1
|
Goel R, Kumar N, Mishra R, Kumar G, Singh N, Bhardwaj S, Puri D. Potential protective effects of Acacia nilotica (L.) against gentamicin - induced nephrotoxicity by suppressing renal redox imbalance, inflammatory stress and caspase-dependent apoptosis in Wistar rats. Drug Chem Toxicol 2025; 48:163-171. [PMID: 39155660 DOI: 10.1080/01480545.2024.2388324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/14/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024]
Abstract
Gentamicin-induced nephrotoxicity limits its therapeutic use as an effective aminoglycoside. Herbal drugs have a distinct place in the world of pharmaceuticals since they are safe, effective, and cost-efficient. Acacia nilotica (L.) has long been recognized for its antihypertensive, antioxidant, anti-inflammatory, and antiplatelet aggregatory benefits in traditional medicine. Still, the protective effect of Acacia nilotica on gentamicin-induced nephrotoxicity is still unknown. Thus, the goal of this research was to examine the protection of ethanolic extract of Acacia nilotica (ANE) against nephrotoxicity triggered by Gentamicin. Thirty-six rats were randomly divided into six groups containing six rats in each group. The distilled water were given in control group. The rats in groups two and three were administered metformin and gentamicin respectively. In groups five and six, rats were administered ANE at doses of 100 and 200 mg/kg. Ten days of daily treatments were given. The urea, creatinine, uric acid, and LDH levels were analyzed on serum, whereas histological evaluation, MDA, GSH, SOD, CAT, TNF-α, IL-6, and caspase-3, were performed on kidney tissue on day 11. The gentamicin-treated group exhibited a significantly elevated MDA, and lower levels of antioxidant enzymes. Kidney function markers, inflammatory markers and caspase-3 expression were significantly elevated in the gentamicin-treated group. ANE significantly restored kidney function biomarkers, upregulated biochemical levels, inhibited TNF-α, caspase-3, cytokine expression, and reduced histological lesions. In conclusion, ANE has the ability to prevent gentamicin-induced nephrotoxicity and reduce nephrotoxic damage. As such, it may represent an effective therapy for patients receiving gentamicin treatment.
Collapse
Affiliation(s)
- Radha Goel
- Department of Pharmacology, Lloyd Institute of Management & Technology, Greater Noida, India
| | - Nitin Kumar
- Department of Pharmacy, Meerut Institute of Technology, Meerut, India
| | - Rosaline Mishra
- Department of Pharmacy, Metro College of Health Sciences and Research, India
| | - Gaurav Kumar
- Department of Pharmacology, Lloyd Institute of Management & Technology, Greater Noida, India
| | - Neelam Singh
- Department of Pharmacy, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Snigdha Bhardwaj
- Department of Pharmaceutics, KIET School of Pharmacy, Ghaziabad, Delhi-NCR, India
| | - Dinesh Puri
- Department of Pharmaceutics, Graphic Era Hill University, Dehradun, India
| |
Collapse
|
2
|
Hanna DA, Messiha BAS, Abo-Saif AA, Ali FEM, Azouz AA. Lysosomal membrane stabilization by imipramine attenuates gentamicin-induced renal injury: Enhanced LAMP2 expression, down-regulation of cytoplasmic cathepsin D and tBid/cytochrome c/cleaved caspase-3 apoptotic signaling. Int Immunopharmacol 2024; 126:111179. [PMID: 37995569 DOI: 10.1016/j.intimp.2023.111179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/13/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023]
Abstract
Nephrotoxicity is a serious complication commonly encountered with gentamicin (GTM) treatment. Permeabilization of lysosomes with subsequent cytoplasmic release of GTM and cathepsins is considered a crucial issue in progression of GTM toxicity. This study was designed to evaluate the prospective defensive effect of lysosomal membrane stabilization by imipramine (IMP) against GTM nephrotoxicity in rats. GTM (30 mg/kg/h) was intraperitoneally administered over 4 h daily (120 mg/kg/day) for 7 days. IMP (30 mg/kg/day) was orally administered for 14 days; starting 7 days before and then concurrently with GTM. On 15th day, samples (urine, blood, kidney) were collected to estimate biomarkers of kidney function, lysosomal stability, apoptosis, and inflammation. IMP administration to GTM-treated rats ameliorated the disruption in lysosomal membrane stability induced by GTM. That was evidenced by enhanced renal protein expressions of LAMP2 and PI3K, but reduced cathepsin D cytoplasmic expression in kidney sections. Besides, IMP guarded against apoptosis in GTM-treated rats by down-regulation of the pro-apoptotic (tBid, Bax, cytochrome c) and the effector cleaved caspase-3 expressions, while the anti-apoptotic Bcl-2 expression was enhanced. Additionally, the inflammatory cascade p38 MAPK/NF-κB/TNF-α was attenuated in GTM + IMP group along with marked improvement in kidney function biomarkers, compared to GTM group. These findings were supported by the obvious improvement in histological architecture. Furthermore, in vitro enhancement of the antibacterial activity of GTM by IMP confers an additional benefit to their combination. Conclusively, lysosomal membrane stabilization by IMP with subsequent suppression of tBid/cytochrome c/cleaved caspase-3 apoptotic signaling could be a promising protective strategy against GTM nephrotoxicity.
Collapse
Affiliation(s)
- Dina A Hanna
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Basim A S Messiha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Ali A Abo-Saif
- Department of Pharmacology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Fares E M Ali
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Amany A Azouz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| |
Collapse
|
3
|
Kendirlinan Ö, Kuyucu Y, Güzelel B, Dündar Yenilmez E, Tuli A, Seydaoğlu G, Mete UÖ. Investigation the effects of 2-aminoethoxydiphenyl borate (2-APB) on aminoglycoside nephrotoxicity. Ultrastruct Pathol 2024; 48:29-41. [PMID: 37970647 DOI: 10.1080/01913123.2023.2278629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/30/2023] [Indexed: 11/17/2023]
Abstract
Investigation the protective effect of transient receptor potential channel modulator 2-Aminoethoxydiphenyl Borate (2-APB) on aminoglycoside nephrotoxicity caused by reactive oxygen species, calcium-induced apoptosis and inflammation was aimed. Forty Wistar rats were divided (n=8) as follows: Control group; DMSO group; 2-APB group; Gentamicin group (injected 100 mg/kg gentamicin intramuscularly for 10 days); Gentamicin+ 2-APB group (injected 2 mg/kg 2-APB intraperitoneally, then after 30 minutes 100 mg/kg gentamicin was injected intramuscularly for 10 days). Blood samples were collected for biochemical analyses, kidney tissue samples were collected for light, electron microscopic and immunohistochemical investigations. In gentamicin group glomerular degeneration, tubular dilatation, vacuolization, desquamation of tubular cells and hyaline cast formation in luminal space and leukocyte infiltration were seen. Disorganization of microvilli of tubular cells, apical cytoplasmic blebbing, lipid accumulation, myelin figure like structure formation, increased lysosomes, mitochondrial swelling and disorganization of cristae structures, apoptotic changes and widening of intercellular space were found. TNF-α, IL-6 and caspase 3 expressions were increased. BUN and creatinine concentrations were increased. Increase in MDA levels and decrease in SOD activities were determined. Even though degeneration still continues in gentamicin+2-APB treatment group, severity and the area it occupied were decreased and the glomerular and tubule structures were generally preserved. TNF-α, IL-6, caspase 3 immunoreactivities and BUN, creatinine, MDA concentrations were reduced and SOD activities were increased markedly compared to gentamicin group. In conclusion, it has been considered that 2-APB can prevent gentamicin mediated nephrotoxicity with its anti-oxidant, anti-apoptotic and anti-inflammatory effects.
