1
|
Wu Q, Yu H, Sun H, Lv J, Zhuang J, Cai L, Jiang L, Chen Y, Tao Y, Bai K, Yang H, Yang X, Lu Q. SRSF1-mediated alternative splicing regulates bladder cancer progression and cisplatin sensitivity through HIF1A/BNIP3/mitophagy axis. J Transl Med 2025; 23:571. [PMID: 40405208 PMCID: PMC12096585 DOI: 10.1186/s12967-025-06547-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 04/29/2025] [Indexed: 05/24/2025] Open
Abstract
BACKGROUND Alternative splicing (AS) is consistently linked to tumor progression. SRSF1, the first identified proto-oncogene in the serine/arginine-rich splicing factor (SRSF) protein family, plays a crucial role. However, the specific functions and potential mechanisms of SRSF1 in advancing bladder cancer (BCa) progression and influencing chemosensitivity remain largely unexplored. METHODS The expression of SRSF1 in BCa tissues and cell lines was investigated using quantitative real-time PCR (RT-qPCR) and western blotting. Survival analysis was employed to examine the association between SRSF1 expression and prognosis of BCa. The functions of SRSF1 were evaluated through proliferation assays, migration assays, IC50 determination assays, and tumorigenesis assays in nude mice. Subsequent RNA sequencing validated the relationship between SRSF1 alternative splicing and the mitophagy pathway. Mitochondrial membrane potential (MMP) was assessed using JC-1 staining. Mitophagy and autophagic flux were quantified using transmission electron microscopy and fluorescence imaging. RNA immunoprecipitation, CUT & RUN assays, and luciferase reporter assays were performed to validate the SRSF1/HIF1A/BNIP3 axis. RESULTS High expression of SRSF1 in BCa was significantly associated with poor prognosis. SRSF1 promoted the progression of BCa cells and conferred resistance to cisplatin both in vitro and in vivo. Mechanistically, SRSF1 interacted with pre-HIF1A via the RRM1/RRM2 domain, thereby enhancing the production of the transcription factor HIF1A through the alternative splicing pathway. This interaction subsequently activated the HIF1A/BNIP3 axis, which promoted mitophagy in BCa. Ultimately, this led to further progression of bladder cancer and a decrease in cisplatin sensitivity. CONCLUSIONS SRSF1 indicated poor prognosis and promoted the progression and cisplatin resistance of BCa cells through the HIF1A/BNIP3/mitophagy axis. It holds significant potential as a novel biomarker for the diagnosis and treatment of BCa, particularly in chemotherapy.
Collapse
Affiliation(s)
- Qikai Wu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Laboratory of Urology and Andrology, Jiangsu Clinical Medicine Research Institution, Nanjing, 210029, China
| | - Hao Yu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Laboratory of Urology and Andrology, Jiangsu Clinical Medicine Research Institution, Nanjing, 210029, China
| | - Huanyou Sun
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Laboratory of Urology and Andrology, Jiangsu Clinical Medicine Research Institution, Nanjing, 210029, China
| | - Jiancheng Lv
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Juntao Zhuang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Laboratory of Urology and Andrology, Jiangsu Clinical Medicine Research Institution, Nanjing, 210029, China
| | - Lingkai Cai
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Laboratory of Urology and Andrology, Jiangsu Clinical Medicine Research Institution, Nanjing, 210029, China
| | - Lingjing Jiang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Laboratory of Urology and Andrology, Jiangsu Clinical Medicine Research Institution, Nanjing, 210029, China
| | - Yuhan Chen
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Laboratory of Urology and Andrology, Jiangsu Clinical Medicine Research Institution, Nanjing, 210029, China
| | - Yiran Tao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Laboratory of Urology and Andrology, Jiangsu Clinical Medicine Research Institution, Nanjing, 210029, China
| | - Kexin Bai
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Laboratory of Urology and Andrology, Jiangsu Clinical Medicine Research Institution, Nanjing, 210029, China
| | - Haiwei Yang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Laboratory of Urology and Andrology, Jiangsu Clinical Medicine Research Institution, Nanjing, 210029, China.
| | - Xiao Yang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Qiang Lu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
2
|
Zhu Y, Cao M, Tang Y, Liu Y, Wang H, Qi J, Huang C, Yan C, Liu X, Jiang S, Luo Y, Wang S, Zhou B, Xu H, Lu YY, Wang L. Inhibition of PINK1 senses ROS signaling to facilitate neuroblastoma cell pyroptosis. Autophagy 2025:1-20. [PMID: 40160153 DOI: 10.1080/15548627.2025.2487037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/24/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025] Open
Abstract
Mitochondria serve as the primary source of intracellular reactive oxygen species (ROS), which play a critical role in orchestrating cell death pathways such as pyroptosis in various types of cancers. PINK1-mediated mitophagy effectively removes damaged mitochondria and reduces detrimental ROS levels, thereby promoting cell survival. However, the regulation of pyroptosis by PINK1 and ROS in neuroblastoma remains unclear. In this study, we demonstrate that inhibition or deficiency of PINK1 sensitizes ROS signaling and promotes pyroptosis in neuroblastoma cells via the BAX-caspase-GSDME signaling pathway. Specifically, inhibition of PINK1 by AC220 or knockout of PINK1 impairs mitophagy and enhances ROS production, leading to oxidation and oligomerization of TOMM20, followed by mitochondrial recruitment and activation of BAX. Activated BAX facilitates the release of CYCS (cytochrome c, somatic) from the mitochondria into the cytosol, activating CASP3 (caspase 3). Subsequently, activated CASP3 cleaves and activates GSDME, inducing pyroptosis. Furthermore, inhibition or deficiency of PINK1 potentiates the anti-tumor effects of the clinical ROS-inducing drug ethacrynic acid (EA) to inhibit neuroblastoma progression in vivo. Therefore, our study provides a promising intervention strategy for neuroblastoma through the induction of pyroptosis.Abbreviation: AC220, quizartinib; ANOVA, analysis of variance; ANXA5, annexin A5; BAX, BCL2 associated X, apoptosis regulator; BAK1, BCL2 antagonist/killer 1; CCCP, carbonyl cyanide m-chlorophenyl hydrazone; COX4/COX IV, cytochrome c oxidase subunit 4; CS, citrate synthase; CSC, cancer stem cell; CYCS, cytochrome c, somatic; DTT, dithiothreitol; DNA, deoxyribonucleic acid; EA, ethacrynic acid; Fer-1, ferroptosis inhibitor ferrostatin-1; FLT3, fms related tyrosine kinase 3; GSDMD, gasdermin D; GSDME, gasdermin E; kDa, kilodalton; LDH, lactate dehydrogenase; MFN1, mitofusin 1; MFN2, mitofusin 2; mito, mitochondria; mito-ROS, mitochondrial ROS; mtKeima, mitochondria-targeted monomeric keima-red; ml, microliter; MT-CO2, mitochondrially encoded cytochrome c oxidase II; NAC, antioxidant N-acetyl-L-cysteine; Nec-1, necroptosis inhibitor necrostatin-1; OMA1, OMA1 zinc metallopeptidase; OMM, outer mitochondrial membrane; PARP, poly(ADP-ribose) polymerase; PBS, phosphate-buffered saline; PI, propidium iodide; PINK1, PTEN induced kinase 1; PRKN/Parkin, parkin RBR E3 ubiquitin protein ligase; Q-VD, Q-VD-OPH; ROS, reactive oxygen species; sg, single guide; sh, short hairpin; STS, staurosporine; TOMM20, translocase of outer mitochondrial membrane 20; TIMM23, translocase of inner mitochondrial membrane 23; μm, micrometer; μM, micromolar.
Collapse
Affiliation(s)
- Yuyuan Zhu
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, Hunan, China
- Shenzhen Research Institute, Hunan University, Shenzhen, Guangdong, China
| | - Min Cao
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, Hunan, China
- Shenzhen Research Institute, Hunan University, Shenzhen, Guangdong, China
| | - Yancheng Tang
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, Hunan, China
- Shenzhen Research Institute, Hunan University, Shenzhen, Guangdong, China
| | - Yifan Liu
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, Hunan, China
| | - Haiji Wang
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, Hunan, China
| | - Jiaqi Qi
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, Hunan, China
| | - Cainian Huang
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, Hunan, China
| | - Chenghao Yan
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, Hunan, China
- Shenzhen Research Institute, Hunan University, Shenzhen, Guangdong, China
| | - Xu Liu
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, Hunan, China
- Shenzhen Research Institute, Hunan University, Shenzhen, Guangdong, China
| | - Sijia Jiang
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, Hunan, China
| | - Yufei Luo
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, Hunan, China
- Shenzhen Research Institute, Hunan University, Shenzhen, Guangdong, China
| | - Shaogui Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Bo Zhou
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, Hunan, China
| | - Haodong Xu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ying-Ying Lu
- Department of Medical Research, Seventh Affiliated Hospital, Sun Yatsen University, Shenzhen, Guangdong, China
| | - Liming Wang
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha, Hunan, China
- Shenzhen Research Institute, Hunan University, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Peng C, Wang Y, Guo Y, Li J, Liu F, Fu Y, Yu Y, Zhang C, Fu J, Han F. A literature review on signaling pathways of cervical cancer cell death-apoptosis induced by Traditional Chinese Medicine. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118491. [PMID: 38936644 DOI: 10.1016/j.jep.2024.118491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/16/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cervical cancer (CC) is a potentially lethal disorder that can have serious consequences for a woman's health. Because early symptoms are typically only present in the middle to late stages of the disease, clinical diagnosis and treatment can be challenging. Traditional Chinese medicine (TCM) has been shown to have unique benefits in terms of alleviating cancer clinical symptoms, lowering the risk of recurrence after surgery, and reducing toxic side effects and medication resistance after radiation therapy. It has also been shown to improve the quality of life for patients. Because of its improved anti-tumor effectiveness and biosafety, it could be considered an alternative therapy option. This study examines how TCM causes apoptosis in CC cells via signal transduction, including the active components and medicinal tonics. It also intends to provide a reliable clinical basis and protocol selection for the TCM therapy of CC. METHODS The following search terms were employed in PubMed, Web of Science, Embase, CNKI, Wanfang, VIP, SinoMed, and other scientific databases to retrieve pertinent literature on "cervical cancer," "apoptosis," "signaling pathway," "traditional Chinese medicine," "herbal monomers," "herbal components," "herbal extracts," and "herbal formulas." RESULTS It has been demonstrated that herbal medicines can induce apoptosis in cells of the cervix, a type of cancer, by influencing the signaling pathways involved. CONCLUSION A comprehensive literature search was conducted, and 148 papers from the period between January 2017 and December 2023 were identified as eligible for inclusion. After a meticulous process of screening, elimination and summary, generalization, and analysis, it was found that TCM can regulate multiple intracellular signaling pathways and related molecular targets, such as STAT3, PI3K/AKT, Wnt/β-catenin, MAPK, NF-κB, p53, HIF-1α, Fas/FasL and so forth. This regulatory capacity was observed to induce apoptosis in cervical cancer cells. The study of the mechanism of TCM against cervical cancer and the screening of new drug targets is of great significance for future research in this field. The results of this study will provide ideas and references for the future development of Chinese medicine in the diagnosis and treatment of cervical cancer.
