1
|
Huang Y, Qiu H, Chen W, Meng Z, Cai Y, Qiao D, Yue X. Identification of TRAF2, CAMK2G, and TIMM17A as biomarkers distinguishing mechanical asphyxia from sudden cardiac death base on 4D-DIA Proteomics: A pilot study. J Pharm Biomed Anal 2025; 258:116730. [PMID: 39921950 DOI: 10.1016/j.jpba.2025.116730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/10/2025] [Accepted: 02/02/2025] [Indexed: 02/10/2025]
Abstract
In the context of forensic medicine, the differential diagnosis between mechanical asphyxia and sudden cardiac death is very important regarding the establishment of the cause of death. Traditional autopsy findings have generally been very nonspecific; accordingly, highlighting the need for more specific molecular biomarkers. This study employed four-dimensional data-independent acquisition (4D-DIA) proteomics technology, in combination with both animal models and human samples, to conduct a comprehensive protein expression analysis of cardiac tissues, identifying 7557 proteins, among which 142 shared differentially expressed proteins (DEPS) were screened out. Based on the protein interaction network and through rigorous screening, this study identified three proteins, namely TNF receptor-associated factor 2 (TRAF2), Calcium/calmodulin-dependent protein kinase II gamma (CAMK2G), and translocase of inner mitochondrial membrane 17 homolog A (TIMM17A), as biomarkers for differentiating mechanical asphyxia from sudden cardiac death. Further verification using Western Blot (WB) and immunohistochemistry (IHC) proved the differential expression of these biomarkers in both animal and human samples. These findings, besides deepening the molecular understanding of the pathophysiological differences between sudden cardiac death and mechanical asphyxia, also provided new biomarkers for forensic applications that could enable the improvement of accuracy and reliability in the determination of the cause of death.
Collapse
Affiliation(s)
- Yuebing Huang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Hai Qiu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Wen Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zilin Meng
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yu Cai
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Dongfang Qiao
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Xia Yue
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
2
|
Mu Y, Li W, Wei D, Zhang X, Yao L, Xu X, Wang X, Zhang Z, Chen T. The effect of Hydrogen-rich water on retinal degeneration in the outer nuclear layer of simulated weightlessness rats. LIFE SCIENCES IN SPACE RESEARCH 2025; 45:158-169. [PMID: 40280637 DOI: 10.1016/j.lssr.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 04/29/2025]
Abstract
Long-term spaceflight can lead to changes in eye structure and decreased visual function. At present, there are almost no effective methods to prevent and treat eye damage caused by microgravity environments. Oxidative stress has been identified as one of the contributing mechanisms of spaceflight-associated neuro-ocular syndrome (SANS), and hydrogen (H2) has demonstrated significant antioxidant and anti-inflammatory effects. The aim of this study was to determine whether hydrogen-rich water (HRW) has a protective effect against eye injury induced by tail-suspension simulated weightlessness in rats, and to elucidate the underlying mechanisms. In this experiment, we utilized an 8-week tail-suspension model to simulate weightlessness, and employed histopathology, visual electrophysiology, and biochemical indices to evaluate retinal structure, function, and related molecular mechanisms leading to retinal damage. We also assessed the therapeutic efficacy of HRW treatment. Results demonstrated that tail-suspension simulated weightlessness induced thinning of the retinal outer nuclear layer, decreased visual function, and promoted retinal inflammation, oxidative stress, and mitochondrial dysfunction in rats. HRW treatment effectively alleviated the degenerative changes in the retinal outer nuclear layer, improved retinal function, and reduced retinal inflammation in treated rats. Our findings revealed that HRW reduced the retinal oxidative stress response and enhanced mitochondrial function through the PI3K/Akt/Nrf2 signaling pathway. Overall, HRW may be a promising candidate for the treatment of eye injuries in simulated microgravity environments.
Collapse
Affiliation(s)
- Yuxue Mu
- Aerospace Clinical Medical Center, School of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi Province, PR China; Department of Aviation Medicine, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi Province, PR China
| | - Weihang Li
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi' an, Shaanxi Province, PR China
| | - Dongyu Wei
- Aerospace Clinical Medical Center, School of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi Province, PR China
| | - Xinyi Zhang
- Aerospace Clinical Medical Center, School of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi Province, PR China
| | | | - Xiaofeng Xu
- Aerospace Clinical Medical Center, School of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi Province, PR China; Department of Aviation Medicine, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi Province, PR China
| | - Xiaocheng Wang
- Aerospace Clinical Medical Center, School of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi Province, PR China; Department of Aviation Medicine, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi Province, PR China.
| | - Zuoming Zhang
- Aerospace Clinical Medical Center, School of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi Province, PR China; Department of Aviation Medicine, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi Province, PR China.
| | - Tao Chen
- Aerospace Clinical Medical Center, School of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi Province, PR China; Department of Aviation Medicine, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi Province, PR China.
| |
Collapse
|
3
|
Gong Y, Zhao Y, Li Y, Wang Q, Li C, Song K, Liu J, Chen F. Corin in cardiovascular diseases and stroke. Clin Chim Acta 2025; 574:120343. [PMID: 40316193 DOI: 10.1016/j.cca.2025.120343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 04/29/2025] [Accepted: 04/29/2025] [Indexed: 05/04/2025]
Abstract
Corin is a type II transmembrane serine protease highly expressed in the heart. It plays a critical role in regulating fluid balance and improving cardiac function by converting pro-atrial natriuretic peptides into mature atrial natriuretic peptides. CORIN variants have been identified in patients with hypertension, heart failure, atrial fibrillation, and stroke. In vivo and in vitro, corin deficiency increases blood pressure and impairs cardiac function. Circulating soluble corin appears to have potential as a stable and specific biomarker for the risk prediction and prognostic assessment of cardiovascular diseases (CVDs) and stroke. In this review, we summarize the current knowledge on corin physiology and circulating corin and discuss cardiac corin expression and function in CVDs. In the future, corin-related therapeutic approaches to increase corin activity and raise corin levels may offer new opportunities to treat CVDs.
Collapse
Affiliation(s)
- Yue Gong
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yichang Zhao
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yang Li
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qianqian Wang
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Chunkai Li
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Keyi Song
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jinqiu Liu
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Feifei Chen
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
4
|
Liu A, Wang B, Wang M, Tang R, Xu W, Xiao W. L-theanine alleviates ulcerative colitis by repairing the intestinal barrier through regulating the gut microbiota and associated short-chain fatty acids. Food Chem Toxicol 2025:115497. [PMID: 40311999 DOI: 10.1016/j.fct.2025.115497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/28/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
Ulcerative colitis (UC) is closely related to impaired intestinal barrier function and imbalanced gut microbial communities. L-theanine shows great potential in maintaining intestinal integrity and regulating the gut microbiota and associated short-chain fatty acids (SCFAs). However, whether L-theanine can alleviate UC by repairing the intestinal barrier through these regulatory processes remains unclear. In this study, L-theanine was used to optimize the gut microbiota, and the restorative effect and mechanism of L-theanine in UC by repairing the gut barrier through the gut microbiota and SCFAs were investigated via fecal microbiota transplantation. The findings revealed that L-theanine regulated the gut microbiota structure, increased SCFA contents, and promoted gut barrier repair in UC mice. Moreover, L-theanine upregulated the protein and mRNA expression of G-protein-coupled receptor 43 (GPR43), AKT, and phosphatidylinositide 3-kinase (PI3K). These results indicated that L-theanine alleviates UC by repairing the gut barrier via regulating the gut microbiota and SCFAs through the GPR43/PI3K/AKT signaling pathway activation. This study provides a method of preventing and treating UC via L-theanine as a safe food dietary supplement.
Collapse
Affiliation(s)
- Aoxiang Liu
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China; National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Bin Wang
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China; National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Minming Wang
- Yuanling County Agricultural and Rural Bureau, Huaihua, Hunan 419600, China
| | - Rui Tang
- Yuanling County Agricultural and Rural Bureau, Huaihua, Hunan 419600, China
| | - Wei Xu
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China; National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | - Wenjun Xiao
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China; National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China.
| |
Collapse
|
5
|
Wang H, Ruan G, Li Y, Liu X. The Role and Potential Application of IL-12 in the Immune Regulation of Tuberculosis. Int J Mol Sci 2025; 26:3106. [PMID: 40243848 PMCID: PMC11988481 DOI: 10.3390/ijms26073106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a significant global health challenge, affecting millions annually and leading to substantial mortality, particularly in developing countries. The pathogen's ability to persist latently and evade host immunity, combined with the emergence of drug-resistant strains, underscores the need for innovative therapeutic strategies. This review highlights the crucial role of interleukin-12 (IL-12) in coordinating immune responses against TB, focusing on its potential as an immunotherapy target. IL-12, a key Th1 cytokine, enhances cellular immunity by promoting Th1 cell differentiation and IFN-γ production, vital for Mtb clearance. By stimulating cytotoxic T lymphocytes and establishing immune memory, IL-12 supports robust host defense mechanisms. However, the complexity of IL-12 biology, including its roles in pro-inflammatory and regulatory pathways, necessitates a nuanced understanding for effective therapeutic use. Recent studies have shown how IL-12 impacts T cell synapse formation, exosome-mediated bystander activation, and interactions with other cytokines in shaping T cell memory. Genetic defects in the IL-12/IFN-γ axis link to susceptibility to mycobacterial diseases, highlighting its importance in TB immunity. The review also addresses challenges like cytokine imbalances seen in TNF-α/IFN-γ synergy, which exacerbate inflammation, and the implications for IL-12-based interventions. Research into modulating IL-12, including its use as an adjuvant and in recombinant vaccines, promises improved TB treatment outcomes and vaccine efficacy. The review concludes by stressing the need for continued investigation into IL-12's molecular mechanisms towards precision immunotherapies to combat TB and its complications.
Collapse
Affiliation(s)
- Hangxing Wang
- Division of Infectious Diseases, Department of Internal Medicine, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (H.W.); (G.R.); (Y.L.)
| | - Guiren Ruan
- Division of Infectious Diseases, Department of Internal Medicine, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (H.W.); (G.R.); (Y.L.)
| | - Yuanchun Li
- Division of Infectious Diseases, Department of Internal Medicine, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (H.W.); (G.R.); (Y.L.)
| | - Xiaoqing Liu
- Division of Infectious Diseases, Department of Internal Medicine, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (H.W.); (G.R.); (Y.L.)
- Clinical Epidemiology Unit, Peking Union Medical College, International Clinical Epidemiology Network, Beijing 100730, China
- Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
6
|
Zheng S, Li Y, Wang L, Wei Q, Wei M, Yu T, Zhao L. Extrachromosomal circular DNA and their roles in cancer progression. Genes Dis 2025; 12:101202. [PMID: 39534571 PMCID: PMC11554924 DOI: 10.1016/j.gendis.2023.101202] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/26/2023] [Accepted: 11/19/2023] [Indexed: 11/16/2024] Open
Abstract
Extrachromosomal circular DNA (eccDNA), a chromosome-independent circular DNA, has garnered significant attention due to its widespread distribution and intricate biogenesis in carcinoma. Existing research findings propose that multiple eccDNAs contribute to drug resistance in cancer treatments through complex and interrelated regulatory mechanisms. The unique structure and genetic properties of eccDNA increase tumor heterogeneity. This increased diversity is a result of eccDNA's ability to stimulate oncogene remodeling and participate in anomalous splicing processes through chimeric cyclization and the reintegration of loop DNA back into the linear genome. Such actions promote oncogene amplification and silencing. eccDNA orchestrates protein interactions and modulates protein degradation by acting as a regulatory messenger. Moreover, it plays a pivotal role in modeling the tumor microenvironment and intensifying the stemness characteristics of tumor cells. This review presented detailed information about the biogenesis, distinguishing features, and functions of eccDNA, emphasized the role and mechanisms of eccDNA during cancer treatment, and further proposed the great potential of eccDNA in inspiring novel strategies for precision cancer therapy and facilitating the discovery of prognostic biomarkers for cancer.
Collapse
Affiliation(s)
- Siqi Zheng
- Department of Pharmacology, School of Pharmacy, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Yunong Li
- Department of Pharmacology, School of Pharmacy, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Lin Wang
- Department of Pharmacology, School of Pharmacy, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Qian Wei
- Department of Pharmacology, School of Pharmacy, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Tao Yu
- Department of Medical Imaging, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| |
Collapse
|
7
|
Zhu H, Li M, Wu J, Yan L, Xiong W, Hu X, Lu Z, Li C, Cai H. Identification and validation of apoptosis-related genes in acute myocardial infarction based on integrated bioinformatics methods. PeerJ 2024; 12:e18591. [PMID: 39650552 PMCID: PMC11624842 DOI: 10.7717/peerj.18591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 11/05/2024] [Indexed: 12/11/2024] Open
Abstract
Background Acute myocardial infarction (AMI) is one of the most serious cardiovascular diseases. Apoptosis is a type of programmed cell death that causes DNA degradation and chromatin condensation. The role of apoptosis in AMI progression remains unclear. Methods Three AMI-related microarray datasets (GSE48060, GSE66360 and GSE97320) were obtained from the Gene Expression Omnibus database and combined for further analysis. Differential expression analysis and enrichment analysis were performed on the combined dataset to identify differentially expressed genes (DEGs). Apoptosis-related genes (ARGs) were screened through the intersection of genes associated with apoptosis in previous studies and DEGs. The expression pattern of ARGs was studied on the basis of their raw expression data. Three machine learning algorithms, Least Absolute Shrinkage and Selection Operator (LASSO), support vector machine-recursive feature elimination (SVM-RFE), and Random Forest (RF) were utilized to screen crucial genes in these ARGs. Immune infiltration was estimated by single sample gene set enrichment analysis (ssGSEA). Corresponding online databases were used to predict miRNAs, transcription factors (TFs) and therapeutic agents of crucial genes. A nomogram clinical prediction model of the crucial genes was constructed and evaluated. The Mendelian randomization analysis was employed to investigate whether there is a causal relationship between apoptosis and AMI. Finally, an AMI mouse model was established, and apoptosis in the hearts of AMI mice was assessed via TUNEL staining. qRT-PCR was employed to validate these crucial genes in the hearts of AMI mice. The external dataset GSE59867 was used for further validating the crucial genes. Results Fifteen ARGs (GADD45A, DDIT3, FEZ1, PMAIP1, IER3, IFNGR1, CDKN1A, GNA15, IL1B, EREG, BCL10, JUN, EGR3, GADD45B, and CD14) were identified. Six crucial genes (CDKN1A, BCL10, PMAIP1, IL1B, GNA15, and CD14) were screened from ARGs by machine learning. A total of 102 miRNAs, 13 TFs and 23 therapeutic drugs were predicted targeting these crucial genes. The clinical prediction model of the crucial genes has shown good predictive capability. The Mendelian randomization analysis demonstrated that apoptosis is a risk factor for AMI. Lastly, the expression of CDKN1A, CD14 and IL1B was verified in the AMI mouse model and external dataset. Conclusions In this study, ARGs were screened by machine learning algorithms, and verified by qRT-PCR in the AMI mouse model. Finally, we demonstrated that CDKN1A, CD14 and IL1B were the crucial genes involved in apoptosis in AMI. These genes may provide new target for the recognition and intervention of apoptosis in AMI.