Collapse
Affiliation(s)
- Özge Kendirlinan
- Department of Histology and Embryology, Çukurova University, Adana, Turkey
| | - Yurdun Kuyucu
- Department of Histology and Embryology, Çukurova University, Adana, Turkey
| | - Bilge Güzelel
- Department of Histology and Embryology, Çukurova University, Adana, Turkey
| | | | - Abdullah Tuli
- Department of Medical Biochemistry, Çukurova University, Adana, Turkey
| | | | - Ufuk Özgü Mete
- Department of Histology and Embryology, Çukurova University, Adana, Turkey
| |
Collapse
|
4
|
Hamdy S, Elshopakey GE, Risha EF, Rezk S, Ateya AI, Abdelhamid FM. Curcumin mitigates gentamicin induced-renal and cardiac toxicity via modulation of Keap1/Nrf2, NF-κB/iNOS and Bcl-2/BAX pathways. Food Chem Toxicol 2024; 183:114323. [PMID: 38056816 DOI: 10.1016/j.fct.2023.114323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
Gentamicin (GEN) is an aminoglycoside antibiotic used to treat gram-negative bacterial infections. Our study aimed to explore curcumin's (CMN) protective role against GEN-induced renal and cardiac toxicity. Rats were randomly classified into 4 equal groups; Control (cont), GEN (100 mg/kg b.wt, i.p.) for seven days, CMN (200 mg/kg b.wt, orally) for 21 days, and CMN + GEN groups. GEN caused renal and cardiac dysfunctions; increased urea, creatinine, uric acid, cystatin C, CK-MB, LDH, and troponin I serum levels. MDA level was elevated significantly while activities of SOD, CAT, and GSH level were reduced significantly in renal and cardiac tissues. GEN-intoxicated rats showed up-regulation of NF-κB, IL-1β, Keap1, HMOX1, and BAX with down-regulation of Nrf2, and Bcl-2 mRNA expression in renal and cardiac tissues. Also, GEN-induced up-regulation of renal mRNA expression of KIM-1, NGAL, and intermediate filament proteins [desmin, nestin, and vimentin] as well cardiac gene expression of cMyBP-C and H-FABP. GEN-induced toxicity was significantly attenuated by CMN co-treatment as CMN improved renal and cardiac biomarkers, reduced oxidative stress and inflammatory response, and reversed alterations in mRNA expression of all tested renal and cardiac genes. These outcomes indicated that CMN could protect renal and cardiac tissues against GEN-induced oxidative stress, inflammation, and apoptosis.
Collapse
Affiliation(s)
- Sara Hamdy
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Gehad E Elshopakey
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Engy F Risha
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Shaymaa Rezk
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmed I Ateya
- Department of Development of Animal wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Fatma M Abdelhamid
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
5
|
Mohtadi S, Shariati S, Mansouri E, Khodayar MJ. Nephroprotective effect of diosmin against sodium arsenite-induced renal toxicity is mediated via attenuation of oxidative stress and inflammation in mice. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105652. [PMID: 38072527 DOI: 10.1016/j.pestbp.2023.105652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/04/2023] [Accepted: 10/16/2023] [Indexed: 12/18/2023]
Abstract
Arsenic compounds, which are used in different industries like pesticide manufacturing, cause severe toxic effects in almost all organs, including the kidneys. Since the primary route of exposure to arsenic is through drinking water, and millions of people worldwide are exposed to unsafe levels of arsenic that can pose a threat to their health, this research was performed to investigate the nephroprotective effects of Diosmin (Dios), a flavonoid found in citrus fruits, against nephrotoxicity induced by sodium arsenite (SA). To induce nephrotoxicity, SA (10 mg/kg, oral gavage) was administered to mice for 30 days. Dios (25, 50, and 100 mg/kg, oral gavage) was given to mice for 30 days prior to SA administration. After the study was completed, animals were euthanized and blood and kidney samples were taken for biochemical and histopathological assessments. Results showed that SA-treated mice significantly increased the blood urea nitrogen and creatinine levels in the serum. This increase was associated with significant kidney tissue damage in SA-treated mice, which was confirmed by histopathological studies. Furthermore, SA enhanced the amounts of renal thiobarbituric acid reactive substances and decreased total thiol reserves, as well as the activity of antioxidant enzymes such as catalase, superoxide dismutase, and glutathione peroxidase. Also, in the SA-exposed group, an increase in the levels of kidney inflammatory biomarkers, including nitric oxide and tumor necrosis factor-alpha was observed. The western blot analysis indicated an elevation in the protein expression of kidney injury molecule-1 and nuclear factor-kappa B in SA-treated mice. However, pretreatment with Dios ameliorated the SA-related renal damage in mice. Our findings suggest that Dios can protect the kidneys against the nephrotoxic effects of SA by its antioxidant and anti-inflammatory characteristics.
Collapse
Affiliation(s)
- Shokooh Mohtadi
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeedeh Shariati
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Esrafil Mansouri
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javad Khodayar
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
6
|
Delghandi PS, Soleimani V, Fazly Bazzaz BS, Hosseinzadeh H. A review on oxidant and antioxidant effects of antibacterial agents: impacts on bacterial cell death and division and therapeutic effects or adverse reactions in humans. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2667-2686. [PMID: 37083711 DOI: 10.1007/s00210-023-02490-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/11/2023] [Indexed: 04/22/2023]
Abstract
Reactive oxygen species (ROS) are produced in the mitochondrial respiratory pathway and cellular metabolism. They are responsible for creating oxidative stress and lipid peroxidation. In living organisms, there is a balance between oxidative stress and the antioxidant system, but some factors such as medicines disturb the balance and cause many problems. These effects can impact bacterial death and division and also in humans can induce therapeutic or adverse reactions. Web of Science and Pubmed databases were used for searching. This review focuses on the oxidant and antioxidant effects of different classes of antibacterial agents and the mechanisms of oxidative stress. Some of these agents have beneficial effects on killing bacteria due to their antioxidant or oxidant effects. However, some of their side effects may be due to their oxidative effects. Based on the results of this review, minocycline is an antioxidant, but aminoglycosides, chloramphenicol, glycopeptides, antituberculosis drugs, fluoroquinolones, and sulfamethoxazole agents have oxidant effects. Furthermore, cephalosporins, penicillins, metronidazole, and macrolides have both oxidant and antioxidant effects in different studies. It is concluded that some antibacterial agents have oxidant and other antioxidant effects. These activities may affect their therapeutic effects or side effects. Some antioxidants can prevent the adverse effects of antibacterial agents. Clarifying the exact oxidant and antioxidant effects of some antimicrobial agents needs more research projects.
Collapse
Affiliation(s)
| | - Vahid Soleimani
- School of Pharmacy, Mashhad University of Medical Science, Mashhad, IR, Iran
| | - Bibi Sedigheh Fazly Bazzaz
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, IR, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, IR, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, IR, Iran.
| |
Collapse
|
7
|
Albalawi RS, Binmahfouz LS, Hareeri RH, Shaik RA, Bagher AM. Parthenolide Phytosomes Attenuated Gentamicin-Induced Nephrotoxicity in Rats via Activation of Sirt-1, Nrf2, OH-1, and NQO1 Axis. Molecules 2023; 28:2741. [PMID: 36985711 PMCID: PMC10053629 DOI: 10.3390/molecules28062741] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Nephrotoxicity is a serious complication that limits the clinical use of gentamicin (GEN). Parthenolide (PTL) is a sesquiterpene lactone derived from feverfew with various therapeutic benefits. However, PTL possesses low oral bioavailability. This study aimed to evaluate the therapeutic protective effects of PTL-phytosomes against GEN-induced nephrotoxicity in rats. The PTL was prepared as phytosomes to improve the pharmacological properties with a particle size of 407.4 nm, and surface morphology showed oval particles with multiple edges. Rats were divided into six groups: control, nano-formulation plain vehicle, PTL-phytosomes (10 mg/kg), GEN (100 mg/kg), GEN + PTL-phytosomes (5 mg/kg), and GEN + PTL-phytosomes (10 mg/kg). The administration of PTL-phytosomes alleviated GEN-induced impairment in kidney functions and histopathological damage, and decreased kidney injury molecule-1 (KIM-1). The anti-oxidative effect of PTL-phytosomes was demonstrated by the reduced malondialdehyde (MDA) concentration and increased superoxide dismutase (SOD) and catalase (CAT) activities. Furthermore, PTL-phytosomes treatment significantly enhanced sirtuin 1 (Sirt-1), nuclear factor erythroid-2-related factor-2 (Nrf2), NAD(P)H quinone dehydrogenase 1 (NQO1), and heme oxygenase-1 (HO-1). Additionally, PTL-phytosomes treatment exhibited anti-inflammatory and anti-apoptotic properties in the kidney tissue. These findings suggest that PTL-phytosomes attenuate renal dysfunction and structural damage by reducing oxidative stress, inflammation, and apoptosis in the kidney.