Collapse
Affiliation(s)
- Cheng Peng
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Yu Wang
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Ying Guo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Jia Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Fangyuan Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Yang Fu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Yang Yu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Chengxin Zhang
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Jiangmei Fu
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Fengjuan Han
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
4
|
Deepak K, Roy PK, Das CK, Mukherjee B, Mandal M. Mitophagy at the crossroads of cancer development: Exploring the role of mitophagy in tumor progression and therapy resistance. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119752. [PMID: 38776987 DOI: 10.1016/j.bbamcr.2024.119752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/27/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Preserving a functional mitochondrial network is crucial for cellular well-being, considering the pivotal role of mitochondria in ensuring cellular survival, especially under stressful conditions. Mitophagy, the selective removal of damaged mitochondria through autophagy, plays a pivotal role in preserving cellular homeostasis by preventing the production of harmful reactive oxygen species from dysfunctional mitochondria. While the involvement of mitophagy in neurodegenerative diseases has been thoroughly investigated, it is becoming increasingly evident that mitophagy plays a significant role in cancer biology. Perturbations in mitophagy pathways lead to suboptimal mitochondrial quality control, catalyzing various aspects of carcinogenesis, including establishing metabolic plasticity, stemness, metabolic reconfiguration of cancer-associated fibroblasts, and immunomodulation. While mitophagy performs a delicate balancing act at the intersection of cell survival and cell death, mounting evidence indicates that, particularly in the context of stress responses induced by cancer therapy, it predominantly promotes cell survival. Here, we showcase an overview of the current understanding of the role of mitophagy in cancer biology and its potential as a target for cancer therapy. Gaining a more comprehensive insight into the interaction between cancer therapy and mitophagy has the potential to reveal novel targets and pathways, paving the way for enhanced treatment strategies for therapy-resistant tumors in the near future.
Collapse
Affiliation(s)
- K Deepak
- Cancer Biology Lab, School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| | - Pritam Kumar Roy
- Cancer Biology Lab, School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| | - Chandan Kanta Das
- Cancer Biology Lab, School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA, 19104, USA
| | - Budhaditya Mukherjee
- Infectious Disease and Immunology Lab, School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| | - Mahitosh Mandal
- Cancer Biology Lab, School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| |
Collapse
|
5
|
Liu J, Li H, Dong Q, Liang Z. Multi omics analysis of mitophagy subtypes and integration of machine learning for predicting immunotherapy responses in head and neck squamous cell carcinoma. Aging (Albany NY) 2024; 16:10579-10614. [PMID: 38913914 PMCID: PMC11236326 DOI: 10.18632/aging.205964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/29/2024] [Indexed: 06/26/2024]
Abstract
Mitophagy serves as a critical mechanism for tumor cell death, significantly impacting the progression of tumors and their treatment approaches. There are significant challenges in treating patients with head and neck squamous cell carcinoma, underscoring the importance of identifying new targets for therapy. The function of mitophagy in head and neck squamous carcinoma remains uncertain, thus investigating its impact on patient outcomes and immunotherapeutic responses is especially crucial. We initially analyzed the differential expression, prognostic value, intergene correlations, copy number variations, and mutation frequencies of mitophagy-related genes at the pan-cancer level. Through unsupervised clustering, we divided head and neck squamous carcinoma into three subtypes with distinct prognoses, identified the signaling pathway features of each subtype using ssGSEA, and characterized subtype B as having features of an immune desert using various immune infiltration calculation methods. Using multi-omics data, we identified the genomic variation characteristics, mutated gene pathway features, and drug sensitivity features of the mitophagy subtypes. Utilizing a combination of 10 machine learning algorithms, we have developed a prognostic scoring model called Mitophagy Subgroup Risk Score (MSRS), which is used to predict patient survival and the response to immune checkpoint blockade therapy. Simultaneously, we applied MSRS to single-cell analysis to explore intercellular communication. Through laboratory experiments, we validated the biological function of SLC26A9, one of the genes in the risk model. In summary, we have explored the significant role of mitophagy in head and neck tumors through multi-omics data, providing new directions for clinical treatment.
Collapse
Affiliation(s)
- Junzhi Liu
- Department of Otorhinolaryngology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Huimin Li
- Laboratory of Cancer Cell Biology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Qiuping Dong
- Laboratory of Cancer Cell Biology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zheng Liang
- Department of Otorhinolaryngology, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
6
|
Wang Y, Harada‐Shoji N, Kitamura N, Yamazaki Y, Ebata A, Amari M, Watanabe M, Miyashita M, Tada H, Abe T, Suzuki T, Gonda K, Ishida T. Mitochondrial dynamics as a novel treatment strategy for triple-negative breast cancer. Cancer Med 2024; 13:e6987. [PMID: 38334464 PMCID: PMC10854452 DOI: 10.1002/cam4.6987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/22/2023] [Accepted: 01/19/2024] [Indexed: 02/10/2024] Open
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC), recognized as the most heterogeneous type of breast cancer (BC), exhibits a worse prognosis than other subtypes. Mitochondria dynamics play a vital role as mediators in tumorigenesis by adjusting to the cell microenvironments. However, the relationship between mitochondrial dynamics and metabophenotype exhibits discrepancies and divergence across various research and BC models. Therefore, this study aims to explore the role of mitochondrial dynamics in TNBC drug resistance and tumorigenesis. METHODS The Wst-8 test was conducted to assess doxorubicin sensitivity in HCC38, MDA-MB-231 (TNBC), and MCF-7 (luminal). Confocal microscopy and FACS were used to quantify the mitochondrial membrane potential (ΔφM), mitophagy, and reactive oxygen species (ROS) production. Agilent Seahorse XF Analyzer was utilized to measure metabolic characteristics. Dynamin-related protein-1 (DRP1), Parkin, and p62 immunohistochemistry staining were performed using samples from 107 primary patients with BC before and after neoadjuvant chemotherapy (NAC). RESULTS MDA-MB-231, a TNBC cell line with reduced sensitivity to doxorubicin, reduced ΔφM, and enhanced mitophagy to maintain ROS production through oxidative phosphorylation (OXPHOS)-based metabolism. HCC38, a doxorubicin-sensitive cell line, exhibited no alterations in ΔφM or mitophagy. However, it demonstrated an increase in ROS production and glycolysis. Clinicopathological studies revealed that pretreatment (before NAC) expression of DRP1 was significant in TNBC, as was pretreatment expression of Parkin in the hormone receptor-negative group. Furthermore, low p62 levels seem to be a risk factor for recurrence-free survival. CONCLUSION Our findings indicated that the interplay between mitophagy, linked to a worse clinical prognosis, and OXPHOS metabolism promoted chemotherapy resistance in TNBC. Mitochondrial fission is prevalent in TNBC. These findings suggest that targeting the unique mitochondrial metabolism and dynamics in TNBC may offer a novel therapeutic strategy for patients with TNBC.
Collapse
Affiliation(s)
- Yuechen Wang
- Department of Breast and Endocrine Surgical OncologyTohoku University Graduate School of MedicineSendaiJapan
| | - Narumi Harada‐Shoji
- Department of Breast and Endocrine Surgical OncologyTohoku University Graduate School of MedicineSendaiJapan
| | - Narufumi Kitamura
- Department of Medical Physics, Graduate School of MedicineTohoku UniversitySendaiJapan
| | - Yuto Yamazaki
- Department of PathologyTohoku University Graduate School of MedicineSendaiJapan
| | - Akiko Ebata
- Department of Breast and Endocrine Surgical OncologyTohoku University Graduate School of MedicineSendaiJapan
| | - Masakazu Amari
- Department of Breast SurgeryTohoku Kosai HospitalSendaiJapan
| | - Mika Watanabe
- Department of PathologyTohoku Kosai HospitalSendaiJapan
| | - Minoru Miyashita
- Department of Breast and Endocrine Surgical OncologyTohoku University Graduate School of MedicineSendaiJapan
| | - Hiroshi Tada
- Department of Breast and Endocrine Surgical OncologyTohoku University Graduate School of MedicineSendaiJapan
| | - Takaaki Abe
- Division of Nephrology, Endocrinology and Vascular MedicineTohoku University Graduate School of MedicineSendaiJapan
- Department of Medical ScienceTohoku University Graduate School of Biomedical Engineering, Tohoku UniversitySendaiJapan
- Department of Clinical Biology and Hormonal RegulationTohoku University Graduate School of MedicineSendaiJapan
| | - Takashi Suzuki
- Department of PathologyTohoku University Graduate School of MedicineSendaiJapan
| | - Kohsuke Gonda
- Department of Medical Physics, Graduate School of MedicineTohoku UniversitySendaiJapan
- International Center for Synchrotron Radiation Innovation Smart (SRIS)Tohoku UniversitySendaiJapan
| | - Takanori Ishida
- Department of Breast and Endocrine Surgical OncologyTohoku University Graduate School of MedicineSendaiJapan
| |
Collapse
|
7
|
Yu H, Liu Q, Jin M, Huang G, Cai Q. Comprehensive analysis of mitophagy-related genes in NSCLC diagnosis and immune scenery: based on bulk and single-cell RNA sequencing data. Front Immunol 2023; 14:1276074. [PMID: 38155968 PMCID: PMC10752969 DOI: 10.3389/fimmu.2023.1276074] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/29/2023] [Indexed: 12/30/2023] Open
Abstract
Lung cancer is the main cause of cancer-related deaths, and non-small cell lung cancer (NSCLC) is the most common type. Understanding the potential mechanisms, prognosis, and treatment aspects of NSCLC is essential. This study systematically analyzed the correlation between mitophagy and NSCLC. Six mitophagy-related feature genes (SRC, UBB, PINK1, FUNDC1, MAP1LC3B, and CSNK2A1) were selected through machine learning and used to construct a diagnostic model for NSCLC. These feature genes are closely associated with the occurrence and development of NSCLC. Additionally, NSCLC was divided into two subtypes using unsupervised consensus clustering, and their differences in clinical characteristics, immune infiltration, and immunotherapy were systematically analyzed. Furthermore, the interaction between mitophagy-related genes (MRGs) and immune cells was analyzed using single-cell sequencing data. The findings of this study will contribute to the development of potential diagnostic biomarkers for NSCLC and the advancement of personalized treatment strategies.
