1
|
Ansari P, Khan JT, Chowdhury S, Reberio AD, Kumar S, Seidel V, Abdel-Wahab YHA, Flatt PR. Plant-Based Diets and Phytochemicals in the Management of Diabetes Mellitus and Prevention of Its Complications: A Review. Nutrients 2024; 16:3709. [PMID: 39519546 PMCID: PMC11547802 DOI: 10.3390/nu16213709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/27/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Diabetes mellitus (DM) is currently regarded as a global public health crisis for which lifelong treatment with conventional drugs presents limitations in terms of side effects, accessibility, and cost. Type 2 diabetes (T2DM), usually associated with obesity, is characterized by elevated blood glucose levels, hyperlipidemia, chronic inflammation, impaired β-cell function, and insulin resistance. If left untreated or when poorly controlled, DM increases the risk of vascular complications such as hypertension, nephropathy, neuropathy, and retinopathy, which can be severely debilitating or life-threatening. Plant-based foods represent a promising natural approach for the management of T2DM due to the vast array of phytochemicals they contain. Numerous epidemiological studies have highlighted the importance of a diet rich in plant-based foods (vegetables, fruits, spices, and condiments) in the prevention and management of DM. Unlike conventional medications, such natural products are widely accessible, affordable, and generally free from adverse effects. Integrating plant-derived foods into the daily diet not only helps control the hyperglycemia observed in DM but also supports weight management in obese individuals and has broad health benefits. In this review, we provide an overview of the pathogenesis and current therapeutic management of DM, with a particular focus on the promising potential of plant-based foods.
Collapse
Affiliation(s)
- Prawej Ansari
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama, Birmingham (UAB), Birmingham, AL 35233, USA
- School of Pharmacy and Public Health, Department of Pharmacy, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
- Centre for Diabetes Research, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (Y.H.A.A.-W.); (P.R.F.)
| | - Joyeeta T. Khan
- School of Pharmacy and Public Health, Department of Pharmacy, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205, USA
| | - Suraiya Chowdhury
- School of Pharmacy and Public Health, Department of Pharmacy, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
| | - Alexa D. Reberio
- School of Pharmacy and Public Health, Department of Pharmacy, Independent University, Bangladesh (IUB), Dhaka 1229, Bangladesh
| | - Sandeep Kumar
- Comprehensive Diabetes Center, Heersink School of Medicine, University of Alabama, Birmingham (UAB), Birmingham, AL 35233, USA
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK;
| | - Yasser H. A. Abdel-Wahab
- Centre for Diabetes Research, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (Y.H.A.A.-W.); (P.R.F.)
| | - Peter R. Flatt
- Centre for Diabetes Research, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK; (Y.H.A.A.-W.); (P.R.F.)
| |
Collapse
|
2
|
Zhao Y, Qiao M, Wang X, Luo X, Yang J, Hu J. Allantoin reduces glucotoxicity and lipotoxicity in a type 2 diabetes rat model by modulating the PI3K and MAPK signaling pathways. Heliyon 2024; 10:e34716. [PMID: 39144993 PMCID: PMC11320158 DOI: 10.1016/j.heliyon.2024.e34716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
Objective The current study aimed to investigate the potential therapeutic impact of allantoin on diabetes produced by a high-fat diet (HFD) and streptozotocin (STZ) in rats. Subjects and methods Male Sprague-Dawley rats were fed a high-fat diet to induce insulin resistance, followed by streptozotocin injection to induce diabetes. The effect of oral treatment of allantoin (200, 400 and 800 mg/kg/day) for 8 weeks was evaluated by calculating the alteration in metabolic parameters, biochemical indicators, the oral glucose tolerance tests (OGTT) and hyperinsulinemic-euglycemic clamp tests were performed. Histopathological studies were performed in the liver, kidney and pancreas. Next, the expressions of the MAPK and insulin signaling pathway were measured by Western blot analysis to elucidate the potential mechanism underlying these antidiabetic activities. Results The administration of allantoin resulted in a significant decrease in fasting blood glucose (FBG) levels, glycogen levels, and glycosylated hemoglobin levels in diabetic rats. Additionally, allantoin therapy led to a dose-dependent increase in body weight growth and serum insulin levels. In addition, the administration of allantoin resulted in a considerable reduction in lipid profile levels and amelioration of histological alterations in rats with diabetes. The administration of allantoin to diabetic rats resulted in a notable decrease in Malondialdehyde (MDA) levels, accompanied by an increase in the activity of antioxidant enzymes in the serum, liver, and kidney. The findings of oral glucose tolerance and hyperinsulinemic-euglycemic clamp tests demonstrated a significant rise in insulin resistance following the administration of allantoin. The upregulation of IRS-2/PI3K/p-Akt/GLUT expression by allantoin suggests a mechanistic relationship between the PI3K/Akt signaling pathway and the antihyperglycemic activity of allantoin. Furthermore, it resulted in a reduction in the levels of TGF-β1/p38MAPK/Caspase-3 expression in the aforementioned rat tissues affected by diabetes. Conclusions This study implies that allantoin treats type 2 diabetes by activating PI3K. Additionally, it reduces liver, kidney, and pancreatic apoptosis and inflammation-induced insulin resistance.re.
