1
|
Bahojb Mahdavi SZ, Jebelli A, Aghbash PS, Baradaran B, Amini M, Oroojalian F, Pouladi N, Baghi HB, de la Guardia M, Mokhtarzadeh AA. A comprehensive overview on the crosstalk between microRNAs and viral pathogenesis and infection. Med Res Rev 2025; 45:349-425. [PMID: 39185567 PMCID: PMC11796338 DOI: 10.1002/med.22073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 04/11/2023] [Accepted: 08/04/2024] [Indexed: 08/27/2024]
Abstract
Infections caused by viruses as the smallest infectious agents, pose a major threat to global public health. Viral infections utilize different host mechanisms to facilitate their own propagation and pathogenesis. MicroRNAs (miRNAs), as small noncoding RNA molecules, play important regulatory roles in different diseases, including viral infections. They can promote or inhibit viral infection and have a pro-viral or antiviral role. Also, viral infections can modulate the expression of host miRNAs. Furthermore, viruses from different families evade the host immune response by producing their own miRNAs called viral miRNAs (v-miRNAs). Understanding the replication cycle of viruses and their relation with host miRNAs and v-miRNAs can help to find new treatments against viral infections. In this review, we aim to outline the structure, genome, and replication cycle of various viruses including hepatitis B, hepatitis C, influenza A virus, coronavirus, human immunodeficiency virus, human papillomavirus, herpes simplex virus, Epstein-Barr virus, Dengue virus, Zika virus, and Ebola virus. We also discuss the role of different host miRNAs and v-miRNAs and their role in the pathogenesis of these viral infections.
Collapse
Affiliation(s)
- Seyedeh Zahra Bahojb Mahdavi
- Department of Biology, Faculty of Basic SciencesAzarbaijan Shahid Madani UniversityTabrizIran
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Asiyeh Jebelli
- Department of Biological Science, Faculty of Basic ScienceHigher Education Institute of Rab‐RashidTabrizIran
- Tuberculosis and Lung Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | | | - Behzad Baradaran
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Mohammad Amini
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, School of MedicineNorth Khorasan University of Medical SciencesBojnurdIran
| | - Nasser Pouladi
- Department of Biology, Faculty of Basic SciencesAzarbaijan Shahid Madani UniversityTabrizIran
| | | | | | | |
Collapse
|
2
|
Zhang Z, Liu J, Yu L, Zeng R, Pan W. The hijacking of HBV by small extracellular vesicles inhibits M1 macrophages to facilitate immune evasion. Sci Rep 2024; 14:19917. [PMID: 39198597 PMCID: PMC11358331 DOI: 10.1038/s41598-024-70924-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024] Open
Abstract
Small extracellular vesicles (sEVs) have the ability to transfer genetic material between cells, but their role in mediating HBV infection and regulating M1 macrophages to promote immune evasion remains unclear. In this study, we utilized PMA + LPS + IFN-γ to induce THP-1 into M1 macrophages. We then extracted sEVs from HepG2.2.15 cell and treated the M1 macrophages with these sEVs. QPCR detection revealed the presence of HBV-DNA in the M1 macrophages. Additionally, RT-qPCR and WB analysis demonstrated a significantly decreased in the expression of TLR4, NLRP3, pro-caspase-1, caspase-1p20, IL-1β and IL-18 in the M1 macrophages (P < 0.05). Furthermore, RT-qPCR results displayed high expression levels of that miR-146a and FEN-1 in the sEVs derived from HepG2.2.15 cells (P < 0.01). RT -qPCR and WB analysis showed that these sEVs enhanced the expression of FEN-1 or miR-146a in the M1 macrophages through miR-146a or FEN-1 (P < 0.05), while simultaneously reducing the expression of TLR4, NLRP3, caspase-1p20, IL-1β and IL-18 in the M1 macrophages (P < 0.05). In summary, our findings indicate that sEVs loaded with HBV inhibit the inflammatory function of M1 macrophages and promote immune escape. Additionally, miR-146a and FEN-1 present in the sEVs play a crucial role in this process.
Collapse
Affiliation(s)
- Zili Zhang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China
- Xichong County People's Hospital, Nanchong, 637200, Sichuan, China
| | - Jiamin Liu
- The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, 621000, China
| | - Ling Yu
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China
| | - Rong Zeng
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China
| | - Wanlong Pan
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China.
| |
Collapse
|
3
|
Abdelhamed W, El-Kassas M. Hepatitis B virus in Egypt: the whole story. EGYPTIAN LIVER JOURNAL 2024; 14:56. [DOI: 10.1186/s43066-024-00362-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/03/2024] [Indexed: 04/03/2025] Open
Abstract
AbstractHepatitis B virus (HBV) infection is a significant global public health threat with variable geographical distribution. Chronic infection with HBV could be complicated by chronic hepatitis state, progression to liver cirrhosis, and the development of hepatocellular carcinoma (HCC). For years, the magnitude of HBV problem in Egypt was masked by the great prevalence of hepatitis C virus in the country. The exact epidemiological data regarding HBV in Egypt are defective. The prevalence rate of HBV in Egypt has declined after the universal immunization program introduced for infants in 1992. This review addresses the whole story of HBV in Egypt: the epidemiology, risk factors, vaccination programs, and treatment efforts.
