10 - 43126, Parma, Italy.
| | - Benedetta Passeri
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10 - 43126, Parma, Italy.
| | - Gianluca Bazzoli
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10 - 43126, Parma, Italy.
| | - Giulia Ogno
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10 - 43126, Parma, Italy.
| | - Walter Magliani
- Department of Medicine and Surgery, University of Parma, Via Gramsci, 14 - 43126, Parma, Italy.
| | - Paolo Borghetti
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10 - 43126, Parma, Italy.
| |
Collapse
|
34
|
Sha X, Li P, Feng Y, Xia D, Tian X, Wang Z, Yang Y, Mao X, Liu L. Self-Assembled Peptide Nanofibrils Designed to Release Membrane-Lysing Antimicrobial Peptides. ACS APPLIED BIO MATERIALS 2020; 3:3648-3655. [DOI: 10.1021/acsabm.0c00281] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xiangyu Sha
- Institute for Advanced Materials, School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ping Li
- National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yonghai Feng
- Institute for Advanced Materials, School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Dan Xia
- Research Institute for Energy Equipment Materials, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, College of Materials Science and Engineering, Hebei University of Technology, Tianjin 30040, China
| | - Xiaohua Tian
- Institute for Advanced Materials, School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zengkai Wang
- Institute for Advanced Materials, School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yanlian Yang
- National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xiaobo Mao
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Lei Liu
- Institute for Advanced Materials, School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
35
|
Bakare OO, Fadaka AO, Klein A, Pretorius A. Dietary effects of antimicrobial peptides in therapeutics. ALL LIFE 2020. [DOI: 10.1080/26895293.2020.1726826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- Olalekan Olanrewaju Bakare
- Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
| | - Adewale Oluwaseun Fadaka
- Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
| | - Ashwil Klein
- Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
| | - Ashley Pretorius
- Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
36
|
Oxidative Stress Alters Angiogenic and Antimicrobial Content of Extracellular Vesicles and Improves Flap Survival. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2019; 7:e2588. [PMID: 32537316 PMCID: PMC7288884 DOI: 10.1097/gox.0000000000002588] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/23/2019] [Indexed: 01/08/2023]
Abstract
Extracellular vesicles (EVs) secreted from adipose-derived mesenchymal stem cells (ADSCs) (ADSC-EVs) improve flap survival after ischemia-reperfusion injury. Exposure of parent ADSCs to oxidative stress has been shown to enhance this effect, but mechanisms are unclear. We aimed to determine whether angiogenesis-promoting protein and microRNA (miRNA) content is altered in EVs after preconditioning with hydrogen peroxide (H2O2 ADSC-EVs) and whether H2O2 ADSC-EVs can increase viability of random pattern skin flaps. Methods EVs secreted by human ADSCs were isolated after culture in EV-depleted medium ± H2O2. Nanoparticle tracking analysis determined size and concentration of purified EVs. Mass spectrometry and small RNA next-generation sequencing were performed to compare proteomic and miRNA profiles. ADSC-EVs, H2O2 ADSC-EVs, or vehicle were injected into random pattern skin flaps of BALB/c mice (4-5 mice per group). Viable and necrotic areas were measured on day 7, and tissues underwent histologic analysis. Results Angiogenic and antimicrobial protein content of EVs was altered with H2O2 preconditioning. Functional enrichment analysis identified constitutive photomorphogenesis 9 signalosome (known to direct vascular endothelial growth factor production) as the major enriched Gene Ontology term unique to H2O2 ADSC-EVs. Two miRNAs were increased, and 12 (including 10 antiangiogenic miRNAs) were reduced in H2O2 ADSC-EVs. Enhanced viability (P < 0.05) of flaps treated with H2O2 ADSC-EVs compared with vehicle corresponded to increased capillary density in the H2O2 group (P < 0.001). Conclusion Altered protein and miRNA content in ADSC-EVs after H2O2 pretreatment likely contributes to enhanced therapeutic effects on flap survival observed in preclinical models.