Collapse
Affiliation(s)
- Haibo Yu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Medical Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Qingtao Liu
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Mingming Jin
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Medical Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Gang Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Medical Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Qianqian Cai
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Medical Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
8
|
Zheng F, Zhong J, Chen K, Shi Y, Wang F, Wang S, Tang S, Yuan X, Shen Z, Tang S, Xia D, Wu Y, Lu W. PINK1-PTEN axis promotes metastasis and chemoresistance in ovarian cancer via non-canonical pathway. J Exp Clin Cancer Res 2023; 42:295. [PMID: 37940999 PMCID: PMC10633943 DOI: 10.1186/s13046-023-02823-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/05/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Ovarian cancer is commonly associated with a poor prognosis due to metastasis and chemoresistance. PINK1 (PTEN-induced kinase 1) is a serine/threonine kinase that plays a crucial part in regulating various physiological and pathophysiological processes in cancer cells. METHODS The ATdb database and "CuratedOvarianData" were used to evaluate the effect of kinases on ovarian cancer survival. The gene expression in ovarian cancer cells was detected by Western blot and quantitative real-time PCR. The effects of gene knockdown or overexpression in vitro were evaluated by wound healing assay, cell transwell assay, immunofluorescence staining, immunohistochemistry, and flow cytometry analysis. Mass spectrometry analysis, protein structure analysis, co-immunoprecipitation assay, nuclear-cytoplasmic separation, and in vitro kinase assay were applied to demonstrate the PINK1-PTEN (phosphatase and tensin homolog) interaction and the effect of this interaction. The metastasis experiments for ovarian cancer xenografts were performed in female BALB/c nude mice. RESULTS PINK1 was strongly associated with a poor prognosis in ovarian cancer patients and promoted metastasis and chemoresistance in ovarian cancer cells. Although the canonical PINK1/PRKN (parkin RBR E3 ubiquitin protein ligase) pathway showed weak effects in ovarian cancer, PINK1 was identified to interact with PTEN and phosphorylate it at Serine179. Remarkably, the phosphorylation of PTEN resulted in the inactivation of the phosphatase activity, leading to an increase in AKT (AKT serine/threonine kinase) activity. Moreover, PINK1-mediated phosphorylation of PTEN impaired the nuclear import of PTEN, thereby enhancing the cancer cells' ability to resist chemotherapy and metastasize. CONCLUSIONS PINK1 interacts with and phosphorylates PTEN at Serine179, resulting in the activation of AKT and the inhibition of PTEN nuclear import. PINK1 promotes ovarian cancer metastasis and chemotherapy resistance through the regulation of PTEN. These findings offer new potential therapeutic targets for ovarian cancer management.
Collapse
Affiliation(s)
- Fang Zheng
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiamin Zhong
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kelie Chen
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fang Wang
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shengchao Wang
- Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Song Tang
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyu Yuan
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhangjin Shen
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sangsang Tang
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dajing Xia
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| | - Yihua Wu
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou, China.
| | - Weiguo Lu
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China.
| |
Collapse
|
9
|
Wang S, Long H, Hou L, Feng B, Ma Z, Wu Y, Zeng Y, Cai J, Zhang DW, Zhao G. The mitophagy pathway and its implications in human diseases. Signal Transduct Target Ther 2023; 8:304. [PMID: 37582956 PMCID: PMC10427715 DOI: 10.1038/s41392-023-01503-7] [Citation(s) in RCA: 222] [Impact Index Per Article: 111.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/03/2023] [Accepted: 05/16/2023] [Indexed: 08/17/2023] Open
Abstract
Mitochondria are dynamic organelles with multiple functions. They participate in necrotic cell death and programmed apoptotic, and are crucial for cell metabolism and survival. Mitophagy serves as a cytoprotective mechanism to remove superfluous or dysfunctional mitochondria and maintain mitochondrial fine-tuning numbers to balance intracellular homeostasis. Growing evidences show that mitophagy, as an acute tissue stress response, plays an important role in maintaining the health of the mitochondrial network. Since the timely removal of abnormal mitochondria is essential for cell survival, cells have evolved a variety of mitophagy pathways to ensure that mitophagy can be activated in time under various environments. A better understanding of the mechanism of mitophagy in various diseases is crucial for the treatment of diseases and therapeutic target design. In this review, we summarize the molecular mechanisms of mitophagy-mediated mitochondrial elimination, how mitophagy maintains mitochondrial homeostasis at the system levels and organ, and what alterations in mitophagy are related to the development of diseases, including neurological, cardiovascular, pulmonary, hepatic, renal disease, etc., in recent advances. Finally, we summarize the potential clinical applications and outline the conditions for mitophagy regulators to enter clinical trials. Research advances in signaling transduction of mitophagy will have an important role in developing new therapeutic strategies for precision medicine.
Collapse
Affiliation(s)
- Shouliang Wang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Haijiao Long
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
- Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lianjie Hou
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Baorong Feng
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Zihong Ma
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Ying Wu
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Yu Zeng
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Jiahao Cai
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Da-Wei Zhang
- Group on the Molecular and Cell Biology of Lipids and Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| | - Guojun Zhao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China.
| |
Collapse
|
10
|
Mukherjee S, Bhatti GK, Chhabra R, Reddy PH, Bhatti JS. Targeting mitochondria as a potential therapeutic strategy against chemoresistance in cancer. Biomed Pharmacother 2023; 160:114398. [PMID: 36773523 DOI: 10.1016/j.biopha.2023.114398] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/21/2023] [Accepted: 02/08/2023] [Indexed: 02/11/2023] Open
Abstract
The importance of mitochondria is not only limited to energy generation but also in several physical and chemical processes critical for cell survival. Mitochondria play an essential role in cellular apoptosis, calcium ion transport and cellular metabolism. Mutation in the nuclear and mitochondrial genes, altered oncogenes/tumor suppressor genes, and deregulated signalling for cell viability are major reasons for cancer progression and chemoresistance. The development of drug resistance in cancer patients is a major challenge in cancer treatment as the resistant cells are often more aggressive. The drug resistant cells of numerous cancer types exhibit the deregulation of mitochondrial function. The increased biogenesis of mitochondria and its dynamic alteration contribute to developing resistance. Further, a small subpopulation of cancer stem cells in the heterogeneous tumor is primarily responsible for chemoresistance and has an attribute of mitochondrial dysfunction. This review highlights the critical role of mitochondrial dysfunction in chemoresistance in cancer cells through the processes of apoptosis, autophagy/mitophagy, and cancer stemness. Mitochondria-targeted therapeutic strategies might help reduce cancer progression and chemoresistance induced by various cancer drugs.
Collapse
Affiliation(s)
- Soumi Mukherjee
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India.
| | - Ravindresh Chhabra
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, India.
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience and Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| |
Collapse
|
11
|
Celis-Pinto JC, Fernández-Velasco AA, Corte-Torres MD, Santos-Juanes J, Blanco-Agudín N, Piña Batista KM, Merayo-Lloves J, Quirós LM, Fernández-Vega I. PINK1 Immunoexpression Predicts Survival in Patients Undergoing Hepatic Resection for Colorectal Liver Metastases. Int J Mol Sci 2023; 24:6506. [PMID: 37047483 PMCID: PMC10095114 DOI: 10.3390/ijms24076506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
PTEN-induced kinase-1 (PINK1) is the initiator of the canonical mitophagy pathway. Our aim was to study the immunoexpression of PINK1 in surgical specimens from ninety patients with metastatic colorectal adenocarcinoma (CRC) to the liver (CRLM). Tissue arrays were produced, and immunohistochemical studies were analyzed by the H-Score method. The mean immunoexpression of PINK1 in normal tissues was between 40 to 100 points. In tumoral tissues, positive PINK1 immunoexpression was observed in all samples, and no differences were noted between CRCs. In CRLMs, a significant under-expression was noted for PINK1 from the rectum (71.3 ± 30.8; p < 0.042) compared to other sites. Altered PINK1 immunoexpression in CRCs, either higher than 100 points or lower than 40 points, was associated with worse overall survival (OS) (p < 0.012) due to a shorter post-metastatic survival (PMS) (p < 0.023), and it was found to be a significant independent predictor of prognosis in a multivariate model for OS and PMS (HR = 1.972, 95% CI 0.971-4.005; p = 0.022. HR = 2.023, 95% CI 1.003-4.091; p = 0.037, respectively). In conclusion, altered PINK1 immunoexpression determined in CRCs with resected CRLM predicts a worse prognosis, possibly due to the abnormal function of mitophagy.
Collapse
Affiliation(s)
- Juan Carlos Celis-Pinto
- Department of Pathology, Central University Hospital of Asturias (HUCA), University of Oviedo, 33011 Oviedo, Spain; (J.C.C.-P.); (A.A.F.-V.)
| | - Adela Alonso Fernández-Velasco
- Department of Pathology, Central University Hospital of Asturias (HUCA), University of Oviedo, 33011 Oviedo, Spain; (J.C.C.-P.); (A.A.F.-V.)
| | - María Daniela Corte-Torres
- Biobank of Principality of Asturias, 33011 Oviedo, Spain
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
| | - Jorge Santos-Juanes
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
- Department of Dermatology, Central University Hospital of Asturias (HUCA), 33011 Oviedo, Spain
| | | | | | - Jesús Merayo-Lloves
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
- Instituto Universitario Fernández-Vega, 33012 Oviedo, Spain
| | - Luis M. Quirós
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
- Department of Functional Biology, University of Oviedo, 33006 Oviedo, Spain
- Instituto Universitario Fernández-Vega, 33012 Oviedo, Spain
| | - Iván Fernández-Vega
- Department of Pathology, Central University Hospital of Asturias (HUCA), University of Oviedo, 33011 Oviedo, Spain; (J.C.C.-P.); (A.A.F.-V.)
- Biobank of Principality of Asturias, 33011 Oviedo, Spain
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
- Instituto Universitario Fernández-Vega, 33012 Oviedo, Spain
| |
Collapse
|
12
|
Si Z, Shen Z, Luan F, Yan J. PINK1 regulates apoptosis of osteosarcoma as the target gene of cisplatin. J Orthop Surg Res 2023; 18:132. [PMID: 36823640 PMCID: PMC9948348 DOI: 10.1186/s13018-023-03615-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Osteosarcoma is a common primary bone malignancy prevalent among adolescents and young adults. PTEN-induced kinase 1 (PINK1) regulates Parkinson's disease, but its role in cancers is unknown. OBJECTIVE This study was designed to analyze the mechanism by which PINK1 affects osteosarcoma using bioinformatics and cell experiments. MATERIALS AND METHODS The gene expression profiles were downloaded from the TARGET database. Several online databases were used to analyze the expression and protein‒protein interaction networks. CCK-8 cell viability assays and cisplatin treatment were used to assess cell activity with or without cisplatin treatment. Acridine orange/ethidium bromide (AO/EB) fluorescence staining was used to calculate the percentage of apoptotic cells. RESULTS Through bioinformatics analysis, we found that high expression of PINK1 was associated with poor prognosis in patients with osteosarcoma, and PINK1 inhibited apoptosis and promoted proliferation pathways. Next, we found that both PINK1 mRNA and protein levels were upregulated in osteosarcoma tissues. Additionally, we found that PTEN was reduced, while FOXO3a was markedly increased in osteosarcoma, suggesting that FOXO3a and not PTEN induced the overexpression of PINK1. CCK-8 and clonogenic assays showed that the knockdown of PINK1 decreased the growth of U2OS osteosarcoma cells. Ki67 immunofluorescence staining revealed that reduced cell proliferation in U2OS cells resulted in the depletion of PINK1. In addition, our AO/EB staining results indicated that the knockdown of PINK1 resulted in an increase in apoptotic cells and increased the levels of cleaved caspase-3. Furthermore, our experiments revealed that cisplatin promotes OS cell apoptosis by downregulating PINK1. CONCLUSION Collectively, our findings demonstrate that PINK1 is crucially involved in osteosarcoma and suggests that it can promote the apoptosis of OS cells as the downstream target gene of cisplatin.