Collapse
|
4
|
Yao J, Zhu Y, Zhang G, Zhou X, Shang H, Li L, Xu T. Action mechanisms and characteristics of miRNAs to regulate virus replication. Virology 2024; 590:109966. [PMID: 38100983 DOI: 10.1016/j.virol.2023.109966] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
MicroRNAs (miRNAs) have the potential to be explored as antiviral products. It is known that miRNAs have different kinds of target mRNAs and different target sites in mRNAs, and that the action-modes of miRNAs at different target sites may be different. But there is no evidence demonstrating the significance of the differences for the regulation of viruses by miRNAs, which might be crucial for the exploration of miRNA-based antiviral products. Here the experimental studies about the antiviral effects of miRNAs, with validated target mRNAs and target sites in the mRNAs, were systematically collected, based on which the mechanisms whereby miRNAs regulated virus replication were systematically reviewed. And miRNAs' down-regulation rates on target mRNAs and antiviral rates were compared among the miRNAs with different target sites, to analyze the characteristics of action-modes of miRNAs at different target sites during virus replication.
Collapse
Affiliation(s)
- Jia Yao
- Jiangxi University of Chinese Medicine, 1688 Mei Ling Avenue, Nanchang, 330004, PR China.
| | - Yating Zhu
- Jiangxi University of Chinese Medicine, 1688 Mei Ling Avenue, Nanchang, 330004, PR China.
| | - Genrong Zhang
- Jiangxi University of Chinese Medicine, 1688 Mei Ling Avenue, Nanchang, 330004, PR China.
| | - Xianfeng Zhou
- Jiangxi University of Chinese Medicine, 1688 Mei Ling Avenue, Nanchang, 330004, PR China.
| | - Hongcai Shang
- Jiangxi University of Chinese Medicine, 1688 Mei Ling Avenue, Nanchang, 330004, PR China; Shang Hongcai, Key Laboratory of Chinese Internal Medicine of MOE and Beijing University of Chinese Medicine, 11 Eastern Section of the North Third Ring Road, Chaoyang District, Beijing, 100029, PR China.
| | - Longxue Li
- Jiangxi University of Chinese Medicine, 1688 Mei Ling Avenue, Nanchang, 330004, PR China.
| | - Tielong Xu
- Jiangxi University of Chinese Medicine, 1688 Mei Ling Avenue, Nanchang, 330004, PR China.
| |
Collapse
|
5
|
Yao X, Xu K, Tao N, Cheng S, Chen H, Zhang D, Yang M, Tan M, Yu H, Chen P, Zhan Z, He S, Li R, Wang C, Wu D, Ren J. ZNF148 inhibits HBV replication by downregulating RXRα transcription. Virol J 2024; 21:35. [PMID: 38297280 PMCID: PMC10832224 DOI: 10.1186/s12985-024-02291-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/08/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Progressive hepatitis B virus (HBV) infection can result in cirrhosis, hepatocellular cancer, and chronic hepatitis. While antiviral drugs that are now on the market are efficient in controlling HBV infection, finding a functional cure is still quite difficult. Identifying host factors involved in regulating the HBV life cycle will contribute to the development of new antiviral strategies. Zinc finger proteins have a significant function in HBV replication, according to earlier studies. Zinc finger protein 148 (ZNF148), a zinc finger transcription factor, regulates the expression of various genes by specifically binding to GC-rich sequences within promoter regions. The function of ZNF148 in HBV replication was investigated in this study. METHODS HepG2-Na+/taurocholate cotransporting polypeptide (HepG2-NTCP) cells and Huh7 cells were used to evaluate the function of ZNF148 in vitro. Northern blotting and real-time PCR were used to quantify the amount of viral RNA. Southern blotting and real-time PCR were used to quantify the amount of viral DNA. Viral protein levels were elevated, according to the Western blot results. Dual-luciferase reporter assays were used to examine the transcriptional activity of viral promoters. ZNF148's impact on HBV in vivo was investigated using an established rcccDNA mouse model. RESULTS ZNF148 overexpression significantly decreased the levels of HBV RNAs and HBV core DNA in HBV-infected HepG2-NTCP cells and Huh7 cells expressing prcccDNA. Silencing ZNF148 exhibited the opposite effects in both cell lines. Furthermore, ZNF148 inhibited the activity of HBV ENII/Cp and the transcriptional activity of cccDNA. Mechanistic studies revealed that ZNF148 attenuated retinoid X receptor alpha (RXRα) expression by binding to the RXRα promoter sequence. RXRα binding site mutation or RXRα overexpression abolished the suppressive effect of ZNF148 on HBV replication. The inhibitory effect of ZNF148 was also observed in the rcccDNA mouse model. CONCLUSIONS ZNF148 inhibited HBV replication by downregulating RXRα transcription. Our findings reveal that ZNF148 may be a new target for anti-HBV strategies.