Collapse
|
37
|
Lin Q, Su G, Wu A, Chen D, Yu B, Huang Z, Luo Y, Mao X, Zheng P, Yu J, Luo J, He J. Bombyx mori gloverin A2 alleviates enterotoxigenic Escherichia coli-induced inflammation and intestinal mucosa disruption. Antimicrob Resist Infect Control 2019; 8:189. [PMID: 31788236 PMCID: PMC6878672 DOI: 10.1186/s13756-019-0651-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 11/11/2019] [Indexed: 01/20/2023] Open
Abstract
Background Enterotoxigenic Escherichia coli (ETEC) is one of the leading bacterial causes of intestinal inflammation and diarrhea. However, the ETEC is frequently resistant to common antibiotics. In this study, we explored the role of a novel antibacterial peptide Bombyx mori gloverin A2 (BMGlvA2) in alleviating ETEC-induced inflammation and intestinal epithelium disruption in mice. Methods An ETEC-challenged mice model was used, and the ETEC-challenged mice and non-challenged mice were treated by the BMGlvA2 at different doses. Results ETEC challenge not only elevated the concentrations of serum inflammatory cytokines such as the IL-6 and TNF-α (P < 0.01), but also elevated the concentrations of serum creatinine and urea (P < 0.05). However, BMGlvA2 attenuated the inflammatory responses by decreasing the serum inflammatory cytokines and improving the metabolisms in ETEC-challenged mice, and alleviated the ETEC-induced tissue damage in spleen. Moreover, BMGlvA2 treatment significantly elevated the duodenum villus height and decreased the crypt depth in the duodenum and ileum in ETEC-challenged mice (P < 0.05). Interestingly, BMGlvA2 improved the distribution and abundance of tight-junction protein ZO1 in duodenum and ileum epithelium after ETEC-challenge. Moreover, BMGlvA2 significantly down-regulated the expression levels of inflammatory cytokines (IL-1β, IL-6, and TNF-α) and the apoptosis-related genes (Caspase 8 and Caspase 9) in jejunal mucosa (P < 0.05) in the TETC-challenged mice. Importantly, BMGlvA2 significantly elevated the expression levels of critical genes related to mucosal barrier functions such as the mucins (MUC1 and MUC2) and glucose transporter (GLUT2) in the intestinal mucosa (P < 0.05). Conclusion Our results suggested a novel function of the conventional antibacterial peptides, and the anti-bacterial and anti-inflammatory properties of BMGlvA2 may allow it a potential substitute for conventionally used antibiotics or drugs.
Collapse
Affiliation(s)
- Qian Lin
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130 People’s Republic of China
- Key Laboratory for Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture, Chengdu, Sichuan 625014 People’s Republic of China
| | - Guoqi Su
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130 People’s Republic of China
- Key Laboratory for Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture, Chengdu, Sichuan 625014 People’s Republic of China
| | - Aimin Wu
- Guangdong Key Laboratory for Innovative Development and Uilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, 510642 China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130 People’s Republic of China
- Key Laboratory for Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture, Chengdu, Sichuan 625014 People’s Republic of China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130 People’s Republic of China
- Key Laboratory for Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture, Chengdu, Sichuan 625014 People’s Republic of China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130 People’s Republic of China
- Key Laboratory for Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture, Chengdu, Sichuan 625014 People’s Republic of China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130 People’s Republic of China
- Key Laboratory for Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture, Chengdu, Sichuan 625014 People’s Republic of China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130 People’s Republic of China
- Key Laboratory for Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture, Chengdu, Sichuan 625014 People’s Republic of China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130 People’s Republic of China
- Key Laboratory for Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture, Chengdu, Sichuan 625014 People’s Republic of China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130 People’s Republic of China
- Key Laboratory for Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture, Chengdu, Sichuan 625014 People’s Republic of China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130 People’s Republic of China
- Key Laboratory for Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture, Chengdu, Sichuan 625014 People’s Republic of China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130 People’s Republic of China
- Key Laboratory for Animal Disease-Resistance Nutrition and Feed, Ministry of Agriculture, Chengdu, Sichuan 625014 People’s Republic of China
| |
Collapse
|
38
|
Zhang D, He Y, Ye Y, Ma Y, Zhang P, Zhu H, Xu N, Liang S. Little Antimicrobial Peptides with Big Therapeutic Roles. Protein Pept Lett 2019; 26:564-578. [PMID: 30799781 DOI: 10.2174/1573406415666190222141905] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 02/05/2023]
Abstract
Antimicrobial Peptides (AMPs) are short amphipathic biological molecules generally with less than 100 amino acids. AMPs not only present high bioactivities against bacteria, fungi or protists-induced infections, but also play important roles in anticancer activity, immune response and inflammation regulation. AMPs are classified as ribosomally synthesized, non-ribosomally synthesized and post-translationally modified, non-ribosomally synthesized ones and several synthetic or semisynthetic peptides according to their synthesis with or without the involvement of ribosomes. The molecular characterization and bioactivity action mechanisms are summarized for several ribosomally synthesized AMPs and main non-ribosomally synthesized members (cyclopeptides, lipopeptides, glycopeptides, lipoglycopeptides). We also analyze challenges and new strategies to overcome drug resistance and application limitations for AMP discovery. In conclusion, the growing novel small molecular AMPs have huge therapeutic potentials of antibacterial, antiviral, anticancer and immunoregulatory bioactivities through new techniquesdriven drug discovery strategy including bioinformatics prediction, de novo rational design and biosynthesis.