Collapse
Affiliation(s)
| | | | | | | | - Amina M. Bagher
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
8
|
Constructing NaX Nanozeolite Modified Carbon Paste Electrode for Electro-Catalytic Measurement of Gentamicin Sulfate in Pharmaceutical Samples. J Inorg Organomet Polym Mater 2023. [DOI: 10.1007/s10904-023-02587-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
9
|
Midhun Sebastian Jose, Arun D, Neethu S, Radhakrishnan EK, Jyothis M. Probiotic Paenibacillus polymyxa HGA4C and Bacillus licheniformis HGA8B combination improved growth performance, enzymatic profile, gene expression and disease resistance in Oreochromisniloticus. Microb Pathog 2023; 174:105951. [PMID: 36528324 DOI: 10.1016/j.micpath.2022.105951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Bacterial consortium containing two bacterial strains such as Paenibacillus polymyxa HGA4C and Bacillus licheniformis HGA8B incorporated in the diet of Oreochromis niloticus at a concentration of 1 × 106 CFU g-1 (PB1) and 1 × 108 CFU g-1 (PB2) revealed the probiotic potentials of the bacterial combination. The probiotic feed enhanced the growth performance, digestive enzymes, and antioxidant enzymes in the liver and intestine. Probiotic mediated growth enhancement was further substantiated by the up-regulation of genes such as GHR-1, GHR-2, IGF-1, and IGF-2 and the up-regulation of immune-related genes viz. TLR-2, IL-10, and TNF-α were also significantly modulated by probiotics supplementation. The intestinal MUC 2 gene expression revealed the mucosal remodification and the disease resistance of the fish challenged with Aeromonas hydrophila (MTCC-1739) was improved by the probiotic supplementation. Based on these results the new probiotic supplementation feed can be possibly marketed to help aquaculture farmers to alleviate many of the problems associated with fish farming.
Collapse
Affiliation(s)
- Midhun Sebastian Jose
- Department of Veterinary Pathology, Western College of Veterinary Medicine, 52 Campus Drive, Saskatoon, SK, Canada.
| | - Damodaran Arun
- Department of Biology, University of Regina, 3737,Wascana Parkway, Regina, Saskatchewan, Canada
| | - Sahadevan Neethu
- School of Biosciences, Mahatma Gandhi University, Kottayam, India
| | | | - Mathew Jyothis
- School of Biosciences, Mahatma Gandhi University, Kottayam, India.
| |
Collapse
|
10
|
Expression of ER stress markers (GRP78 and PERK) in experimental nephrotoxicity induced by cisplatin and gentamicin: roles of inflammatory response and oxidative stress. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 396:789-801. [PMID: 36482225 DOI: 10.1007/s00210-022-02358-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
This study aimed to establish the relationship between two endoplasmic reticulum (ER) stress proteins, glucose-regulated protein 78 (GRP78/BiP) and PKR-like endoplasmic reticulum kinase (PERK), and oxidative stress markers in cisplatin (CIS)-induced and gentamicin (GEN)-induced nephrotoxicity.The study consisted of five groups: control (saline solution only), CIS D2 (2.5 mg/kg for 2 days), CIS D7 (2.5 mg/kg for 7 days), GEN D2 (160 mg/kg for 2 days), and GEN D7 (160 mg/kg for 7 days). All rats were sacrificed 24 h after the last injection for standard clinical chemistry, and ultrastructural and histological evaluation of the kidney.CIS and GEN increased blood urea nitrogen (BUN) and serum creatinine (Cr) levels, as well as total oxidant status (TOS), while decreasing total antioxidant status (TAS) level in CIS D7 and GEN D7 groups. Histopathological and ultrastructural findings were also consistent with renal tubular damage. In addition, expression of markers of renal inflammation (tumor necrosis factor-α (TNF-α) and interleukin 1β (IL-1β)) and ER stress markers (GRP78 and PERK) was significantly increased in the kidney tissue of rats treated with CIS and GEN for 7 days.These findings suggest that CIS and GEN administration for 7 days aggravates nephrotoxicity through the enhancement of oxidative stress, inflammation, and ER stress-related markers. As a result, the recommended course of action is to utilize CIS and GEN as an immediate but brief induction therapy, stopping after 3 days and switching to other drugs instead.
Collapse
|
11
|
Khalil HE, Abdelwahab MF, Emeka PM, Badger-Emeka LI, Ahmed ASF, Anter AF, Abdel Hafez SMN, AlYahya KA, Ibrahim HIM, Thirugnanasambantham K, Matsunami K, Ibrahim Selim AH. Brassica oleracea L. var. botrytis Leaf Extract Alleviates Gentamicin-Induced Hepatorenal Injury in Rats—Possible Modulation of IL-1β and NF-κB Activity Assisted with Computational Approach. Life (Basel) 2022; 12:life12091370. [PMID: 36143406 PMCID: PMC9504091 DOI: 10.3390/life12091370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/14/2022] [Accepted: 08/14/2022] [Indexed: 12/13/2022] Open
Abstract
Background: Recently, crop byproducts are considered a hot topic and can be converted into beneficial products. Cauliflower is well-known for its protective effects against oxidative stress-induced damage. The current study aimed to investigate the chemical profile and the ameliorative effects of cauliflower leaf extract (CL) on gentamicin-induced renal and hepatic injuries in rats. Methods: Cauliflower leaf was extracted with methanol to give the total methanol extract (TME) followed by the determination of total phenolic contents (TPC). Rats were divided into five groups; Group I was assigned as the control group, while the other groups were injected with gentamicin for ten days. Group II was given distilled water. Rats in groups III and IV were treated with oral CL (200 mg/kg and 400 mg/kg, respectively). Group V received L-cysteine (as a positive control). The functions of the kidneys and liver; oxidative stress and morphological and apoptotic changes of renal and hepatic tissues were assessed. Results: The TME was subjected to chromatographic techniques to yield ferulic acid, vanillic acid, p-coumaric acid and quercetin. TPC was 72.31 mg GAE/g of dried extract. CL treatment dose-dependently ameliorated gentamicin-induced impaired kidney and liver functions and improved the histopathological appearance of both organs. It also reduced gentamicin-induced oxidative stress. CL demonstrated downregulation of mRNA and protein expressions of IL-1β and NF-κB compared to nontreated rats. In silico interaction of the isolated compounds with amino acid residues of IL-1β and NF-κB might explain the current findings. Conclusion: Taken together, this study raises the waste-to-wealth potential of cauliflower to mitigate gentamicin-induced hepatorenal injury and convert the waste agromaterials into valuable products.
Collapse
Affiliation(s)
- Hany Ezzat Khalil
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
- Correspondence:
| | - Miada F. Abdelwahab
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Promise Madu Emeka
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Lorina I. Badger-Emeka
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Al-Shaimaa F. Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Aliaa F. Anter
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | | | - Khalid A. AlYahya
- Department of Surgery, College of Medicine, King Faisal University, Al-Ahsa 36363, Saudi Arabia
| | - Hairul-Islam Mohamed Ibrahim
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Pondicherry Centre for Biological Science and Educational Trust, Puducherry 605004, India
| | - Krishnaraj Thirugnanasambantham
- Pondicherry Centre for Biological Science and Educational Trust, Puducherry 605004, India
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, India
| | - Katsuyoshi Matsunami
- Department of Pharmacognosy, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | | |
Collapse
|
12
|
An enhanced immunochromatography assay based on colloidal gold-decorated polydopamine for rapid and sensitive determination of gentamicin in animal-derived food. Food Chem 2022; 387:132916. [DOI: 10.1016/j.foodchem.2022.132916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/24/2022] [Accepted: 04/05/2022] [Indexed: 11/22/2022]
|
13
|
Brkić BM, Rovčanin B, Stojanović M, Srebro D, Vučković S, Savić Vujović K. Chloroquine Attenuates Oxidative Stress in Gentamicin-Induced Nephrotoxicity in Rats. Dose Response 2022; 20:15593258221119871. [PMID: 36003319 PMCID: PMC9393693 DOI: 10.1177/15593258221119871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/18/2022] [Accepted: 07/24/2022] [Indexed: 11/25/2022]
Abstract
The wider application of gentamicin is limited by potential adverse effects
(nephrotoxicity and ototoxicity). The goal of our study was to investigate the effects of
chloroquine on biochemical and oxidative stress parameters in gentamicin-induced
nephrotoxicity in rats. Animals were randomly divided into 1 of 5 groups. First was Sham
group (0.9% NaCl) (n = 8); second group received gentamicin (n = 8); while third (n = 8),
fourth (n = 8) and fifth group (n = 8) received gentamicin and chloroquine in a dose of
0.3, 1 and 3 mg/kg, respectively. The urea and creatinine levels were significantly lower
in chloroquine treated groups in doses of 0.3 mg/kg and 1 mg/kg (P <
0.001). Total oxidant status and the oxidative stress index showed significantly lower
values in all chloroquine treated groups (P < 0.001;
P < 0.005). Malondialdehyde was lower in chloroquine treatment in
doses of 0.3 mg/kg (P < 0.005) and 3 mg/kg (P <
0.05). Chloroquine treatment markedly reduced the level of superoxide dismutase in doses
of 1 mg/kg (P < 0.01) and 3 mg/kg (P < 0.05). Our
study showed that chloroquine attenuates gentamicin-induced nephrotoxicity in rats
regarding biochemical and oxidative stress parameters.