Collapse
Affiliation(s)
- Haoyan Zhu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Mengyao Li
- Department of Cardiology & Dongguan Cardiovascular Research Institute, Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan, China
- Department of Cardiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, China
| | - Jiahe Wu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Liqiu Yan
- Department of Cardiology & Dongguan Cardiovascular Research Institute, Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan, China
- Department of Cardiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, China
| | - Wei Xiong
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Xiaorong Hu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Zhibing Lu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Chenze Li
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Huanhuan Cai
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Hareeri RH, Hofni A. Berberine Alleviates Uterine Inflammation in Rats via Modulating the TLR-2/p-PI3K/p-AKT Axis. Int Immunopharmacol 2024; 141:112931. [PMID: 39146781 DOI: 10.1016/j.intimp.2024.112931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/02/2024] [Accepted: 08/10/2024] [Indexed: 08/17/2024]
Abstract
Uterine inflammation affects 8% of women in the United States and 32% in developing nations, often caused by uncontrolled inflammation and oxidative stress. This condition significantly impacts women's health, productivity, and quality of life, and increases the risk of related morbidities leading to higher healthcare costs. Research now focuses on natural antioxidants and anti-inflammatory, particularly berberine (BBR), an isoquinoline alkaloid known for its antioxidant, anti-inflammatory, and antiapoptotic activities. The present study sought to examine the potential therapeutic efficacy of BBR against uterine inflammation induced by the intrauterine infusion of an iodine (I2) mixture in an experimental setting. Female Sprague Dawley rats (n = 6) were divided into five groups, control, sham, I2, I2 and BBR 10 mg/kg, and I2 and BBR 25 mg/kg-treated groups. Compared to I2 infusion, BBR treatment effectively restored normal uterine histopathology and reduced inflammatory markers such as interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), nuclear factor- kappa B (NF-κB), monocyte chemoattractant protein 1 (MCP1), and myeloperoxidase (MPO). It lowered oxidative markers like malondialdehyde (MDA), and increased antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD). It balanced apoptotic genes by upregulating B-cell lymphoma 2 (Bcl-2) and downregulating Bcl-2-associated X protein (Bax). Furthermore, BBR reduced the expression of Toll-like receptor 2 (TLR-2), phosphorylated phosphatidylinositol 3‑kinase (p-PI3K), and phosphorylated protein kinase B (p-AKT) in the rats treated with intrauterine I2. Ultimately, the therapeutic benefits of BBR can be attributed, to some extent, to its antioxidant, anti-inflammatory, and antiapoptotic properties, in addition to its ability to modulate the TLR-2/p-PI3K/p-AKT axis.
Collapse
Affiliation(s)
- Rawan H Hareeri
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Amal Hofni
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt
| |
Collapse
|
9
|
Fang X, Lu X, Ma Y, Sun N, Jiao Y, Meng H, Song M, Jin H, Yao G, Song N, Wu Z, Wen S, Guo H, Xiong H, Song W. Possible involvement of a MEG3-miR-21-SPRY1-NF-κB feedback loop in spermatogenic cells proliferation, autophagy, and apoptosis. iScience 2024; 27:110904. [PMID: 39398251 PMCID: PMC11467676 DOI: 10.1016/j.isci.2024.110904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/20/2024] [Accepted: 09/05/2024] [Indexed: 10/15/2024] Open
Abstract
Non-obstructive azoospermia (NOA) is the most incurable form of male infertility with a complex etiology. Long non-cording RNAs (lncRNAs) were associated with regulating spermatogenesis. Herein, differentially expressed lncRNAs between NOA and control male were screened by RNA-seq analysis. MEG3 was upregulated in NOA tissues and inhibited cell proliferation and promoted cell autophagy and apoptosis in vitro. Through RNA immunoprecipitation (RIP), biotin pull-down assays, and dual-luciferase reporter assays, MEG3 was proved to act as a competing endogenous RNA of microRNA (miR)-21 and thus influenced the SPRY1/ERK/mTOR signaling pathway. Additionally, bioinformatic prediction and chip assay revealed that MEG3 was possibly regulated by nuclear factor κB (NF-κB) and SPRY1/NF-κB/MEG3 formed a feedback loop. Seminiferous tubule microinjection further investigated the effects of MEG3 on testes in vivo. These findings demonstrated that MEG3-miR-21-SPRY1-NF-κB probably acted as a feedback loop leading to azoospermia. Our study might provide a target and theoretical basis for diagnosing and treating NOA.
Collapse
Affiliation(s)
- Xingyu Fang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiaotong Lu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yujie Ma
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ning Sun
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yunyun Jiao
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Hui Meng
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Mengjiao Song
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Haixia Jin
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Guidong Yao
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ning Song
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhaoting Wu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Shuang Wen
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Haoran Guo
- School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Haosen Xiong
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Wenyan Song
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
10
|
Qin W, Huang J, Zhang M, Xu M, He J, Liu Q. Nanotechnology-Based Drug Delivery Systems for Treating Acute Kidney Injury. ACS Biomater Sci Eng 2024; 10:6078-6096. [PMID: 39226188 PMCID: PMC11480945 DOI: 10.1021/acsbiomaterials.4c01385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Acute kidney injury (AKI) is a disease that is characterized by a rapid decline in renal function and has a relatively high incidence in hospitalized patients. Sepsis, renal hypoperfusion, and nephrotoxic drug exposure are the main causes of AKI. The major therapy measures currently include supportive treatment, symptomatic treatment, and kidney transplantation. These methods are supportive treatments, and their results are not satisfactory. Fortunately, many new treatments that markedly improve the AKI therapy efficiency are emerging. These include antioxidant therapy, ferroptosis therapy, anti-inflammatory therapy, autophagy therapy, and antiapoptotic therapy. In addition, the development of nanotechnology has further promoted therapeutic effects on AKI. In this review, we highlight recent advances in the development of nanocarriers for AKI drug delivery. Emphasis has been placed on the latest developments in nanocarrier modification and design. We also summarize the applications of different nanocarriers in AKI treatment. Finally, the advantages and challenges of nanocarrier applications in AKI are summarized, and several nanomedicines that have been approved for clinical trials to treat diverse kidney diseases are listed.
Collapse
Affiliation(s)
- Wanbing Qin
- Jieyang Medical
Research Center, Jieyang People’s
Hospital, Jieyang, 522000 Guangdong, China
| | - Jiaqi Huang
- Jieyang Medical
Research Center, Jieyang People’s
Hospital, Jieyang, 522000 Guangdong, China
| | - Manting Zhang
- Jieyang Medical
Research Center, Jieyang People’s
Hospital, Jieyang, 522000 Guangdong, China
| | - Mingwei Xu
- Jieyang Medical
Research Center, Jieyang People’s
Hospital, Jieyang, 522000 Guangdong, China
| | - Junbing He
- Jieyang Medical
Research Center, Jieyang People’s
Hospital, Jieyang, 522000 Guangdong, China
| | - Qinghua Liu
- Jieyang Medical
Research Center, Jieyang People’s
Hospital, Jieyang, 522000 Guangdong, China
- Department
of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 Guangdong, China
- NHC Key
Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong
Provincial Key Laboratory of Nephrology, Guangzhou, 510080 Guangdong, China
| |
Collapse
|
11
|
Zhao LH, Guo XY, Yan HW, Jiang JS, Zhang X, Yang YN, Yuan X, Sun H, Zhang PC. A class of geranylquinol-derived polycyclic meroterpenoids from Arnebia euchroma against heart failure by reducing excessive autophagy and apoptosis in cardiomyocytes. Bioorg Chem 2024; 151:107691. [PMID: 39116524 DOI: 10.1016/j.bioorg.2024.107691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
Ten new B-ring aromatized 6/6/6-tricyclic dearomatized benzocogeijerene-based meroterpenoids with unusual methyl 1,2-shift or demethylation (2-9b), and two new geranylquinol derivatives (1 and 10), together with two known compounds (11 and 12), were isolated from the roots of Arnebia euchroma. Their structures were elucidated by extensive spectroscopic methods, X-ray diffraction crystallography, and ECD calculations. The plausible biosynthetic pathways including the unusual methyl 1,2-shfit and demethylation for B-ring aromatized 6/6/6-tricyclic meroterpenoids were discussed. Compounds 1, 2, 5, 6, 11, and 12 showed significant cardioprotective activities comparable to diltiazem against isoprenaline (ISO)-induced H9C2 cell damage in vitro. Compound 11 probably exerted heart-protective effect on ISO-induced H9C2 cells by modulating the PI3K-AKT-mTOR pathway, reducing excessive autophagy, and decreasing myocardial apoptosis.
Collapse
Affiliation(s)
- Ling-Hao Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xin-Yi Guo
- State Key Laboratory of Digestive Health, Institute of Materia Medica, Chinses Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hai-Wei Yan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jian-Shuang Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xu Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ya-Nan Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiang Yuan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Hua Sun
- State Key Laboratory of Digestive Health, Institute of Materia Medica, Chinses Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Pei-Cheng Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
12
|
Liu W, Zhang Y, Nie Y, Liu Y, Li Z, Zhang Z, Gong B, Ma M. AGBL2 promotes renal cell carcinoma cells proliferation and migration via α-tubulin detyrosination. Heliyon 2024; 10:e37086. [PMID: 39315218 PMCID: PMC11417249 DOI: 10.1016/j.heliyon.2024.e37086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 08/15/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
Background AGBL2's role in tumorigenesis and cancer progression has been reported in several cancer studies, and it is closely associated with α-tubulin detyrosination. The roles of AGBL2 and α-tubulin detyrosination in renal cell carcinoma (RCC) pathogenesis remain unclear and require further investigation. Methods In this study, we conducted an analysis of AGBL2 expression differences between renal clear cell carcinoma tissues and normal tissues using data from The Cancer Genome Atlas (TCGA). We performed a comprehensive prognostic analysis of AGBL2 in Kidney Renal Clear Cell Carcinoma (KIRC) using univariate and multivariate Cox regression. Based on the results of the Cox analysis, we constructed a prognostic model to assess its predictive capabilities. Receiver Operating Characteristic (ROC) analysis confirmed the diagnostic value of AGBL2 in renal cancer. We conducted further validation by analyzing cancer tissue samples and renal cancer cell lines, which confirmed the role of AGBL2 in promoting RCC cell proliferation and migration through in vitro experiments. Additionally, we verified the impact of AGBL2's detyrosination on α-tubulin using the tubulin carboxypeptidase (TCP) inhibitor parthenolide. Finally, we performed sequencing analysis on AGBL2 knockdown 786-O cells to investigate the correlation between AGBL2, immune infiltration, and AKT phosphorylation. Moreover, we experimentally demonstrated the enhancing effect of AGBL2 on AKT phosphorylation. Results TCGA analysis revealed a significant increase in AGBL2 expression in RCC patients, which was correlated with poorer overall survival (OS), disease-specific survival (DSS), and progression-free intervals (PFI). According to the analysis results, we constructed column-line plots to predict the 1-, 3-, and 5-year survival outcomes in RCC patients. Additionally, the calibration plots assessing the model's performance exhibited favorable agreement with the predicted outcomes. And the ROC curves showed that AGBL2 showed good diagnostic performance in KIRC (AUC = 0.836)). Cell phenotyping assays revealed that AGBL2 knockdown in RCC cells significantly inhibited cell proliferation and migration. Conversely, overexpression of AGBL2 resulted in increased cell proliferation and migration in RCC cells. We observed that AGBL2 is predominantly located in the nucleus and can elevate the detyrosination level of α-tubulin in RCC cells. Moreover, the enhancement of RCC cell proliferation and migration by AGBL2 was partially inhibited after treatment with the TCP inhibitor parthenolide. Analysis of the sequencing data revealed that AGBL2 is associated with a diverse array of biological processes, encompassing signal transduction and immune infiltration. Interestingly, AGBL2 expression exhibited a negative correlation with the majority of immune cell infiltrations. Additionally, AGBL2 was found to enhance the phosphorylation of AKT in RCC cells. Conclusion Our study suggests that AGBL2 fosters RCC cell proliferation and migration by enhancing α-tubulin detyrosination. Moreover, elevated AGBL2 expression increases phosphorylation of AKT in RCC cells.
Collapse
Affiliation(s)
- Wei Liu
- Department of Urology, Gaoxin Branch of The First Affiliated Hospital of Nanchang University, Nanchang, 330000, China
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yifei Zhang
- Department of Urology, Gaoxin Branch of The First Affiliated Hospital of Nanchang University, Nanchang, 330000, China
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yechen Nie
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yifu Liu
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Zhongqi Li
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Zhicheng Zhang
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Binbin Gong
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Ming Ma
- Department of Urology, Gaoxin Branch of The First Affiliated Hospital of Nanchang University, Nanchang, 330000, China
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Department of Urology, Gaoxin Branch of The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China
| |
Collapse
|
13
|
Liu Y, Chen L, Sun G, Zhang H, Geng W, Li X, Zhang Q, Jin Y, Yao J, Yang X, Fan W, Jing J, Wang S, Peng H. Association Between Genetically Determined Serum Corin and the Risk of Stroke in Chinese Adults: A Mendelian Randomization Study. J Am Heart Assoc 2024; 13:e035858. [PMID: 39258515 PMCID: PMC11935609 DOI: 10.1161/jaha.124.035858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/22/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND Serum corin has been associated with stroke in observational studies, but the underlying causality is uncertain. This study examined the causal association between corin and stroke through Mendelian randomization study. METHODS AND RESULTS In the Gusu cohort, serum corin was assayed at baseline, and stroke incidents were prospectively obtained during 10 years of follow-up. Single-nucleotide polymorphisms (SNPs) in CORIN were genotyped by MassArray for 2310 participants (mean age, 53 years; 39% men). Seventeen SNPs passed the Hardy-Weinberg test and were considered the potential instruments. Only 1 SNP (rs2271037) determined variability of serum corin was significantly associated with stroke even after adjusting for conventional risk factors (hazard ratio [HR], 1.36 [95% CI, 1.00-1.85]). The weighted genetic risk score generated from the SNP-corin associations was significantly associated with stroke (HR, 2.01 [95% CI, 1.15-3.51]). Using this genetic risk score as the instrument, 1-sample Mendelian randomization analysis found a significant HR of stroke per-SD higher log2-transformed corin (HR, 1.37 [95% CI, 1.07-1.76]). The inverse variance-weighted analysis based on the SNP-corin and SNP-stroke associations found that the HR of stroke pre-SD higher log2-transformed corin was 5.92 (95% CI, 2.23-15.72). The effect estimates stayed consistent regardless of an individual SNP being removed from the instruments. An almost identical effect estimate was also confirmed by multiple other 2-sample Mendelian randomization methods. CONCLUSIONS Genetically determined variations of serum corin concentration were significantly associated with the risk of stroke in Chinese adults. Elevated serum corin may be a risk factor for stroke.