Collapse
Affiliation(s)
- Xinyan Yao
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chong Yi Building, 1 YiXueYuan Road, Yuzhong District, Chongqing, 400016, China
| | - Kexin Xu
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chong Yi Building, 1 YiXueYuan Road, Yuzhong District, Chongqing, 400016, China
| | - Nana Tao
- Department of Clinical Laboratory, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Shengtao Cheng
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chong Yi Building, 1 YiXueYuan Road, Yuzhong District, Chongqing, 400016, China
| | - Huajian Chen
- Department of Clinical Laboratory, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China
| | - Dapeng Zhang
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chong Yi Building, 1 YiXueYuan Road, Yuzhong District, Chongqing, 400016, China
| | - Minli Yang
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chong Yi Building, 1 YiXueYuan Road, Yuzhong District, Chongqing, 400016, China
| | - Ming Tan
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chong Yi Building, 1 YiXueYuan Road, Yuzhong District, Chongqing, 400016, China
| | - Haibo Yu
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chong Yi Building, 1 YiXueYuan Road, Yuzhong District, Chongqing, 400016, China
| | - Peng Chen
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chong Yi Building, 1 YiXueYuan Road, Yuzhong District, Chongqing, 400016, China
| | - Zongzhu Zhan
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chong Yi Building, 1 YiXueYuan Road, Yuzhong District, Chongqing, 400016, China
| | - Siyi He
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chong Yi Building, 1 YiXueYuan Road, Yuzhong District, Chongqing, 400016, China
| | - Ranran Li
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chong Yi Building, 1 YiXueYuan Road, Yuzhong District, Chongqing, 400016, China
| | - Chunduo Wang
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chong Yi Building, 1 YiXueYuan Road, Yuzhong District, Chongqing, 400016, China
| | - Daiqing Wu
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chong Yi Building, 1 YiXueYuan Road, Yuzhong District, Chongqing, 400016, China.
| | - Jihua Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chong Yi Building, 1 YiXueYuan Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
6
|
Micro-Players of Great Significance-Host microRNA Signature in Viral Infections in Humans and Animals. Int J Mol Sci 2022; 23:ijms231810536. [PMID: 36142450 PMCID: PMC9504570 DOI: 10.3390/ijms231810536] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022] Open
Abstract
Over time, more and more is becoming known about micro-players of great significance. This is particularly the case for microRNAs (miRNAs; miR), which have been found to participate in the regulation of many physiological and pathological processes in both humans and animals. One such process is viral infection in humans and animals, in which the host miRNAs—alone or in conjunction with the virus—interact on two levels: viruses may regulate the host’s miRNAs to evade its immune system, while the host miRNAs can play anti- or pro-viral roles. The purpose of this comprehensive review is to present the key miRNAs involved in viral infections in humans and animals. We summarize the data in the available literature, indicating that the signature miRNAs in human viral infections mainly include 12 miRNAs (i.e., miR-155, miR-223, miR-146a, miR-122, miR-125b, miR-132, miR-34a, miR -21, miR-16, miR-181 family, let-7 family, and miR-10a), while 10 miRNAs are commonly found in animals (i.e., miR-155, miR-223, miR-146a, miR-145, miR-21, miR-15a/miR-16 cluster, miR-181 family, let-7 family, and miR-122) in this context. Knowledge of which miRNAs are involved in different viral infections and the biological functions that they play can help in understanding the pathogenesis of viral diseases, facilitating the future development of therapeutic agents for both humans and animals.