Collapse
Affiliation(s)
- Yao Zhao
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830017, Xinjiang, China
| | - Ming Qiao
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000, Xinjiang, China
- Xinjiang Key Laboratory of Clinical Drug Research, Urumqi 830011, Xinjiang, China
| | - Xiaomei Wang
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830017, Xinjiang, China
| | - Xinjie Luo
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830017, Xinjiang, China
| | - Jianhua Yang
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000, Xinjiang, China
- Xinjiang Key Laboratory of Clinical Drug Research, Urumqi 830011, Xinjiang, China
| | - Junping Hu
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830017, Xinjiang, China
- Xinjiang Key Laboratory of Clinical Drug Research, Urumqi 830011, Xinjiang, China
| |
Collapse
|
3
|
Radhakrishnan SRP, Mohan K, Natarajan A. Hesperetin-loaded chitosan nanoparticles ameliorate hyperglycemia by regulating key enzymes of carbohydrate metabolism in a diabetic rat model. J Biochem Mol Toxicol 2024; 38:e23805. [PMID: 39132811 DOI: 10.1002/jbt.23805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 07/10/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
The study aimed to investigate the potential of hesperetin-loaded chitosan nanoparticles (HSPCNPs) in alleviating hyperglycemia by modulating key enzymes in diabetic rats. Chitosan nanoparticles loaded with hesperetin were prepared using the ionic gelation method and characterized with Electron microscope (SEM), zeta potential, particle size analysis, Fourier-transform infrared (FT-IR), Energy dispersive spectroscopy (EDS) and Encapsulation efficiency and Loading efficiency. To induce diabetes, rats were fed a high-fat beef tallow diet for 28 days, then given a single dose of streptozotocin (STZ) at 35 mg/kg b.w in 0.1 M citrate buffer (pH 4.0). Rats were treated with HSPCNPs at doses of 10, 20, and 40 mg/kg b.w. The analyzed parameters included body weight, food and water intake, plasma glucose and insulin, liver and skeletal muscle glycogen levels, and carbohydrate metabolism. SEM imaging revealed dimensions between 124.2 and 251.6 nm and a mean particle size of 145.0 nm. FT-IR analysis confirmed the presence of functional groups in the chitosan nanoparticles, and the zeta potential was 35.5 mV. HSPCNP 40 mg/kg b.w significantly (p < 0.05) reduced blood glucose levels and glycosylated hemoglobin, improving body weight, food intake, and reducing water intake. In diabetic rats, enzymes for carbohydrate metabolism like fructose 1,6-bisphosphatase, phosphoenolpyruvate carboxykinase, and glucose 6-phosphatase are evaluated in the liver, while glucose 6 phosphate dehydrogenase and hexokinase activity were significantly lower. Additionally, plasma insulin levels increased, indicating enhanced insulin sensitivity. The results show that HSPCNPs at 40 mg/kg b.w. ameliorate hyperglycemia to provide robust protection against diabetic complications and significantly improve metabolic health.