Collapse
Affiliation(s)
- Yang Liu
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Linan Chen
- Department of Epidemiology, School of Public HealthSuzhou Medical College of Soochow UniversitySuzhouChina
- Faculty of MedicineThe George Institute for Global Health, The University of New South WalesSydneyAustralia
| | - Guozhe Sun
- Department of CardiologyThe First Hospital of China Medical UniversityShenyangChina
| | - Hao Zhang
- Department of Epidemiology, School of Public HealthSuzhou Medical College of Soochow UniversitySuzhouChina
| | - Wenqing Geng
- Department of NeurologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xinwei Li
- Department of Nursing, School of NursingSuzhou Medical College of Soochow UniversitySuzhouChina
| | - Qiu Zhang
- Department of Chronic DiseaseGusu Center of Disease Prevention and ControlSuzhouChina
| | - Yibing Jin
- Department of Epidemiology, School of Public HealthSuzhou Medical College of Soochow UniversitySuzhouChina
| | - Jialing Yao
- Department of Epidemiology, School of Public HealthSuzhou Medical College of Soochow UniversitySuzhouChina
| | - Xiangdong Yang
- Department of Epidemiology, School of Public HealthSuzhou Medical College of Soochow UniversitySuzhouChina
| | - Wenxiu Fan
- Department of Epidemiology, School of Public HealthSuzhou Medical College of Soochow UniversitySuzhouChina
| | - Jiexiang Jing
- Department of Epidemiology, School of Public HealthSuzhou Medical College of Soochow UniversitySuzhouChina
| | - Shuyao Wang
- Department of NeurologyTongliao City HospitalTongliaoChina
| | - Hao Peng
- Department of Epidemiology, School of Public HealthSuzhou Medical College of Soochow UniversitySuzhouChina
- MOE Key Laboratory of Geriatric Diseases and ImmunologySoochow UniversitySuzhouChina
| |
Collapse
|
14
|
Cao Z, Ma N, Shan M, Wang S, Du J, Cheng J, Sun P, Sun N, Jin L, Fan K, Yin W, Li H, Yin C, Sun Y. Baicalin Inhibits FIPV Infection In Vitro by Modulating the PI3K-AKT Pathway and Apoptosis Pathway. Int J Mol Sci 2024; 25:9930. [PMID: 39337417 PMCID: PMC11431997 DOI: 10.3390/ijms25189930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Feline infectious peritonitis (FIP), a serious infectious disease in cats, has become a challenging problem for pet owners and the industry due to the lack of effective vaccinations and medications for prevention and treatment. Currently, most natural compounds have been proven to have good antiviral activity. Hence, it is essential to develop efficacious novel natural compounds that inhibit FIPV infection. Our study aimed to screen compounds with in vitro anti-FIPV effects from nine natural compounds that have been proven to have antiviral activity and preliminarily investigate their mechanisms of action. In this study, the CCK-8 method was used to determine the maximum noncytotoxic concentration (MNTC), 50% cytotoxic concentration (CC50), and 50% effective concentration (EC50) of natural compounds on CRFK cells and the maximum inhibition ratio (MIR) of the compounds inhibit FIPV. The effect of natural compounds on FIPV-induced apoptosis was detected via Annexin V-FITC/PI assay. Network pharmacology (NP), molecular docking (MD), and 4D label-free quantitative (4D-LFQ) proteomic techniques were used in the joint analysis the mechanism of action of the screened natural compounds against FIPV infection. Finally, Western blotting was used to validate the analysis results. Among the nine natural compounds, baicalin had good antiviral effects, with an MIR > 50% and an SI > 3. Baicalin inhibited FIPV-induced apoptosis. NP and MD analyses showed that AKT1 was the best target of baicalin for inhibiting FIPV infection. 4D-LFQ proteomics analysis showed that baicalin might inhibit FIPV infection by modulating the PI3K-AKT pathway and the apoptosis pathway. The WB results showed that baicalin promoted the expression of EGFR, PI3K, and Bcl-2 and inhibited the expression of cleaved caspase 9 and Bax. This study found that baicalin regulated the PI3K-AKT pathway and the apoptosis pathway in vitro and inhibited FIPV-induced apoptosis, thus exerting anti-FIPV effects.
Collapse
Affiliation(s)
- Zhongda Cao
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Nannan Ma
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Maoyang Shan
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Shiyan Wang
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Jige Du
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Jia Cheng
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Panpan Sun
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Na Sun
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Lin Jin
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Kuohai Fan
- Laboratory Animal Center, Shanxi Agricultural University, Jinzhong 030801, China
| | - Wei Yin
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Hongquan Li
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Chunsheng Yin
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Yaogui Sun
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| |
Collapse
|
15
|
He C, Jia J, Lei Y, Hu Q, Xin Y, Chu Y, Liu C, Niu Q. The mechanism of miR-665 targeting GNB3 in aluminum-induced neuronal apoptosis. J Trace Elem Med Biol 2024; 85:127488. [PMID: 38905877 DOI: 10.1016/j.jtemb.2024.127488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/09/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Aluminum exerts neurotoxic effects through various mechanisms, mainly manifested as impaired learning and memory function. METHODS Forty SD rats were divided into 0, 10, 20, and 40 mM maltol aluminum [Al(mal)3] groups. Cell experiments are divided into 0, 100, 200, and 400 μM Al(mal)3 dose group and control, Al(mal)3, Al(mal)3+inhibitor NC, Al(mal)3+miR-665 inhibitor intervention group. Water maze was used to detect the learning and memory function of rats, HE staining was used to observe the morphology and number of neurons in the CA1 area of the rat hippocampus, Flow cytometry was used to detect the apoptosis of PC12 cells, PCR and Western blotting were used to detect the expression of Caspase3, miR-665 and GNB3/PI3K/AKT proteins. The target binding relationship between miR-665 and GNB3 was verified by double luciferase reporter gene experiment. RESULTS In vivo experimental results showed that with the increase of Al(mal)3 concentration, the escape latency of rats was prolonged, the target quadrant dwell time was shortened, and the number of crossing platform was reduced. Moreover, the arrangement of neurons was loose and the number decreased; the expression of Caspase3 and miR-665 increased, while the expression of GNB3/PI3K/AKT proteins decreased. In vitro experiments, with the increase of Al(mal)3 concentration, apoptosis rate of PC12 cells increased, the expression of Caspase3, miR-665 and GNB3/PI3K/AKT proteins were consistent with rat results. After inhibiting miR-665 in the intervention group experiment, apoptosis rate of PC12 cells in the aluminum exposure group decreased, the expression of Caspase3 and miR-665 decreased, and the expression of GNB3/PI3K/AKT proteins increased. CONCLUSION MiR-665 plays an important role in aluminum induced neuronal apoptosis by targeting GNB3 and regulating the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Chanting He
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, China; Department of Anatomy, Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| | - Jingjing Jia
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yang Lei
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Qian Hu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yulu Xin
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yafen Chu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Congying Liu
- Department of Anatomy, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Qiao Niu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, China.
| |
Collapse
|
16
|
Zhang Y, Zheng Y, Zhang J, Xu C, Wu J. Apoptotic signaling pathways in bone metastatic lung cancer: a comprehensive analysis. Discov Oncol 2024; 15:310. [PMID: 39060849 PMCID: PMC11282049 DOI: 10.1007/s12672-024-01151-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
This review provides a comprehensive analysis of apoptotic signaling pathways in the context of bone metastatic lung cancer, emphasizing the intricate molecular mechanisms and microenvironmental influences. Beginning with an overview of apoptosis in cancer, the paper explores the specific molecular characteristics of bone metastatic lung cancer, highlighting alterations in apoptotic pathways. Focused discussions delve into key apoptotic signaling pathways, including the intrinsic and extrinsic pathways, and the roles of critical molecular players such as Bcl-2 family proteins and caspases. Microenvironmental factors, such as the tumor microenvironment, extracellular matrix interactions, and immune cell involvement, are examined in depth. The review also addresses experimental approaches and techniques employed in studying apoptotic signaling, paving the way for a discussion on current therapeutic strategies, their limitations, and future prospects. This synthesis contributes a holistic understanding of apoptosis in bone metastatic lung cancer, offering insights for potential therapeutic advancements.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Orthopedic Surgery, Ningbo No. 2 Hospital, Ningbo, 315010, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Yi Zheng
- Department of Orthopedic Surgery, Ningbo No. 2 Hospital, Ningbo, 315010, Zhejiang, China
| | - Jiakai Zhang
- Department of Orthopedic Surgery, Ningbo No. 2 Hospital, Ningbo, 315010, Zhejiang, China
| | - Chaoyang Xu
- Hangzhou Medical College, Hangzhou, 310053, Zhejiang, China
| | - Junlong Wu
- Department of Orthopedic Surgery, Ningbo No. 2 Hospital, Ningbo, 315010, Zhejiang, China.
| |
Collapse
|
17
|
Cai XQ, Yang H, Liang BQ, Deng CC, Xue HY, Zhang JJ, Wang XZ. Glutamate rescues heat stress-induced apoptosis of Sertoli cells by enhancing the activity of antioxidant enzymes and activating the Trx1-Akt pathway in vitro. Theriogenology 2024; 223:1-10. [PMID: 38642435 DOI: 10.1016/j.theriogenology.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
Heat stress reduces the number of Sertoli cells, which is closely related to an imbalanced redox status. Glutamate functions to maintain the equilibrium of redox homeostasis. However, the role of glutamate in heat treated Sertoli cells remains unclear. Herein, Sertoli cells from 3-week-old piglets were treated at 44 °C for 30 min (heat stress). Glutamate levels increased significantly following heat stress treatment, followed by a gradual decrease during recovery, while glutathione (GSH) showed a gradual increase. The addition of exogenous glutamate (700 μM) to Sertoli cells before heat stress significantly reduced the heat stress-induced apoptosis rate, mediated by enhanced levels of antioxidant substances (superoxide dismutase (SOD), total antioxidant capacity (TAC), and GSH) and reduced levels of oxidative substances (reactive oxygen species (ROS) and malondialdehyde (MDA)). Glutamate addition to Sertoli cells before heat stress upregulated the levels of glutamate-cysteine ligase, modifier subunit (Gclm), glutathione synthetase (Gss), thioredoxin (Trx1) and B-cell leukemia/lymphoma 2 (Bcl-2), and the ratio of phosphorylated Akt (protein kinase B)/total Akt. However, it decreased the levels of Bcl2-associated X protein (Bax) and cleaved-caspase 3. Addition of the inhibitor of glutaminase (Gls1), Bptes (Bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide, 30 μM)to Sertoli cells before heat stress reversed these effects. These results inferred that glutamate rescued heat stress-induced apoptosis in Sertoli cells by enhancing activity of antioxidant enzymes and activating the Trx1-Akt pathway. Thus, glutamate supplementation might represent a novel strategy to alleviate the negative effect of heat stress.
Collapse
Affiliation(s)
- Xia-Qing Cai
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing, 400715, PR China.
| | - Huan Yang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing, 400715, PR China.
| | - Bing-Qian Liang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing, 400715, PR China.
| | - Cheng-Chen Deng
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing, 400715, PR China.
| | - Hong-Yan Xue
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing, 400715, PR China.
| | - Jiao-Jiao Zhang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing, 400715, PR China.
| | - Xian-Zhong Wang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing, 400715, PR China.
| |
Collapse
|
18
|
Wu T, Gao R, Wang X, Guo D, Xie Y, Dong B, Hao X, Zhu C. Pancreatobiliary reflux increases macrophage-secreted IL-8 and activates the PI3K/NFκB pathway to promote cholangiocarcinoma progression. Transl Oncol 2024; 45:101967. [PMID: 38653100 PMCID: PMC11059331 DOI: 10.1016/j.tranon.2024.101967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/28/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Persistent pancreaticobiliary reflux (PBR) is associated with a high risk of biliary malignancy. This study aimed to evaluate the proportion of PBR in biliary tract diseases and mechanisms by which PBR promoted cholangiocarcinoma progression. METHODS Overall 227 consecutive patients with primary biliary tract disease participated in this study. The amylase levels in the collected bile were analyzed. The mechanisms underlying the effect of high-amylase bile on bile duct epithelial and cholangiocarcinoma cells progression were analyzed. The source of interleukin-8 (IL-8) and its effects on the biological functions of cholangiocarcinoma cells were investigated. RESULTS The bile amylase levels in 148 of 227 patients were higher than the upper serum amylase limit of 135 IU/L. PBR was significantly correlated with sex, pyrexia, and serum gamma-glutamyl transferase (GGT) levels in the patient cohort. High-amylase bile-induced DNA damage and genetic differences in the transcript levels of the gallbladder mucosa and facilitated the proliferation and migration of bile duct cancer cells (HUCCT1 and QBC939 cells). The concentration of many cytokines increased in high-amylase bile. IL-8 is secreted primarily by macrophages via the mitogen-activated protein kinase pathway and partially by bile duct epithelial cells. IL-8 promotes the progression of HUCCT1 and QBC939 cells by regulating the expression of epithelial-mesenchymal transition-associated proteins and activating the phosphatidylinositol 3-kinase/nuclear factor kappa-B pathway. CONCLUSIONS PBR is one of the primary causes of biliary disease. IL-8 secreted by macrophages or bile duct epithelial cells stimulated by high-amylase bile promotes cholangiocarcinoma progression.
Collapse
Affiliation(s)
- Tingting Wu
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266003, China
| | - Ruiqian Gao
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266003, China
| | - Xiaowei Wang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266003, China
| | - Dong Guo
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266003, China
| | - Yuwei Xie
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266003, China
| | - Bingzi Dong
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, China
| | - Xiwei Hao
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266003, China.
| | - Chengzhan Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao 266003, China; Shandong Key Laboratory of Digital Medicine and Computer Assisted Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| |
Collapse
|
19
|
Li Z, Yu Z, Cui S, Hu S, Li B, Chen T, Qu C, Yang B. AMPA receptor inhibition alleviates inflammatory response and myocardial apoptosis after myocardial infarction by inhibiting TLR4/NF-κB signaling pathway. Int Immunopharmacol 2024; 133:112080. [PMID: 38613882 DOI: 10.1016/j.intimp.2024.112080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/28/2024] [Accepted: 04/09/2024] [Indexed: 04/15/2024]
Abstract
Myocardial infarction leads to myocardial inflammation and apoptosis, which are crucial factors leading to heart failure and cardiovascular dysfunction, eventually resulting in death. While the inhibition of AMPA receptors mitigates inflammation and tissue apoptosis, the effectiveness of this inhibition in the pathophysiological processes of myocardial infarction remains unclear. This study investigated the role of AMPA receptor inhibition in myocardial infarction and elucidated the underlying mechanisms. This study established a myocardial infarction model by ligating the left anterior descending branch of the coronary artery in Sprague-Dawley rats. The findings suggested that injecting the AMPA receptor antagonist NBQX into myocardial infarction rats effectively alleviated cardiac inflammation, myocardial necrosis, and apoptosis and improved their cardiac contractile function. Conversely, injecting the AMPA receptor agonist CX546 into infarcted rats exacerbated the symptoms and tissue damage, as reflected by histopathology. This agonist also stimulated the TLR4/NF-κB pathway, further deteriorating cardiac function. Furthermore, the investigations revealed that AMPA receptor inhibition hindered the nuclear translocation of P65, blocking its downstream signaling pathway and attenuating tissue inflammation. In summary, this study affirmed the potential of AMPA receptor inhibition in countering inflammation and tissue apoptosis after myocardial infarction, making it a promising therapeutic target for mitigating myocardial infarction.