Collapse
Affiliation(s)
- Zhenxing Si
- grid.412596.d0000 0004 1797 9737Department of Emergency Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zilong Shen
- grid.412463.60000 0004 1762 6325Department of Orthopedic Department, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150001 Heilongjiang China
| | - Feiyu Luan
- grid.412596.d0000 0004 1797 9737Department of Emergency Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinglong Yan
- Department of Orthopedic Department, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
13
|
Zeng C, Zhong L, Liu W, Zhang Y, Yu X, Wang X, Zhang R, Kang T, Liao D. Targeting the Lysosomal Degradation of Rab22a-NeoF1 Fusion Protein for Osteosarcoma Lung Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205483. [PMID: 36529692 PMCID: PMC9929137 DOI: 10.1002/advs.202205483] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/03/2022] [Indexed: 06/17/2023]
Abstract
Rab22a-NeoF fusion protein has recently been reported as a promising target for osteosarcoma lung metastasis. However, how this fusion protein is regulated in cells remains unknown. Here, using multiple screenings, it is reported that Rab22a-NeoF1 fusion protein is degraded by an E3 ligase STUB1 via the autophagy receptor NDP52-mediated lysosome pathway, which is facilitated by PINK1 kinase. Mechanistically, STUB1 catalyzes the K63-linked ubiquitin chains on lysine112 of Rab22a-NeoF1, which is responsible for the binding of Rab22a-NeoF1 to NDP52, resulting in lysosomal degradation of Rab22a-NeoF1. PINK1 is able to phosphorylate Rab22a-NeoF1 at serine120, which promotes ubiquitination and degradation of Rab22a-NeoF1. Consistently, by upregulating PINK1, Sorafenib and Regorafenib can inhibit osteosarcoma lung metastasis induced by Rab22a-NeoF1. These findings reveal that the lysosomal degradation of Rab22a-NeoF1 fusion protein is targetable for osteosarcoma lung metastasis, proposing that Sorafenib and Regorafenib may benefit cancer patients who are positive for the RAB22A-NeoF1 fusion gene.
Collapse
Affiliation(s)
- Cuiling Zeng
- State Key Laboratory of Oncology in South ChinaSun Yat‐sen University Cancer CenterCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
| | - Li Zhong
- Center of Digestive DiseasesThe Seventh Affiliated Hospital, Sun Yat‐sen UniversityShenzhen518107China
- Scientific Research CenterThe Seventh Affiliated Hospital, Sun Yat‐sen UniversityShenzhenChina
| | - Wenqiang Liu
- State Key Laboratory of Oncology in South ChinaSun Yat‐sen University Cancer CenterCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
- Department of OncologyThe Fifth Affiliated Hospital, Sun Yat‐sen UniversityZhuhai519000China
| | - Yu Zhang
- State Key Laboratory of Oncology in South ChinaSun Yat‐sen University Cancer CenterCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
| | - Xinhao Yu
- State Key Laboratory of Oncology in South ChinaSun Yat‐sen University Cancer CenterCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
| | - Xin Wang
- State Key Laboratory of Oncology in South ChinaSun Yat‐sen University Cancer CenterCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
| | - Ruhua Zhang
- State Key Laboratory of Oncology in South ChinaSun Yat‐sen University Cancer CenterCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
| | - Tiebang Kang
- State Key Laboratory of Oncology in South ChinaSun Yat‐sen University Cancer CenterCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
| | - Dan Liao
- State Key Laboratory of Oncology in South ChinaSun Yat‐sen University Cancer CenterCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
| |
Collapse
|
14
|
Wang M, Luan S, Fan X, Wang J, Huang J, Gao X, Han D. The emerging multifaceted role of PINK1 in cancer biology. Cancer Sci 2022; 113:4037-4047. [PMID: 36071695 DOI: 10.1111/cas.15568] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/23/2022] [Accepted: 09/01/2022] [Indexed: 12/15/2022] Open
Abstract
For its various important functions in cells, phosphatase and tensin homolog-induced kinase 1 (PINK1) has drawn considerable attention for the role it plays in early-onset Parkinson's disease. In recent years, emerging evidence has supported the hypothesis that PINK1 plays a part in regulating many physiological and pathophysiological processes in cancer cells, including cytoplasmic homeostasis, cell survival, and cell death. According to the findings of these studies, PINK1 can function as a tumor promoter or suppressor, showing a duality that is dependent on the context. In this study we review the mechanistic characters relating to PINK1 based on available published data from peer-reviewed articles, The Cancer Genome Atlas data mining, and cell-based assays. This mini review focuses on some of the interplays between PINK1 and the context and recent developments in the field, including its growing involvement in mitophagy and its nonmitophagy organelles-related function. This review aims to help readers better grasp how PINK1 is functioning in cell physiological and pathophysiological processes, especially in cancer biology.
Collapse
Affiliation(s)
- Meng Wang
- Department of Colorectal Surgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China.,Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Shijia Luan
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Xiang Fan
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Jie Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Ju Huang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Xu Gao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Dong Han
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
15
|
The oncoprotein MUC1 facilitates breast cancer progression by promoting Pink1-dependent mitophagy via ATAD3A destabilization. Cell Death Dis 2022; 13:899. [PMID: 36289190 PMCID: PMC9606306 DOI: 10.1038/s41419-022-05345-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
Abstract
Mitophagy is a vital process that controls mitochondria quality, dysregulation of which can promote cancer. Oncoprotein mucin 1 (MUC1) targets mitochondria to attenuate drug-induced apoptosis. However, little is known about whether and how MUC1 contributes to mitochondrial homeostasis in cancer cells. We identified a novel role of MUC1 in promoting mitophagy. Increased mitophagy is coupled with the translocation of MUC1 to mitochondria, where MUC1 interacts with and induces degradation of ATPase family AAA domain-containing 3A (ATAD3A), resulting in protection of PTEN-induced kinase 1 (Pink1) from ATAD3A-mediated cleavage. Interestingly, MUC1-induced mitophagy is associated with increased oncogenicity of cancer cells. Similarly, inhibition of mitophagy significantly suppresses MUC1-induced cancer cell activity in vitro and in vivo. Consistently, MUC1 and ATAD3A protein levels present an inverse relationship in tumor tissues of breast cancer patients. Our data validate that MUC1/ATAD3A/Pink1 axis-mediated mitophagy constitutes a novel mechanism for maintaining the malignancy of cancer cells, providing a novel therapeutic approach for MUC1-positive cancers.
Collapse
|
16
|
Song C, Pan S, Zhang J, Li N, Geng Q. Mitophagy: A novel perspective for insighting into cancer and cancer treatment. Cell Prolif 2022; 55:e13327. [PMID: 36200262 DOI: 10.1111/cpr.13327] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/13/2022] [Accepted: 08/02/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Mitophagy refers to the selective self-elimination of mitochondria under damaged or certain developmental conditions. As an important regulatory mechanism to remove damaged mitochondria and maintain the internal and external cellular balance, mitophagy plays pivotal roles in carcinogenesis and progression as well as treatment. MATERIALS AND METHODS Here, we combined data from recent years to comprehensively describe the regulatory mechanisms of mitophagy and its multifaceted significance in cancer, and discusse the potential of targeted mitophagy as a cancer treatment strategy. RESULTS The molecular mechanisms regulating mitophagy are complex, diverse, and cross-talk. Inducing or blocking mitophagy has the same or completely different effects in different cancer contexts. Mitophagy plays an indispensable role in regulating cancer metabolic reprogramming, cell stemness, and chemotherapy resistance for better adaptation to tumor microenvironment. In cancer cell biology, mitophagy is considered to be a double-edged sword. And to fully understand the role of mitophagy in cancer development can provide new targets for cancer treatment in clinical practice. CONCLUSIONS This review synthesizes a large body of data to comprehensively describe the molecular mechanisms of mitophagy and its multidimensional significance in cancer and cancer treatment, which will undoubtedly deepen the understanding of mitophagy.
Collapse
Affiliation(s)
- Congkuan Song
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shize Pan
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jinjin Zhang
- Department of Emergency, Taihe Hospital, Shiyan, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
17
|
Chemotherapy Resistance: Role of Mitochondrial and Autophagic Components. Cancers (Basel) 2022; 14:cancers14061462. [PMID: 35326612 PMCID: PMC8945922 DOI: 10.3390/cancers14061462] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Chemotherapy resistance is a common occurrence during cancer treatment that cancer researchers are attempting to understand and overcome. Mitochondria are a crucial intracellular signaling core that are becoming important determinants of numerous aspects of cancer genesis and progression, such as metabolic reprogramming, metastatic capability, and chemotherapeutic resistance. Mitophagy, or selective autophagy of mitochondria, can influence both the efficacy of tumor chemotherapy and the degree of drug resistance. Regardless of the fact that mitochondria are well-known for coordinating ATP synthesis from cellular respiration in cellular bioenergetics, little is known its mitophagy regulation in chemoresistance. Recent advancements in mitochondrial research, mitophagy regulatory mechanisms, and their implications for our understanding of chemotherapy resistance are discussed in this review. Abstract Cancer chemotherapy resistance is one of the most critical obstacles in cancer therapy. One of the well-known mechanisms of chemotherapy resistance is the change in the mitochondrial death pathways which occur when cells are under stressful situations, such as chemotherapy. Mitophagy, or mitochondrial selective autophagy, is critical for cell quality control because it can efficiently break down, remove, and recycle defective or damaged mitochondria. As cancer cells use mitophagy to rapidly sweep away damaged mitochondria in order to mediate their own drug resistance, it influences the efficacy of tumor chemotherapy as well as the degree of drug resistance. Yet despite the importance of mitochondria and mitophagy in chemotherapy resistance, little is known about the precise mechanisms involved. As a consequence, identifying potential therapeutic targets by analyzing the signal pathways that govern mitophagy has become a vital research goal. In this paper, we review recent advances in mitochondrial research, mitophagy control mechanisms, and their implications for our understanding of chemotherapy resistance.