Collapse
Affiliation(s)
- Dan Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University / Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yu He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University / Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yang Ye
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University / Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yanni Ma
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University / Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Peng Zhang
- Department of Urinary Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Hongxia Zhu
- Laboratory of Cell and Molecular Biology, State Key Laboratory of Molecular Oncology, Cancer Institute & Cancer Hospital, Chinese Academy of Medical Sciences, Beijing 100034, China
| | - Ningzhi Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University / Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.,Laboratory of Cell and Molecular Biology, State Key Laboratory of Molecular Oncology, Cancer Institute & Cancer Hospital, Chinese Academy of Medical Sciences, Beijing 100034, China
| | - Shufang Liang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University / Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| |
Collapse
|
39
|
Huang C, Yang X, Huang J, Liu X, Yang X, Jin H, Huang Q, Li L, Zhou R. Porcine Beta-Defensin 2 Provides Protection Against Bacterial Infection by a Direct Bactericidal Activity and Alleviates Inflammation via Interference With the TLR4/NF-κB Pathway. Front Immunol 2019; 10:1673. [PMID: 31379864 PMCID: PMC6657668 DOI: 10.3389/fimmu.2019.01673] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 07/04/2019] [Indexed: 12/15/2022] Open
Abstract
Porcine beta-defensin 2 (PBD-2) which is a member of the family of antimicrobial peptides, is widely expressed in pig organs with a broad spectrum of bactericidal activities confirmed in vitro. We previously demonstrated that transgenic (TG) pigs overexpressing PBD-2 could resist the infection by the porcine pathogen Actinobacillus pleuropneumoniae. In this study, the roles of PBD-2 in protecting against bacterial infection were further investigated. The biochemical indexes of the blood sample, body weights, histological morphologies, and weights of the organs of TG mice expressing PBD-2 were measured. Results confirmed that these mice showed normal physiological features. An assay of Salmonella Typhimurium infection was conducted on wild-type (WT) and TG mice. The TG mice possessed higher survival rate, less body weight loss, and pathological changes and smaller recovery rates of bacteria after infection with S. Typhimurium. The in vitro synthetic PBD-2 and the serum and tissue homogenates from the TG mice displayed a direct bactericidal activity. Moreover, PBD-2 could inhibit the release of the proinflammatory cytokines, including IL-6, TNF-α, IL-1β, and IL-12, in the TG mice infected with S. Typhimurium or treated with lipopolysaccharide (LPS). The WT mice treated with PBD-2 and S. Typhimurium or LPS showed reduced levels of proinflammatory cytokines. The mouse macrophage cell line RAW 264.7 which expressed PBD-2 was constructed to detect the signal pathways affected by PBD-2. The suppressing effect of PBD-2 on the release of the proinflammatory cytokines was confirmed using RAW 264.7 either expressing PBD-2 or supplemented with PBD-2. The promoter activity and mRNA level of NF-κB were detected, and PBD-2 was shown to significantly inhibit the activation of the NF-κB pathway induced by LPS. The direct interaction of PBD-2 with TLR4 was revealed by isothermal titration calorimetry and far-Western blot in vitro and the coimmunoprecipitation of PBD-2 with TLR4 on RAW 264.7 cells. This interaction indicates one reason for the interference of NF-κB activation. Overall, this study showed that PBD-2 protected against bacterial infection through a direct bactericidal activity and alleviated inflammation by interfering with the TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Chao Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xi Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Pig Industry Sciences, Chongqing Academy of Animal Sciences, Chongqing, China
| | - Jing Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xiao Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xiaoyu Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Wuhan, China
| | - Hui Jin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qi Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Lu Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| |
Collapse
|
40
|
Matougui N, Groo AC, Umerska A, Cassisa V, Saulnier P. A comparison of different strategies for antimicrobial peptides incorporation onto/into lipid nanocapsules. Nanomedicine (Lond) 2019; 14:1647-1662. [DOI: 10.2217/nnm-2018-0337] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aim: Over the last decade, antimicrobial peptides (AMPs) have emerged as a promising alternative for the treatment of various infections. The aim of this work is to explore the potential of lipid nanocapsules for the delivery of AMPs. Three approaches were compared in terms of encapsulation efficiency, peptide activity and protection against proteases: peptide encapsulation, surface adsorption or covalent attachment of three selected AMPs. Results: A potentiation of the antimicrobial activity and a partial protection of the peptides after adsorption were demonstrated compared with native peptides. Conversely, encapsulation allowed better peptide stability, correlated with higher encapsulation efficiencies and a preservation of the activity. Finally, the covalent attachment strategy turned out to be less conclusive due to peptide inactivation. Conclusion: In brief, a lipid nanocapsule-based platform appears suitable to deliver AMPs.