Collapse
|
7
|
Birkhoff JC, Huylebroeck D, Conidi A. ZEB2, the Mowat-Wilson Syndrome Transcription Factor: Confirmations, Novel Functions, and Continuing Surprises. Genes (Basel) 2021; 12:1037. [PMID: 34356053 PMCID: PMC8304685 DOI: 10.3390/genes12071037] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/15/2022] Open
Abstract
After its publication in 1999 as a DNA-binding and SMAD-binding transcription factor (TF) that co-determines cell fate in amphibian embryos, ZEB2 was from 2003 studied by embryologists mainly by documenting the consequences of conditional, cell-type specific Zeb2 knockout (cKO) in mice. In between, it was further identified as causal gene causing Mowat-Wilson Syndrome (MOWS) and novel regulator of epithelial-mesenchymal transition (EMT). ZEB2's functions and action mechanisms in mouse embryos were first addressed in its main sites of expression, with focus on those that helped to explain neurodevelopmental and neural crest defects seen in MOWS patients. By doing so, ZEB2 was identified in the forebrain as the first TF that determined timing of neuro-/gliogenesis, and thereby also the extent of different layers of the cortex, in a cell non-autonomous fashion, i.e., by its cell-intrinsic control within neurons of neuron-to-progenitor paracrine signaling. Transcriptomics-based phenotyping of Zeb2 mutant mouse cells have identified large sets of intact-ZEB2 dependent genes, and the cKO approaches also moved to post-natal brain development and diverse other systems in adult mice, including hematopoiesis and various cell types of the immune system. These new studies start to highlight the important adult roles of ZEB2 in cell-cell communication, including after challenge, e.g., in the infarcted heart and fibrotic liver. Such studies may further evolve towards those documenting the roles of ZEB2 in cell-based repair of injured tissue and organs, downstream of actions of diverse growth factors, which recapitulate developmental signaling principles in the injured sites. Evident questions are about ZEB2's direct target genes, its various partners, and ZEB2 as a candidate modifier gene, e.g., in other (neuro)developmental disorders, but also the accurate transcriptional and epigenetic regulation of its mRNA expression sites and levels. Other questions start to address ZEB2's function as a niche-controlling regulatory TF of also other cell types, in part by its modulation of growth factor responses (e.g., TGFβ/BMP, Wnt, Notch). Furthermore, growing numbers of mapped missense as well as protein non-coding mutations in MOWS patients are becoming available and inspire the design of new animal model and pluripotent stem cell-based systems. This review attempts to summarize in detail, albeit without discussing ZEB2's role in cancer, hematopoiesis, and its emerging roles in the immune system, how intense ZEB2 research has arrived at this exciting intersection.
Collapse
Affiliation(s)
- Judith C. Birkhoff
- Department of Cell Biology, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; (J.C.B.); (D.H.)
| | - Danny Huylebroeck
- Department of Cell Biology, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; (J.C.B.); (D.H.)
- Department of Development and Regeneration, Unit Stem Cell and Developmental Biology, Biomedical Sciences Group, KU Leuven, 3000 Leuven, Belgium
| | - Andrea Conidi
- Department of Cell Biology, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; (J.C.B.); (D.H.)
| |
Collapse
|
8
|
Singh P, Kairuz D, Arbuthnot P, Bloom K. Silencing hepatitis B virus covalently closed circular DNA: The potential of an epigenetic therapy approach. World J Gastroenterol 2021; 27:3182-3207. [PMID: 34163105 PMCID: PMC8218364 DOI: 10.3748/wjg.v27.i23.3182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/23/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023] Open
Abstract
Global prophylactic vaccination programmes have helped to curb new hepatitis B virus (HBV) infections. However, it is estimated that nearly 300 million people are chronically infected and have a high risk of developing hepatocellular carcinoma. As such, HBV remains a serious health priority and the development of novel curative therapeutics is urgently needed. Chronic HBV infection has been attributed to the persistence of the covalently closed circular DNA (cccDNA) which establishes itself as a minichromosome in the nucleus of hepatocytes. As the viral transcription intermediate, the cccDNA is responsible for producing new virions and perpetuating infection. HBV is dependent on various host factors for cccDNA formation and the minichromosome is amenable to epigenetic modifications. Two HBV proteins, X (HBx) and core (HBc) promote viral replication by modulating the cccDNA epigenome and regulating host cell responses. This includes viral and host gene expression, chromatin remodeling, DNA methylation, the antiviral immune response, apoptosis, and ubiquitination. Elimination of the cccDNA minichromosome would result in a sterilizing cure; however, this may be difficult to achieve. Epigenetic therapies could permanently silence the cccDNA minichromosome and promote a functional cure. This review explores the cccDNA epigenome, how host and viral factors influence transcription, and the recent epigenetic therapies and epigenome engineering approaches that have been described.
Collapse
Affiliation(s)
- Prashika Singh
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg 2050, Gauteng, South Africa
| | - Dylan Kairuz
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg 2050, Gauteng, South Africa
| | - Patrick Arbuthnot
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg 2050, Gauteng, South Africa
| | - Kristie Bloom
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg 2050, Gauteng, South Africa
| |
Collapse
|
9
|
Jiang Y, Han Q, Zhao H, Zhang J. The Mechanisms of HBV-Induced Hepatocellular Carcinoma. J Hepatocell Carcinoma 2021; 8:435-450. [PMID: 34046368 PMCID: PMC8147889 DOI: 10.2147/jhc.s307962] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy, and the hepatitis B virus (HBV) is its major pathogenic factor. Over the past decades, it has been confirmed that HBV infection could promote disease progression through a variety of mechanisms, ultimately leading to the malignant transformation of liver cells. Many factors have been identified in the pathogenesis of HBV-associated HCC (HBV-HCC), including HBV gene integration, genomic instability caused by mutation, and activation of cancer-promoting signaling pathways. As research in the progression of HBV-HCC progresses, the role of many new mechanisms, such as epigenetics, exosomes, autophagy, metabolic regulation, and immune suppression, is also being continuously explored. The occurrence of HBV-HCC is a complex process caused by interactions across multiple genes and multiple steps, where the synergistic effects of various cancer-promoting mechanisms accelerate the process of disease evolution from inflammation to tumorigenesis. In this review, we aim to provide a brief overview of the mechanisms involved in the occurrence and development of HBV-HCC, which may contribute to a better understanding of the role of HBV in the occurrence and development of HCC.