Collapse
Affiliation(s)
- Branislava Medić Brkić
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Branislav Rovčanin
- Centre for Endocrine Surgery, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Marko Stojanović
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dragana Srebro
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Sonja Vučković
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Katarina Savić Vujović
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
14
|
Yu M, Zhang Y, Zhang D, Wang Q, Wang G, Elsadek M, Yao Q, Chen Y, Guo Z. The effect of adding Bacillus amyloliquefaciens LSG2-8 in diets on the growth, immune function, antioxidant capacity, and disease resistance of Rhynchocypris lagowskii. FISH & SHELLFISH IMMUNOLOGY 2022; 125:258-265. [PMID: 35580796 DOI: 10.1016/j.fsi.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
The purpose of this study was to investigate the effect of Bacillus amyloliquefaciens LSG2-8 on the growth performance, immune function, antioxidant capacity, and disease resistance of Rhynchocypris lagowskii. Fish were fed with the feed containing five levels such as 0, 1.0 × 106, 1.0 × 107, 1.0 × 108, and 1.0 × 109 CFU/g of the B. amyloliquefaciens LSG2-8 for 56 days. After 56 days of feeding, twenty four fish were randomly selected to test various growth, immune and antioxidant parameters. Ten fish were challenged with Aeromonas hydrophila for 14 days; the mortality rate was recorded 14 days after infection. The results showed that B. amyloliquefaciens LSG2-8 could significantly increase the growth parameters of R. lagowskii's, such as final body weight, weight gain rate, specific growth rate, and feed efficiency (p < 0.05). Further examination revealed the activity of antioxidant enzymes, Nrf-2 mRNA, and Keap-1 mRNA gene expression in the intestine and liver, and the serum immune index of R. lagowskii in the 1.0 × 108 CFU/g were all significantly higher compared to the other groups. Furthermore, fish fed a diet supplemented with B. amyloliquefaciens LSG2-8 had a significantly lower (p < 0.05) post-challenge mortality rate than the control fish. In summary, the research results showed that B. amyloliquefaciens LSG2-8 could improve the growth performance, immune function, antioxidant capacity, and disease resistance of R. lagowskii and be used in aquaculture.
Collapse
Affiliation(s)
- Mengnan Yu
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, China; College of Life Science, Jilin Agricultural University, Changchun, China
| | - Yurou Zhang
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, China; College of Life Science, Jilin Agricultural University, Changchun, China
| | - Dongming Zhang
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, China; College of Life Science, Jilin Agricultural University, Changchun, China
| | - Qiuju Wang
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, China; College of Life Science, Jilin Agricultural University, Changchun, China
| | - Guiqin Wang
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, China; College of Life Science, Jilin Agricultural University, Changchun, China
| | - Mahmound Elsadek
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, China; Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo, 11884, Egypt
| | - Qi Yao
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, China; College of Life Science, Jilin Agricultural University, Changchun, China
| | - Yuke Chen
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, China; College of Life Science, Jilin Agricultural University, Changchun, China.
| | - Zhixin Guo
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, China; College of Life Science, Jilin Agricultural University, Changchun, China; Tonghua Normal University, College of Life Science, Jilin, Tonghua, 134001, China.
| |
Collapse
|
15
|
Narayanan SE, Abdelgawad MA, Althobaiti YS, Ghoneim MM, Rajamma RG, Sekhar N, Parambi DGT, Nath LR, Kanthlal SK, Mathew B. Effect of Hydroaloholic Extract of Rotula Aquatica Lour on Gentamicin-Induced Nephrotoxicity in Wistar Albino Rats: An In Vitro and In Vivo Approach. J Biomed Nanotechnol 2022; 18:884-890. [PMID: 35715915 DOI: 10.1166/jbn.2022.3301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
One-third of the world population suffer from kidney complications such as acute and chronic renal failure, renal calculi, kidney stones, Fanconi's syndrome and urethritis which doesn't have a proper effective treatment regimen. The current study explores the nephroprotective effect of herbal drug Rotula Aquatica by both In Vitro and In Vivo methods. MTT assay was applied In Vitro to evaluate the nephroprotective effect of R. aquatica leaves extract on HEK 293 cell line. The acute toxicity of the extract was evaluated as per the limit test under the protocol of OECD 423 at a concentration of 2000 mg/kg using 6 female rats. Further, an In Vivo study using the Gentamicin-instigated nephrotoxicity model was carried out for a period of 8 days. Biochemical markers of renal damage, endogenous antioxidants and histopathology were determined to assess the effect of treatment. The In Vitro study using HEK 293 cell line resulted in an EC50 value of 51.50 μg/ml for the extract in comparison to the standard drug Cytsone (12.26 μg/ml). Based on the limit test of OECD 423, doses of 200 and 400 mg/kg were chosen for the study. The results revealed a strong nephroprotective activity at 400 mg/kg in Gentamicin-induced nephrotoxicity against standard drug cystone by restoring the decrement in body weight, renal enzymatic and non-enzymatic antioxidants, creatinine and urea levels in urine and plasma. This indicated that hydroalcoholic extract of Rotula aquatica (HAERA) can prevent the Gentamicin toxicity due to the high content of antioxidant and anti-inflammatory secondary metabolites.
Collapse
Affiliation(s)
- Siju Ellickal Narayanan
- P.G. Department of Pharmacology, College of Pharmaceutical Sciences, Govt. Medical College, Kannur 670503, India
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf, 72341, Saudi Arabia
| | - Yusuf S Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, Taif, 21944, Saudi Arabia
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, Faculty of Pharmacy, AlMaarefa University, Ad Diriyah, 13713, Saudi Arabia
| | | | - Nikhila Sekhar
- P.G. Department of Pharmacology, College of Pharmaceutical Sciences, Govt. Medical College, Kannur 670503, India
| | - Della G T Parambi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf, 72341, Saudi Arabia
| | - Lekshmi R Nath
- Department of Pharmacogonosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, India
| | - S K Kanthlal
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, India
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, India
| |
Collapse
|
16
|
Vysakh A, Jayesh K, Jisha N, Vijeesh V, Midhun SJ, Jyothis M, Latha MS. Rotula aquatica Lour. mitigates oxidative stress and inflammation in acute pyelonephritic rats. Arch Physiol Biochem 2022; 128:92-100. [PMID: 31560224 DOI: 10.1080/13813455.2019.1665073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The current study evaluates the efficacy of methanolic extract of Rotula aquatica Lour. (MERA) against inflammatory changes associated with acute pyelonephritis. The antioxidant enzymes such as SOD, CAT, GPx, GR and oxidative stress markers like GSH content, malondialdehyde (MDA) level, nitrate level, reactive oxygen species (ROS) level and renal toxicity markers were evaluated in this study. The mRNA level expression of Toll-like receptor 4 (TLR-4), nuclear transcription factor kappa B (NF-κB), tumour necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and Tamm Horsfall protein (THP) were studied by RT-PCR analysis. The oral administration of MERA increases the antioxidant enzyme status in pyelonephritis rat. The elevated levels of oxidative stress markers in pyelonephritic rats were ameliorated by the administration of MERA at 100 mg/kg and 200 mg/kg bwt of the rat. The mRNA level expression of major genes were restored to normal level by MERA.