Collapse
Affiliation(s)
- Nada Matougui
- Micro & Nanomédecines Translationelles-MINT, UNIV Angers, INSERM U1066, CNRS UMR 6021, UBL Universite Bretagne Loire, Angers F-49933, France
| | - Anne-Claire Groo
- Normandie Univ, UNICAEN, CERMN – EA 4258, FR CNRS 3038 INC3M, SF 4206 ICORE, Caen, France
| | - Anita Umerska
- Micro & Nanomédecines Translationelles-MINT, UNIV Angers, INSERM U1066, CNRS UMR 6021, UBL Universite Bretagne Loire, Angers F-49933, France
- Université de Lorraine, CITHEFOR, Nancy, France
| | - Viviane Cassisa
- Equipe 7b, ATIP Avenir, ATOMyca, U892, CRCNA, CHU Angers, France
| | - Patrick Saulnier
- Micro & Nanomédecines Translationelles-MINT, UNIV Angers, INSERM U1066, CNRS UMR 6021, UBL Universite Bretagne Loire, Angers F-49933, France
- University Hospital Department of Biostatistics and Methodology, Angers University Hospital, Angers, France
| |
Collapse
|
41
|
Song L, Xie W, Liu Z, Guo D, Zhao D, Qiao X, Wang L, Zhou H, Cui W, Jiang Y, Li Y, Xu Y, Tang L. Oral delivery of a Lactococcus lactis strain secreting bovine lactoferricin-lactoferrampin alleviates the development of acute colitis in mice. Appl Microbiol Biotechnol 2019; 103:6169-6186. [PMID: 31165225 DOI: 10.1007/s00253-019-09898-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/02/2019] [Accepted: 05/08/2019] [Indexed: 12/16/2022]
Abstract
Ulcerative colitis (UC) is a chronic relapsing disease. Treatment of UC would benefit from specific targeting of therapeutics to the intestine. Previous studies have demonstrated that bovine lactoferricin and lactoferrampin have bactericidal, anti-inflammatory, and immunomodulatory effects. Here, we investigated whether oral administration of a bovine lactoferricin-lactoferrampin (LFCA)-encoding Lactococcus lactis (LL-LFCA) strain could alleviate experimental colitis. LFCA derived from LL-LFCA inhibited the growth of Escherichia coli and Staphylococcus aureus in vitro. In mice, administration of LL-LFCA decreased the disease activity index and attenuated dextran sulfate sodium (DSS)-induced body weight loss and colon shortening. LL-LFCA treatment also ameliorated DSS-induced colon damage, inhibited inflammatory cell infiltration, significantly decreased myeloperoxidase activity, and ameliorated DSS-induced disruption of intestinal permeability and tight junctions. In addition, 16S rDNA sequencing showed that LL-LFCA reversed DSS-induced gut dysbiosis. The production of proinflammatory mediators in serum and the colon was also reduced by administration of LL-LFCA. In vitro, LFCA derived from LL-LFCA decreased the messenger RNA expression of proinflammatory factors. The underlying mechanisms may involve inhibition of the nuclear factor kappa B (NF-κB) pathway. The results demonstrate that LL-LFCA ameliorates DSS-induced intestinal injury in mice, suggesting that LL-LFCA might be an effective drug for the treatment of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Liying Song
- College of Veterinary Medicine, Northeast Agricultural University, Chang Jiang Road No. 600, Xiang Fang District, Harbin, China
| | - Weichun Xie
- College of Veterinary Medicine, Northeast Agricultural University, Chang Jiang Road No. 600, Xiang Fang District, Harbin, China
| | - Zhihang Liu
- Bio-pharmaceutical Lab, College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Dian Guo
- College of Veterinary Medicine, Northeast Agricultural University, Chang Jiang Road No. 600, Xiang Fang District, Harbin, China
| | - Dongfang Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Chang Jiang Road No. 600, Xiang Fang District, Harbin, China