Collapse
Affiliation(s)
- Zixuan Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Zhili Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Shengyu Cui
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Shan Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Bin Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Tao Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Chuan Qu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China.
| | - Bo Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China.
| |
Collapse
|
20
|
Zhou R, Li R, Ding Q, Zhang Y, Yang H, Han Y, Liu C, Liu J, Wang S. OPN silencing reduces hypoxic pulmonary hypertension via PI3K-AKT-induced protective autophagy. Sci Rep 2024; 14:8670. [PMID: 38622371 PMCID: PMC11018812 DOI: 10.1038/s41598-024-59367-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 04/09/2024] [Indexed: 04/17/2024] Open
Abstract
Hypoxic pulmonary hypertension (HPH) is a pulmonary vascular disease primarily characterized by progressive pulmonary vascular remodeling in a hypoxic environment, posing a significant clinical challenge. Leveraging data from the Gene Expression Omnibus (GEO) and human autophagy-specific databases, osteopontin (OPN) emerged as a differentially expressed gene, upregulated in cardiovascular diseases such as pulmonary arterial hypertension (PAH). Despite this association, the precise mechanism by which OPN regulates autophagy in HPH remains unclear, prompting the focus of this study. Through biosignature analysis, we observed significant alterations in the PI3K-AKT signaling pathway in PAH-associated autophagy. Subsequently, we utilized an animal model of OPNfl/fl-TAGLN-Cre mice and PASMCs with OPN shRNA to validate these findings. Our results revealed right ventricular hypertrophy and elevated mean pulmonary arterial pressure (mPAP) in hypoxic pulmonary hypertension model mice. Notably, these effects were attenuated in conditionally deleted OPN-knockout mice or OPN-silenced hypoxic PASMCs. Furthermore, hypoxic PASMCs with OPN shRNA exhibited increased autophagy compared to those in hypoxia alone. Consistent findings from in vivo and in vitro experiments indicated that OPN inhibition during hypoxia reduced PI3K expression while increasing LC3B and Beclin1 expression. Similarly, PASMCs exposed to hypoxia and PI3K inhibitors had higher expression levels of LC3B and Beclin1 and suppressed AKT expression. Based on these findings, our study suggests that OPNfl/fl-TAGLN-Cre effectively alleviates HPH, potentially through OPN-mediated inhibition of autophagy, thereby promoting PASMCs proliferation via the PI3K-AKT signaling pathway. Consequently, OPN emerges as a novel therapeutic target for HPH.
Collapse
Affiliation(s)
- Rui Zhou
- Qinghai University Medical Department, Xining, 810016, China
| | - Ran Li
- Zhengzhou Medical and Health Vocational College, Zhengzhou, 452385, China
| | - Qi Ding
- Pathology Department of Tianjin Huanghe Hospital, Tianjin, 300110, China
| | - Yuwei Zhang
- Department of Public Health, School of Medical, Qinghai University, Xining, 810016, China
| | - Hui Yang
- Qinghai University Medical Department, Xining, 810016, China
| | - Ying Han
- Qinghai University Medical Department, Xining, 810016, China
| | - Chuanchuan Liu
- Key Laboratory of Hydatid Disease, Qinghai University, Xining, 810001, China
| | - Jie Liu
- Qinghai University Medical Department, Xining, 810016, China
| | - Shenglan Wang
- Qinghai University Medical Department, Xining, 810016, China.
| |
Collapse
|
21
|
Luo J, Cai Y, Wei D, Cao L, He Q, Wu Y. Formononetin alleviates cerebral ischemia-reperfusion injury in rats by targeting the PARP-1/PARG/Iduna signaling pathway. Brain Res 2024; 1829:148845. [PMID: 38452845 DOI: 10.1016/j.brainres.2024.148845] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
Formononetin has been demonstrated to protect against cerebral ischemia-reperfusion injury, however its mechanism has to be further researched. This study examined the effect of formononetin on cerebral ischemia-reperfusion injury in rats using the PARP-1/PARG/Iduna signaling pathway. In male SD rats, a model of cerebral ischemia-reperfusion injury was developed. Animals were randomly assigned to one of eight groups: Sham operation, Sham operation + formononetin, MCAO, MCAO + formononetin, PARP inhibitor (PJ34) + MCAO, formononetin + PJ34 + MCAO, PARG inhibitor (Ethacridine lactate) + MCAO, and ethacridine lactate + formononetin. The neurological deficit test, TTC staining, HE staining, Nissl staining, TUNEL staining, and western blotting were utilized to assess formononetin's protective effects in MCAO rats. The data show that formononetin can effectively alleviate neurological dysfunction and pathological changes in brain tissue in rats with cerebral ischemia-reperfusion injury, reduce the area of cerebral infarction and neuronal apoptosis, decrease the protein levels of PARP-1, PARG, Caspase-3, P53, and AIF in brain tissue, and increase the protein levels of Iduna and p-AKT. As a result, we concluded that formononetin improves brain ischemia-reperfusion injury in rats by modulating the PARP-1/PARG/Iduna signaling pathway.
Collapse
Affiliation(s)
- Jie Luo
- First Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang 550001, Guizhou, China
| | - Youde Cai
- Jinyang Hospital Affiliated to Guizhou Medical University, Guiyang 550081, Guizhou, China
| | - Dingling Wei
- First Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang 550001, Guizhou, China
| | - Liping Cao
- First Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang 550001, Guizhou, China
| | - Qiansong He
- First Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang 550001, Guizhou, China.
| | - Yuanhua Wu
- First Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang 550001, Guizhou, China.
| |
Collapse
|
22
|
Liu Y, Cheng X, Qi B, Wang Y, Zheng Y, Liang X, Chang Y, Ning M, Gao W, Li T. Aucubin protects against myocardial ischemia-reperfusion injury by regulating STAT3/NF-κB/HMGB-1 pathway. Int J Cardiol 2024; 400:131800. [PMID: 38244891 DOI: 10.1016/j.ijcard.2024.131800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/24/2023] [Accepted: 01/16/2024] [Indexed: 01/22/2024]
Abstract
The main characteristics of the myocardial ischemia/reperfusion injury (MI/RI) are oxidative stress, apoptosis, and an inflammatory response. Aucubin (AU) is an iridoid glycoside that possesses various biological properties and has been discovered to demonstrate antioxidant and anti-inflammatory impacts in pathological processes, such as ischemia-reperfusion. The objective of this research was to investigate if AU treatment could mitigate myocardial inflammation and apoptosis caused by ischemia/reperfusion (I/R) in both laboratory and animal models, and to elucidate its underlying mechanism. By ligating the coronary artery on the left anterior descending side, a successful MI/RI rat model was created. Additionally, H9C2 cells were subjected to hypoxia/reoxygenation (H/R) in order to imitate the injury caused by ischemia/reperfusion (I/R). Furthermore, various concentrations of AU were administered to H9C2 cells or rats before H/R stimulation or myocardial I/R surgery, respectively. In vitro, the assessment was conducted on cardiac function, inflammatory markers, and myocardial pathology. In vivo, we examined the viability of cells, as well as factors related to apoptosis and oxidative stress. Furthermore, the presence of proteins belonging to the STAT3/NF-κB/HMGB1 signaling pathway was observed both in vivo and in vitro. AU effectively improved cardiomyocyte injury caused by H/R and myocardial injury caused by I/R. Furthermore, AU suppressed the production of reactive oxygen species and inflammatory molecules (TNF-alpha, IL-1β, and IL-6) and proteins associated with cell death (caspase-3 and Bax), while enhancing the levels of anti-inflammatory agents (IL-10) and the anti-apoptotic protein Bcl-2.AU mechanistically affected the phosphorylation of STAT3 at the Ser727 site and Tyr705 following H/R by modulating the signaling pathway involving signal transducer and activator of transcription 3 (STAT3)/nuclear factor-κB (NF-κB)/high mobility group box 1 (HMGB1), while also suppressing the nuclear translocation of NF-κB p65 and HMGB1 exonucleation. In conclusion, the use of AU treatment might offer protection against myocardial infarction and injury by reducing oxidative stress, suppressing apoptosis, and mitigating inflammation. The regulation of the STAT3/NF-κB/HMGB-1 pathway may contribute to this phenomenon by affecting STAT3 phosphorylation and controlling NF-κB and HMGB-1 translocation. Contributes to identifying possible objectives for myocardial ischemia/reperfusion damage.
Collapse
Affiliation(s)
- Yanwu Liu
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China; Department of Heart Center, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; School of Medicine, Nankai University, Tianjin 300071, China; Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin 300170, China; Tianjin ECMO Treatment and Training Base, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin, China..
| | - Xian Cheng
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China; Department of Heart Center, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; School of Medicine, Nankai University, Tianjin 300071, China; Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin 300170, China; Tianjin ECMO Treatment and Training Base, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Bingcai Qi
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China; Department of Heart Center, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; School of Medicine, Nankai University, Tianjin 300071, China; Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin 300170, China; Tianjin ECMO Treatment and Training Base, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Yuchao Wang
- Department of Heart Center, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; School of Medicine, Nankai University, Tianjin 300071, China; Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin 300170, China; Tianjin ECMO Treatment and Training Base, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Yue Zheng
- Department of Heart Center, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; School of Medicine, Nankai University, Tianjin 300071, China; Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin 300170, China; Tianjin ECMO Treatment and Training Base, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Xiaoyu Liang
- Department of Heart Center, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin 300170, China; Tianjin ECMO Treatment and Training Base, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Yun Chang
- Department of Heart Center, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin 300170, China; Tianjin ECMO Treatment and Training Base, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Meng Ning
- Department of Heart Center, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin 300170, China; Tianjin ECMO Treatment and Training Base, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Wenqing Gao
- Department of Heart Center, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin 300170, China; Tianjin ECMO Treatment and Training Base, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin, China..
| | - Tong Li
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China; Department of Heart Center, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; School of Medicine, Nankai University, Tianjin 300071, China; Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin 300170, China; Tianjin ECMO Treatment and Training Base, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin, China..
| |
Collapse
|
23
|
Zhao X, Luo H, Yao S, Yang T, Fu F, Yue M, Ruan H. Atrazine exposure promotes cardiomyocyte pyroptosis to exacerbate cardiotoxicity by activating NF-κB pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170028. [PMID: 38224882 DOI: 10.1016/j.scitotenv.2024.170028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/06/2023] [Accepted: 01/07/2024] [Indexed: 01/17/2024]
Abstract
Atrazine is a ubiquitous herbicide with persistent environmental presence and accumulation in the food chain, posing potential health hazards to organisms. Increasing evidence suggests that atrazine may have detrimental effects on various organ systems, including the nervous, digestive, and immune systems. However, the specific toxicity and underlying mechanism of atrazine-induced cardiac injury remain obscure. In this study, 4-week-old male C57BL/6 mice were administered atrazine via intragastric administration at doses of 50 and 200 mg/kg for 4 and 8 weeks, respectively. Our findings showed that atrazine exposure led to cardiac fibrosis, as evidenced by elevated heart index and histopathological scores, extensive myofiber damage, and interstitial collagen deposition. Moreover, atrazine induced cardiomyocyte apoptosis, macrophage infiltration, and excessive production of inflammatory factors. Importantly, atrazine upregulated the expressions of crucial pyroptosis proteins, including NLRP3, ASC, CASPASE1, and GSDMD, via the activation of NF-κB pathway, thus promoting cardiomyocyte pyroptosis. Collectively, our findings provide novel evidence demonstrating that atrazine may exacerbate myocardial fibrosis by inducing cardiomyocyte pyroptosis, highlighting its potential role in the development of cardiac fibrosis.
Collapse
Affiliation(s)
- Xuyan Zhao
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou 310053, PR China; The Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Huan Luo
- Department of Pharmacy, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, PR China
| | - Sai Yao
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou 310053, PR China
| | - Ti Yang
- Department of Clinical Pharmacy, Gongli Hospital, Pudong New Area, Shanghai 200135, PR China
| | - Fangda Fu
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou 310053, PR China
| | - Ming Yue
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Hongfeng Ruan
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou 310053, PR China.
| |
Collapse
|
24
|
Zhang S, Li M, Qiu Y, Wu J, Xu X, Ma Q, Zheng Z, Lu G, Deng Z, Huang H. Enhanced VEGF secretion and blood-brain barrier disruption: Radiation-mediated inhibition of astrocyte autophagy via PI3K-AKT pathway activation. Glia 2024; 72:568-587. [PMID: 38009296 DOI: 10.1002/glia.24491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/28/2023]
Abstract
Radiation-induced damage to the blood-brain barrier (BBB) is the recognized pathological basis of radiation-induced brain injury (RBI), a side effect of head and neck cancer treatments. There is currently a lack of therapeutic approaches for RBI due to the ambiguity of its underlying mechanisms. Therefore, it is essential to identify these mechanisms in order to prevent RBI or provide early interventions. One crucial factor contributing to BBB disruption is the radiation-induced activation of astrocytes and oversecretion of vascular endothelial growth factor (VEGF). Mechanistically, the PI3K-AKT pathway can inhibit cellular autophagy, leading to pathological cell aggregation. Moreover, it acts as an upstream pathway of VEGF. In this study, we observed the upregulation of the PI3K-AKT pathway in irradiated cultured astrocytes through bioinformatics analysis, we then validated these findings in animal brains and in vitro astrocytes following radiation exposure. Additionally, we also found the inhibition of autophagy and the oversecretion of VEGF in irradiated astrocytes. By inhibiting the PI3K-AKT pathway or promoting cellular autophagy, we observed a significant amelioration of the inhibitory effect on autophagy, leading to reductions in VEGF oversecretion and BBB disruption. In conclusion, our study suggests that radiation can inhibit autophagy and promote VEGF oversecretion by upregulating the PI3K-AKT pathway in astrocytes. Blocking the PI3K pathway can alleviate both of these effects, thereby mitigating damage to the BBB in patients undergoing radiation treatment.