Collapse
Affiliation(s)
- A Vysakh
- School of Biosciences, Mahatma Gandhi University, Priyadarshini Hills, Kottayam, Kerala, India
| | - Kuriakose Jayesh
- School of Biosciences, Mahatma Gandhi University, Priyadarshini Hills, Kottayam, Kerala, India
| | - Ninan Jisha
- School of Biosciences, Mahatma Gandhi University, Priyadarshini Hills, Kottayam, Kerala, India
| | - V Vijeesh
- School of Biosciences, Mahatma Gandhi University, Priyadarshini Hills, Kottayam, Kerala, India
| | - Sebastian Jose Midhun
- School of Biosciences, Mahatma Gandhi University, Priyadarshini Hills, Kottayam, Kerala, India
| | - Mathew Jyothis
- School of Biosciences, Mahatma Gandhi University, Priyadarshini Hills, Kottayam, Kerala, India
| | - M S Latha
- School of Biosciences, Mahatma Gandhi University, Priyadarshini Hills, Kottayam, Kerala, India
| |
Collapse
|
17
|
Ungur RA, Borda IM, Codea RA, Ciortea VM, Năsui BA, Muste S, Sarpataky O, Filip M, Irsay L, Crăciun EC, Căinap S, Jivănescu DB, Pop AL, Singurean VE, Crișan M, Groza OB, Martiș (Petruț) GS. A Flavonoid-Rich Extract of Sambucus nigra L. Reduced Lipid Peroxidation in a Rat Experimental Model of Gentamicin Nephrotoxicity. MATERIALS (BASEL, SWITZERLAND) 2022; 15:772. [PMID: 35160718 PMCID: PMC8837157 DOI: 10.3390/ma15030772] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/03/2022] [Accepted: 01/12/2022] [Indexed: 12/04/2022]
Abstract
The use of gentamicin (GM) is limited due to its nephrotoxicity mediated by oxidative stress. This study aimed to evaluate the capacity of a flavonoid-rich extract of Sambucus nigra L. elderflower (SN) to inhibit lipoperoxidation in GM-induced nephrotoxicity. The HPLC analysis of the SN extract recorded high contents of rutin (463.2 ± 0.0 mg mL-1), epicatechin (9.0 ± 1.1 µg mL-1), and ferulic (1.5 ± 0.3 µg mL-1) and caffeic acid (3.6 ± 0.1 µg mL-1). Thirty-two Wistar male rats were randomized into four groups: a control group (C) (no treatment), GM group (100 mg kg-1 bw day-1 GM), GM+SN group (100 mg kg-1 bw day-1 GM and 1 mL SN extract day-1), and SN group (1 mL SN extract day-1). Lipid peroxidation, evaluated by malondialdehyde (MDA), and antioxidant enzymes activity-superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX)-were recorded in renal tissue after ten days of experimental treatment. The MDA level was significantly higher in the GM group compared to the control group (p < 0.0001), and was significantly reduced by SN in the GM+SN group compared to the GM group (p = 0.021). SN extract failed to improve SOD, CAT, and GPX activity in the GM+SN group compared to the GM group (p > 0.05), and its action was most probably due to the ability of flavonoids (rutin, epicatechin) and ferulic and caffeic acids to inhibit synthesis and neutralize reactive species, to reduce the redox-active iron pool, and to inhibit lipid peroxidation. In this study, we propose an innovative method for counteracting GM nephrotoxicity with a high efficiency and low cost, but with the disadvantage of the multifactorial environmental variability of the content of SN extracts.
Collapse
Affiliation(s)
- Rodica Ana Ungur
- Department of Medical Specialties, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (R.A.U.); (V.M.C.); (L.I.)
| | - Ileana Monica Borda
- Department of Medical Specialties, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (R.A.U.); (V.M.C.); (L.I.)
| | - Răzvan Andrei Codea
- Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania;
| | - Viorela Mihaela Ciortea
- Department of Medical Specialties, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (R.A.U.); (V.M.C.); (L.I.)
| | - Bogdana Adriana Năsui
- Department of Community Health, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania;
| | - Sevastița Muste
- Food Engineering Department, University of Agricultural Sciences and Veterinary Medicine, 64 Calea Floresti, 400509 Cluj-Napoca, Romania; (S.M.); (G.S.M.)
| | - Orsolya Sarpataky
- Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania;
| | - Miuța Filip
- Raluca Ripan Institute for Research in Chemistry, Babeş-Bolyai University, 30 Fântânele Street, 400294 Cluj-Napoca, Romania;
| | - Laszlo Irsay
- Department of Medical Specialties, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (R.A.U.); (V.M.C.); (L.I.)
| | - Elena Cristina Crăciun
- Department of Pharmaceutical Biochemistry and Clinical Laboratory, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania;
| | - Simona Căinap
- Department of Mother and Child, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania;
| | - Delia Bunea Jivănescu
- Department of Internal Medicine, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania;
| | - Anca Lucia Pop
- Department of Clinical Laboratory, Food Safety, Nutrition, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania;
| | - Victoria Emilia Singurean
- Department of Morphological Sciences, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (V.E.S.); (M.C.); (O.B.G.)
| | - Maria Crișan
- Department of Morphological Sciences, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (V.E.S.); (M.C.); (O.B.G.)
| | - Oana Bianca Groza
- Department of Morphological Sciences, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (V.E.S.); (M.C.); (O.B.G.)
| | - Georgiana Smaranda Martiș (Petruț)
- Food Engineering Department, University of Agricultural Sciences and Veterinary Medicine, 64 Calea Floresti, 400509 Cluj-Napoca, Romania; (S.M.); (G.S.M.)
| |
Collapse
|
18
|
Pakfetrat Z, Janfeshan S, Masjedi F, Rafiei M, Karimi Z. Involvement of oxidative stress and toll-like receptor-4 signaling pathways in gentamicin-induced nephrotoxicity in male Sprague Dawley rats. Drug Chem Toxicol 2021; 45:2568-2575. [PMID: 34538191 DOI: 10.1080/01480545.2021.1977024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Gentamicin (GM) is an antibiotic belonging to an aminoglycoside family that might induce nephrotoxicity in human and animal models via oxidative stress. Toll-like receptors (TLRs) are part of innate immune systems that participate in inflammatory responses. In this regard, we investigated the effect of GM on kidney functional and structural parameters, enzymatic antioxidant levels, and mRNA expression of TLR4 and IL6 in the rat kidney. Adult male Sprague Dawley rats were randomly divided into two groups (n = 10): Control and Gentamicin (100 mg/kg, i.p.). After ten days of GM administration, a blood sample was taken, and the kidneys were removed. The serum levels of creatinine (Cr) and blood urea nitrogen (BUN) were measured. Furthermore, the right kidney was preserved in formalin 10% for hematoxylin and eosin (H&E) staining, and the left kidney was kept at -80 °C for molecular and oxidative indexes analysis. Administration of GM caused tubular damages and functional disturbance. So that, Cr and BUN values in the GM group were higher than Control group. Furthermore, molecular findings showed upregulation of TLR4 and IL-6 mRNA expression in renal tissue of the GM-received group. In this study, superoxide dismutase (SOD) activity was slightly increased as a compensatory mechanism in response to elevated malondialdehyde (MDA) levels in the GM-treated group. On the other hand, the activity of catalase (CAT) and glutathione peroxidase (GPx) were significantly declined. Our results demonstrated that oxidative stress and subsequent TLR4 upregulation signaling pathways are involved in GM-induced nephrotoxicity.