Collapse
|
18
|
Lee YG, Park DH, Chae YC. Role of Mitochondrial Stress Response in Cancer Progression. Cells 2022; 11:cells11050771. [PMID: 35269393 PMCID: PMC8909674 DOI: 10.3390/cells11050771] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are subcellular organelles that are a hub for key biological processes, such as bioenergetic, biosynthetic, and signaling functions. Mitochondria are implicated in all oncogenic processes, from malignant transformation to metastasis and resistance to chemotherapeutics. The harsh tumor environment constantly exposes cancer cells to cytotoxic stressors, such as nutrient starvation, low oxygen, and oxidative stress. Excessive or prolonged exposure to these stressors can cause irreversible mitochondrial damage, leading to cell death. To survive hostile microenvironments that perturb mitochondrial function, cancer cells activate a stress response to maintain mitochondrial protein and genome integrity. This adaptive mechanism, which is closely linked to mitochondrial function, enables rapid adjustment and survival in harsh environmental conditions encountered during tumor dissemination, thereby promoting cancer progression. In this review, we describe how the mitochondria stress response contributes to the acquisition of typical malignant traits and highlight the potential of targeting the mitochondrial stress response as an anti-cancer therapeutic strategy.
Collapse
Affiliation(s)
- Yu Geon Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea; (Y.G.L.); (D.H.P.)
- Korea Food Research Institute, Wanju 55365, Korea
| | - Do Hong Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea; (Y.G.L.); (D.H.P.)
| | - Young Chan Chae
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea; (Y.G.L.); (D.H.P.)
- Correspondence: ; Tel.: +82-52-217-2524 or +82-52-217-2638
| |
Collapse
|
19
|
Liu L, Liu A, Dong J, Zuo Z, Liu X. Proteasome 26S subunit, non-ATPase 1 (PSMD1) facilitated the progression of lung adenocarcinoma by the de-ubiquitination and stability of PTEN-induced kinase 1 (PINK1). Exp Cell Res 2022; 413:113075. [DOI: 10.1016/j.yexcr.2022.113075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 01/19/2022] [Accepted: 02/18/2022] [Indexed: 11/25/2022]
|
20
|
Salemi M, Lanza G, Mogavero MP, Cosentino FII, Borgione E, Iorio R, Ventola GM, Marchese G, Salluzzo MG, Ravo M, Ferri R. A Transcriptome Analysis of mRNAs and Long Non-Coding RNAs in Patients with Parkinson's Disease. Int J Mol Sci 2022; 23:1535. [PMID: 35163455 PMCID: PMC8836138 DOI: 10.3390/ijms23031535] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder. The number of cases of PD is expected to double by 2030, representing a heavy burden on the healthcare system. Clinical symptoms include the progressive loss of dopaminergic neurons in the substantia nigra of the midbrain, which leads to striatal dopamine deficiency and, subsequently, causes motor dysfunction. Certainly, the study of the transcriptome of the various RNAs plays a crucial role in the study of this neurodegenerative disease. In fact, the aim of this study was to evaluate the transcriptome in a cohort of subjects with PD compared with a control cohort. In particular we focused on mRNAs and long non-coding RNAs (lncRNA), using the Illumina NextSeq 550 DX System. Differential expression analysis revealed 716 transcripts with padj ≤ 0.05; among these, 630 were mRNA (coding protein), lncRNA, and MT_tRNA. Ingenuity pathway analysis (IPA, Qiagen) was used to perform the functional and pathway analysis. The highest statistically significant pathways were: IL-15 signaling, B cell receptor signaling, systemic lupus erythematosus in B cell signaling pathway, communication between innate and adaptive immune cells, and melatonin degradation II. Our findings further reinforce the important roles of mitochondria and lncRNA in PD and, in parallel, further support the concept of inverse comorbidity between PD and some cancers.
Collapse
Affiliation(s)
- Michele Salemi
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (G.L.); (F.I.I.C.); (E.B.); (M.G.S.); (R.F.)
| | - Giuseppe Lanza
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (G.L.); (F.I.I.C.); (E.B.); (M.G.S.); (R.F.)
- Department of Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy
| | | | - Filomena I. I. Cosentino
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (G.L.); (F.I.I.C.); (E.B.); (M.G.S.); (R.F.)
| | - Eugenia Borgione
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (G.L.); (F.I.I.C.); (E.B.); (M.G.S.); (R.F.)
| | - Roberta Iorio
- Genomix4Life Srl, 84081 Baronissi, Italy; (R.I.); (G.M.V.); (G.M.); (M.R.)
- Genome Research Center for Health—CRGS, 84081 Baronissi, Italy
| | - Giovanna Maria Ventola
- Genomix4Life Srl, 84081 Baronissi, Italy; (R.I.); (G.M.V.); (G.M.); (M.R.)
- Genome Research Center for Health—CRGS, 84081 Baronissi, Italy
| | - Giovanna Marchese
- Genomix4Life Srl, 84081 Baronissi, Italy; (R.I.); (G.M.V.); (G.M.); (M.R.)
- Genome Research Center for Health—CRGS, 84081 Baronissi, Italy
| | - Maria Grazia Salluzzo
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (G.L.); (F.I.I.C.); (E.B.); (M.G.S.); (R.F.)
| | - Maria Ravo
- Genomix4Life Srl, 84081 Baronissi, Italy; (R.I.); (G.M.V.); (G.M.); (M.R.)
- Genome Research Center for Health—CRGS, 84081 Baronissi, Italy
| | - Raffaele Ferri
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (G.L.); (F.I.I.C.); (E.B.); (M.G.S.); (R.F.)
| |
Collapse
|
21
|
A Transcriptome Analysis of mRNAs and Long Non-Coding RNAs in Patients with Parkinson's Disease. Int J Mol Sci 2022. [PMID: 35163455 DOI: 10.3390/ijms23031535.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder. The number of cases of PD is expected to double by 2030, representing a heavy burden on the healthcare system. Clinical symptoms include the progressive loss of dopaminergic neurons in the substantia nigra of the midbrain, which leads to striatal dopamine deficiency and, subsequently, causes motor dysfunction. Certainly, the study of the transcriptome of the various RNAs plays a crucial role in the study of this neurodegenerative disease. In fact, the aim of this study was to evaluate the transcriptome in a cohort of subjects with PD compared with a control cohort. In particular we focused on mRNAs and long non-coding RNAs (lncRNA), using the Illumina NextSeq 550 DX System. Differential expression analysis revealed 716 transcripts with padj ≤ 0.05; among these, 630 were mRNA (coding protein), lncRNA, and MT_tRNA. Ingenuity pathway analysis (IPA, Qiagen) was used to perform the functional and pathway analysis. The highest statistically significant pathways were: IL-15 signaling, B cell receptor signaling, systemic lupus erythematosus in B cell signaling pathway, communication between innate and adaptive immune cells, and melatonin degradation II. Our findings further reinforce the important roles of mitochondria and lncRNA in PD and, in parallel, further support the concept of inverse comorbidity between PD and some cancers.
Collapse
|
22
|
PINK1 signalling in neurodegenerative disease. Essays Biochem 2021; 65:913-923. [PMID: 34897410 PMCID: PMC8709887 DOI: 10.1042/ebc20210036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/03/2021] [Accepted: 11/16/2021] [Indexed: 12/26/2022]
Abstract
PTEN-induced kinase 1 (PINK1) impacts cell health and human pathology through diverse pathways. The strict processing of full-length PINK1 on the outer mitochondrial membrane populates a cytoplasmic pool of cleaved PINK1 (cPINK1) that is constitutively degraded. However, despite rapid proteasomal clearance, cPINK1 still appears to exert quality control influence over the neuronal protein homeostasis network, including protein synthesis and degradation machineries. The cytoplasmic concentration and activity of this molecule is therefore a powerful sensor that coordinates aspects of mitochondrial and cellular health. In addition, full-length PINK1 is retained on the mitochondrial membrane following depolarisation, where it is a powerful inducer of multiple mitophagic pathways. This function is executed primarily through the phosphorylation of several ubiquitin ligases, including its most widely studied substrate Parkin. Furthermore, the phosphorylation of both pro- and anti-apoptotic proteins by mitochondrial PINK1 acts as a pro-cellular survival signal when faced with apoptotic stimuli. Through these varied roles PINK1 directly influences functions central to cell dysfunction in neurodegenerative disease.
Collapse
|
23
|
Pepe P, Vatrano S, Cannarella R, Calogero AE, Marchese G, Ravo M, Fraggetta F, Pepe L, Pennisi M, Romano C, Ferri R, Salemi M. A study of gene expression by RNA-seq in patients with prostate cancer and in patients with Parkinson disease: an example of inverse comorbidity. Mol Biol Rep 2021; 48:7627-7631. [PMID: 34628580 DOI: 10.1007/s11033-021-06723-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/27/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Prostate cancer (PCa) is one of the leading causes of death in Western countries. Environmental and genetic factors play a pivotal role in PCa etiology. Timely identification of the genetic causes is useful for an early diagnosis. Parkinson's disease (PD) is the most frequent neurodegenerative movement disorder; it is associated with the presence of Lewy bodies and genetic factors are involved in its pathogenesis. Several studies have indicated that the expression of target genes in patients with PD is inversely related to cancer development; this phenomenon has been named "inverse comorbidity". The present study was undertaken to evaluate whether a genetic dysregulation occurs in opposite directions in patients with PD or PCa. METHODS AND RESULTS In the present study, next-generation sequencing transcriptome analysis was used to assess whether a genetic dysregulation in opposite directions occurs in patients with PD or PCa. The genes SLC30A1, ADO, SRGAP2C, and TBC1D12 resulted up-regulated in patients with PD compared to healthy donors as controls and down-regulated in patients with PCa compared with the same control group. CONCLUSIONS These results support the hypothesis of the presence of inverse comorbidity between PD and PCa.