Collapse
Affiliation(s)
- Yu Jiang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong Province, People's Republic of China
| | - Qiuju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong Province, People's Republic of China
| | - Huajun Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong Province, People's Republic of China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong Province, People's Republic of China
| |
Collapse
|
10
|
Yang Z, Zhuo Q, Qin W, Wang J, Wang L, Tien P. MicroRNAs miR-18a and miR-452 regulate the replication of enterovirus 71 by targeting the gene encoding VP3. Virus Genes 2021; 57:318-326. [PMID: 34002325 DOI: 10.1007/s11262-021-01842-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 05/05/2021] [Indexed: 11/29/2022]
Abstract
MicroRNAs (miRNAs) are crucial in the process of host-pathogen interaction. In this study, we established a screening system for miRNAs of target genes to detect the effect of miRNAs on Enterovirus 71 (EV71) replication in rhabdomyosarcoma (RD) cells. A 3'-untranslated region (UTR) dual-luciferase assay was performed to confirm putative miRNA targets in EV71 genome. Firstly, 13 fragments of EV71 genome were inserted into the vector pMIR, and luciferase activities were analyzed to identify the putative miRNAs of target genes. The expression of the reporter protein was significantly downregulated in cells transfected with the vector containing gene VP3. Then we screened for miRNAs that might target to VP3 through online analysis software. In addition, Western blot, real-time PCR, virus titration, and morphological changes were considered to examine the effects of miRNAs on virus replication. The results suggested that miR-18a and miR-452 repress the reproduction of EV71 virus by binding to VP3. Moreover, EV71 infection also affected the expression of endogenous miR-18a and miR-452. In addition, no significant cytotoxic effects were observed. The results from this study suggest that the intracellular miRNAs may play vital roles in the host-virus interaction.
Collapse
Affiliation(s)
- Zhuo Yang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China.
| | - Qin Zhuo
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Wen Qin
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Jingbo Wang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Liyuan Wang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Po Tien
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
11
|
Mortazavi-Jahromi SS, Aslani M, Mirshafiey A. A comprehensive review on miR-146a molecular mechanisms in a wide spectrum of immune and non-immune inflammatory diseases. Immunol Lett 2020; 227:8-27. [PMID: 32810557 DOI: 10.1016/j.imlet.2020.07.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/10/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are single-strand endogenous and non-coding RNA molecules with a length of about 22 nucleotides, which regulate genes expression, through modulating the translation and stability of their target mRNAs. miR-146a is one of the most studied miRNAs, due to its central role in immune system homeostasis and control of the innate and acquired immune responses. Accordingly, abnormal expression or function of miR-146a results in the incidence and progression of immune and non-immune inflammatory diseases. Its deregulated expression pattern and inefficient function have been reported in a wide spectrum of these illnesses. Based on the existing evidence, this miRNA qualifies as an ideal biomarker for diagnosis, prognosis, and activity evaluation of immune and non-immune inflammatory disorders. Moreover, much attention has recently been paid to therapeutic potential of miR-146a and several researchers have assessed the effects of different drugs on expression and function of this miRNA at diverse experimental, animal, besides human levels, reporting motivating results in the treatment of the diseases. Here, in this comprehensive review, we provide an overview of miR-146a role in the pathogenesis and progression of several immune and non-immune inflammatory diseases such as Rheumatoid arthritis, Systemic lupus erythematosus, Inflammatory bowel disease, Multiple sclerosis, Psoriasis, Graves' disease, Atherosclerosis, Hepatitis, Chronic obstructive pulmonary disease, etc., discuss about its eligibility for being a desirable biomarker for these disorders, and also highlight its therapeutic potential. Understanding these mechanisms underlies the selecting and designing the proper therapeutic targets and medications, which eventually facilitate the treatment process.