Collapse
Affiliation(s)
- Zahra Pakfetrat
- Department of Biology, Arsanjan Branch, Islamic Azad University, Arsanjan, Iran
| | - Sahar Janfeshan
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Masjedi
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Rafiei
- Department of Biology, Arsanjan Branch, Islamic Azad University, Arsanjan, Iran
| | - Zeinab Karimi
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
19
|
Abd-Elhakim YM, Moselhy AAA, Aldhahrani A, Beheiry RR, Mohamed WAM, Soliman MM, Saffaf BA, M. El Deib M. Protective Effect of Curcumin against Sodium Salicylate-Induced Oxidative Kidney Damage, Nuclear Factor-Kappa Dysregulation, and Apoptotic Consequences in Rats. Antioxidants (Basel) 2021; 10:826. [PMID: 34064189 PMCID: PMC8224369 DOI: 10.3390/antiox10060826] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
This study examined the effect of sodium salicylates (SS), alone and in combination with curcumin (CUR), on kidney function and architecture in rats. Five rat groups were given 1 mL physiological saline/rat orally, 1 mL olive oil/rat orally, 50 mg CUR/kg bwt orally, 300 mg SS/kg bwt intraperitoneally, or CUR+SS for 15 days. The hematological indices, serum protein profile, serum electrolytes balance, oxidative stress, and lipid peroxidation of kidney tissues were assessed. The histopathological examination and immune expression of Caspase-3 and nuclear factor kappa (NF-κB) were conducted. The findings showed that SS injection induced nephrotoxic activity, including increased serum urea, creatinine, and uric acid levels. It also caused apparent pathological alterations with increased Caspase-3 and NF-κB immuno-expression. In addition, thrombocytopenia, leukocytosis, neutrophilia, hyponatremia, hypochloremia, hypocalcemia, and hypomagnesemia but not hyperkalemia and hyperphosphatemia were evident in SS-injected rats. Moreover, SS exposure increased serum α1 globulin, renal tissue malondialdehyde, and Caspase-3 levels but superoxide dismutase, glutathione peroxidase, and Bcl-2 levels declined. Meanwhile, CUR significantly counteracted the SS harmful impacts on kidneys but SS+CUR co-administration induced an anemic condition. Overall, CUR has an evident protective role against SS-induced renal damage, but the disturbed hematological alterations should be carefully taken into consideration in their combined use.
Collapse
Affiliation(s)
- Yasmina M. Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Attia A. A. Moselhy
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Adil Aldhahrani
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Turabah 21995, Saudi Arabia; (A.A.); (M.M.S.)
| | - Rasha R. Beheiry
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Wafaa A. M. Mohamed
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Turabah 21995, Saudi Arabia; (A.A.); (M.M.S.)
| | - Bayan A. Saffaf
- Pharmacology Department, Faculty of Pharmacy, Future University, City of the Future 41639, Egypt;
| | - Maha M. El Deib
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| |
Collapse
|
20
|
Mirazi N, Baharvand F, Moghadasali R, Nourian A, Hosseini A. Treatment with human umbilical cord blood serum in a gentamicin-induced nephrotoxicity model in rats. Drug Chem Toxicol 2021; 45:2262-2268. [PMID: 34006164 DOI: 10.1080/01480545.2021.1926475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Sold under the brand name of Garamycin, gentamicin (GM) is an antibiotic in the category of aminoglycoside, that although does have many antibacterial properties, owing to several side effects, its consumption is confined. The current study is aimed at gauging the protective influences of human umbilical cord blood serum (hUCBS) on nephrotoxicity which is induced by GM. In this regard, in the present experimental design, twenty-eight male Wistar rats with the weights of 220 ± 20 g were categorized randomly into 4 groups of seven. The groups included GM (100 mg/kg), control as well as hUCBS at doses of one and two percent together with GM (100 mg/kg) for ten days in an intraperitoneal manner. Blood sampling was collected from the heart directly 24 h after the final injection for obtaining blood serum; the parameters of C-reactive protein (CRP), total oxidant status (TOS), interleukin (IL)-6, lactate dehydrogenase (LDH), total antioxidant capacity (TAC), creatinine (Cr), blood urea nitrogen (BUN), blood serum glutathione (GSH) were gauged in blood serum samples to evaluate renal function. Moreover, for histology, an examination of kidney tissue was performed. In comparison to those of the GM group, in the treatment group, hUCBS significantly decreased the levels of BUN, Cr, LDH, TOS, IL-6, and the CRP levels, and significantly increased the TAC and GSH levels. It was revealed that the treatment of the animals with hUCBS culminates in the reduction of GM' toxic impacts on the kidney.
Collapse
Affiliation(s)
- Naser Mirazi
- Department of Biology, Faculty of Basic Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Fatemeh Baharvand
- Department of Biology, Faculty of Basic Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Reza Moghadasali
- Department of Stem Cells and Developmental Biology, Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Alireza Nourian
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Abdolkarim Hosseini
- Department of Animal Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
21
|
Gao C, Liu C, Chen Y, Wang Q, Hao Z. Protective effects of natural products against drug-induced nephrotoxicity: A review in recent years. Food Chem Toxicol 2021; 153:112255. [PMID: 33989732 DOI: 10.1016/j.fct.2021.112255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/03/2021] [Accepted: 05/05/2021] [Indexed: 12/17/2022]
Abstract
Drug-induced nephrotoxicity (DIN) is a major cause of kidney damage and is associated with high mortality and morbidity, which limits the clinical use of certain therapeutic or diagnostic agents, such as antineoplastic drugs, antibiotics, immunosuppressive agents, non-steroidal anti-inflammatory drugs (NSAIDs), and contrast agents. However, in recent years, a number of studies have shown that many natural products (NPs), including phytochemicals, various plants extracts, herbal formulas, and NPs derived from animals, confer protective effects against DIN through multi-targeting therapeutic mechanisms, such as inhibition of oxidative stress, inflammation, apoptosis, fibrosis, and necroptosis, regulation of autophagy, maintenance of cell polarity, etc., by regulating multiple signaling pathways and novel molecular targets. In this review, we summarize and discuss the protective effects and mechanisms underlying the action of NPs against DIN found in recent years, which will contribute to the development of promising renal protective agents.
Collapse
Affiliation(s)
- Chen Gao
- Innovation Center for Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Chang Liu
- Innovation Center for Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuwei Chen
- Innovation Center for Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Qingtao Wang
- Innovation Center for Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Zhihui Hao
- Innovation Center for Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
22
|
Babaeenezhad E, Hadipour Moradi F, Rahimi Monfared S, Fattahi MD, Nasri M, Amini A, Dezfoulian O, Ahmadvand H. D-Limonene Alleviates Acute Kidney Injury Following Gentamicin Administration in Rats: Role of NF- κB Pathway, Mitochondrial Apoptosis, Oxidative Stress, and PCNA. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6670007. [PMID: 33510839 PMCID: PMC7822690 DOI: 10.1155/2021/6670007] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/27/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022]
Abstract
Clinical application of gentamicin (GM) is well known to be associated with the development of acute kidney injury (AKI). This study was the first to investigate the possible protective effects of D-limonene (D-lim) on AKI following GM administration in rats. 32 rats arranged in four groups (n = 8): (1) the control group received saline intraperitoneally (0.5 ml/day) and orally (0.5 ml/day), (2) the D-lim group received D-lim (100 mg/kg) orally and saline (0.5 ml/day) intraperitoneally, (3) the GM group received GM (100 mg/kg/day) intraperitoneally and saline (0.5 ml/day) orally, and (4) the treated group received intraperitoneal GM (100 mg/kg) and oral D-lim (100 mg/kg). All treatments were performed daily for 12 consecutive days. Results revealed that D-lim ameliorated GM-induced AKI, oxidative stress, mitochondrial apoptosis, and inflammation. D-lim showed nephroprotective effects as reflected by the decrease in serum urea and creatinine and improvement of renal histopathological changes. D-lim alleviated GM-induced oxidative stress by increasing the activities of renal catalase, serum and renal glutathione peroxidase, and renal superoxide dismutase and decreasing renal malondialdehyde and serum nitric oxide levels. Intriguingly, D-lim suppressed mitochondrial apoptosis by considerably downregulating Bax and caspase-3 (Casp-3) mRNA and protein expressions and markedly enhancing Bcl2 mRNA and protein expressions. Furthermore, D-lim significantly decreases GM-induced inflammatory response through downregulation of NF-κB, IL-6, and TNF-α mRNA and/or protein expressions and decrease in renal myeloperoxidase activity. Finally, D-lim remarkably downregulated PCNA protein expression in the treated group compared with the GM group. In brief, this study showed that D-lim alleviated AKI following GM administration in rats, partially through its antioxidant, anti-inflammatory, and antiapoptotic activities as well as downregulation of PCNA expression.