Collapse
Affiliation(s)
| | - Karthik Mohan
- Department of Biochemistry & Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, India
| | - Ashokkumar Natarajan
- Department of Biochemistry & Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, India
| |
Collapse
|
4
|
Borges ALS, Bittar VP, Justino AB, Carrillo MSP, Duarte RFM, Silva NBS, Gonçalves DS, Prado DG, Araújo IAC, Martins MM, Motta LC, Martins CHG, Botelho FV, Silva NM, de Oliveira A, Romão W, Espíndola FS. Exploring the composition and properties of Centella asiatica metabolites and investigating their impact on BSA glycation, LDL oxidation and α-amylase inhibition. J Pharm Biomed Anal 2024; 245:116143. [PMID: 38678859 DOI: 10.1016/j.jpba.2024.116143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/26/2024] [Accepted: 03/31/2024] [Indexed: 05/01/2024]
Abstract
Centella asiatica (L.) Urb. is a small herbaceous plant belonging to the Apiaceae family that is rich in triterpenes, such as asiaticoside and madecassoside. Centella asiatica finds broad application in promoting wound healing, addressing skin disorders, and boosting both memory and cognitive function. Given its extensive therapeutic potential, this study aimed not only to investigate the Centella asiatica ethanolic extract but also to analyze the biological properties of its organic fractions, such as antioxidant antiglycation capacity, which are little explored. We also identified the main bioactive compounds through spectrometry analysis. The ethanolic extract (EE) was obtained through a static maceration for seven days, while organic fractions (HF: hexane fraction; DF: dichloromethane fraction; EAF: ethyl acetate fraction; BF: n-butanol fraction and HMF: hydromethanolic fraction) were obtained via liquid-liquid fractionation. The concentration of phenolic compounds, flavonoids, and tannins in each sample was quantified. Additionally, the antiglycation (BSA/FRU, BSA/MGO, and ARG/MGO models) and antioxidant (FRAP, ORAC, and DPPH) properties, as well as the ability to inhibit LDL oxidation and hepatic tissue peroxidation were evaluated. The inhibition of enzyme activity was also analyzed (α-amylase, α-glycosidase, acetylcholinesterase, and butyrylcholinesterase). We also evaluated the antimicrobial and cytotoxicity against RAW 264.7 macrophages. The main compounds present in the most bioactive fractions were elucidated through ESI FT-ICR MS and HPLC-ESI-MS/MS analysis. In the assessment of antioxidant capacity (FRAP, ORAC, and DPPH), the EAF and BF fractions exhibited notable results, and as they are the phenolic compounds richest fractions, they also inhibited LDL oxidation, protected the hepatic tissue from peroxidation and inhibited α-amylase activity. Regarding glycation models, the EE, EAF, BF, and HMF fractions demonstrated substantial activity in the BSA/FRU model. However, BF was the only fraction that presented non-cytotoxic activity in RAW 264.7 macrophages at all tested concentrations. In conclusion, this study provides valuable insights into the antioxidant, antiglycation, and enzymatic inhibition capacities of the ethanolic extract and organic fractions of Centella asiatica. The findings suggest that further in vivo studies, particularly focusing on the butanol fraction (BF), may be promising routes for future research and potential therapeutic applications.
Collapse
Affiliation(s)
- Ana Luiza Silva Borges
- Laboratory of Biochemistry and Molecular Biology in Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG 38400-902, Brazil
| | - Vinícius Prado Bittar
- Laboratory of Biochemistry and Molecular Biology in Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG 38400-902, Brazil
| | - Allisson Benatti Justino
- Laboratory of Biochemistry and Molecular Biology in Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG 38400-902, Brazil
| | - Maria Sol Peña Carrillo
- Laboratory of Biochemistry and Molecular Biology in Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG 38400-902, Brazil
| | - Rener Francisco Mateus Duarte
- Laboratory of Biochemistry and Molecular Biology in Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG 38400-902, Brazil
| | - Nagela Bernadelli Sousa Silva
- Laboratory of Antimicrobial Testing, Institute of Biomedical Sciences, University of Uberlândia, Campus Umuarama, Uberlândia, MG 38405-320, Brazil
| | - Daniela Silva Gonçalves
- Laboratory of Antimicrobial Testing, Institute of Biomedical Sciences, University of Uberlândia, Campus Umuarama, Uberlândia, MG 38405-320, Brazil
| | - Diego Godina Prado
- Nucleus of Research in Natural Products (NuPPeN), Federal University of Uberlândia, Uberlândia, MG 38400-902, Brazil
| | - Iasmin Aparecida Cunha Araújo
- Laboratory of Immunoparasitology, Institute for Biomedical Sciences, Federal University of Uberlandia, Uberlândia, MG 38400-902, Brazil
| | - Mário Machado Martins
- Laboratory of Nanobiotechnology "Dr. Luiz Ricardo Goulart Filho", in Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG 38400-902, Brazil
| | - Larissa Campos Motta
- Laboratory of Petroleum and Forensics, of the Center of Competence in Petroleum Chemistry - NCQP, Federal University of Espírito Santo (UFES), Vitória, ES 29075-910, Brazil
| | - Carlos Henrique Gomes Martins
- Laboratory of Antimicrobial Testing, Institute of Biomedical Sciences, University of Uberlândia, Campus Umuarama, Uberlândia, MG 38405-320, Brazil
| | - Françoise Vasconcelos Botelho
- Laboratory of Biochemistry and Molecular Biology in Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG 38400-902, Brazil
| | - Neide Maria Silva
- Laboratory of Immunoparasitology, Institute for Biomedical Sciences, Federal University of Uberlandia, Uberlândia, MG 38400-902, Brazil
| | - Alberto de Oliveira
- Nucleus of Research in Natural Products (NuPPeN), Federal University of Uberlândia, Uberlândia, MG 38400-902, Brazil
| | - Wanderson Romão
- Laboratory of Petroleum and Forensics, of the Center of Competence in Petroleum Chemistry - NCQP, Federal University of Espírito Santo (UFES), Vitória, ES 29075-910, Brazil; Federal Institute of Education, Science, and Technology of Espírito Santo, Vila Velha, 29106-010, Brazil
| | - Foued Salmen Espíndola
- Laboratory of Biochemistry and Molecular Biology in Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG 38400-902, Brazil.