| | - Xinyuan Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Chang Jiang Road No. 600, Xiang Fang District, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Chang Jiang Road No. 600, Xiang Fang District, Harbin, China
| | - Li Wang
- College of Veterinary Medicine, Northeast Agricultural University, Chang Jiang Road No. 600, Xiang Fang District, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Chang Jiang Road No. 600, Xiang Fang District, Harbin, China
| | - Han Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Chang Jiang Road No. 600, Xiang Fang District, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Chang Jiang Road No. 600, Xiang Fang District, Harbin, China
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Chang Jiang Road No. 600, Xiang Fang District, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Chang Jiang Road No. 600, Xiang Fang District, Harbin, China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Chang Jiang Road No. 600, Xiang Fang District, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Chang Jiang Road No. 600, Xiang Fang District, Harbin, China
| | - Yijing Li
- College of Veterinary Medicine, Northeast Agricultural University, Chang Jiang Road No. 600, Xiang Fang District, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Chang Jiang Road No. 600, Xiang Fang District, Harbin, China
| | - Yigang Xu
- College of Veterinary Medicine, Northeast Agricultural University, Chang Jiang Road No. 600, Xiang Fang District, Harbin, China. .,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Chang Jiang Road No. 600, Xiang Fang District, Harbin, China.
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Chang Jiang Road No. 600, Xiang Fang District, Harbin, China. .,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Chang Jiang Road No. 600, Xiang Fang District, Harbin, China.
| |
Collapse
|
42
|
Fernandez J, Acosta G, Pulido D, Malý M, Copa-Patiño JL, Soliveri J, Royo M, Gómez R, Albericio F, Ortega P, de la Mata FJ. Carbosilane Dendron-Peptide Nanoconjugates as Antimicrobial Agents. Mol Pharm 2019; 16:2661-2674. [PMID: 31009225 DOI: 10.1021/acs.molpharmaceut.9b00222] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Over the last decades, multidrug-resistant bacteria have emerged and spread, increasing the number of bacteria, against which commonly used antibiotics are no longer effective. It has become a serious public health problem whose solution requires medical research in order to explore novel effective antimicrobial molecules. On the one hand, antimicrobial peptides (AMPs) are regarded as good alternatives because of their generally broad-spectrum activities, but sometimes they can be easily degraded by the organism or be toxic to animal cells. On the other hand, cationic carbosilane dendrons, whose focal point can be functionalized in many different ways, have also shown good antimicrobial activity. In this work, we synthetized first- and second-generation cationic carbosilane dendrons with a maleimide molecule on their focal point, enabling their functionalization with three different AMPs. After different microbiology studies, we found an additive effect between first-generation dendron and AMP3 whose study reveals three interesting effects: (i) bacteria aggregation due to AMP3, which could facilitate bacteria detection or even contribute to antibacterial activity by preventing host cell attack, (ii) bacteria disaggregation capability of second-generation cationic dendrons, and (iii) a higher AMP3 aggregation ability when dendrons were added previously to peptide treatment. These compounds and their different effects observed over bacteria constitute an interesting system for further mechanism studies.