Collapse
Affiliation(s)
| | - Mona Aslani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Mirshafiey
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Ji M, Mei X, Jing X, Xu X, Chen X, Pan W. The cooperative complex of Argonaute-2 and microRNA-146a regulates hepatitis B virus replication through flap endonuclease 1. Life Sci 2020; 257:118089. [PMID: 32659369 DOI: 10.1016/j.lfs.2020.118089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/18/2020] [Accepted: 07/08/2020] [Indexed: 02/08/2023]
Abstract
AIM Hepatitis B virus (HBV) is a major cause of a variety of liver diseases. Existing antiviral drugs cannot eradicate HBV from our body, and the main reason is unclear on the molecular mechanism of HBV replication. Flap endonuclease 1 (FEN1) can repair relaxed circular DNA (HBV rcDNA) to covalently closed circular DNA (HBV cccDNA) that promotes HBV DNA replication, while its specific regulatory detail remains unclear. In addition, miR-146a is close related to regulation in HBV replication. This study aims to explore whether miR-146a regulates HBV cccDNA formation through FEN1. MAIN METHODS We investigated the expression of miR-146a, FEN1 and HBV copies in HBV stable replication cell line HepG2.2.15 and its parent cell line HepG2 transfected miR-146a and FEN1 plasmid by qRT-PCR and western blot, to identify the cooperation of Argonaute-2 (Ago2) and miR-146a by Ago2 siRNA and Ago2 RNA Binding Protein Immunoprecipitation (RIP). KEY FINDINGS Compared with the control group, we found that the expression of miR-146a was significantly up-regulated in HepG2.2.15, and the expression of FEN1 and HBV copies were also significantly up-regulated. On contrary, the expression of target gene of miR-146a, interleukin-1 receptor-associated kinase 1 (IRAK1) and tumor necrosis factor receptor-associated factor-6 (TRAF6), was significantly decreased in HepG2.2.15. With the use of Ago2 siRNA and then Ago2 RIP, we found that Ago2 performed as a carrier for miR-146a to promote HBV replication. SIGNIFICANCE The results suggest a novel miR-146a → FEN1 → HBV DNA regulatory axis in HBV replication life. Ago2 cooperates with miR-146a to regulate the transcription and expression level of FEN1 protein through the downstream target gene IRAK1/TRAF6, and to promote HBV replication.
Collapse
Affiliation(s)
- Min Ji
- Experimental Teaching Center for Pathogen Biology and Immunology & Department of Microbiology and Immunology, North Sichuan Medical College, Nanchong 637000, China; Department of Infectious Diseases, Affiliated Hospital of North Sichuan Medical College, Nanchong 637100, China; People's Hospital of Jianyang, Chengdu, Sichuan 641400, China
| | - Xiaoping Mei
- Department of Infectious Diseases, Affiliated Hospital of North Sichuan Medical College, Nanchong 637100, China
| | - Xueming Jing
- Department of Infectious Diseases, Affiliated Hospital of North Sichuan Medical College, Nanchong 637100, China
| | - Xu Xu
- Experimental Teaching Center for Pathogen Biology and Immunology & Department of Microbiology and Immunology, North Sichuan Medical College, Nanchong 637000, China
| | - Xing Chen
- Department of Infectious Diseases, Affiliated Hospital of North Sichuan Medical College, Nanchong 637100, China
| | - Wanlong Pan
- Experimental Teaching Center for Pathogen Biology and Immunology & Department of Microbiology and Immunology, North Sichuan Medical College, Nanchong 637000, China.
| |
Collapse
|
13
|
Minor MM, Hollinger FB, McNees AL, Jung SY, Jain A, Hyser JM, Bissig KD, Slagle BL. Hepatitis B Virus HBx Protein Mediates the Degradation of Host Restriction Factors through the Cullin 4 DDB1 E3 Ubiquitin Ligase Complex. Cells 2020; 9:E834. [PMID: 32235678 PMCID: PMC7226812 DOI: 10.3390/cells9040834] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023] Open
Abstract
The hepatitis B virus (HBV) regulatory HBx protein is required for infection, and its binding to cellular damaged DNA binding protein 1 (DDB1) is critical for this function. DDB1 is an adaptor protein for the cullin 4A Really Interesting New Gene (RING) E3 ubiquitin ligase (CRL4) complex and functions by binding cellular DDB1 cullin associated factor (DCAF) receptor proteins that recruit substrates for ubiquitination and degradation. We compared the proteins found in the CRL4 complex immunoprecipitated from uninfected versus HBV-infected hepatocytes from human liver chimeric mice for insight into mechanisms by which HBV and the cell interact within the CRL4 complex. Consistent with its role as a viral DCAF, HBx was found in the HBV CRL4 complexes. In tissue culture transfection experiments, we showed that HBx expression led to decreased levels of known restriction factor structural maintenance of chromosomes protein 6 (SMC6) and putative restriction factors stromal interaction molecule 1 (STIM1, zinc finger E-box binding homeobox 2 (ZEB2), and proteasome activator subunit 4 (PSME4). Moreover, silencing of these proteins led to increased HBV replication in the HepG2-sodium taurocholate cotransporting polypeptide (NTCP) infection model. We also identified cellular DCAF receptors in CRL4 complexes from humanized mice. Increasing amounts of HBx did not reveal competitive DCAF binding to cullin4 (CUL4)-DDB1 in plasmid-transfected cells. Our results suggest a model in which HBx benefits virus replication by directly or indirectly degrading multiple cellular restriction factors.