Collapse
Affiliation(s)
- Pietro Pepe
- Urology Unit, Cannizzaro Hospital, Catania, Italy
| | | | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | - Maria Ravo
- Genomix4Life S.r.l, Baronissi, SA, Italy
| | | | | | | | | | | | | |
Collapse
|
24
|
Guo X, Yang N, Ji W, Zhang H, Dong X, Zhou Z, Li L, Shen HM, Yao SQ, Huang W. Mito-Bomb: Targeting Mitochondria for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007778. [PMID: 34510563 DOI: 10.1002/adma.202007778] [Citation(s) in RCA: 192] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 06/12/2021] [Indexed: 05/22/2023]
Abstract
Cancer has been one of the most common life-threatening diseases for a long time. Traditional cancer therapies such as surgery, chemotherapy (CT), and radiotherapy (RT) have limited effects due to drug resistance, unsatisfactory treatment efficiency, and side effects. In recent years, photodynamic therapy (PDT), photothermal therapy (PTT), and chemodynamic therapy (CDT) have been utilized for cancer treatment owing to their high selectivity, minor resistance, and minimal toxicity. Accumulating evidence has demonstrated that selective delivery of drugs to specific subcellular organelles can significantly enhance the efficiency of cancer therapy. Mitochondria-targeting therapeutic strategies are promising for cancer therapy, which is attributed to the essential role of mitochondria in the regulation of cancer cell apoptosis, metabolism, and more vulnerable to hyperthermia and oxidative damage. Herein, the rational design, functionalization, and applications of diverse mitochondria-targeting units, involving organic phosphine/sulfur salts, quaternary ammonium (QA) salts, peptides, transition-metal complexes, guanidinium or bisguanidinium, as well as mitochondria-targeting cancer therapies including PDT, PTT, CDT, and others are summarized. This review aims to furnish researchers with deep insights and hints in the design and applications of novel mitochondria-targeting agents for cancer therapy.
Collapse
Affiliation(s)
- Xiaolu Guo
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Naidi Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Wenhui Ji
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Hang Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Xiao Dong
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Zhiqiang Zhou
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Han-Ming Shen
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| |
Collapse
|
25
|
Li Y, Li W, Hoffman AR, Cui J, Hu JF. The Nucleus/Mitochondria-Shuttling LncRNAs Function as New Epigenetic Regulators of Mitophagy in Cancer. Front Cell Dev Biol 2021; 9:699621. [PMID: 34568319 PMCID: PMC8455849 DOI: 10.3389/fcell.2021.699621] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/20/2021] [Indexed: 12/18/2022] Open
Abstract
Mitophagy is a specialized autophagic pathway responsible for the selective removal of damaged or dysfunctional mitochondria by targeting them to the autophagosome in order to maintain mitochondria quality. The role of mitophagy in tumorigenesis has been conflicting, with the process both supporting tumor cell survival and promoting cell death. Cancer cells may utilize the mitophagy pathway to augment their metabolic requirements and resistance to cell death, thereby leading to increased cell proliferation and invasiveness. This review highlights major regulatory pathways of mitophagy involved in cancer. In particular, we summarize recent progress regarding how nuclear-encoded long non-coding RNAs (lncRNAs) function as novel epigenetic players in the mitochondria of cancer cells, affecting the malignant behavior of tumors by regulating mitophagy. Finally, we discuss the potential application of regulating mitophagy as a new target for cancer therapy.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, China.,Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA, United States
| | - Wei Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, China
| | - Andrew R Hoffman
- Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA, United States
| | - Jiuwei Cui
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, China
| | - Ji-Fan Hu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, China.,Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA, United States
| |
Collapse
|
26
|
Gezen-Ak D, Alaylıoğlu M, Genç G, Şengül B, Keskin E, Sordu P, Güleç ZEK, Apaydın H, Bayram-Gürel Ç, Ulutin T, Yılmazer S, Ertan S, Dursun E. Altered Transcriptional Profile of Mitochondrial DNA-Encoded OXPHOS Subunits, Mitochondria Quality Control Genes, and Intracellular ATP Levels in Blood Samples of Patients with Parkinson's Disease. J Alzheimers Dis 2021; 74:287-307. [PMID: 32007957 DOI: 10.3233/jad-191164] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mitochondrial dysfunctions are significant contributors to neurodegeneration. One result or a cause of mitochondrial dysfunction might be the disruption of mtDNA transcription. Limited data indicated an altered expression of mtDNA encoded transcripts in Alzheimer's disease (AD) or Parkinson's disease (PD). The number of mitochondria is high in cells with a high energy demand, such as muscle or nerve cells. AD or PD involves increased risk of cardiomyopathy, suggesting that mitochondrial dysfunction might be systemic. If it is systemic, we should observe it in different cell types. Given that, we wanted to investigate any disruption in the regulation of mtDNA encoded gene expression in addition to PINK1, PARKIN, and ATP levels in peripheral blood samples of PD cases who are affected by a neurodegenerative disorder that is very well known by its mitochondrial aspects. Our results showed for the first time that: 1) age of onset > 50 PD sporadic (PDS) cases: mtDNA transcription and quality control genes were affected; 2) age of onset <50 PDS cases: only mtDNA transcription was affected; and 3) PD cases with familial background: only quality control genes were affected. mtDNA copy number was not a confounder. Intracellular ATP levels of PD case subgroups were significantly higher than those of healthy subjects. We suggest that a systemic dysregulation of transcription of mtDNA or mitochondrial quality control genes might result in the development of a sporadic form of the disease. Additionally, ATP elevation might be an independent compensatory and response mechanism. Hyperactive cells in AD and PD require further investigation.
Collapse
Affiliation(s)
- Duygu Gezen-Ak
- Department of Medical Biology, Brain and Neurodegenerative Disorders Research Laboratories, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Merve Alaylıoğlu
- Department of Medical Biology, Brain and Neurodegenerative Disorders Research Laboratories, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Gençer Genç
- Department of Neurology, Şişli Etfal Training and Research Hospital, Istanbul, Turkey
| | - Büşra Şengül
- Department of Medical Biology, Brain and Neurodegenerative Disorders Research Laboratories, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ebru Keskin
- Department of Medical Biology, Brain and Neurodegenerative Disorders Research Laboratories, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Pelin Sordu
- Department of Medical Biology, Brain and Neurodegenerative Disorders Research Laboratories, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Zeynep Ece Kaya Güleç
- Department of Neurology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Hülya Apaydın
- Department of Neurology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Çiğdem Bayram-Gürel
- Department of Medical Biology, Brain and Neurodegenerative Disorders Research Laboratories, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Turgut Ulutin
- Department of Medical Biology, Brain and Neurodegenerative Disorders Research Laboratories, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Selma Yılmazer
- Department of Medical Biology, Faculty of Medicine, Altınbaş University, Istanbul, Turkey
| | - Sibel Ertan
- Department of Neurology, Faculty of Medicine, Koç University, Istanbul, Turkey
| | - Erdinç Dursun
- Department of Medical Biology, Brain and Neurodegenerative Disorders Research Laboratories, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey.,Department of Neuroscience, Institute of Neurological Sciences, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
27
|
Genovese I, Carinci M, Modesti L, Aguiari G, Pinton P, Giorgi C. Mitochondria: Insights into Crucial Features to Overcome Cancer Chemoresistance. Int J Mol Sci 2021; 22:ijms22094770. [PMID: 33946271 PMCID: PMC8124268 DOI: 10.3390/ijms22094770] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are key regulators of cell survival and are involved in a plethora of mechanisms, such as metabolism, Ca2+ signaling, reactive oxygen species (ROS) production, mitophagy and mitochondrial transfer, fusion, and fission (known as mitochondrial dynamics). The tuning of these processes in pathophysiological conditions is fundamental to the balance between cell death and survival. Indeed, ROS overproduction and mitochondrial Ca2+ overload are linked to the induction of apoptosis, while the impairment of mitochondrial dynamics and metabolism can have a double-faceted role in the decision between cell survival and death. Tumorigenesis involves an intricate series of cellular impairments not yet completely clarified, and a further level of complexity is added by the onset of apoptosis resistance mechanisms in cancer cells. In the majority of cases, cancer relapse or lack of responsiveness is related to the emergence of chemoresistance, which may be due to the cooperation of several cellular protection mechanisms, often mitochondria-related. With this review, we aim to critically report the current evidence on the relationship between mitochondria and cancer chemoresistance with a particular focus on the involvement of mitochondrial dynamics, mitochondrial Ca2+ signaling, oxidative stress, and metabolism to possibly identify new approaches or targets for overcoming cancer resistance.
Collapse
Affiliation(s)
- Ilaria Genovese
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.G.); (M.C.); (L.M.); (P.P.)
| | - Marianna Carinci
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.G.); (M.C.); (L.M.); (P.P.)
| | - Lorenzo Modesti
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.G.); (M.C.); (L.M.); (P.P.)
| | - Gianluca Aguiari
- Department of Neuroscience and Rehabilitation, Section of Biochemistry, Molecular Biology and Genetics, University of Ferrara, 44121 Ferrara, Italy;
| | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.G.); (M.C.); (L.M.); (P.P.)
| | - Carlotta Giorgi
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.G.); (M.C.); (L.M.); (P.P.)
- Correspondence:
| |
Collapse
|
28
|
Wang N, Yuan J, Liu F, Wei J, Liu Y, Xue M, Dong R. NFIB promotes the migration and progression of kidney renal clear cell carcinoma by regulating PINK1 transcription. PeerJ 2021; 9:e10848. [PMID: 33981484 PMCID: PMC8074839 DOI: 10.7717/peerj.10848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 01/06/2021] [Indexed: 12/30/2022] Open
Abstract
Kidney renal clear cell carcinoma (KIRC) is the most common and aggressive type of renal cell carcinoma. Due to high mortality rate, high metastasis rate and chemical resistance, the prognosis of KIRC patients is poor. Therefore, it is necessary to study the mechanisms of KIRC development and to develop more effective prognostic molecular biomarkers to help clinical patients. In our study, we used The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases to investigate that the expression of nuclear factor I B (NFIB) is significantly higher in KIRC than in adjacent tissues. Moreover, NFIB expression levels are associated with multiple clinical pathological parameters of KIRC, and KIRC patients with high NFIB expression have poor prognosis, suggesting that NFIB may play vital roles in the malignant development of KIRC. Further studies demonstrated that NFIB could promote the progression and metastasis of KIRC and participate in the regulation of PTEN induced kinase 1 (PINK1). Furthermore, we used chromatin immunoprecipitation (ChIP) experiments to confirm that NFIB binds to the PINK1 promoter and regulates its expression at the transcriptional level. Further experiments also confirmed the important roles of PINK1 in promoting the development of tumors by NFIB. Hence, our data provide a new NFIB-mediated regulatory mechanism for the tumor progression of KIRC and suggest that NFIB can be applied as a new predictor and therapeutic target for KIRC.