Collapse
Affiliation(s)
- Esmaeel Babaeenezhad
- Department of Clinical Biochemistry, School of Medicine, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Forouzan Hadipour Moradi
- Razi Herbal Medicines Research Center, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Sobhan Rahimi Monfared
- Razi Herbal Medicines Research Center, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mohammad Davood Fattahi
- Department of Clinical Biochemistry, School of Medicine, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Nasri
- Razi Herbal Medicines Research Center, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Abdolhakim Amini
- Razi Herbal Medicines Research Center, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Omid Dezfoulian
- Department of Pathobiology, School of Veterinary Medicine, Lorestan University, P.O. Box 465, Khorramabad, Iran
| | - Hassan Ahmadvand
- Razi Herbal Medicines Research Center, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
23
|
Jisha N, Vysakh A, Vijeesh V, Anand PS, Latha MS. Methanolic Extract of Muntingia Calabura L. Mitigates 1,2-Dimethyl Hydrazine Induced Colon Carcinogenesis in Wistar Rats. Nutr Cancer 2020; 73:2363-2375. [PMID: 32972250 DOI: 10.1080/01635581.2020.1823438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVE The present study aimed to evaluate the efficacy of methanolic extract of Muntingia calabura L. leaves (MEMC) in ameliorating oxidative stress and inflammation associated with 1,2-dimethyl hydrazine (DMH) induced colon cancer. METHODS The antioxidant enzymes, oxidative stress markers, liver and renal toxicity markers were evaluated. Histopathological examination of colon tissues was carried out with the aid of alcian blue stain and Hematoxylin and Eosin stain. RESULTS MEMC supplementation at doses of 100 and 200 mg/kg body weight of rats causes the antioxidant enzymic levels to retain near to its normal range. Meanwhile the oxidative stress markers, which showed an elevation from its normal level upon DMH administration, gets significantly reduced on MEMC treatment. Histopathological observation also revealed that the severity of colorectal cancer was reduced by the supplementation of MEMC. CONCLUSION The findings from the present study showed that MEMC can exert a potential role to ameliorate the oxidative stress and inflammation associated with colorectal cancer.
Collapse
Affiliation(s)
- Ninan Jisha
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India
| | - A Vysakh
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India
| | - V Vijeesh
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India
| | - P S Anand
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India
| | - M S Latha
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India
| |
Collapse
|
24
|
Wang Z, Wang L, Wang J, Luo J, Ruan H, Zhang J. Purified Sika deer antler protein attenuates GM-induced nephrotoxicity by activating Nrf2 pathway and inhibiting NF-κB pathway. Sci Rep 2020; 10:15601. [PMID: 32973191 PMCID: PMC7518274 DOI: 10.1038/s41598-020-71943-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 08/18/2020] [Indexed: 01/07/2023] Open
Abstract
Although gentamicin is widely used as an antibiotic in clinical practice, it also has some side-effects, such as acute kidney injury, which is a common condition caused by the abuse of gentamicin. Sika deer antler protein (SDAPR) can antagonize drug-induced AKI. Since SDAPR is recognized as an effective part of velvet antler, its components were further separated. Two components named SDAP1 and SDAP2 were obtained. The protective effects of SDAPR, SDAP1 and SDAP2 on GM-induced cytotoxicity to HEK293 and its potential mechanisms were studied. MTT and xCELLigence Real-Time cell analysis showed that SDAPR, SDAP1 and SDAP2 could protect HEK293 cells from GM toxicity. Similarly, SDAPR, SDAP1 and SDAP2 can reduce ROS level, reduce oxidative stress and improve inflammation Further studies have shown that SDAPR, SDAP1 and SDAP2 upregulate the Nrf2/HO-1 pathway by increasing the expression of Nrf2 and HO-1, and down-regulate the NF-κB pathway by reducing the protein expression of NF-κB. Annexin V/PI flow cytometry and Hoechst 33258 staining showed that SDAPR, SDAP1 and SDAP2 inhibited GM-induced apoptosis in HEK293 cells. Western blot analysis showed SDAPR, SDAP1 and SDAP2 decreased expression level of Bax and Cleaved-caspase-3, and increased the expression level of Bcl-2. In addition, we examined the feasibility of SDAP1 and SDAP1 to avoid kidney injury in a GM mouse model. In conclusion, SDAPR, SDAP1 and SDAP2 can be used to prevent GM-induced HEK293 cytotoxicity, probably because they have strong anti-oxidative stress, anti-inflammatory and anti-apoptotic effects. And SDAP1 and SDAP2 can inhibit GM-induced acute kidney injury in mice.
Collapse
Affiliation(s)
- Zhenyi Wang
- College of Chinese Medicine Materials, Jilin Agricultural University, Xincheng road 2888, Changchun, 130118, China
| | - Lulu Wang
- College of Chinese Medicine Materials, Jilin Agricultural University, Xincheng road 2888, Changchun, 130118, China.,Changchun SCI-TECH University, Changchun, 130600, China
| | - Jing Wang
- Jilin Province FAW General Hospital, Changchun, 130000, China
| | - Jiacheng Luo
- College of Chinese Medicine Materials, Jilin Agricultural University, Xincheng road 2888, Changchun, 130118, China
| | - Haonan Ruan
- College of Chinese Medicine Materials, Jilin Agricultural University, Xincheng road 2888, Changchun, 130118, China
| | - Jing Zhang
- College of Chinese Medicine Materials, Jilin Agricultural University, Xincheng road 2888, Changchun, 130118, China. .,Changchun SCI-TECH University, Changchun, 130600, China.
| |
Collapse
|
25
|
Famurewa AC, Maduagwuna EK, Folawiyo AM, Besong EE, Eteudo AN, Famurewa OA, Ejezie FE. Antioxidant, anti-inflammatory, and antiapoptotic effects of virgin coconut oil against antibiotic drug gentamicin-induced nephrotoxicity via the suppression of oxidative stress and modulation of iNOS/NF-ĸB/caspase-3 signaling pathway in Wistar rats. J Food Biochem 2019; 44:e13100. [PMID: 31721240 DOI: 10.1111/jfbc.13100] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/17/2019] [Accepted: 10/28/2019] [Indexed: 12/22/2022]
Abstract
Gentamicin is an effective antibiotic against severe infections; however, its major side effect is oxidative nephrotoxicity. We explored whether virgin coconut oil (VCO) could mitigate gentamicin-induced nephrotoxicity. Rats were fed with VCO-supplemented diet for 16 days against renal toxicity induced by gentamicin (100 mg/kg bw, ip) from Day 11 to 16. Gentamicin caused marked elevated serum urea, uric acid, and creatinine levels, followed by considerable depletion in renal antioxidant enzymes, glutathione (GSH), while the malondialdehyde (MDA) level increased significantly. It significantly increased renal cytokines and nitric oxide (NO) levels, confirmed by renal histopathology. The expression of inducible nitric oxide synthase (iNOS), nuclear factor-kappa B (NF-ĸB), and caspase-3 was prominently increased. VCO-supplemented diet significantly modulated the levels of biochemical indices, downregulated the expression of NO, iNOS, NF-ĸB, caspase-3, cytokines, and alleviated histopathological lesions. VCO protects against gentamicin-induced nephrotoxicity; thus, it could be a promising dietary supplement for patients undergoing gentamicin treatment. PRACTICAL APPLICATIONS: Gentamicin is an efficacious clinical antibiotic used against severe infections; however, the robust body of evidence indicates that the nephrotoxic side effect constrained its use. Virgin coconut oil (VCO) is an edible oil with growing human consumption and pharmacological effects. Our study has reported herein, for the first time, that VCO diet prevented the nephrotoxicity of gentamicin. Dietary supplementation of this oil could be beneficial in alleviating the nephrotoxic side effect of gentamicin in patients.