| |
Collapse
|
5
|
Swargiary D, Kashyap B, Sarma P, Ahmed SA, Gurumayum S, Barge SR, Basumatary D, Borah JC. Free radical scavenging polyphenols isolated from Phyllanthus niruri L. ameliorates hyperglycemia via SIRT1 induction and GLUT4 translocation in in vitro and in vivo models. Fitoterapia 2024; 173:105803. [PMID: 38171388 DOI: 10.1016/j.fitote.2023.105803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/12/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024]
Abstract
Type 2 diabetes milletus (T2DM) is a complex multifaceted disorder characterized by insulin resistance in skeletal muscle. Phyllanthus niruri L. is well reported sub-tropical therapeutically beneficial ayurvedic medicinal plant from Euphorbiaceae family used in various body ailments such as metabolic disorder including diabetes. The present study emphasizes on the therapeutic potential of Phyllanthus niruri L. and its phytochemical(s) against insulin resistance conditions and impaired antioxidant activity thereby aiding as an anti-hyperglycemic agent in targeting T2DM. Three compounds were isolated from the most active ethyl acetate fraction namely compound 1 as 1-O-galloyl-6-O-luteoyl-β-D-glucoside, compound 2 as brevifolincarboxylic acid and compound 3 as ricinoleic acid. Compounds 1 and 2, the two polyphenols enhanced the uptake of glucose and inhibited ROS levels in palmitate induced C2C12 myotubes. PNEAF showed the potent enhancement of glucose uptake in palmitate-induced insulin resistance condition in C2C12 myotubes and significant ROS inhibition was observed in skeletal muscle cell line. PNEAF treated IR C2C12 myotubes and STZ induced Wistar rats elevated SIRT1, PGC1-α signaling cascade through phosphorylation of AMPK and GLUT4 translocation resulting in insulin sensitization. Our study revealed an insight into the efficacy of marker compounds isolated from P. niruri and its enriched ethyl acetate fraction as ROS scavenging agent and helps in attenuating insulin resistance condition in C2C12 myotubes as well as in STZ induced Wistar rat by restoring glucose metabolism. Overall, this study can provide prospects for the marker-assisted development of P. niruri as a phytopharmaceutical drug for the insulin resistance related diabetic complications.
Collapse
Affiliation(s)
- Deepsikha Swargiary
- Chemical Biology Lab-I, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P, India
| | - Bhaswati Kashyap
- Chemical Biology Lab-I, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India
| | - Pranamika Sarma
- Chemical Biology Lab-I, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India
| | - Semim Akhtar Ahmed
- Chemical Biology Lab-I, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P, India
| | - Shalini Gurumayum
- Chemical Biology Lab-I, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India
| | - Sagar Ramrao Barge
- Chemical Biology Lab-I, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India
| | - Devi Basumatary
- Chemical Biology Lab-I, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India
| | - Jagat C Borah
- Chemical Biology Lab-I, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P, India.
| |
Collapse
|
6
|
Rivadeneyra-Domínguez E, Zamora-Bello I, Castañeda-Morales JM, Díaz-Vallejo JJ, Rosales-Sánchez Ó, Rodríguez-Landa JF. The standardized extract of Centella asiatica L. Urb attenuates the convulsant effect induced by lithium/pilocarpine without affecting biochemical and haematological parameters in rats. BMC Complement Med Ther 2023; 23:343. [PMID: 37759286 PMCID: PMC10523769 DOI: 10.1186/s12906-023-04179-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Status epilepticus (SE) is a type of epileptic activity characterized by a failure of the inhibitory mechanisms that limit seizures, which are mainly regulated by the GABAergic system. This imbalance increases glutamatergic neurotransmission and consequently produces epileptic activity. It is also associated with oxidative stress due to an imbalance between reactive oxygen species (ROS) and antioxidant defences. Unfortunately, long-term treatment with anti-epileptic drugs (AEDs) may produce hepatotoxicity, nephrotoxicity, and haematological alterations. In this way, some secondary metabolites of plants have been used to ameliorate the deterioration of nervous system disorders through their antioxidant properties, in addition to their anticonvulsant effects. An example is Centella asiatica, a plant noted to have a reputed neuroprotective effect related to its antioxidant activity. However, similar to conventional drugs, natural molecules may produce side effects when consumed in high doses, which could occur with Centella asiatica. Therefore, we aimed to evaluate the effect of a standardized extract of Centella asiatica L. Urb with tested anticonvulsant activity on biochemical and haematological parameters in rats subjected to lithium/pilocarpine-induced seizures. METHODS Twenty-eight adult male Wistar rats were randomly divided into four groups (n = 7 each): vehicle (purified water), Centella asiatica (200 and 400 mg/kg), and carbamazepine (CBZ) (300 mg/kg) as a pharmacological control of anticonvulsant activity. Treatments were administered orally every 24 h for 35 consecutive days. On Day 36, SE was induced using the lithium/pilocarpine model (3 mEq/kg, i.p. and 30 mg/kg s.c., respectively), and the behavioural and biochemical effects were evaluated. RESULTS Centella asiatica 400 mg/kg increased the latency to the first generalized seizure and SE onset and significantly reduced the time to the first generalized seizure compared to values in the vehicle group. Biochemical parameters, i.e., haematic cytometry, blood chemistry, and liver function tests, showed no significant differences among the different treatments. CONCLUSION The dose of Centella asiatica that produces anticonvulsant activity in the lithium/pilocarpine model devoid of hepatotoxicity, nephrotoxicity, and alterations in haematological parameters suggests that the standardized extract of this plant could be of utility in the development of new safe therapies for the treatment of convulsions associated with epilepsy.