Collapse
Affiliation(s)
- Ninghua Wang
- Department of Urology, Hanyang Hospital, Wuhan, Hubei, China
| | - Jing Yuan
- Department of Urology, Hanyang Hospital, Wuhan, Hubei, China
| | - Fei Liu
- Department of Urology, Hanyang Hospital, Wuhan, Hubei, China
| | - Jun Wei
- Department of Urology, Hanyang Hospital, Wuhan, Hubei, China
| | - Yu Liu
- Department of Urology, Hanyang Hospital, Wuhan, Hubei, China
| | - Mei Xue
- Department of Urology, Hanyang Hospital, Wuhan, Hubei, China
| | - Rui Dong
- Department of Urology, Hanyang Hospital, Wuhan, Hubei, China
| |
Collapse
|
29
|
Dai K, Radin DP, Leonardi D. Deciphering the dual role and prognostic potential of PINK1 across cancer types. Neural Regen Res 2021; 16:659-665. [PMID: 33063717 PMCID: PMC8067949 DOI: 10.4103/1673-5374.295314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/04/2020] [Accepted: 05/18/2020] [Indexed: 12/20/2022] Open
Abstract
Metabolic rewiring and deregulation of the cell cycle are hallmarks shared by many cancers. Concerted mutations in key tumor suppressor genes, such as PTEN, and oncogenes predispose cancer cells for marked utilization of resources to fuel accelerated cell proliferation and chemotherapeutic resistance. Mounting research has demonstrated that PTEN-induced putative kinase 1 (PINK1) acts as a pivotal regulator of mitochondrial homeostasis in several cancer types, a function that also extends to the regulation of tumor cell proliferative capacity. In addition, involvement of PINK1 in modulating inflammatory responses has been highlighted by recent studies, further expounding PINK1's multifunctional nature. This review discusses the oncogenic roles of PINK1 in multiple tumor cell types, with an emphasis on maintenance of mitochondrial homeostasis, while also evaluating literature suggesting a dual oncolytic mechanism based on PINK1's modulation of the Warburg effect. From a clinical standpoint, its expression may also dictate the response to genotoxic stressors commonly used to treat multiple malignancies. By detailing the evidence suggesting that PINK1 possesses distinct prognostic value in the clinical setting and reviewing the duality of PINK1 function in a context-dependent manner, we present avenues for future studies of this dynamic protein.
Collapse
Affiliation(s)
- Katherine Dai
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Daniel P. Radin
- Department of Pharmacology, Stony Brook University School of Medicine, Stony Brook, NY, USA
| | | |
Collapse
|
30
|
Zheng Y, Huang C, Lu L, Yu K, Zhao J, Chen M, Liu L, Sun Q, Lin Z, Zheng J, Chen J, Zhang J. STOML2 potentiates metastasis of hepatocellular carcinoma by promoting PINK1-mediated mitophagy and regulates sensitivity to lenvatinib. J Hematol Oncol 2021; 14:16. [PMID: 33446239 PMCID: PMC7807703 DOI: 10.1186/s13045-020-01029-3] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/25/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Dysregulation of both mitochondrial biogenesis and mitophagy is critical to sustain oncogenic signaling pathways. However, the mechanism of mitophagy in promoting hepatocellular carcinoma (HCC) progression remains poorly understood. In this study, we investigated the clinical significance and biological involvement of mitochondrial inner membrane protein STOML2 in HCC. METHODS STOML2 was identified by gene expression profiles of HCC tissues and was measured in tissue microarray and cell lines. Gain/loss-of-function experiment was applied to study the biological function of STOML2 in HCC. Flow cytometry, Western blotting, laser confocal microscopy, transmission electron microscopy, and co-immunoprecipitation were used to detect and analyze mitophagy. ChIP and luciferase reporter assay were conducted to evaluate the relationship between STOML2 and HIF-1α. The sensitivity to lenvatinib was assessed in HCC both in vitro and in vivo. RESULTS Increased expression of STOML2 was found in HCC compared with paired peritumoral tissues. It was more significant in HCC with metastasis and correlated with worse overall survival and higher probability of recurrence after hepatectomy. Upregulation of STOML2 accelerated HCC cells colony formation, migration and invasion. Mechanically, TCGA dataset-based analysis showed enrichment of autophagy-related pathways in STOML2 highly-expressed HCC. Next, STOML2 was demonstrated to interact and stabilize PINK1 under cellular stress, amplify PINK1-Parkin-mediated mitophagy and then promote HCC growth and metastasis. Most interestingly, HIF-1α was upregulated and transcriptionally increased STOML2 expression in HCC cells under the treatment of lenvatinib. Furthermore, higher sensitivity to lenvatinib was found in HCC cells when STOML2 was downregulated. Combination therapy with lenvatinib and mitophagy inhibitor hydroxychloroquine obtained best efficacy. CONCLUSIONS Our findings suggested that STOML2 could amplify mitophagy through interacting and stabilizing PINK1, which promote HCC metastasis and modulate the response of HCC to lenvatinib. Combinations of pharmacologic inhibitors that concurrently block both angiogenesis and mitophagy may serve as an effective treatment for HCC.
Collapse
Affiliation(s)
- Yahui Zheng
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Center of Liver Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Chong Huang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Center of Liver Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Lu Lu
- Center of Liver Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Kangkang Yu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Center of Liver Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jing Zhao
- Center of Liver Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Mingquan Chen
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Center of Liver Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Lu Liu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Center of Liver Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Qingfeng Sun
- Department of Infectious Diseases, Ruian People's Hospital, Ruian, 325200, China
| | - Zhifei Lin
- Center of Liver Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jianming Zheng
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Center of Liver Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jinhong Chen
- Center of Liver Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Jubo Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- Center of Liver Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
31
|
Zhuang R, Yang X, Cai W, Xu R, Lv L, Sun Y, Guo Y, Ni J, Zhao G, Lu Z. MCTR3 reduces LPS-induced acute lung injury in mice via the ALX/PINK1 signaling pathway. Int Immunopharmacol 2021; 90:107142. [PMID: 33268042 DOI: 10.1016/j.intimp.2020.107142] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/02/2020] [Accepted: 10/26/2020] [Indexed: 12/19/2022]
Abstract
Acute lung injury (ALI), a common respiratory distress syndrome in the intensive care unit (ICU), is mainly caused by severe infection and shock. Epithelial and capillary endothelial cell injury, interstitial edema and inflammatory cell infiltration are the main pathological changes observed in ALI animal models. Maresin conjugates in tissue regeneration (MCTR) are a new family of anti-inflammatory proteins. MCTR3 is a key enhancer of the host response, that promotes tissue regeneration and reduces infection; however, its role and mechanism in ALI are still unclear. The purpose of our research was to assess the protective effects of MCTR3 against ALI and its underlying mechanism. The work in this study was conducted in a murine model and the pulmonary epithelial cell line MLE-12. In vivo, MCTR3 (2 ng/g) was given 2 h after lipopolysaccharide (LPS) injection. We found that the treatment of mice with LPS-induced ALI with MCTR3 significantly reduced the cell number and protein levels in the bronchoalveolar lavage fluid (BALF); decreased the production of inflammatory cytokines; alleviated oxidative stress and cell apoptosis, consequently decreased lung injury; and restored pulmonary function. These protective effects of MCTR3 were dependent on down-regulation of the PTEN-induced putative kinase 1 (PINK1) pathway. Additionally, in MLE-12 cells stimulated with LPS, MCTR3 inhibited cell death, inflammatory cytokine levels and oxidative stress via the ALX/PINK1 signaling pathway. Thus, we conclude that MCTR3 protected against LPS-induced ALI partly through inactivation of the ALX/PINK1 mediated mitophagy pathway.
Collapse
Affiliation(s)
- Rong Zhuang
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Anesthesiology, Critical Care and Pain Medicine, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiyu Yang
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenchao Cai
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rongxiao Xu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liang Lv
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yingying Sun
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yayong Guo
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingjing Ni
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guangju Zhao
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhongqiu Lu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
32
|
Zhu L, Wu W, Jiang S, Yu S, Yan Y, Wang K, He J, Ren Y, Wang B. Pan-Cancer Analysis of the Mitophagy-Related Protein PINK1 as a Biomarker for the Immunological and Prognostic Role. Front Oncol 2020; 10:569887. [PMID: 33244455 PMCID: PMC7683787 DOI: 10.3389/fonc.2020.569887] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/15/2020] [Indexed: 12/31/2022] Open
Abstract
Introduction The PINK1 gene encodes a serine/threonine protein kinase that localizes to mitochondria and has usually been considered to protect cells from stress-induced mitochondrial dysfunction. PINK1 mutations have been observed to lead to autosomal recessive Parkinson’s disease. However, the immunological and prognostic roles of PINK1 across cancers remain unclear. Material and method In the current study, we used multiple databases, including Oncomine, PrognoScan, Kaplan-Meier Plotter, GEPIA, TIMER, and cBioportal, to investigate the PINK1 expression distribution and its immunological and prognostic role across cancers. Results and discussion Bioinformatics data revealed that the mRNA expression of PINK1 was downregulated in most tumors. Although there was a significant prognostic value of PINK1 expression across cancers, PINK1 played a protective or detrimental role in different kinds of cancers. Liver hepatocellular carcinoma and lung squamous cell carcinoma were selected as representative cancer types for further exploration. We found that PINK1 always played a protective role in liver hepatocellular carcinoma patients in the stratified prognostic analyses of clinicopathological characteristics. There were contradictory results between liver hepatocellular carcinoma and lung squamous cell carcinoma in the correlations of PINK1 expression with immune infiltration, including infiltration of B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells. Furthermore, specific markers of B cells and CD8+ T cells also exhibited different PINK1-related immune infiltration patterns. In addition, there was a significant association between PINK1 copy number variations and immune infiltrates across cancers. Conclusion The mitophagy-related protein PINK1 can work as a biomarker for prognosis and the immune response across cancers.
Collapse
Affiliation(s)
- Lizhe Zhu
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wei Wu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Siyuan Jiang
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shibo Yu
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yu Yan
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ke Wang
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jianjun He
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yu Ren
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bin Wang
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
33
|
Genovese I, Vezzani B, Danese A, Modesti L, Vitto VAM, Corazzi V, Pelucchi S, Pinton P, Giorgi C. Mitochondria as the decision makers for cancer cell fate: from signaling pathways to therapeutic strategies. Cell Calcium 2020; 92:102308. [PMID: 33096320 DOI: 10.1016/j.ceca.2020.102308] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/05/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023]
Abstract
As pivotal players in cellular metabolism, mitochondria have a double-faceted role in the final decision of cell fate. This is true for all cell types, but it is even more important and intriguing in the cancer setting. Mitochondria regulate cell fate in many diverse ways: through metabolism, by producing ATP and other metabolites deemed vital or detrimental for cancer cells; through the regulation of Ca2+ homeostasis, especially by the joint participation of the endoplasmic reticulum in a membranous tethering system for Ca2+ signaling called mitochondria-ER associated membranes (MAMs); and by regulating signaling pathways involved in the survival of cancer cells such as mitophagy. Recent studies have shown that mitochondria can also play a role in the regulation of inflammatory pathways in cancer cells, for example, through the release of mitochondrial DNA (mtDNA) involved in the activation of the cGAS-cGAMP-STING pathway. In this review, we aim to explore the role of mitochondria as decision makers in fostering cancer cell death or survival depending on the tumor cell stage and describe novel anticancer therapeutic strategies targeting mitochondria.