Collapse
Affiliation(s)
- Jael Fernandez
- Instituto de Investigación Química "Andrés M. del Río" (IQAR) , UAH , 28801 Alcalá de Henares , Spain.,Networking Research Center on Bioengineering , Biomaterials and Nanomedicine (CIBER-BBN) , 28029 Madrid , Spain.,Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS , 28034 Madrid , Spain
| | - Gerardo Acosta
- Networking Research Center on Bioengineering , Biomaterials and Nanomedicine (CIBER-BBN) , 28029 Madrid , Spain.,Deparment of Organic and Inorganic Chemistry , University of Barcelona , 08028 Barcelona , Spain.,Institute for Advanced Chemistry of Catalonia-CSIC , 08034 Barcelona , Spain
| | - Daniel Pulido
- Networking Research Center on Bioengineering , Biomaterials and Nanomedicine (CIBER-BBN) , 28029 Madrid , Spain.,Institute for Advanced Chemistry of Catalonia-CSIC , 08034 Barcelona , Spain
| | - Marek Malý
- Faculty of Science , J. E. Purkinje University , České mládeže 8 , 400 96 Ústí nad Labem , Czech Republic
| | | | | | - Miriam Royo
- Networking Research Center on Bioengineering , Biomaterials and Nanomedicine (CIBER-BBN) , 28029 Madrid , Spain.,Institute for Advanced Chemistry of Catalonia-CSIC , 08034 Barcelona , Spain
| | - Rafael Gómez
- Instituto de Investigación Química "Andrés M. del Río" (IQAR) , UAH , 28801 Alcalá de Henares , Spain.,Networking Research Center on Bioengineering , Biomaterials and Nanomedicine (CIBER-BBN) , 28029 Madrid , Spain.,Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS , 28034 Madrid , Spain
| | - Fernando Albericio
- Networking Research Center on Bioengineering , Biomaterials and Nanomedicine (CIBER-BBN) , 28029 Madrid , Spain.,Deparment of Organic and Inorganic Chemistry , University of Barcelona , 08028 Barcelona , Spain.,Institute for Advanced Chemistry of Catalonia-CSIC , 08034 Barcelona , Spain.,School of Chemistry and Physics , University of KwaZulu-Natal , 4001 Durban , South Africa
| | - Paula Ortega
- Instituto de Investigación Química "Andrés M. del Río" (IQAR) , UAH , 28801 Alcalá de Henares , Spain.,Networking Research Center on Bioengineering , Biomaterials and Nanomedicine (CIBER-BBN) , 28029 Madrid , Spain.,Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS , 28034 Madrid , Spain
| | - F Javier de la Mata
- Instituto de Investigación Química "Andrés M. del Río" (IQAR) , UAH , 28801 Alcalá de Henares , Spain.,Networking Research Center on Bioengineering , Biomaterials and Nanomedicine (CIBER-BBN) , 28029 Madrid , Spain.,Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS , 28034 Madrid , Spain
| |
Collapse
|
43
|
Chai TT, Tan YN, Ee KY, Xiao J, Wong FC. Seeds, fermented foods, and agricultural by-products as sources of plant-derived antibacterial peptides. Crit Rev Food Sci Nutr 2019; 59:S162-S177. [PMID: 30663883 DOI: 10.1080/10408398.2018.1561418] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Tsun-Thai Chai
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar, Malaysia
- Centre for Biodiversity Research, Universiti Tunku Abdul Rahman, Kampar, Malaysia
| | - Yen-Nee Tan
- Centre for Biodiversity Research, Universiti Tunku Abdul Rahman, Kampar, Malaysia
- Department of Agricultural and Food Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar, Malaysia
| | - Kah-Yaw Ee
- Centre for Biodiversity Research, Universiti Tunku Abdul Rahman, Kampar, Malaysia
- Department of Agricultural and Food Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar, Malaysia
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, SKL of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macau, P. R. China
| | - Fai-Chu Wong
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar, Malaysia
- Centre for Biodiversity Research, Universiti Tunku Abdul Rahman, Kampar, Malaysia
| |
Collapse
|
44
|
Wang J, Wei R, Song R. Novel Antibacterial Peptides Isolated from the Maillard Reaction Products of Half-Fin Anchovy (Setipinna taty) Hydrolysates/Glucose and Their Mode of Action in Escherichia coli. Mar Drugs 2019; 17:E47. [PMID: 30634704 PMCID: PMC6356202 DOI: 10.3390/md17010047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 11/16/2022] Open
Abstract
The Maillard reaction products (MRPs) of half-fin anchovy hydrolysates and glucose, named as HAHp(9.0)-G MRPs, were fractionated by size exclusion chromatography into three major fractions (F1⁻F3). F2, which demonstrated the strongest antibacterial activity against Escherichia coli (E. coli) and showed self-production of hydrogen peroxide (H₂O₂), was extracted by solid phase extraction. The hydrophobic extract of F2 was further isolated by reverse phase-high performance liquid chromatography into sub-fractions HE-F2-1 and HE-F2-2. Nine peptides were identified from HE-F2-1, and two peptides from HE-F2-2 using liquid chromatography-electrospray ionization/multi-stage mass spectrometry. Three peptides, FEDQLR (HGM-Hp1), ALERTF (HGM-Hp2), and RHPEYAVSVLLR (HGM-Hp3), with net charges of -1, 0, and +1, respectively, were synthesized. The minimal inhibitory concentration of these synthetic peptides was 2 mg/mL against E. coli. Once incubated with logarithmic growth phase of E. coli, HGM-Hp1 and HGM-Hp2 induced significant increases of both extracellular and intracellular H₂O₂ formation. However, HGM-Hp3 only dramatically enhanced intracellular H₂O₂ production in E. coli. The increased potassium ions in E. coli suspension after addition of HGM-Hp1 or HGM-Hp2 indicated the destruction of cell integrity via irreversible membrane damage. It is the first report of hydrolysates MRPs-derived peptides that might perform the antibacterial activity via inducing intracellular H₂O2 production.