Collapse
Affiliation(s)
| | - Isaac Zamora-Bello
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Xalapa, Veracruz, México
| | | | | | - Óscar Rosales-Sánchez
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Xalapa, Veracruz, México
| | - Juan Francisco Rodríguez-Landa
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Xalapa, Veracruz, México
- Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz, México
- Laboratorio de Neurofarmacología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz, México
| |
Collapse
|
7
|
da Silva Tonetto L, da Silva CCF, Gonzatti N, Guex CG, Hartmann DD, Boschi ES, Lago PD, Trevisan ME, de Freitas Bauermann L, Jaenisch RB. Effects of photobiomodulation on oxidative stress in rats with type 2 diabetes mellitus. Lasers Med Sci 2023; 38:90. [PMID: 36947266 DOI: 10.1007/s10103-023-03745-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/18/2023] [Indexed: 03/23/2023]
Abstract
The present study aimed to evaluate photobiomodulation effects on oxidative stress in type 2 diabetes mellitus (DM2). Thirty-one male Wistar rats were used and divided into 4 groups: group 1 - animals without diabetes mellitus 2 without laser 21 J/cm2 (C-SHAM), group 2 - animals with diabetes mellitus 2 without laser 21 J/cm2 (C-DM2), group 3 - animals without diabetes mellitus 2 with laser 21 J/cm2 (L-SHAM), group 4 - animals with diabetes mellitus 2 with laser 21 J/cm2 (L-DM2). The protocol was performed 5 days/week, for 6 weeks. The animals that received photobiomodulation had one dose irradiated at two spots in the right gastrocnemius muscle. Twenty-four hours after the last intervention, the animals were euthanized. Heart, diaphragm, liver, right gastrocnemius, plasma, kidneys, weighed, and stored for further analysis. In rats with DM2, photobiomodulation promoted a decrease in thiobarbituric acid reactive substance assay (TBARS) in plasma levels. On the other hand, photobiomodulation demonstrated an increase in non-protein thiol levels (NPSH) in the heart, diaphragm and gastrocnemius. Moreover, photobiomodulation produced in the heart, diaphragm and plasma levels led to an increase in superoxide dismutase (SOD). Interestingly, photobiomodulation was able to increase superoxide dismutase in rats without DM2 in the heart, diaphragm, gastrocnemius and kidneys. These findings suggested that 6 weeks of photobiomodulation in rats with DM2 promoted beneficial adaptations in oxidative stress, with a decrease in parameters of oxidant activity and an increase in antioxidant activity.
Collapse
Affiliation(s)
- Larissa da Silva Tonetto
- Department of Physiotherapy and Rehabilitation, Postgraduate Program in Movement and Rehabilitation Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| | - Carlos Cassiano Figueiró da Silva
- Department of Physiotherapy and Rehabilitation, Postgraduate Program in Movement and Rehabilitation Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| | - Nubia Gonzatti
- Department of Physiotherapy and Rehabilitation, Postgraduate Program in Movement and Rehabilitation Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| | - Camille Gaube Guex
- Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Diane Duarte Hartmann
- Department of Biochemical Sciences, Postgraduate Program in Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Emerson Soldateli Boschi
- Department of Physiotherapy, Pontifical Catholic University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Pedro Dal Lago
- Department of Physiotherapy, Federal University of Health Sciences, Porto Alegre, RS, Brazil
| | - Maria Elaine Trevisan
- Department of Physiotherapy and Rehabilitation, Postgraduate Program in Movement and Rehabilitation Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| | | | - Rodrigo Boemo Jaenisch
- Department of Physiotherapy and Rehabilitation, Postgraduate Program in Movement and Rehabilitation Sciences, Federal University of Santa Maria, Santa Maria, Brazil.