Collapse
Affiliation(s)
- Shifeng Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Mingping Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Yuemin Qiu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Junyu Wu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Xue Xu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Qian Ma
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Zhihui Zheng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Gengxin Lu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Zhezhi Deng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Haiwei Huang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| |
Collapse
|
25
|
Yang F, Gao H, Niu Z, Ni Q, Zhu H, Wang J, Lu J. Puerarin protects the fatty liver from ischemia-reperfusion injury by regulating the PI3K/AKT signaling pathway. Braz J Med Biol Res 2024; 57:e13229. [PMID: 38381885 PMCID: PMC10880884 DOI: 10.1590/1414-431x2024e13229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/25/2024] [Indexed: 02/23/2024] Open
Abstract
The incidence of non-alcoholic fatty liver (NAFLD) remains high, and many NAFLD patients suffer from severe ischemia-reperfusion injury (IRI). Currently, no practical approach can be used to treat IRI. Puerarin plays a vital role in treating multiple diseases, such as NAFLD, stroke, diabetes, and high blood pressure. However, its role in the IRI of the fatty liver is still unclear. We aimed to explore whether puerarin could protect the fatty liver from IRI. C57BL/6J mice were fed with a high-fat diet (HFD) followed by ischemia reperfusion injury. We showed that hepatic IRI was more severe in the fatty liver compared with the normal liver, and puerarin could significantly protect the fatty liver against IRI and alleviate oxidative stress. The PI3K-AKT signaling pathway was activated during IRI, while liver steatosis decreased the level of activation. Puerarin significantly protected the fatty liver from IRI by reactivating the PI3K-AKT signaling pathway. However, LY294002, a PI3K-AKT inhibitor, attenuated the protective effect of puerarin. In conclusion, puerarin could significantly protect the fatty liver against IRI by activating the PI3K-AKT signaling pathway.
Collapse
Affiliation(s)
- Faji Yang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Hengjun Gao
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zheyu Niu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Qingqiang Ni
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Huaqiang Zhu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jianlu Wang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jun Lu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
26
|
Chen B, Dong X, Zhang JL, Sun X, Zhou L, Zhao K, Deng H, Sun Z. Natural compounds target programmed cell death (PCD) signaling mechanism to treat ulcerative colitis: a review. Front Pharmacol 2024; 15:1333657. [PMID: 38405669 PMCID: PMC10885814 DOI: 10.3389/fphar.2024.1333657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
Ulcerative colitis (UC) is a nonspecific inflammatory bowel disease characterized by abdominal pain, bloody diarrhea, weight loss, and colon shortening. However, UC is difficult to cure due to its high drug resistance rate and easy recurrence. Moreover, long-term inflammation and increased disease severity can lead to the development of colon cancer in some patients. Programmed cell death (PCD) is a gene-regulated cell death process that includes apoptosis, autophagy, necroptosis, ferroptosis, and pyroptosis. PCD plays a crucial role in maintaining body homeostasis and the development of organs and tissues. Abnormal PCD signaling is observed in the pathological process of UC, such as activating the apoptosis signaling pathway to promote the progression of UC. Targeting PCD may be a therapeutic strategy, and natural compounds have shown great potential in modulating key targets of PCD to treat UC. For instance, baicalin can regulate cell apoptosis to alleviate inflammatory infiltration and pathological damage. This review focuses on the specific expression of PCD and its interaction with multiple signaling pathways, such as NF-κB, Nrf2, MAPK, JAK/STAT, PI3K/AKT, NLRP3, GPX4, Bcl-2, etc., to elucidate the role of natural compounds in targeting PCD for the treatment of UC. This review used (ulcerative colitis) (programmed cell death) and (natural products) as keywords to search the related studies in PubMed and the Web of Science, and CNKI database of the past 10 years. This work retrieved 72 studies (65 from the past 5 years and 7 from the past 10 years), which aims to provide new treatment strategies for UC patients and serves as a foundation for the development of new drugs.
Collapse
Affiliation(s)
- Bo Chen
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinqian Dong
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jin Long Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xitong Sun
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lin Zhou
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kangning Zhao
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hualiang Deng
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhen Sun
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
27
|
Zhan F, Zhou S, Shi F, Li Q, Lin L, Qin Z. Identifying the function of the PI3K-AKT pathway during the pathogenic infection of Macrobrachium rosenbergii. JOURNAL OF FISH DISEASES 2024; 47:e13890. [PMID: 37997435 DOI: 10.1111/jfd.13890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023]
Abstract
The phosphoinositide-3-kinase/protein kinase b (PI3K-Akt) pathway is a signalling pathway based on protein phosphorylation and can be activated by a wide range of factors. To investigate the function of the PI3K-AKT signalling pathway in antibacterial immunity, we analysed the gene expression level of three key factors (PI3K, AKT and FoxO) and innate immune factors in immune tissues at different time points after Vibrio parahaemolyticus and Staphylococcus aureus infection. Tissues analysis showed that PI3K, AKT, and FoxO were expressed at high levels in the intestinal, hemocytes and hepatopancreas. Moreover, the expression levels of PI3K, AKT and FoxO can be regulated postinfection by different pathogens. In hemocytes and the intestine, V. parahaemolyticus infection was found to regulate the levels of PI3K, AKT, and FoxO more rapidly; however, an S. aureus infection regulated the levels of these factors more rapidly in the hepatopancreas and gills. Analysis showed that V. parahaemolyticus and S. aureus infection caused changes in the gene expression level of crustin, caspase 3 and NF-κB. Therefore, PI3K-AKT regulates the downstream immune pathway differentially in different immune tissues and participates in the regulation of cell apoptosis and the inflammatory response by activating caspase and NF-κB, respectively, following infection with V. parahaemolyticus and S. aureus.
Collapse
Affiliation(s)
- Fanbin Zhan
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Shichun Zhou
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Fei Shi
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Qingqing Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Zhendong Qin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
28
|
Liu J, Li X, Guo JW, Chen BX, Sun H, Huang JQ, Hu Y, Xu XY, Jiang MT, Gao XM, Yang WZ, Wang QL, Guo DA. Characterization and comparison of cardiomyocyte protection activities of non-starch polysaccharides from six ginseng root herbal medicines. Int J Biol Macromol 2023; 253:126994. [PMID: 37730001 DOI: 10.1016/j.ijbiomac.2023.126994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/02/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023]
Abstract
Ginseng is rich of polysaccharides, however, the evidence supporting polysaccharides to distinguish various ginseng species is rarely reported. Focusing on six root ginseng (e.g., Panax ginseng-PG, P. quinquefolius-PQ, P. notoginseng-PN, red ginseng-RG, P. japonicus-PJ, and P. japonicus var. major-PJM), the contained non-starch polysaccharides (NPs) were structurally characterized and compared by both the chemical and biological evaluation. Holistic fingerprinting at three levels (the NPs and the acid hydrolysates involving oligosaccharides and monosaccharides) utilized various chromatography methods, and the treatment of H9c2 cells with the NPs by OGD and H2O2-induced injury models was used to assess the protective effect. NPs from six Panax herbal medicines occupied about 20 % of the total polysaccharides, which were of the highest content in RG and the lowest in PN. NPs from six ginseng exhibited weak differentiations in the molecular weight distribution, while marker oligosaccharides were found to distinguish PN and RG from the others. Glc and GalA were more abundant in the NPs for PG and RG, respectively. NPs from PQ (100/200 μg/mL) showed significant cardiomyocyte protection effect by regulating the mitochondrial functions. This work further testifies the role of polysaccharides in quality control of herbal medicine, with new markers discovered beneficial to distinguish the ginseng.
Collapse
Affiliation(s)
- Jie Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; School of Pharmacy, Hebei Medical University, 361 Zhongshan Donglu, Shijiazhuang, Hebei 050017, China
| | - Xue Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Jing-Wen Guo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Bo-Xue Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - He Sun
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Jia-Qi Huang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Ying Hu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Xiao-Yan Xu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Mei-Ting Jiang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Xiu-Mei Gao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Wen-Zhi Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China.
| | - Qi-Long Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China.
| | - De-An Guo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.
| |
Collapse
|
29
|
He X, Wang W, Du X, Chu M. Association between single-nucleotide polymorphism in PIK3CD gene and litter size in Small Tail Han sheep. Anim Biotechnol 2023; 34:3337-3342. [PMID: 36332162 DOI: 10.1080/10495398.2022.2140059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The p110δ isoform of the PI3K catalytic subunit (encoded by the PIK3CD gene) is a key component of the PI3K pathway for follicle growth in mammalian ovarian granulosa cells. Nevertheless, little is known about the association of its polymorphisms with ovine litter size. In this study, the distribution of different genotypes of two SNPs in the PIK3CD gene was calculated in more than forty sheep breeds, and the associations between SNPs and litter size in Small Tail Han (STH) sheep were also analyzed. Besides, the mRNA expression of the PIK3CD gene was also detected in some reproduction-related tissues. The results showed that the "A" allele frequency was higher in rs412889931 (g.41926327G > A) in a typical polytocous sheep breed (p < 0.01). The association's analysis showed rs412889931 was correlated with ovine fecundity as assessed by three parity litter sizes (p < 0.05). Finally, we found the expression of PIK3CD in the ovary had significant differences in different fecundity sheep breeds, indicating that SNP may regulate the litter size by influencing the PIK3CD gene expression. The present results demonstrated that rs412889931 could be used in the marker-assisted selection of the litter size in sheep breeding.
Collapse
Affiliation(s)
- Xiaoyun He
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Wang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaolong Du
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingxing Chu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
30
|
Li X, Dong H, Zheng Y, Ding S, Li Y, Li H, Huang H, Zhong C, Xie T, Xu Y. AKAP12 inhibits esophageal squamous carcinoma cell proliferation, migration, and cell cycle via the PI3K/AKT signaling pathway. Mol Cell Probes 2023; 72:101939. [PMID: 37879503 DOI: 10.1016/j.mcp.2023.101939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) consistently ranks as one of the most challenging variants of squamous cell carcinomas, primarily due to the lack of effective early detection strategies. We herein aimed to elucidate the underlying mechanisms and biological role associated with A-kinase anchoring protein 12 (AKAP12) in the context of ESCC. Bioinformatic analysis had revealed significantly lower expression level of AKAP12 in ESCC tissue samples than in their non-cancerous counterparts. To gain deeper insights into the potential role of AKAP12 in the progression of ESCC, we conducted a single-gene set enrichment analysis of AKAP12 on ESCC datasets. Our findings suggested that AKAP12 exhibits functions inhibiting cell cycle progression, tumor proliferation, and epithelial-mesenchymal transition. To further validate our findings, we subjected ESCC cell lines to AKAP12 overexpression using CRISPR/Cas9-SAM. In vitro analyses demonstrated that increased expression of AKAP12 significantly reduced cell proliferation, migration, and cell cycle progression. Simultaneously, genes associated with this biological role undergo corresponding regulatory shifts. These observations provided valuable insights into the biological role played by AKAP12 in ESCC progression. In summary, AKAP12 shows promise as a new potential biomarker for early ESCC diagnosis, offering potential advantages for subsequent therapeutic intervention and disease management.
Collapse
Affiliation(s)
- Xingyi Li
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Nantong University, The First People's Hospital of Nantong, 226001, Nantong, China; Department of Thoracic and Cardiovascular Surgery, First Affiliated Hospital of Huzhou Teachers College, The First Hospital of Huzhou, 313000, Huzhou, China
| | - Hao Dong
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Nantong University, The First People's Hospital of Nantong, 226001, Nantong, China
| | - Yifan Zheng
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Nantong University, The First People's Hospital of Nantong, 226001, Nantong, China
| | - Shengguang Ding
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Nantong University, The First People's Hospital of Nantong, 226001, Nantong, China
| | - Yan Li
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Nantong University, The First People's Hospital of Nantong, 226001, Nantong, China
| | - Hefei Li
- Department of Thoracic and Cardiovascular Surgery, The Third Affiliated Hospital of Nantong University, The Third People's Hospital of Nantong, 226001, Nantong, China
| | - HaiTao Huang
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Nantong University, The First People's Hospital of Nantong, 226001, Nantong, China
| | - Congjun Zhong
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Nantong University, The First People's Hospital of Nantong, 226001, Nantong, China
| | - Tian Xie
- Department of Cardiothoracic Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China.
| | - Yiming Xu
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Nantong University, The First People's Hospital of Nantong, 226001, Nantong, China.
| |
Collapse
|
31
|
Wu Q, Yang W, Bi Y, Yao Y, Li C, Li X. Baicalein inhibits apoptosis and autophagy induced by chlorpyrifos exposure to kidney of Cyprinus carpio through activation of PI3K/AKT pathway. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105624. [PMID: 37945259 DOI: 10.1016/j.pestbp.2023.105624] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/09/2023] [Accepted: 09/14/2023] [Indexed: 11/12/2023]
Abstract
Chlorpyrifos (CPF), a widely used organophosphate pesticide that has caused large-scale contamination globally, has become a major concern. Baicalein (BAI), as a flavonoid extract, shows anti-inflammatory as well as antioxidant activities. The kidneys of fish serve to excrete toxins and are major target organs for environmental contaminants. However, it is not obvious whether BAI can counteract the damage caused by CPF exposure to fish kidneys. Therefore, we conducted a 30-day simulation of CPF poisoning and/or BAI treatment by adding 23.2 μg/L CPF to water and/or 0.15 g/kg BAI to feed. In the transmission electron microscopy results, we observed obvious phenomenon of autophagy and apoptosis in the CPF group, and the TUNEL staining and immunofluorescence of LC3B and p62 double-staining results confirmed that CPF induced autophagy and apoptosis in the kidney of common carp. Furthermore, CPF induced the increase of ROS level and inhibition of PI3K and Nrf2 pathways, which in turn triggered oxidative stress, autophagy and apoptosis in carp kidney according to western blot, RT-qPCR and kit assays. However, addition of BAI significantly alleviated oxidative stress, autophagy and apoptosis due to binding to PI3K protein. Additionally, through phylogenetic tree and structural domain analyses, we also found that the binding sites of BAI and PI3K are conserved in a variety of representative species. These results suggest that BAI antagonizes CPF-caused renal impairments in carp involving the PI3K/AKT pathway and the Nrf2 pathway. Our findings provide new insights into the nephrotoxicity effects of CPF and the potential use of BAI as a detoxification agent for CPF intoxication.
Collapse
Affiliation(s)
- Qian Wu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Wenrui Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yanju Bi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yujie Yao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Chengzhi Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xiaojing Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
32
|
Fang Z, Yushanjiang F, Wang G, Zheng X, Jiang X. Germacrone mitigates cardiac remodeling by regulating PI3K/AKT-mediated oxidative stress, inflammation, and apoptosis. Int Immunopharmacol 2023; 124:110876. [PMID: 37683399 DOI: 10.1016/j.intimp.2023.110876] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/14/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
Cardiac remodeling is a common consequence of cardiovascular diseases and is closely associated with oxidative stress, inflammation, and apoptosis. Germacrone, a bioactive compound present in Rhizoma curcuma, has been shown to possess anti-oxidative, anti-inflammatory, and anti-apoptotic properties. The aim of this study was to investigate the protective effect of germacrone against cardiac remodeling. Here, C57BL/6 mice were subcutaneous injection with isoproterenol (ISO) once daily for two weeks and were concurrent intragastric injection of germacrone. In vitro, neonatal rat cardiomyocytes (NRCMs) were used to verify the protective effect of germacrone on ISO-induced cardiac injury. Our findings indicated that ISO induce oxidative stress, inflammation, and apoptosis in vivo and in vitro, while germacrone treatment significantly attenuates these effects, thereby attenuating myocardium remodeling and cardiac dysfunction. Mechanistically, germacrone reduced cardiac remodeling-induced activation of phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway, and the cardioprotective effects of germacrone were abrogated by a PI3K agonist. In conclusion, our results suggest that germacrone attenuates oxidative stress, inflammation, and apoptosis in cardiac remodeling by inhibiting the PI3K/AKT pathway, and may therefore represent a promising therapeutic approach for the treatment of cardiac remodeling.