Collapse
Affiliation(s)
- Jiaxing Wang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316000, China.
| | - Rongbian Wei
- School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316000, China.
| | - Ru Song
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316000, China.
| |
Collapse
|
45
|
Neundorf I. Antimicrobial and Cell-Penetrating Peptides: How to Understand Two Distinct Functions Despite Similar Physicochemical Properties. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1117:93-109. [PMID: 30980355 DOI: 10.1007/978-981-13-3588-4_7] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Antimicrobial and cell-penetrating peptides are both classes of membrane-active peptides sharing similar physicochemical properties. Both kinds of peptides have attracted much attention owing to their specific features. AMPs disrupt cell membranes of bacteria and display urgently needed antibiotic substances with alternative modes of action. Since the multidrug resistance of bacterial pathogens is a more and more raising concern, AMPs have gained much interest during the past years. On the other side, CPPs enter eukaryotic cells without substantially affecting the plasma membrane. They can be used as drug delivery platforms and have proven their usefulness in various applications. However, although both groups of peptides are quite similar, their intrinsic activity is often different, and responsible factors are still in discussion. The aim of this chapter is to summarize and shed light on recent findings and concepts dealing with differences and similarities of AMPs and CPPs and to understand these different functions.
Collapse
Affiliation(s)
- Ines Neundorf
- Department of Chemistry, Institute for Biochemistry, University of Cologne, Cologne, Germany.
| |
Collapse
|
46
|
Tatulian SA, Kandel N. Membrane Pore Formation by Peptides Studied by Fluorescence Techniques. Methods Mol Biol 2019; 2003:449-464. [PMID: 31218629 DOI: 10.1007/978-1-4939-9512-7_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pore formation in cellular membranes by pathogen-derived proteins is a mechanism utilized by a set of microbes to exert their cytotoxic effect. On the other hand, the host cells have developed a defense mechanism to produce antimicrobial peptides to kill the pathogens by a similar, membrane perforation mechanism. Furthermore, certain endogenous proteins or peptides kill the parent cells through membrane permeabilization. Analysis of the molecular details of membrane pore formation is often conducted using artificial systems, such as bilayer lipid membranes and synthetic peptides. This chapter describes two fluorescence-based methods to study peptide-induced membrane leakage. One method involves preparation of lipid vesicles loaded with a fluorophore (e.g., calcein or carboxyfluorescein) at a self-quenching concentration. If the externally added peptide forms relatively large pores (≥1 nm in diameter), the fluorophore leaks out and undergoes dequenching, resulting in time-dependent increase in fluorescence. The other method is designed to monitor smaller pores (<1 nm in diameter). It involves preparation of vesicles in a Ca2+-less buffer, containing a Ca2+-dependent fluorophore, such as Quin-2. Removal of external Quin-2 by a desalting column and addition of an appropriate concentration of CaCl2 externally sequesters Quin-2 and Ca2+ ions by the vesicle membrane. Addition of the pore-forming peptide to these vesicles results in membrane permeabilization, Ca2+ influx and binding to Quin-2. In both cases, the kinetics of the increase of fluorescence and its equilibrium levels allow quantitative analysis of the pore formation mechanism.