| |
Collapse
|
8
|
Seong E, Heo H, Sang Jeong H, Lee H, Lee J. Enhancement of bioactive compounds and biological activities of Centella asiatica through ultrasound treatment. ULTRASONICS SONOCHEMISTRY 2023; 94:106353. [PMID: 36889177 PMCID: PMC10015234 DOI: 10.1016/j.ultsonch.2023.106353] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/21/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Centella asiatica possess various health-promoting activities owing to its bioactive compounds such as triterpenes, flavonoids, and vitamins. Ultrasound treatment during the post-harvest process is a good strategy for eliciting secondary metabolite in plants. The present study investigated the effect of ultrasound treatment for different time durations on the bioactive compounds and biological activities of C. asiatica leaves. The leaves were treated with ultrasound for 5, 10, and 20 min. Ultrasound elicitation (especially for 10 min) markedly elevated the accumulation of stress markers, leading to enhanced phenolic-triggering enzyme activities. The accumulation of secondary metabolites and antioxidant activities were also significantly improved compared with that in untreated leaves. In addition, ultrasound-treated C. asiatica leaves protected myoblasts against H2O2-induced oxidative stress by regulating reactive oxygen species production, glutathione depletion, and lipid peroxidation. These findings indicate that elicitation using ultrasound can be a simple method for increasing functional compound production and enhancing biological activities in C. asiatica leaves.
Collapse
Affiliation(s)
- Eunjeong Seong
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, Chungbuk 28644, Korea
| | - Huijin Heo
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, Chungbuk 28644, Korea
| | - Heon Sang Jeong
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, Chungbuk 28644, Korea
| | - Hana Lee
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, Chungbuk 28644, Korea.
| | - Junsoo Lee
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, Chungbuk 28644, Korea.
| |
Collapse
|
9
|
Effect of Carica papaya on IRS-1/Akt Signaling Mechanisms in High-Fat-Diet-Streptozotocin-Induced Type 2 Diabetic Experimental Rats: A Mechanistic Approach. Nutrients 2022; 14:nu14194181. [PMID: 36235831 PMCID: PMC9573020 DOI: 10.3390/nu14194181] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
Despite rigorous endeavors, existing attempts to handle type 2 diabetes (T2DM) are still a long way off, as a substantial number of patients do not meet therapeutic targets. Insulin resistance in skeletal muscle is discerned as a forerunner in the pathogenesis of T2DM and can be detected years before its progress. Studies have revealed the antidiabetic properties of Carica papaya (C. papaya), but its molecular mechanism on insulin receptor substrate-1 (IRS-1)/Akt signaling mechanisms is not yet known. The present study aimed to evaluate the role of C. papaya on IRS1 and Akt in high-fat-diet-streptozotocin-induced type 2 diabetic rats and also to analyze the bioactive compounds of C. papaya against IRS-1 and Akt via in silico analysis. Ethanolic extract of the leaves of C. papaya (600 mg/kg of body weight) was given daily for 45 days postinduction of T2DM up to the end of the study. Gluconeogenic enzymes, glycolytic enzymes, gene expression, and immunohistochemical analysis of IRS-1 and Akt in skeletal muscle were evaluated. C. papaya treatment regulated the levels of gluconeogenic and glycolytic enzymes and the levels of IRS-1 and Akt in skeletal muscle of type 2 diabetic animals. In silico studies showed that trans-ferulic acid had the greatest hit rate against the protein targets IRS-1 and Akt. C. papaya restored the normoglycemic effect in diabetic skeletal muscle by accelerating the expression of IRS-1 and Akt.
Collapse
|
10
|
Recent trends in extraction, identification and quantification methods of Centella asiatica phytochemicals with potential applications in food industry and therapeutic relevance: A review. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Pomegranate peel polyphenols alleviate insulin resistance through the promotion of insulin signaling pathway in skeletal muscle of metabolic syndrome rats. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Pharmacological Effects of Centella asiatica on Skin Diseases: Evidence and Possible Mechanisms. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5462633. [PMID: 34845411 PMCID: PMC8627341 DOI: 10.1155/2021/5462633] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/27/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022]
Abstract
The medicinal herb Centella asiatica (L.) Urban known as gotu kola has been reported to exhibit a wide range of pharmacological activities. In particular, a significant body of scientific research exists on the therapeutic properties of preparations of C. asiatica or its triterpenes in the treatment of skin diseases. The present study is aimed to provide a comprehensive overview of the beneficial effects of C. asiatica on skin diseases. Peer-reviewed articles on the potent dermatological effects of C. asiatica were acquired from PubMed, Web of Science, Scopus, ScienceDirect, and SciFinder. This review provides an understanding of pharmacological studies which confirm the potent dermatological effects and underlying molecular mechanisms of C. asiatica. This medicinal plant and its triterpenes include asiaticoside, madecassoside, and their aglycones, asiatic acid and madecassic acid. These compounds exert therapeutic effects on dermatological diseases such as acne, burns, atopic dermatitis, and wounds via NF-κB, TGF-β/Smad, MAPK, Wnt/β-catenin, and STAT signaling in in vitro and in vivo studies. However, additional rigorously controlled long-term clinical trials will be necessary to confirm the full potential of C. asiatica as a therapeutic agent.