Collapse
Affiliation(s)
- Zhao Fang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Feierkaiti Yushanjiang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Guangji Wang
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxin Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China.
| | - Xuejun Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China.
| |
Collapse
|
33
|
Deng RM, Zhou J. The role of PI3K/AKT signaling pathway in myocardial ischemia-reperfusion injury. Int Immunopharmacol 2023; 123:110714. [PMID: 37523969 DOI: 10.1016/j.intimp.2023.110714] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 07/09/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
Myocardial ischemia has a high incidence and mortality rate, and reperfusion is currently the standard intervention. However, reperfusion may lead to further myocardial damage, known as myocardial ischemia/reperfusion injury (MIRI). There are currently no effective clinical treatments for MIRI. The PI3K/Akt signaling pathway is involved in cardiovascular health and disease and plays an important role in reducing myocardial infarct size and restoring cardiac function after MIRI. Activation of the PI3K/Akt pathway provides myocardial protection through synergistic upregulation of antioxidant, anti-inflammatory, and autophagy activities and inhibition of mitochondrial dysfunction and cardiomyocyte apoptosis. Many studies have shown that PI3K/Akt has a significant protective effect against MIRI. Here, we reviewed the molecular regulation of PI3K/Akt in MIRI and summarized the molecular mechanism by which PI3K/Akt affects MIRI, the effects of ischemic preconditioning and ischemic postconditioning, and the role of related drugs or activators targeting PI3K/Akt in MIRI, providing novel insights for the formulation of myocardial protection strategies. This review provides evidence of the role of PI3K/Akt activation in MIRI and supports its use as a therapeutic target.
Collapse
Affiliation(s)
- Rui-Ming Deng
- Department of Anesthesiology, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; The Affiliated Ganzhou Hospital of Nanchang University, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China
| | - Juan Zhou
- Department of thyroid and Breast Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; The Affiliated Ganzhou Hospital of Nanchang University, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China.
| |
Collapse
|
34
|
Wang H, Liu YS, Peng Y, Chen W, Dong N, Wu Q, Pan B, Wang B, Guo W. Golgi α-mannosidases regulate cell surface N-glycan type and ectodomain shedding of the transmembrane protease corin. J Biol Chem 2023; 299:105211. [PMID: 37660903 PMCID: PMC10520876 DOI: 10.1016/j.jbc.2023.105211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023] Open
Abstract
Corin is a transmembrane protease that activates natriuretic peptides on the cell membrane. Reduced cell surface targeting or increased ectodomain shedding disrupts cell membrane homeostasis of corin, thereby impairing its cell surface expression and enzyme activity. N-glycans are essential in corin ectodomain shedding. Lack of N-glycans promotes corin ectodomain shedding in the juxtamembrane and frizzled-1 domains. The nascent N-glycans, transferred onto the polypeptide of corin, undergo multistep N-glycan processing in the endoplasmic reticulum and Golgi. It remains unclear how trimming by Golgi α-mannosidases, the critical N-glycan processing steps in N-glycan maturation, may regulate corin biosynthesis. In this study, we examined the effects of kifunensine and swainsonine, the inhibitors for α-mannosidases I and II, on corin expression and function. Western analysis of corin proteins in cell lysates and conditioned media from the inhibitor-treated corin-stable HEK293 cells and AC16 cells showed that both α-mannosidases I and II were required to maintain complex N-glycans on cell surface corin and protect corin from ectodomain shedding in the juxtamembrane and frizzled-1 domains. Cell viability analysis revealed that inhibition of α-mannosidase I or II sensitized cardiomyocytes to hydrogen peroxide-induced injury via regulating corin. Moreover, either one of the two coding genes was sufficient to perform Golgi α-mannosidase I trimming of N-glycans on corin. Similarly, this sufficiency was observed in Golgi α-mannosidase II-coding genes. Inhibition of ectodomain shedding restored corin zymogen activation from kifunensine- or swainsonine-induced reduction. Together, our results show the important roles of Golgi α-mannosidases in maintaining cell membrane homeostasis and biological activities of corin.
Collapse
Affiliation(s)
- Hao Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi-Shi Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yingfei Peng
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Chen
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ningzheng Dong
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China; NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Baishen Pan
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Beili Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Shanghai Zhongshan Hospital, Fudan University, Shanghai, China; Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China; Branch of National Clinical Research Center for Laboratory Medicine, Shanghai, China.
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Shanghai Zhongshan Hospital, Fudan University, Shanghai, China; Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China; Branch of National Clinical Research Center for Laboratory Medicine, Shanghai, China.
| |
Collapse
|
35
|
Tang Z, Zhang Z, Wang J, Sun Z, Qaed E, Chi X, Wang J, Jamalat Y, Geng Z, Tang Z, Yao Q. Protective effects of phosphocreatine on human vascular endothelial cells against hydrogen peroxide-induced apoptosis and in the hyperlipidemic rat model. Chem Biol Interact 2023; 383:110683. [PMID: 37648050 DOI: 10.1016/j.cbi.2023.110683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/08/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
Phosphocreatine (PCr) has been shown to have a cardio-protective effect during cardiopulmonary resuscitation (CPR). However, little is known about its impact on atherosclerosis. In this study, we first evaluated the pharmacological effects of PCr on antioxidative defenses and mitochondrial protection against hydrogen peroxide (H2O2) induced human umbilical vascular endothelial cells (HUVECs) damage. Then we investigated the hypolipidemic and antioxidative effects of PCr on hyperlipidemic rat model. Via in vitro studies, H2O2 significantly reduced cell viability and increased apoptosis rate of HUVECs, while pretreatment with PCr abolished its apoptotic effect. PCr could reduce the generation of ROS induced by H2O2. Moreover, PCr could increase the activity of SOD and the content of NO, as well as decrease the activity of LDH and the content of MDA. PCr could also antagonize H2O2-induced up-regulation of Bax, cleaved-caspase3, cleaved-caspase9, and H2O2-induced down-regulation of Bcl-2 and p-Akt/Akt ratio. In addition, PCr reduced U937 cells' adhesion to H2O2-stimulated HUVECs. Via in vivo study, PCr could decrease MDA, TC, TG and LDL-C levels in hyperlipidemic rats. Finally, different-concentration PCr could increase the leaching of TC, HDL, and TG from fresh human atherosclerotic plaques. In conclusion, PCr could suppress H2O2-induced apoptosis in HUVECs and reduce hyperlipidemia through inhibiting ROS generation and modulating dysfunctional mitochondrial system, which might be an effective new therapeutic strategy to further prevent atherosclerosis.
Collapse
Affiliation(s)
- Zhongyuan Tang
- Department of Orthodontics, School of Stomatology, Jilin University, Changchun, Jilin, China
| | - Zonghui Zhang
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Jiaqi Wang
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhengwu Sun
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Eskandar Qaed
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Xinming Chi
- Department of Histology and Embryology, Dalian Medical University, Dalian, 116044, China
| | - Jun Wang
- Department of Pathophysiology, Dalian Medical University, Dalian, China
| | - Yazeed Jamalat
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Zhaohong Geng
- Department of Cardiology, 2nd Affiliated Hospital of Dalian Medical University, Zhongshan Road No. 467, Dalian, China.
| | - Zeyao Tang
- Department of Pharmacology, Dalian Medical University, Dalian, China.
| | - Qiying Yao
- Department of Physiology, Dalian Medical University, Dalian, China.
| |
Collapse
|
36
|
Fang Z, Li S, Yushanjiang F, Feng G, Cui S, Hu S, Jiang X, Liu C. Curcumol alleviates cardiac remodeling via the AKT/NF-κB pathway. Int Immunopharmacol 2023; 122:110527. [PMID: 37392572 DOI: 10.1016/j.intimp.2023.110527] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/07/2023] [Accepted: 06/14/2023] [Indexed: 07/03/2023]
Abstract
Cardiac remodeling is the final stage of almost all cardiovascular diseases, leading to heart failure and arrhythmias. However, the pathogenesis of cardiac remodeling is not fully understood, and specific treatment schemes are currently unavailable. Curcumol is a bioactive sesquiterpenoid that has anti-inflammatory, anti-apoptotic, and anti-fibrotic properties. This study aimed to investigate the protective effect of curcumol on cardiac remodeling and elucidate its relevant underlying mechanism. Curcumol significantly attenuated cardiac dysfunction, myocardial fibrosis, and hypertrophy in the animal model of isoproterenol (ISO)-induced cardiac remodeling. Curcumol also alleviated cardiac electrical remodeling, thereby reducing the risk of ventricular fibrillation (VF) after heart failure. Inflammation and apoptosis are critical pathological processes involved in cardiac remodeling. Curcumol inhibited the inflammation and apoptosis induced by ISO and TGF-β1 in mouse myocardium and neonatal rat cardiomyocytes (NRCMs). Furthermore, the protective effects of curcumol were found to be mediated through the inhibition of the protein kinase B (AKT)/nuclear factor-kappa B (NF-κB) pathway. The administration of an AKT agonist reversed the anti-fibrotic, anti-inflammatory, and anti-apoptotic effects of curcumol and restored the inhibition of NF-κB nuclear translocation in TGF-β1-induced NRCMs. Our study suggests that curcumol is a potential therapeutic agent for the treatment of cardiac remodeling.
Collapse
Affiliation(s)
- Zhao Fang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Shuang Li
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Feierkaiti Yushanjiang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Gaoke Feng
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Shengyu Cui
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Shan Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Xuejun Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China.
| | - Chengyin Liu
- Department of Geriatrics, The Affiliated Hospital of Yangzhou University, Yangzhou 225000, China.
| |
Collapse
|
37
|
Niu Y, Zhou T, Zhang S, Li W, Wang K, Dong N, Wu Q. Corin deficiency impairs cardiac function in mouse models of heart failure. Front Cardiovasc Med 2023; 10:1164524. [PMID: 37636304 PMCID: PMC10450958 DOI: 10.3389/fcvm.2023.1164524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 08/01/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Corin is a protease in the natriuretic peptide system. Deleterious CORIN variants are associated with hypertension and heart disease. It remains unclear if and to what extent corin deficiency may contribute to heart failure (HF). Methods Corin knockout (KO) mice were used as a model. Cardiac function was assessed by echocardiography and tissue analysis in Corin KO mice at different ages or subjected to transverse aortic constriction (TAC), which increased pressure overload. Heart and lung tissues were analyzed for cardiac hypertrophy and lung edema using wheat germ agglutinin, Sirius red, Masson's trichrome, and Prussian blue staining. Recombinant corin was tested for its effect on cardiac function in the TAC-operated Corin KO mice. Selected gene expression in the heart was examined by RT-PCR. ELISA was used to analyze factors in plasma. Results Corin KO mice had progressive cardiac dysfunction with cardiac hypertrophy and fibrosis after 9 months of age, likely due to chronic hypertension. When Corin KO mice were subjected to TAC at 10-12 weeks of age, cardiac function decreased more rapidly than in similarly treated wild-type mice. When the TAC-operated Corin KO mice were treated with recombinant corin protein, cardiac dysfunction, hypertrophy, and fibrosis were ameliorated. The corin treatment also decreased the gene expression associated with cardiac hypertrophy and fibrosis, increased plasma cGMP levels, lowered plasma levels of N-terminal pro-atrial natriuretic peptide, angiotensin II, and aldosterone, and lessened lung edema in the Corin KO mice subjected to TAC. Conclusion Corin deficiency impairs cardiac function and exacerbates HF development in mice. Corin protein may be used to reduce cardiac hypertrophy and fibrosis, suppress the renin-angiotensin-aldosterone system, and improve cardiac function in HF.
Collapse
Affiliation(s)
- Yayan Niu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Medical School, Soochow University, Suzhou, China
| | - Tiantian Zhou
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Medical School, Soochow University, Suzhou, China
| | - Shengnan Zhang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Medical School, Soochow University, Suzhou, China
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenguo Li
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Medical School, Soochow University, Suzhou, China
| | - Kun Wang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Medical School, Soochow University, Suzhou, China
| | - Ningzheng Dong
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Medical School, Soochow University, Suzhou, China
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Medical School, Soochow University, Suzhou, China
| |
Collapse
|
38
|
Fan W, Lan S, Yang Y, Liang J. Network pharmacology prediction and molecular docking-based strategy to discover the potential pharmacological mechanism of Huang-Qi-Gui-Zhi-Wu-Wu decoction against deep vein thrombosis. J Orthop Surg Res 2023; 18:475. [PMID: 37391801 DOI: 10.1186/s13018-023-03948-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND Huangqi Guizhi Wuwu decoction (HQGZWWD) has been used to treat and prevent deep vein thrombosis (DVT) in China. However, its potential mechanisms of action remain unclear. This study aimed to utilize network pharmacology and molecular docking technology to elucidate the molecular mechanisms of action of HQGZWWD in DVT. METHODS We identified the main chemical components of HQGZWWD by reviewing the literature and using a Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. We used GeneCards and Online Mendelian Inheritance in Man databases to identify the targets of DVT. Herb-disease-gene-target networks using Cytascape 3.8.2 software; a protein-protein interaction (PPI) network was constructed by combining drug and disease targets on the STRING platform. Additionally, we conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Finally, molecular docking verification of active components and core protein targets was conducted. RESULTS A total of 64 potential targets related to DVT were identified in HQGZWWD, with 41 active components; quercetin, kaempferol, and beta-sitosterol were the most effective compounds. The PPI network analysis revealed that AKT1, IL1B, and IL6 were the most abundant proteins with the highest degree. GO analysis indicated that DVT treatment with HQGZWWD could involve the response to inorganic substances, positive regulation of phosphorylation, plasma membrane protein complexes, and signaling receptor regulator activity. KEGG analysis revealed that the signaling pathways included pathways in cancer, lipid and atherosclerosis, fluid shear stress and atherosclerosis, and the phosphatidylinositol 3-kinases/protein kinase B(PI3K-Akt) and mitogen-activated protein kinase (MAPK) signaling pathways. The molecular docking results indicated that quercetin, kaempferol, and beta-sitosterol exhibited strong binding affinities for AKT1, IL1B, and IL6. CONCLUSION Our study suggests that AKT1, IL1B, and IL6 are promising targets for treating DVT with HQGZWWD. The active components of HQGZWWD likely responsible for its effectiveness against DVT are quercetin, kaempferol, and beta-sitosterol, they may inhibit platelet activation and endothelial cell apoptosis by regulating the PI3K/Akt and MAPK signaling pathways, slowing the progression of DVT.