Collapse
Affiliation(s)
- Marissa M. Minor
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (M.M.M.); (F.B.H.); (A.L.M.); (J.M.H.)
| | - F. Blaine Hollinger
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (M.M.M.); (F.B.H.); (A.L.M.); (J.M.H.)
| | - Adrienne L. McNees
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (M.M.M.); (F.B.H.); (A.L.M.); (J.M.H.)
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Sung Yun Jung
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA;
- Department of Biochemistry, Baylor College of Medicine, Houston, TX 77030, USA
| | - Antrix Jain
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Joseph M. Hyser
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (M.M.M.); (F.B.H.); (A.L.M.); (J.M.H.)
| | - Karl-Dimiter Bissig
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Betty L. Slagle
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (M.M.M.); (F.B.H.); (A.L.M.); (J.M.H.)
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA;
| |
Collapse
|
14
|
Hu S, Li Z, Lan Y, Guan J, Zhao K, Chu D, Fan G, Guo Y, Gao F, He W. MiR-10a-5p-Mediated Syndecan 1 Suppression Restricts Porcine Hemagglutinating Encephalomyelitis Virus Replication. Front Microbiol 2020; 11:105. [PMID: 32153518 PMCID: PMC7044266 DOI: 10.3389/fmicb.2020.00105] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/17/2020] [Indexed: 01/23/2023] Open
Abstract
Porcine hemagglutinating encephalomyelitis virus (PHEV) is a single-stranded RNA coronavirus that causes nervous dysfunction in the infected hosts and leads to widespread alterations in the host transcriptome by modulating specific microRNA (miRNA) levels. MiRNAs contribute to RNA virus pathogenesis by promoting antiviral immune response, enhancing viral replication, or altering miRNA-mediated host gene regulation. Thus, exploration of the virus-miRNA interactions occurring in PHEV-infected host may lead to the identification of novel mechanisms combating the virus life cycle or pathogenesis. Here, we discovered that the expression of miR-10a-5p was constitutively up-regulated by PHEV in both the N2a cells in vitro and mice brain in vivo. Treatment with miR-10a-5p mimics allowed miR-10a-5p enrichment and resulted in a significant restriction in PHEV replication, suggesting widespread negative regulation of the RNA virus infection by miR-10a-5p. The outcomes were also evidenced by miR-10a-5p inhibitor over-expression. Luciferase reporter, quantitative real-time PCR (qRT-PCR), and western blotting analysis further showed that Syndecan 1 (SDC1), a cell surface proteoglycan associated with host defense mechanisms, acts as a target gene of miR-10a-5p during PHEV infection. Naturally, siRNA-mediated knockdown of SDC1 leads to a reduction in viral replication, implying that SDC1 expression is likely a favorable condition for viral replication. Together, the findings demonstrated that the abundant miR-10a-5p leads to downstream suppression of SDC1, and it functions as an antiviral mechanism in the PHEV-induced disease, providing a potential strategy for the prevention and treatment of PHEV infection in the future work.