Collapse
Affiliation(s)
- Suren A Tatulian
- Department of Physics, University of Central Florida, Orlando, FL, USA.
| | - Nabin Kandel
- Department of Physics, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
47
|
Patel S, Sangeeta S. Pesticides as the drivers of neuropsychotic diseases, cancers, and teratogenicity among agro-workers as well as general public. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:91-100. [PMID: 30411285 DOI: 10.1007/s11356-018-3642-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 10/30/2018] [Indexed: 06/08/2023]
Abstract
The need to maximize agricultural productivity has made pesticides an indispensable part of current times. Farmers are unaware of the lurking consequences of the pesticide exposure, which endanger their health. It also puts the unsuspecting consumers in peril. The pesticides (from organophosphates, organochlorine, and carbamate class) disrupt the immune and hormonal signaling, causing recurrent inflammation, which leads to a wide array pathologies, including teratogenicity. Numerous farmers have fallen victim to neural disorders-driven suicides and lungs, prostate/breast cancer-caused untimely deaths. Green revolution which significantly escalated agricultural productivity is backfiring now. It is high time that environmental and agricultural authorities act to restrain the excessive usage of the detrimental chemicals and educate farmers regarding the crisis. This review discusses the biological mechanisms of pesticide-driven pathogenesis (such as the activation or inhibition of caspase, serine protease, acetylcholinesterase) and presents the pesticide-exposure-caused health deterioration in USA, India, and Africa. This holistic and critical review should be an eye-opener for general public, and a guide for researchers.
Collapse
Affiliation(s)
- Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA.
| | - Sushree Sangeeta
- Department of Ecology and Environmental Sciences, Pondicherry University, Puducherry, 605014, India.
| |
Collapse
|
48
|
Ning HQ, Li YQ, Tian QW, Wang ZS, Mo HZ. The apoptosis of Staphylococcus aureus induced by glycinin basic peptide through ROS oxidative stress response. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.09.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Groo AC, Matougui N, Umerska A, Saulnier P. Reverse micelle-lipid nanocapsules: a novel strategy for drug delivery of the plectasin derivate AP138 antimicrobial peptide. Int J Nanomedicine 2018; 13:7565-7574. [PMID: 30532539 PMCID: PMC6241861 DOI: 10.2147/ijn.s180040] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Introduction Resistance to traditional antibiotics is an increasingly serious problem. Antimicrobial peptides (AMPs) have emerged as a new therapeutic class with great potential against infectious diseases, as they are less prone to induce resistance. Nanotechnology-based delivery strategies can improve the efficiency and stability of AMPs, particularly against proteolytic degradation. Lipid nanocapsules (LNCs) are a new generation of biomimetic nanocarriers and were used in this study to deliver peptides. Methods AMP-loaded reverse micelles (RM) were developed and incorpo rated into LNCs by the phase inversion process and the antimicrobial activity of the AMPs-loaded LNC was evaluated by the minimum inhibitory concentration method. We studied the activity of AMP solutions and AMP-loaded LNCs against Gram-positive and Gram-negative bacterial strains and then evaluated the encapsulation of a new cationic AMP called AP138. Finally, we analyzed the effect of enzymatic attack on AP138 and AP138-RM-LNCs after incubation with trypsin. Results AP138 was efficiently encapsulated in the LNCs (encapsulation efficiency = 97.8% at a drug loading of 0.151%), resulting in protection against degradation by proteases and the preservation of antimicrobial activity against Staphylococcus aureus, including methicillin-resistant Staphylococcus aureus. Conclusion This study shows that RM-LNCs are an excellent candidate system to deliver AMPs.
Collapse
Affiliation(s)
- Anne-Claire Groo
- Normandie Univ, UNICAEN, CERMN - EA 4258, FR CNRS 3038 INC3M, SF 4206 ICORE, Caen, France,
| | - Nada Matougui
- Micro & Nanomédecines Translationelles-MINT, UNIV Angers, INSERM U1066, CNRS UMR 6021, UBL Universite Bretagne Loire, Angers, France
| | - Anita Umerska
- Micro & Nanomédecines Translationelles-MINT, UNIV Angers, INSERM U1066, CNRS UMR 6021, UBL Universite Bretagne Loire, Angers, France.,Université de Lorraine, CITHEFOR, Nancy, France
| | - Patrick Saulnier
- Micro & Nanomédecines Translationelles-MINT, UNIV Angers, INSERM U1066, CNRS UMR 6021, UBL Universite Bretagne Loire, Angers, France.,Angers University Hospital, Angers, France
| |
Collapse
|
50
|
Tan L, Bai L, Wang L, He L, Li G, Du W, Shen T, Xiang Z, Wu J, Liu Z, Hu M. Antifungal activity of spider venom-derived peptide lycosin-I against Candida tropicalis. Microbiol Res 2018; 216:120-128. [DOI: 10.1016/j.micres.2018.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/24/2018] [Accepted: 08/24/2018] [Indexed: 12/20/2022]
|