Collapse
Affiliation(s)
- Ilaria Genovese
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Bianca Vezzani
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Alberto Danese
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Lorenzo Modesti
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Veronica Angela Maria Vitto
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Virginia Corazzi
- ENT & Audiology Department, University Hospital of Ferrara, Ferrara, Italy
| | - Stefano Pelucchi
- ENT & Audiology Department, University Hospital of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Carlotta Giorgi
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.
| |
Collapse
|
34
|
Lu X, Liu QX, Zhang J, Zhou D, Yang GX, Li MY, Qiu Y, Chen Q, Zheng H, Dai JG. PINK1 Overexpression Promotes Cell Migration and Proliferation via Regulation of Autophagy and Predicts a Poor Prognosis in Lung Cancer Cases. Cancer Manag Res 2020; 12:7703-7714. [PMID: 32904694 PMCID: PMC7457709 DOI: 10.2147/cmar.s262466] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/24/2020] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Lung cancer remains the leading cause of cancer-related death worldwide. The human PINK1 gene (PTEN induced kinase 1, Park6), an important gene for Parkinson's disease, was found to be associated with tumor development although the molecular mechanisms underlying this relationship remain largely unknown. OBJECTIVE To analyze the clinical value and molecular mechanism of PINK1 in non-small cell lung cancer (NSCLC). MATERIALS AND METHODS Western blot, qRT-PCR and Immunohistochemistry were employed to determine the levels of PINK1 in 87 paired NSCLC tissues, Oncomine and TCGA databases were also used for the evaluation of expression and prognosis of PINK1. The mitophagy, proliferation, migration, invasion, and apoptosis abilities of A549 and H1975 cells were detected, and the autophagy-related proteins in the cells were also determined. RESULTS Immunohistochemical staining revealed higher PINK1 expression in tumor tissues, which was strongly linked to the tumor-node-metastasis classification. Survival analysis of 1085 NSCLC patients also revealed that low PINK1 expression levels were associated with significantly longer overall survival. Univariate and multivariate analyses indicated that PINK1 expression was an independent predictor of overall survival among patients with NSCLC. We also evaluated the influence of PINK1 deficiency in NSCLC cell lines (A549 and H1975), which revealed significant suppression of migration capability and cell viability, as well as a significantly elevated apoptosis ratio. In cells with stable interference of PINK1 expression, dysfunctional mitochondria accumulated while autophagy was inhibited, which indicated that cell activity suppression was mediated by the accumulation of dysfunctional mitochondria. The suppression of migration and autophagy was reversed in cells that overexpressed PINK1. CONCLUSION Our results suggest that PINK1 may be a potential therapeutic target and prognostic biomarker in NSCLC.
Collapse
Affiliation(s)
- Xiao Lu
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing400037, People’s Republic of China
| | - Quan-Xing Liu
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing400037, People’s Republic of China
| | - Jiao Zhang
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing400037, People’s Republic of China
| | - Dong Zhou
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing400037, People’s Republic of China
| | - Gui-Xue Yang
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing400037, People’s Republic of China
| | - Man-Yuan Li
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing400037, People’s Republic of China
| | - Yuan Qiu
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing400037, People’s Republic of China
| | - Qian Chen
- Cancer Center of Daping Hospital, Army Medical University, Chongqing400042, People’s Republic of China
| | - Hong Zheng
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing400037, People’s Republic of China
| | - Ji-Gang Dai
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing400037, People’s Republic of China
| |
Collapse
|
35
|
Wang Y, Liu HH, Cao YT, Zhang LL, Huang F, Yi C. The Role of Mitochondrial Dynamics and Mitophagy in Carcinogenesis, Metastasis and Therapy. Front Cell Dev Biol 2020; 8:413. [PMID: 32587855 PMCID: PMC7297908 DOI: 10.3389/fcell.2020.00413] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/04/2020] [Indexed: 12/24/2022] Open
Abstract
Mitochondria are key cellular organelles and play vital roles in energy metabolism, apoptosis regulation and cellular homeostasis. Mitochondrial dynamics refers to the varying balance between mitochondrial fission and mitochondrial fusion that plays an important part in maintaining mitochondrial homeostasis and quality. Mitochondrial malfunction is involved in aging, metabolic disease, neurodegenerative disorders, and cancers. Mitophagy, a selective autophagy of mitochondria, can efficiently degrade, remove and recycle the malfunctioning or damaged mitochondria, and is crucial for quality control. In past decades, numerous studies have identified a series of factors that regulate mitophagy and are also involved in carcinogenesis, cancer cell migration and death. Therefore, it has become critically important to analyze signal pathways that regulate mitophagy to identify potential therapeutic targets. Here, we review recent progresses in mitochondrial dynamics, the mechanisms of mitophagy regulation, and the implications for understanding carcinogenesis, metastasis, treatment, and drug resistance.
Collapse
Affiliation(s)
- Yigang Wang
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hui-Hui Liu
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yu-Ting Cao
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Lei-Lei Zhang
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Fang Huang
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Cong Yi
- Department of Biochemistry, Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
36
|
Tang C, Zhang WP. How Phosphorylation by PINK1 Remodels the Ubiquitin System: A Perspective from Structure and Dynamics. Biochemistry 2019; 59:26-33. [PMID: 31503455 DOI: 10.1021/acs.biochem.9b00715] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ubiquitin is an important signaling protein in cells. It functions by covalent attachment to substrate proteins and by noncovalent interactions with target proteins. Ubiquitins are also concatenated, and the resulting polyubiquitins recognize target proteins multivalently with enhanced specificity. The function of ubiquitin is enabled by the conformational dynamics of ubiquitin and polyubiquitins, which spans over 12 orders of magnitude in a time scale. Recently, it was found that ubiquitin can be phosphorylated by PINK1 at residues S65 and T66. Only sparsely populated for the unmodified ubiquitin, a C-terminally retracted conformation is stabilized for phosphorylated ubiquitin and is further enriched at an increasing pH. The modulation of tertiary structure further impacts the quaternary arrangements of ubiquitin subunits in polyubiquitins. Additionally, ubiquitin phosphorylation inhibits the activities of many enzymes responsible for attaching and removing polyubiquitins, thus remodeling the composition and length of polyubiquitins. The phosphorylation-remolded polyubiquitins can then recognize different target proteins. As PINK1 and ubiquitin phosphorylation levels are up-regulated under certain pathophysiological conditions, the remodeled ubiquitin system may be involved in the divergence of cell fate.
Collapse
Affiliation(s)
- Chun Tang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan , Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences , Wuhan , Hubei 430071 , China
| | - Wei-Ping Zhang
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of Ministry of Health of China , Zhejiang University School of Medicine , Hangzhou , Zhejiang 310058 , China
| |
Collapse
|
37
|
Panigrahi DP, Praharaj PP, Bhol CS, Mahapatra KK, Patra S, Behera BP, Mishra SR, Bhutia SK. The emerging, multifaceted role of mitophagy in cancer and cancer therapeutics. Semin Cancer Biol 2019; 66:45-58. [PMID: 31351198 DOI: 10.1016/j.semcancer.2019.07.015] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/26/2019] [Accepted: 07/22/2019] [Indexed: 12/18/2022]
Abstract
Mitophagy is an evolutionarily conserved cellular process which selectively eliminates dysfunctional mitochondria by targeting them to the autophagosome for degradation. Dysregulated mitophagy results in the accumulation of damaged mitochondria, which plays an important role in carcinogenesis and tumor progression. The role of mitophagy receptors and adaptors including PINK1, Parkin, BNIP3, BNIP3L/NIX, and p62/SQSTM1, and the signaling pathways that govern mitophagy are impaired in cancer. Furthermore, the contribution of mitophagy in regulating the metabolic switch may establish a balance between aerobic glycolysis and oxidative phosphorylation for cancer cell survival. Moreover, ROS-driven mitophagy achieves different goals depending on the stage of tumorigenesis. Mitophagy promotes plasticity in the cancer stem cell through the metabolic reconfiguration for better adaption to the tumor microenvironment. In addition, the present review sheds some light on the role of mitophagy in stemness and differentiation during the transition of cell's fate, which could have a crucial role in cancer progression and metastasis. In conclusion, this review deals with the detailed molecular mechanisms underlying mitophagy, along with highlighting the dual role of mitophagy in different aspects of cancer, suggesting it as a possible target in the mitophagy-modulated cancer therapy.
Collapse
Affiliation(s)
- Debasna P Panigrahi
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha, India
| | - Prakash P Praharaj
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha, India
| | - Chandra S Bhol
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha, India
| | - Kewal K Mahapatra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha, India
| | - Srimanta Patra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha, India
| | - Bishnu P Behera
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha, India
| | - Soumya R Mishra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha, India
| | - Sujit K Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha, India.
| |
Collapse
|
38
|
Wu Q, Chong L, Shao Y, Chen S, Li C. Lipoxin A4 reduces hyperoxia-induced lung injury in neonatal rats through PINK1 signaling pathway. Int Immunopharmacol 2019; 73:414-423. [PMID: 31152979 DOI: 10.1016/j.intimp.2019.05.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/28/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is a common chronic lung disease in premature infants and is mainly caused by hyperoxia exposure and mechanical ventilation. Alveolar simplification, pulmonary vascular abnormalities and pulmonary inflammation are the main pathological changes in hyperoxic lung injury animals. Lipoxin A4 (LXA4) is an important endogenous lipid that can mediate the regression of inflammation and plays a role in acute lung injury and asthma. The purpose of this study was to evaluate the effects of LXA4 on inflammation and lung function in neonatal rats with hyperoxic lung injury and to explore the mechanism of the PINK1 pathway. After 85% oxygen exposure in newborn rats for 7 days, the BPD model was established. We found that LXA4 could significantly reduce cell and protein infiltration and oxidative stress in rat lungs, improve pulmonary function and alveolar simplification, and promote weight gain. LXA4 inhibited the expression of TNF-α, MCP-1 and IL-1β in serum and BALF from hyperoxic rats. Moreover, we found that LXA4 could reduce the expression of the PINK1 gene and down-regulate the expression of PINK1, Parkin, BNIP3L/Nix and the autophagic protein LC3B.These protective effects of LXA4 could be partially reversed by addition of BOC-2.Thus, we concluded that LXA4 can alleviate the airway inflammatory response, reduce the severity of lung injury and improve lung function in a hyperoxic rat model of BPD partly through the PINK1 signaling pathway.
Collapse
Affiliation(s)
- Qiuping Wu
- Discipline of Pediatric Pulmonology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lei Chong
- Discipline of Pediatric Pulmonology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Youyou Shao
- Discipline of Pediatric Pulmonology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shangqin Chen
- Discipline of Neonatology Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Changchong Li
- Discipline of Pediatric Pulmonology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|