Collapse
Affiliation(s)
- Shiyu Hu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zi Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yungang Lan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jiyu Guan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Kui Zhao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Dianfeng Chu
- State Key Laboratory of Genetically Engineered Veterinary Vaccines, Yebio Bioengineering Co., Ltd. of Qingdao, Qingdao, China
| | - Gencheng Fan
- State Key Laboratory of Genetically Engineered Veterinary Vaccines, Yebio Bioengineering Co., Ltd. of Qingdao, Qingdao, China
| | - Yuguang Guo
- State Key Laboratory of Genetically Engineered Veterinary Vaccines, Yebio Bioengineering Co., Ltd. of Qingdao, Qingdao, China
| | - Feng Gao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wenqi He
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
15
|
Zhang X, Guo Y, Xu X, Tang T, Sun L, Wang H, Zhou W, Fang L, Li Q, Xie P. miR-146a promotes Borna disease virus 1 replication through IRAK1/TRAF6/NF-κB signaling pathway. Virus Res 2019; 271:197671. [PMID: 31330207 DOI: 10.1016/j.virusres.2019.197671] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/19/2019] [Accepted: 07/17/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND/AIMS Borna disease virus 1 (BoDV-1) is a negative single-stranded RNA virus that is highly neurotropic. BoDV-1 infection can damage the central nervous system and cause inflammation. To survive in host cells, BoDV-1 must evade the host innate immune response. A previous study showed that miR-146a expression increased in neonatal rats infected with BoDV-1. miR-146a is a microRNA suggested to negatively regulate innate immune and inflammatory responses and antiviral pathways. Many groups have reported that its overexpression facilitates viral replication. However, it is unclear whether miR-146a is involved in escape from the host immune response during BoDV-1 infection. METHODS In this study, BoDV-1 was used to infect neonatal rats within 24 h of birth intracranially, as well as to infect human microglial cells (HMC3). miR-146a expression was analyzed by RT-qPCR. The TargetScanHuman database was used to find the target genes of miR-146a. A search of the binding sites of miR-146a and its target gene's 3'-untranslated region (3'UTR) was also performed using RNAhybrid software. The binding sites of miR-146a and the target gene's 3'UTR were detected by dual luciferase reporter assays. Overexpression and suppression studies of miR-146a were performed to determine its effect on BoDV-1 replication. The relative protein expression of members of the IRAK1/TRAF6/NF-κB signaling pathway was also evaluated by western blotting in HMC3. RESULTS After BoDV-1 infection of neurons in vivo and of HMC3 cells, miR-146a expression was significantly upregulated. miR-146a overexpression in HMC3 cells promoted viral replication, while its inhibition inhibited it. Through the TargetScanHuman database, we identified the target genes of anti-inflammatory miR-146a: IRAK1 and TRAF6. We also found that BoDV-1 could inhibit IRAK1 and TRAF6 expression in HMC3 cells. Moreover, we showed that the inhibition of IRAK1 and TRAF6 also led to decreases in the expression of P65 and phosphorylated P65 in the downstream NF-κB pathway. Subsequently, we confirmed the interaction of miR-146a with IRAK1 and TRAF6 by luciferase assay. CONCLUSION Our results suggest that miR-146a inhibits the IRAK1/TRAF6/NF-κB signaling pathway to facilitate BoDV-1 survival in host cells.
Collapse
Affiliation(s)
- Xiong Zhang
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
| | - Yujie Guo
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
| | - Xiaoyan Xu
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
| | - Tian Tang
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
| | - Lin Sun
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China; Department of Pain, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haiyang Wang
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
| | - Wei Zhou
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
| | - Liang Fang
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Qi Li
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China; Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
16
|
Khanizadeh S, Hasanvand B, Nikoo HR, Anbari K, Adhikary H, Shirkhani S, Lashgarian HE. Association between miRNA-146a rs2910164 (G/C) polymorphism with the susceptibility to chronic HBV infection and spontaneous viral clearance in an Iranian population. J Med Virol 2019; 91:1063-1068. [PMID: 30624803 DOI: 10.1002/jmv.25394] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/08/2018] [Accepted: 12/14/2018] [Indexed: 12/20/2022]
Abstract
Hepatitis B virus (HBV) infection is one of the clinical dilemmas in chronic liver diseases. MicroRNAs (miRNAs) are small noncoding RNA molecules that play an important role in the pathogenesis of liver diseases and single nucleotide polymorphisms (SNPs) in miRNA genes affect the clinical course of HBV infection. Previous studies have shown that miRNA-146a rs2910164 polymorphism can be associated with the pathogenesis of liver diseases such as hepatocellular carcinoma. The present study investigated the association between miRNA-146a rs2910164 polymorphism and susceptibility to HBV infection in an Iranian population. The study comprised 266 patients with chronic HBV infection, 172 patients with spontaneous viral clearance (SVC) after acute HBV infection, and 266 healthy control adjusted for sex and age. The genotyping of the miRNA-146a rs2910164 polymorphism was performed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Our data revealed that GG genotype and G allele of miRNA-146a rs2910164 SNP is dominated (P < 0.001) in patients with chronic HBV infection (Odds ratio [OR] = 3.92; 95% confidence interval [CI] = 2.1-7.32). miRNA-146a rs2910164 polymorphism showed a statistically significant association (P < 0.001) between CC genotype and allele C with SVC (OR = 2.92; 95% CI = 1.56-546). Our findings suggest miRNA-146a SNP (C/G) in our population may be associated with the susceptibility to HBV infection and CC genotype is associated with SVC. Also, the GG genotype and G allele at miRNA-146a rs2910164 is associated with chronic HBV infection in our population.
Collapse
Affiliation(s)
- Sayyad Khanizadeh
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.,Department of Virology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Banafsheh Hasanvand
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hadi Razavi Nikoo
- Infectious Disease Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Khatereh Anbari
- School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hemanta Adhikary
- Laboratory Dr Kyle K Biggar, Nesbitt Biology Building, Carleton University, Ottawa, Ontario, Canada
| | - Somayeh Shirkhani
- Department of Virology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hamed Esmaeili Lashgarian
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.,Department of Biotechnology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|