Collapse
Affiliation(s)
- Wei Fan
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Provincial Laboratory of Orthopaedic Engineering, Luzhou, China
| | - Shuangli Lan
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yunkang Yang
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
- Sichuan Provincial Laboratory of Orthopaedic Engineering, Luzhou, China.
| | - Jie Liang
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
- Sichuan Provincial Laboratory of Orthopaedic Engineering, Luzhou, China.
| |
Collapse
|
39
|
Deng D, Xie J, Tian Y, Zhu L, Liu X, Liu J, Huang G, Li J. Effects of meiotic stage-specific oocyte vitrification on mouse oocyte quality and developmental competence. Front Endocrinol (Lausanne) 2023; 14:1200051. [PMID: 37455899 PMCID: PMC10338221 DOI: 10.3389/fendo.2023.1200051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Acquisition of germinal vesicle (GV) stage oocytes for fertility preservation (FP) offers several benefits over in vivo matured oocyte cryopreservation following ovarian stimulation, particularly for cancer patients necessitating immediate treatment. Two FP approaches for GV oocytes are available: vitrification before in vitro maturation (IVM) at the GV stage (GV-VI) or post-IVM at the metaphase II (MII) stage (MII-VI). The optimal method remains to be determined. Methods In this study, mouse oocytes were collected without hormonal stimulation and vitrified either at the GV stage or the MII stage following IVM; non-vitrified in vitro matured MII oocytes served as the control (CON). The oocyte quality and developmental competence were assessed to obtain a better method for immediate FP. Results No significant differences in IVM and survival rates were observed among the three groups. Nevertheless, GV-VI oocytes exhibited inferior quality, including abnormal spindle arrangement, mitochondrial dysfunction, and early apoptosis, compared to MII-VI and CON oocytes. Oocyte vitrification at the GV stage impacted maternal mRNA degradation during IVM. In addition, the GV-VI group demonstrated significantly lower embryonic developmental competence relative to the MII-VI group. RNA sequencing of 2-cell stage embryos revealed abnormal minor zygotic genome activation in the GV-VI group. Conclusion Vitrification at the GV stage compromised oocyte quality and reduced developmental competence. Consequently, compared to the GV stage, oocyte vitrification at the MII stage after IVM is more suitable for patients who require immediate FP.
Collapse
Affiliation(s)
- Dongmei Deng
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Center for Reproductive Medicine, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Juan Xie
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Center for Reproductive Medicine, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Yin Tian
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Center for Reproductive Medicine, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Ling Zhu
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Center for Reproductive Medicine, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Liu
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Center for Reproductive Medicine, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Junxia Liu
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Center for Reproductive Medicine, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Guoning Huang
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Center for Reproductive Medicine, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Jingyu Li
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Center for Reproductive Medicine, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
40
|
Huang P, Du J, Cao L, Gao J, Li Q, Sun Y, Shao N, Zhang Y, Xu G. Effects of prometryn on oxidative stress, immune response and apoptosis in the hepatopancreas of Eriocheir sinensis (Crustacea: Decapoda). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115159. [PMID: 37356403 DOI: 10.1016/j.ecoenv.2023.115159] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/13/2023] [Accepted: 06/17/2023] [Indexed: 06/27/2023]
Abstract
Prometryn, a triazine pesticide product used to control weed growth, poses a high risk to aquatic organisms in the environment. Several toxicological evaluations have been performed on bony fish and shrimp exposed to prometryn. However, there have been no reports conducted on the toxic mechanism of prometryn with regard to Eriocheir sinensis. In this study, our research evaluated the toxic effects of prometryn via in vitro and in vivo toxicity tests on E. sinensis. Firstly, we estimated the exposure toxicity of prometryn to E. sinensis, and then we constructed a 6 h transcriptional profile and conducted an enrichment analysis. To further reveal the toxicity of prometryn, the hepatopancreas (hepatopancreatic cells) was analyzed for antioxidant, immune and lipid-metabolism-related enzymes, antioxidant- and apoptosis-related gene expression, histopathology and TUNEL. From the results, we determined that the 96 h-LD50 was 70.059 mg/kg, and using RNA-seq, we identified 933 differentially expressed genes (DEGs), which were mainly enriched in the amino and fatty acid metabolism and the cell-fate-determination-related signaling pathway. The results of the biochemical assays showed that prometryn could significantly decrease the activities/levels of CAT, SOD, GSH, AKP and ACP, reduce the levels of T-AOC, TG, TCH, C3 and C4, and increase the MDA content. In addition, the expression levels of Nrf2, GSTs and HO-1 were first upregulated and then downregulated with increasing time. Histopathology showed that prometryn damaged the structure of the hepatopancreas cells and induced apoptosis, suggesting that the PI3K-Akt signaling pathway may be involved in the damage process of hepatopancreas cells (PI3K, PDK and Akt were downregulated whereas Bax was upregulated), leading to their apoptosis. The above results indicated that prometryn could cause injury of the hepatopancreas through oxidative stress, induce cell apoptosis, disrupt the lipid metabolism and cause immune damage. This study provided useful data for understanding and evaluating the toxicity of prometryn to aquatic crustacea.
Collapse
Affiliation(s)
- Peng Huang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Jinliang Du
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Liping Cao
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jiancao Gao
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Quanjie Li
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yi Sun
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Nailin Shao
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yuning Zhang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Gangchun Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
41
|
Yan J, Zhang J, Wang Y, Liu H, Sun X, Li A, Cui P, Yu L, Yan X, He Z. Rapidly Inhibiting the Inflammatory Cytokine Storms and Restoring Cellular Homeostasis to Alleviate Sepsis by Blocking Pyroptosis and Mitochondrial Apoptosis Pathways. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207448. [PMID: 36932048 PMCID: PMC10190643 DOI: 10.1002/advs.202207448] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/10/2023] [Indexed: 05/18/2023]
Abstract
Pyroptosis, systemic inflammation, and mitochondrial apoptosis are the three primary contributors to sepsis's multiple organ failure, the ultimate cause of high clinical mortality. Currently, the drugs under development only target a single pathogenesis, which is obviously insufficient. In this study, an acid-responsive hollow mesoporous polydopamine (HMPDA) nanocarrier that is highly capable of carrying both the hydrophilic drug NAD+ and the hydrophobic drug BAPTA-AM, with its outer layer being sealed by the inflammatory targeting peptide PEG-LSA, is developed. Once targeted to the region of inflammation, HMPDA begins depolymerization, releasing the drugs NAD+ and BAPTA-AM. Depletion of polydopamine on excessive reactive oxygen species production, promotion of ATP production and anti-inflammation by NAD+ replenishment, and chelation of BAPTA (generated by BA-AM hydrolysis) on overloaded Ca2+ can comprehensively block the three stages of sepsis, i.e., precisely inhibit the activation of pyroptosis pathway (NF-κB-NLRP3-ASC-Casp-1), inflammation pathway (IL-1β, IL-6, and TNF-α), and mitochondrial apoptosis pathway (Bcl-2/Bax-Cyt-C-Casp-9-Casp-3), thereby restoring intracellular homeostasis, saving the cells in a state of "critical survival," further reducing LPS-induced systemic inflammation, finally restoring the organ functions. In conclusion, the synthesis of this agent provides a simple and effective synergistic drug delivery nanosystem, which demonstrates significant therapeutic potential in a model of LPS-induced sepsis.
Collapse
Affiliation(s)
- Jiahui Yan
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systemand Key Laboratory of Marine Chemistry Theory and TechnologyMinistry of EducationOcean University of ChinaQingdao266100China
- College of Chemistry and Chemical EngineeringOcean University of ChinaQingdao266100China
| | - Jingwen Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systemand Key Laboratory of Marine Chemistry Theory and TechnologyMinistry of EducationOcean University of ChinaQingdao266100China
- College of Chemistry and Chemical EngineeringOcean University of ChinaQingdao266100China
| | - Yanan Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systemand Key Laboratory of Marine Chemistry Theory and TechnologyMinistry of EducationOcean University of ChinaQingdao266100China
- College of Chemistry and Chemical EngineeringOcean University of ChinaQingdao266100China
| | - Hong Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systemand Key Laboratory of Marine Chemistry Theory and TechnologyMinistry of EducationOcean University of ChinaQingdao266100China
- College of Chemistry and Chemical EngineeringOcean University of ChinaQingdao266100China
| | - Xueping Sun
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systemand Key Laboratory of Marine Chemistry Theory and TechnologyMinistry of EducationOcean University of ChinaQingdao266100China
- College of Chemistry and Chemical EngineeringOcean University of ChinaQingdao266100China
| | - Aixin Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systemand Key Laboratory of Marine Chemistry Theory and TechnologyMinistry of EducationOcean University of ChinaQingdao266100China
- College of Chemistry and Chemical EngineeringOcean University of ChinaQingdao266100China
| | - Pengfei Cui
- College of Marine Life SciencesOcean University of ChinaQingdao266003China
| | - Liangmin Yu
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systemand Key Laboratory of Marine Chemistry Theory and TechnologyMinistry of EducationOcean University of ChinaQingdao266100China
- College of Chemistry and Chemical EngineeringOcean University of ChinaQingdao266100China
| | - Xuefeng Yan
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systemand Key Laboratory of Marine Chemistry Theory and TechnologyMinistry of EducationOcean University of ChinaQingdao266100China
- College of Chemistry and Chemical EngineeringOcean University of ChinaQingdao266100China
| | - Zhiyu He
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systemand Key Laboratory of Marine Chemistry Theory and TechnologyMinistry of EducationOcean University of ChinaQingdao266100China
- College of Chemistry and Chemical EngineeringOcean University of ChinaQingdao266100China
| |
Collapse
|
42
|
Teng S, Zhu Z, Wu C, He Y, Zhou S. Inflachromene inhibits intimal hyperplasia through the HMGB1/2- regulated TLR4-NF-κB pathway. Int Immunopharmacol 2023; 119:110198. [PMID: 37087872 DOI: 10.1016/j.intimp.2023.110198] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/24/2023] [Accepted: 04/11/2023] [Indexed: 04/25/2023]
Abstract
The contractile-syntheticphenotypicconversion of vascular smooth muscle cells (VSMCs) plays a key role in atherosclerosis, vascular restenosis, and hypertension. Our previous study explored the correlation between high mobility group box protein (HMGB) 1 and HMGB2 and neointimal hyperplasia after vascular injury. In the present study, we explore whether inflachromene (ICM), a novel inhibitor of the expression of both HMGB1 and HMGB2, modulates phenotypic changes in VSMCs and the mechanisms involved. Mice treated with ICM after carotid artery wire injury showed a decrease in excessive neointimal hyperplasia compared with that in the vehicle groups. In cultured VSMCs, pretreatment with ICM suppressed the angiotensin II (Ang II)-induced phenotypic conversion, proliferation, and migration. We discovered that ICM reduced the Ang II-induced upregulation of the expression of HMGB1 and HMGB2 and inhibited their shuttling between the nucleus and the cytosol. Mechanistically, Ang II-treated VSMCs exhibited higher levels of Toll-like receptor 4 (TLR4) and nuclear factor-κB (NF-κB) phosphorylation, which were attenuated by ICM. In addition, the NF-κB inhibitor Bay-117082 abolished the recombinant HMGB1-mediated VSMC phenotypic conversion, proliferation, and migration. Furthermore, ICM ameliorated the Ang II-induced increases in NAD[P]H oxidase expression, thereby attenuating the Ang II-induced proliferation and migration. These results reveal that ICM pretreatment attenuates Ang II-induced VSMC dedifferentiation, proliferation, and migration may by regulating the TLR4-NF-kB pathway. Thus, ICM is a potential therapy and preventive treatment for vascular proliferative diseases.
Collapse
Affiliation(s)
- Shuai Teng
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaowei Zhu
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chenkai Wu
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuhu He
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shenghua Zhou
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
43
|
Yan J, Wang Y, Zhang J, Liu X, Yu L, He Z. Rapidly Blocking the Calcium Overload/ROS Production Feedback Loop to Alleviate Acute Kidney Injury via Microenvironment-Responsive BAPTA-AM/BAC Co-Delivery Nanosystem. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206936. [PMID: 36719986 DOI: 10.1002/smll.202206936] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/14/2023] [Indexed: 06/18/2023]
Abstract
Calcium overload and ROS overproduction, two major triggers of acute kidney injury (AKI), are self-amplifying and mutually reinforcing, forming a complicated cascading feedback loop that induces kidney cell "suicide" and ultimately renal failure. There are currently no clinically effective drugs for the treatment of AKI, excluding adjuvant therapy. In this study, a porous silicon-based nanocarrier rich in disulfide bond skeleton (<50 nm) is developed that enables efficient co-loading of the hydrophilic drug borane amino complex and the hydrophobic drug BAPTA-AM, with its outer layer sealed by the renal tubule-targeting peptide PEG-LTH. Once targeted to the kidney injured site, the nanocarrier structure collapses in the high glutathione environment of the early stage of AKI, releasing the drugs. Under the action of the slightly acidic inflammatory environment and intracellular esterase, the released drugs produce hydrogen and BAPTA, which can rapidly eliminate the excess ROS and overloaded Ca2+ , blocking endoplasmic reticulum/mitochondrial apoptosis pathway (ATF4-CHOP-Bax axis, Casp-12-Casp-3 axis, Cyt-C-Casp-3 axis) and inflammatory pathway (TNF-α-NF-κB axis) from the source, thus rescuing the renal cells in the "critical survival" state and further restoring the kidney function. Overall, this nanoparticle shows substantial clinical promise as a potential therapeutic strategy for I/R injury-related diseases.
Collapse
Affiliation(s)
- Jiahui Yan
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, P. R. China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| | - Yanan Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, P. R. China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| | - Jingwen Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, P. R. China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| | - Xiaohu Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, P. R. China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| | - Liangmin Yu
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, P. R. China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| | - Zhiyu He
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, P. R. China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| |
Collapse
|
44
|
Aldehyde Dehydrogenase 2 Protects the Kidney from Ischemia-Reperfusion Injury by Suppressing the I κB α/NF- κB/IL-17C Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:2264030. [PMID: 36865346 PMCID: PMC9974261 DOI: 10.1155/2023/2264030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 01/21/2023] [Accepted: 01/27/2023] [Indexed: 02/25/2023]
Abstract
Objective Ischemia-reperfusion injury (IRI) is an important cause of delayed functional recovery after transplantation. This study is aimed at investigating the molecular mechanism of ALDH2 in a kidney ischemia-reperfusion model based on RNA-seq. Methods We performed kidney ischemia-reperfusion in ALDH2-/- and WT mice and evaluated kidney function and morphology using SCr, HE staining, TUNEL staining, and TEM. We used RNA-seq to compare mRNA expression in ALDH2-/- and WT mice after IR, and then, we verified the related molecular pathways by PCR and western blotting. In addition, activators and inhibitors of ALDH2 were used to alter the activity of ALDH2. Finally, we established a model of hypoxia and reoxygenation in HK-2 cells and clarified the role of ALDH2 in IR by interfering with ALDH2 and using an NF-κB inhibitor. Results After kidney ischemia-reperfusion, the SCr value increased significantly, kidney tubular epithelial cells were damaged, and the apoptosis rate increased. In the microstructure, mitochondria were swollen and deformed, and ALDH2 deficiency aggravated these changes. The NF-κB pathway and IL-17 pathway were significantly enriched in ALDH2-/- mice compared with WT mice according to KEGG enrichment analysis of the RNA-seq data. The PCR results showed that the mRNA expression levels of IκBα and IL-17B, C, D, E, and F were significantly higher than those in the WT-IR group. Western blot verification results showed that ALHD2 knockdown resulted in increased phosphorylation of IκBα, increased phosphorylation of NF-κB, and increased expression of IL-17C. When we used ALDH2 agonists, the number of lesions and the expression levels of the corresponding proteins were reduced. Knockdown of ALDH2 in HK-2 cells resulted in a higher proportion of apoptotic cells after hypoxia and reoxygenation, but inhibiting the phosphorylation of NF-κB prevented the increase in apoptosis and reduced the protein expression level of IL-17C. Conclusion ALDH2 deficiency can lead to the aggravation of kidney ischemia-reperfusion injury. RNA-seq analysis and validation by PCR and western blotting revealed that this effect may be due to the promotion of IκBα/NF-κB p65 phosphorylation during ischemia-reperfusion caused by ALDH2 deficiency, which then leads to an increase in inflammatory factors, including IL-17C. Thus, cell death is promoted, and kidney IRI is eventually aggravated. We link ALDH2 deficiency with inflammation, revealing a new idea for ALDH2-related research.