Collapse
Affiliation(s)
- Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Alex-Ekwueme Federal University Ndufu-Alike, Ikwo, Nigeria.,Biochemistry Division, Amala Cancer Research Centre, Amala Institute of Medical Sciences, Thrissur, India
| | | | - Abiola M Folawiyo
- Department of Physiology, Faculty of Basic Medical Sciences, Ekiti State University, Ado-Ekiti, Nigeria
| | - Elizabeth E Besong
- Department of Physiology, Faculty of Medicine, Ebonyi State University, Abakaliki, Nigeria
| | - Albert N Eteudo
- Department of Anatomy, Faculty of Medicine, Ebonyi State University, Abakaliki, Nigeria
| | - Opeyemi A Famurewa
- Department of Pharmacognosy and Traditional Medicine, Faculty of Pharmaceutical Science, University of Jos, Jos, Nigeria
| | - Fidelis E Ejezie
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Nigeria, Enugu Campus, Enugu, Nigeria
| |
Collapse
|
26
|
Anti-inflammatory efficacy of methanolic extract of Muntingia calabura L. leaves in Carrageenan induced paw edema model. PATHOPHYSIOLOGY 2019; 26:323-330. [DOI: 10.1016/j.pathophys.2019.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 08/06/2019] [Accepted: 08/08/2019] [Indexed: 12/17/2022] Open
|
27
|
Edeogu CO, Kalu ME, Famurewa AC, Asogwa NT, Onyeji GN, Ikpemo KO. Nephroprotective Effect of Moringa Oleifera Seed Oil on Gentamicin-Induced Nephrotoxicity in Rats: Biochemical Evaluation of Antioxidant, Anti-inflammatory, and Antiapoptotic Pathways. J Am Coll Nutr 2019; 39:307-315. [PMID: 31403889 DOI: 10.1080/07315724.2019.1649218] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Objective: Gentamicin is an efficacious aminoglycoside antibiotic widely used to treat life-threatening Gram-negative bacteria infections. However, its specific non-targeted induction of nephrotoxicity is a worrying clinical challenge. The study explored the nephroprotective effect of Moringa oleifera seed oil (MOO) against gentamicin-induced oxidative nephrotoxicity, pro-inflammation, and apoptosis in male Wistar rats.Method: Twenty-four rats divided into 4 groups (n = 6) were administered MOO (5 ml/kg) for 16 days and/or gentamicin (100 mg/kg bw/d, ip) injected from day 11 to day 16. The renal antioxidant enzyme activities reduced glutathione, lipid peroxidation, and serum renal markers. Urea and creatinine levels were estimated. The renal expression of interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and nitric oxide (NO) were determined. Renal levels of inducible nitric oxide synthase (iNOS), nuclear factor-ĸB (NF-ĸB), and caspase-3 were determined to detect possible mechanism of inflammation and apoptosis with histology.Results: MOO prominently reduced serum creatinine and urea levels with amelioration of histopathological abrasions induced by gentamicin (GM). It significantly depressed oxidative stress through lowering of renal malondialdehyde (MDA) and elevation of renal superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) activities, and reduced glutathione (GSH) level. MOO restored renal content of IL-1β, IL-6, TNF-α, and NO, coupled with the mechanistic downregulation of NF-ĸB, iNOS, and caspase-3 activities. The histopathological alterations were ameliorated by MOO.Conclusions: MOO possesses marked nephroprotective effect against GM-induced renal damage via modulating oxidative stress, inflammation, and apoptosis in Wistar rats.
Collapse
Affiliation(s)
- C O Edeogu
- Department of Medical Biochemistry, Faculty of Basic Medicine, Ebonyi State University, Abakaliki, Nigeria
| | - Michael E Kalu
- Department of Medical Laboratory Science, Faculty of Health Sciences and Technology, Ebonyi State University, Abakaliki, Nigeria
| | - Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Alex Ekwueme Federal University, Ikwo, Ebonyi State, Nigeria
| | - Nnaemeka T Asogwa
- Central Research and Diagnostic Laboratory, Ilorin, Kwara State, Nigeria
| | - Gertrude N Onyeji
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Alex Ekwueme Federal University, Ikwo, Ebonyi State, Nigeria
| | - Kelechi O Ikpemo
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Alex Ekwueme Federal University, Ikwo, Ebonyi State, Nigeria
| |
Collapse
|
28
|
Al-Kuraishy HM, Al-Gareeb AI, Al-Nami MS. Vinpocetine Improves Oxidative Stress and Pro-Inflammatory Mediators in Acute Kidney Injury. Int J Prev Med 2019; 10:142. [PMID: 31516683 PMCID: PMC6710925 DOI: 10.4103/ijpvm.ijpvm_5_19] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/22/2019] [Indexed: 11/10/2022] Open
Abstract
Background: Gentamicin-induced-acute kidney injury (AKI) is a multifaceted phenomenon which previously linked to the oxidative stress only. Vinpocetine prevents reactive free radical generation which contributed in reduction of damage. Therefore, objective of the present study was to investigate the renoprotective effect of vinpocetine on gentamicin-induced-AKI in rats. Methods: Thirty Sprague Dawley Male rat were divided into three groups. Control group (n = 10): Rats treated with distilled water + intra-peritoneal injection of normal saline 2 ml/kg/day. Gentamicin group (n = 10): Rats treated with distilled water + intra-peritoneal injection of gentamicin 100 mg/kg/day. Vinpocetine group (n = 10): Rats treated with vinpocetine + intra-peritoneal injection of gentamicin 100 mg/kg/day. Blood urea and serum creatinine were estimated by auto-analyzer. Serum malondialdehyde (MDA), superoxide dismutase (SOD), Neutrophil Gelatinase Associated Lipocalin (NGAL), kidney injury molecules (KIM-1), and Cystatin-c were measured by ELISA kit methods. Results: Vinpocetine led to significant renoprotective effect on gentamicin induced-AKI through amelioration of blood urea and serum creatinine compared with gentamicin group P < 0.01. Vinpocetine improved oxidative stress through reduction of MDA serum level and elevation of SOD significantly compared with gentamicin group P = 0.001 and P = 0.03, respectively. Indeed, vinpocetine reduced glomerular and renal tubular injury via reduction of inflammatory biomarkers including KIM-1, NGALand Cystatin-c sera levels significantly P < 0.01 compared to gentamicin group. Conclusions: Vinpocetine leads to significant attenuation of gentamicin-induced-AKI through modulation of oxidative stress and pro-inflammatory pathway.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Almustansiriya University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Almustansiriya University, Baghdad, Iraq
| | - Marwa S Al-Nami
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Almustansiriya University, Baghdad, Iraq
| |
Collapse
|
29
|
Cao L, Zhi D, Han J, Kumar Sah S, Xie Y. Combinational effect of curcumin and metformin against gentamicin-induced nephrotoxicity: Involvement of antioxidative, anti-inflammatory and antiapoptotic pathway. J Food Biochem 2019; 43:e12836. [PMID: 31353717 DOI: 10.1111/jfbc.12836] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/19/2019] [Accepted: 02/23/2019] [Indexed: 12/17/2022]
Abstract
Gentamicin (GM) is an antibiotic related to aminoglycoside group that is used in treating Gram-negative bacterial infections. However, treatment with gentamicin is considered to be limited as it induces an oxidative stress-mediated apoptosis in kidney which causes a nephrotoxicity. Metformin is a well-known biguanide that is used for treating diabetes mellitus, especially type 2. Supplement with plant metabolites or natural antioxidants produce a protective activity against many types of diseases in vivo. Curcumin is a main medicinal constituent of Curcuma longa, has reported for number of biological effects, such as antioxidant, anti-inflammatory, and antitumor. The study aims at evaluating the metformin and curcumin alone or in combination on nephrotoxicity induced by GM. The outcome of the study shows that both metformin and curcumin, when used unaided, were effectively decreasing GM-induced nephrotoxicity. The two drugs combination was showed synergistic effect in ameliorating a GM-induced kidney injury, as supported by expressively improved renal dysfunction. Metformin and curcumin showed strong protection against oxidative stress in GM treated animals through decreasing the activities and expression of various antioxidative enzymes. Moreover, combination of two drugs showed an anti-inflammatory response through reducing a level of pro-inflammatory cytokines including tumor necrosis factor-alpha, interleukin 1-beta, and interleukin 6 in GM intoxicated group of animals. Furthermore, GM agitated apoptosis was affectedly diminished by the combinational treatment of metformin and curcumin via down-regulating activity of cleaved Caspase-3 and pro-apoptotic factor Bax, whereas increasing anti-apoptotic factor Bcl-2 signaling pathways. The above results suggested that combinational treatment of metformin and curcumin might be have a synergizing effect and substantial potential against nephrotoxicity induced by GM. PRACTICAL APPLICATIONS: Curcumin and metformin combination exhibited substantial synergistic effect against GM-induced nephrotoxicity through reducing oxidative stress, inflammation, as well as apoptosis in kidney cells. Therefore, the method of combination of curcumin and metformin might be functional to treat or inhibit GM prompted nephrotoxicity in future.
Collapse
Affiliation(s)
- Liying Cao
- Department of Nephrology, The Second People's Hospital of Yunnan Province, Kunming, China
| | - Dongyun Zhi
- Department of Nephrology, The Second People's Hospital of Yunnan Province, Kunming, China
| | - Jing Han
- Department of Nephrology, The Second People's Hospital of Yunnan Province, Kunming, China
| | - Sushil Kumar Sah
- Department of Pharmacology, Birat Medical College, Biratnagar, Nepal
| | - Yunhui Xie
- Department of Paediatrics, The Second People's Hospital of Yunnan Province, Kunming, China
| |
Collapse
|