Collapse
|
13
|
Deka B, Barge SR, Bharadwaj S, Kashyap B, Manna P, Borah JC, Talukdar NC. Beneficial effect of the methanolic leaf extract of Allium hookeri on stimulating glutathione biosynthesis and preventing impaired glucose metabolism in type 2 diabetes. Arch Biochem Biophys 2021; 708:108961. [PMID: 34118216 DOI: 10.1016/j.abb.2021.108961] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/02/2021] [Accepted: 06/02/2021] [Indexed: 01/18/2023]
Abstract
Oxidative stress resulting from the depletion of glutathione (GSH) level plays a vital role in generating various degenerative diseases, including type 2 diabetes (T2D). We tested the hypothesis that depleted glutathione levels can be enhanced and the impaired glucose metabolism can be prevented by supplementing Allium hookeri, a herb rich in organosulfur compounds, in a High Fat (HF) diet-induced T2D Male Sprague Dawley rat model. The experimental rats were divided into three groups (n = 6), namely normal diet, high-fat diet, and high-fat diet treated with A.hookeri methanolic leaf extract (250 mg/kg). Consumption of HF diet along with the plant extract resulted in significant reduction of the body weight (7.08%-14.89%) and blood glucose level (6.5%-16.4%) from the 13th week onward. There was a significant decrease in reactive oxygen species, oxidized glutathione (GSSG) levels, and an increase in GSH level in skeletal muscle tissues supplemented with the plant extract. The protein expressions of the signaling molecules such as GCLC and GR involved in GSH synthesis and of GLUT4 in glucose transport were also upregulated in the skeletal muscle tissues of the plant extract-treated group. Results of in vitro studies with muscle cell line (L6) further demonstrated the beneficial effect of the plant extract in increasing glucose uptake and maintaining the GSH/GSSH equilibrium via regulation of protein expression of GCLC/GR/GLUT4 signaling molecules in sodium palmitate (0.75 mM) treated cells. Overall this study suggests that dietary supplementation with Allium hookeri, can restore the glutathione level and regulate the blood glucose level in T2D.
Collapse
Affiliation(s)
- Barsha Deka
- Chemical Biology Lab 1, Institute of Advanced Study in Science and Technology (IASST) Paschim Boragaon, Guwahati, 35, India; Department of Molecular Biology and Biotechnology, Cotton University, Panbazar, Guwahati, 781001, Assam, India
| | - Sagar Ramrao Barge
- Chemical Biology Lab 1, Institute of Advanced Study in Science and Technology (IASST) Paschim Boragaon, Guwahati, 35, India; Department of Molecular Biology and Biotechnology, Cotton University, Panbazar, Guwahati, 781001, Assam, India
| | - Simanta Bharadwaj
- Chemical Biology Lab 1, Institute of Advanced Study in Science and Technology (IASST) Paschim Boragaon, Guwahati, 35, India; Department of Molecular Biology and Biotechnology, Cotton University, Panbazar, Guwahati, 781001, Assam, India
| | - Bhaswati Kashyap
- Chemical Biology Lab 1, Institute of Advanced Study in Science and Technology (IASST) Paschim Boragaon, Guwahati, 35, India; Department of Molecular Biology and Biotechnology, Cotton University, Panbazar, Guwahati, 781001, Assam, India
| | - Prasenjit Manna
- Chemical Biology Lab 1, Institute of Advanced Study in Science and Technology (IASST) Paschim Boragaon, Guwahati, 35, India; CSIR-North East Institute of Science and Technology, Biological Science and Technology Division, Jorhat, Assam, 785006, India
| | - Jagat Chandra Borah
- Chemical Biology Lab 1, Institute of Advanced Study in Science and Technology (IASST) Paschim Boragaon, Guwahati, 35, India
| | - Narayan Chandra Talukdar
- Chemical Biology Lab 1, Institute of Advanced Study in Science and Technology (IASST) Paschim Boragaon, Guwahati, 35, India; Assam Down Town University, Panikhaiti, Assam, 781068, India.