Collapse
|
45
|
Wang G, Yang F, Zhou W, Xiao N, Luo M, Tang Z. The initiation of oxidative stress and therapeutic strategies in wound healing. Biomed Pharmacother 2023; 157:114004. [PMID: 36375308 DOI: 10.1016/j.biopha.2022.114004] [Citation(s) in RCA: 124] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022] Open
Abstract
When the production of reactive oxygen species (ROS) is overloaded surpassing the capacity of the reductive rheostat, mammalian cells undergo a series of oxidative damage termed oxidative stress (OS). This phenomenon is ubiquitously detected in many human pathological conditions. Wound healing program implicates continuous neovascularization, cell proliferation, and wound remodeling. Increasing evidence indicates that reactive oxygen species (ROS) have profound impacts on the wound healing process through regulating a series of the physiological and pathological program including inflammatory response, cell proliferation, angiogenesis, granulation as well as extracellular matrix formation. In most pathological wound healing processes, excessive ROS exerts a negative role on the wound healing process. Interestingly, the moderate increase of ROS levels is beneficial in killing bacteria at the wound site, which creates a sterile niche for revascularization. In this review, we discussed the physiological rhythms of wound healing and the role of ROS in this progress, aim to explore the potential manipulation of OS as a promising therapeutic avenue.
Collapse
Affiliation(s)
- Gang Wang
- Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, China; Drug Discovery Research Center, Southwest Medical University, Luzhou, China; Department of Pharmacology, college of Pharmacy, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Drug Metabolism, Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China, Chongqing, China
| | - Feifei Yang
- Department of Pharmacology, college of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Weiying Zhou
- Department of Pharmacology, college of Pharmacy, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Drug Metabolism, Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China, Chongqing, China
| | - Nanyang Xiao
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Mao Luo
- Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, China; Drug Discovery Research Center, Southwest Medical University, Luzhou, China.
| | - Zonghao Tang
- Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, China; Drug Discovery Research Center, Southwest Medical University, Luzhou, China; Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
46
|
Dong T, Lin WZ, Zhu XH, Yuan KY, Hou LL, Huang ZW. Osteomodulin protects dental pulp stem cells from cisplatin-induced apoptosis in vitro. Stem Cell Rev Rep 2023; 19:188-200. [PMID: 35781607 DOI: 10.1007/s12015-022-10399-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2022] [Indexed: 01/29/2023]
Abstract
Human dental pulp stem cells (hDPSCs) are considered promising multipotent cell sources for tissue regeneration. Regulation of apoptosis and maintaining the cell homeostasis is a critical point for the application of hDPSCs. Osteomodulin (OMD), a member of the small leucine-rich proteoglycan family, was proved an important regulatory protein of hDPSCs in our previous research. Thus, the role of OMD in the apoptosis of hDPSCs was explored in this study. The expression of OMD following apoptotic induction was investigated and then the hDPSCs stably overexpressing or knocking down OMD were established by lentiviral transfection. The proportion of apoptotic cells and apoptosis-relative genes and proteins were examined with flow cytometry, Hoechst staining, Caspase 3 activity assay, qRT-PCR and western blotting. RNA-Seq analysis was used to explore possible biological function and mechanism. Results showed that the expression of OMD decreased following the apoptotic induction. Overexpression of OMD enhanced the viability of hDPSCs, decreased the activity of Caspase-3 and protected hDPSCs from apoptosis. Knockdown of OMD showed the opposite results. Mechanistically, OMD may act as a negative modulator of apoptosis via activation of the Akt/Glycogen synthase kinase 3β (GSK-3β)/β-Catenin signaling pathway and more functional and mechanistic possibilities were revealed with RNA-Seq analysis. The present study provided evidence of OMD as a negative regulator of apoptosis in hDPSCs. Akt/GSK-3β/β-Catenin signaling pathway was involved in this process and more possible mechanism detected needed further exploration. This anti-apoptotic function of OMD provided a promising application prospect for hDPSCs in tissue regeneration.
Collapse
Affiliation(s)
- Ting Dong
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Wen-Zhen Lin
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xiao-Han Zhu
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Ke-Yong Yuan
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Li-Li Hou
- Department of Nursing, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Zheng-Wei Huang
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
- National Clinical Research Center for Oral Diseases, Shanghai, China.
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.
| |
Collapse
|
47
|
Liang Z, Yang Y, Wu X, Lu C, Zhao H, Chen K, Zhao A, Li X, Xu J. GAS6/Axl is associated with AMPK activation and attenuates H 2O 2-induced oxidative stress. Apoptosis 2022; 28:485-497. [PMID: 36580193 DOI: 10.1007/s10495-022-01801-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2022] [Indexed: 12/30/2022]
Abstract
Oxidative stress plays a key part in cardiovascular event. Growth arrest-specific gene 6 (GAS6) is a vitamin K-dependent ligand which has been shown to exert important effects in heart. The effects of GAS6 were evaluated against hydrogen peroxide (H2O2) ‑induced oxidative stress injury in HL-1 cardiomyocytes. A series of experimental methods were used to analyze the effects of GAS6 on cell viability, apoptosis, oxidative stress, mitochondrial function and AMPK/ACC signaling in H2O2‑injured HL-1 cells. In this study, we found that H2O2 reduced cell viability, increased apoptotic rate and intracellular reactive oxygen species (ROS). Meanwhile, H2O2 decreased the protein levels of GAS6, and increased the protein level of p-AMPK/AMPK, p-ACC/ACC. Then, we observed that overexpression of GAS6 significantly reduced cell death, manifested as increased cell viability, improved oxidative stress, apoptosis and upregulated the levels of GAS6, p-Axl/Axl, Nrf2, NQO1, HO-1, Bcl-2/Bax, PGC-1α, NRF1, TFAM, p-AMPK/AMPK, and p-ACC/ACC-related protein expression in HL-1 cells and H2O2‑injured cardiomyocytes. To further verify the results, we successfully constructed GAS6 lentiviral vectors, and found GAS6 shRNA partially reversed the above results. These data suggest that AMPK/ACC may be a downstream effector molecule in the antioxidant action of GAS6. In summary, our findings indicate that activation GAS6/Axl-AMPK signaling protects H2O2‑induced oxidative stress which is accompanied by the amelioration of oxidative stress, apoptosis, and mitochondrial function.
Collapse
Affiliation(s)
- Zhenxing Liang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East, 450052, Zhengzhou, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Faculty of Life Sciences, Ministry of Education, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Xue Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Faculty of Life Sciences, Ministry of Education, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Chenxi Lu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Faculty of Life Sciences, Ministry of Education, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Huadong Zhao
- Department of General Surgery, Tangdu Hospital, The Airforce Medical University, 1 Xinsi Road, 710038, Xi'an, China
| | - Kehan Chen
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East, 450052, Zhengzhou, China
| | - Aizhen Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Faculty of Life Sciences, Ministry of Education, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Xiyang Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Faculty of Life Sciences, Ministry of Education, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Jing Xu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East, 450052, Zhengzhou, China.
| |
Collapse
|
48
|
Wang X, Zhang X, Sun K, Wang S, Gong D. Polystyrene microplastics induce apoptosis and necroptosis in swine testis cells via ROS/MAPK/HIF1α pathway. ENVIRONMENTAL TOXICOLOGY 2022; 37:2483-2492. [PMID: 35791677 DOI: 10.1002/tox.23611] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) generally refer to the plastic fragments or particles smaller than 5 mm in diameter, which are closely concerned due to their widespread presence in the environment. Recent studies have shown that MPs have a serious threat on the reproductive health of organisms. Pigs are often selected as the model animals because of their high similarity to human tissues and organs. However, there are no reports on the effects and mechanisms of MPs exposure on swine germ cells. In the present study, we established swine testis (ST) cell models exposed to 250, 500, and 1000 μg/ml polystyrene microplastics (PS-MPs, 1-10 μm), respectively. The findings revealed that PS-MPs reduced cell viability dose-dependently. Acridine orange/ethidium bromide staining and flow cytometry results indicated the occurrence of apoptosis and necrosis in ST cells under PS-MPs exposure, and the expression changes of relevant marker genes (B-cell lymphoma-2, Bcl-2 Associated X, Caspase-3, Caspase-9, Receptor-interacting protein kinase 1, Receptor-interacting protein kinase 3, Mixed lineage kinase domain-like, and Caspase-8) were clarified via quantitative real-time PCR and western blot. Further mechanistic studies found that PS-MPs treatment induced excessive intracellular reactive oxygen species (ROS) production, which promoted the phosphorylation of mitogen-activated protein kinase (MAPK) pathway-related genes (P38, c-Jun N-terminal kinase, extracellular regulated protein kinases) and activated the downstream gene hypoxia-inducible factor (HIF1α). In conclusion, our study suggests that PS-MPs treatment causes apoptosis and necroptosis in ST cells via ROS/MAPK/HIF1α signaling pathway.
Collapse
Affiliation(s)
- Xu Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xinyu Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Kexin Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Shengchen Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Duqiang Gong
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, China
| |
Collapse
|
49
|
Echium amoenum L. Ethanol Extract Protects Retinal Ganglion Cell after Glutamate and Optic Nerve Crush Injury. DISEASE MARKERS 2022; 2022:3631532. [PMID: 36193499 PMCID: PMC9526585 DOI: 10.1155/2022/3631532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022]
Abstract
The development of low-cost and effective natural products for treating neuron degenerative diseases have proven to be safe and potentially effective. Echium amoenum L. (Boraginaceae) is an annual herb that grows wildly in Europe and western Asia. The aim of this study was to evaluate the neuroprotective properties of an ethanol extract of E. amoenum L. The effects of E. amoenum L. extract on oxidative stress were measured in the rat R28 retinal precursor cell line. Furthermore, the protective role of the extract on the glutamate-induced and optic nerve crush (ONC) injury-induced cell death were evaluated in vitro and in vivo, respectively. Our results showed that the ethanol extract of E. amoenum L. prevented the glutamate-induced decrease in cell viability and increase in cell death in R28 cells and suppressed the overproduction of ROS induced by glutamate. Moreover, the extract significantly inhibited microglial activation and optic nerve damage induced by ONC injury in mice. In addition, the mechanism was attributed to the ability of the extract to decrease NF-κB pathway activation and its downstream inflammatory cytokine production. In conclusion, E. amoenum L. ethanol extract had a potent neuroprotective effect against glutamate-induced and ONC-induced cell death. This is likely due to its antioxidant and anti-inflammatory properties.
Collapse
|
50
|
Zhang T, Dong Z, Liu F, Pan E, He N, Ma F, Wang G, Wang Y, Dong J. Avermectin induces carp neurotoxicity by mediating blood-brain barrier dysfunction, oxidative stress, inflammation, and apoptosis through PI3K/Akt and NF-κB pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:113961. [PMID: 35969982 DOI: 10.1016/j.ecoenv.2022.113961] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Avermectin, a "low toxicity insecticide", has been widely used in recent years, but its non-target toxicity, especially to aquatic organisms, has been neglected. In this study, we evaluated the neurotoxic effects of avermectin on carp by establishing a 96 h avermectin acute toxicity test, and its possible mechanism was discussed. The 96 h LC50 of avermectin in carp was found to be 24.04 μg/L. Therefore, 3.005 μg/L and 12.02 μg/L were used as the low-dose and high-dose groups, respectively, to investigate the neurotoxic effects of avermectin on carp. The results of high-performance liquid chromatography (HPLC) analysis showed that avermectin accumulated in the carp brain. Histopathological observation and immunohistochemical analysis (IHC) of TNF-α and Bax showed that avermectin exposure led to inflammatory cell infiltration and neuronal necrosis. The mRNA levels of tight junction genes and the IHC results of ZO-1 and Occludin showed that the structure of the blood-brain barrier (BBB) was destroyed. Biochemical analysis showed that avermectin induced the accumulation of MDA in the brain and decreased the activity of antioxidant enzymes CAT and SOD, leading to oxidative stress. In addition, avermectin induces brain inflammation by activating NF-κB pathway and releasing inflammatory factors IL-1β, IL-6, TNF-α and iNOS. TEM and TUNEL assays showed that exposure to avermectin induced apoptosis in brain. what is more, the expression of apoptosis-related genes and proteins suggested that avermectin-induced apoptosis may be associated with inhibition of the PI3K/Akt signaling pathway. This study also showed that avermectin-induced NF-κB signaling activation was partially dependent on its upstream PI3K/Akt signaling pathway. Therefore, this study concludes that avermectin can induce neurotoxicity in carp by disrupting the blood-brain barrier structure and generating oxidative stress, inflammation, and apoptosis and that NF-κB and PI3K/Akt signaling pathways are involved in this process.
Collapse
Affiliation(s)
- Tianmeng Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China; Department of Medicine Laboratory, Department of Cardiac Function Examination, The Second People's Hospital of Lianyungang City, Lianyungang Hospital Affiliated to Jiangsu University, The Second People's Hospital of Lianyungang Affiliated to Kangda College of Nanjing Medical University, Lianyungang, 222000, China
| | - Zhuhua Dong
- Deapartment of Economics and Related Studies, University of York, York, YO10 5DD, United Kingdom
| | - Feixue Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China
| | - Enzhuang Pan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China
| | - Nana He
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China
| | - Fenfen Ma
- Department of Medicine Laboratory, Department of Cardiac Function Examination, The Second People's Hospital of Lianyungang City, Lianyungang Hospital Affiliated to Jiangsu University, The Second People's Hospital of Lianyungang Affiliated to Kangda College of Nanjing Medical University, Lianyungang, 222000, China
| | - Guanglu Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yan Wang
- Department of Medicine Laboratory, Department of Cardiac Function Examination, The Second People's Hospital of Lianyungang City, Lianyungang Hospital Affiliated to Jiangsu University, The Second People's Hospital of Lianyungang Affiliated to Kangda College of Nanjing Medical University, Lianyungang, 222000, China.
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|