| |
Collapse
|
14
|
Biswas D, Mandal S, Chatterjee Saha S, Tudu CK, Nandy S, Batiha GES, Shekhawat MS, Pandey DK, Dey A. Ethnobotany, phytochemistry, pharmacology, and toxicity of Centella asiatica (L.) Urban: A comprehensive review. Phytother Res 2021; 35:6624-6654. [PMID: 34463404 DOI: 10.1002/ptr.7248] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 06/19/2021] [Accepted: 08/08/2021] [Indexed: 02/06/2023]
Abstract
The well-known medicinal plant Centella asiatica (L.) Urban is an Ayurvedic and traditional Chinese medicine used in the treatment of different health problems and as an edible vegetable in a regular diet. Ease of availability in the wide range of environmental conditions plus low-cost cultivation process has made the plant popular in ethno-medicinal healthcare systems. In the present review, phytochemical analysis of plant-extract and pharmacological activities of bioactive-compounds are discussed based upon the available reports to understand their therapeutic potentialities along with the mechanisms behind. The results exhibited that C. asiatica and its triterpenoids demonstrated an array of pharmacological effects and health benefits, some of which were confirmed in many preclinical and clinical studies. Those reports also provided considerable evidences in support of the principles of folk treatment in different countries. Increase and maintenance of the prospective plant secondary metabolites would provide an enriched resource of drug molecules. Development of suitable derivatives of the therapeutic compounds can give an assurance for getting more effective drug candidates with reduced side effects. The review also enumerates the application of advanced nanotechnology, toxicology, and clinical-trial reports on the plant with notes on the shortcomings in the present research and future perspectives of using this medicinal plant.
Collapse
Affiliation(s)
- Dew Biswas
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Sujata Mandal
- Department of Life Sciences, Presidency University, Kolkata, India
| | | | | | - Samapika Nandy
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Mahipal S Shekhawat
- Department of Plant Biology and Biotechnology, Kanchi Mamunivar Government Institute for Postgraduate Studies and Research, Pondicherry, India
| | | | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, India
| |
Collapse
|
15
|
Jiang Y, Zhang N, Zhou Y, Zhou Z, Bai Y, Strappe P, Blanchard C. Manipulations of glucose/lipid metabolism and gut microbiota of resistant starch encapsulated Ganoderma lucidum spores in T2DM rats. Food Sci Biotechnol 2021; 30:755-764. [PMID: 34123471 PMCID: PMC8144259 DOI: 10.1007/s10068-021-00908-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 02/27/2021] [Accepted: 03/27/2021] [Indexed: 12/12/2022] Open
Abstract
Our team previously demonstrated that Ganoderma lucidum spores (GLS) and resistant starch (RS) had hypoglycemic effects separately on type 2 diabetic mellitus (T2DM) rats. This work was to explore the effects of administering encapsulated GLS within RS (referred to as EGLS) in the T2DM rats, which were induced by streptozotocin (STZ). The EGLS was orally administered to rats for 28 days. The parameters of glycometabolism and lipometabolism were evaluated, and fecal microbiota composition was investigated. The results showed that EGLS significantly enhanced glycometabolism and lipometabolism parameters in T2DM rats, which might be associate with the enhancement of the glucose and lipid metabolism, insulin secretion, and glycogen synthesis and reduced lipogenesis. Furthermore, the intervention of EGLS also reduced the Proteobacteria community and improved dysfunctional gut microbiota. This study indicated EGLS may be a potential candidate for dietary intervention to modulate diabetes.
Collapse
Affiliation(s)
- Yumei Jiang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457 China
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Na Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457 China
| | - Yawen Zhou
- College of Food Science and Technology, Nanjing Agriculture University, Nanjing, 210095 China
| | - Zhongkai Zhou
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457 China
- ARC Functional Grains Centre, Charles Sturt University, Wagga Wagga, NSW 2678 Australia
| | - Yu Bai
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457 China
| | - Padraig Strappe
- ARC Functional Grains Centre, Charles Sturt University, Wagga Wagga, NSW 2678 Australia
| | - Chris Blanchard
- ARC Functional Grains Centre, Charles Sturt University, Wagga Wagga, NSW 2678 Australia
| |
Collapse
|
16
|
Peter EL, Nagendrappa PB, Hilonga S, Tuyiringire N, Ashuro E, Kaligirwa A, Sesaazi CD. Pharmacological reflection of plants traditionally used to manage diabetes mellitus in Tanzania. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113715. [PMID: 33358853 DOI: 10.1016/j.jep.2020.113715] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/01/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The increasing national prevalence of diabetes mellitus (DM) and its complications have overstretched the health care system in Tanzania and influenced patients to use herbal medicines as alternative therapeutic strategies. Therefore, an urgent need exists to validate the safety and efficacy of plants used locally. AIM OF THE STUDY To identify plants used for the management of DM in Tanzania and analyses their pharmacological, phytochemistry, and safety evidence with a special focus on the mechanism of action. METHODS Researchers searched Medline, web of science, and Scopus for published articles. Also, specialized herbarium documents of Muhimbili Institute of traditional medicine were reviewed. Articles were assessed for relevance, quality, and taxonomical accuracy before being critically reviewed. RESULTS We identified 62 plant species used locally for DM management. Moringa oleifera Lam. and Cymbopogon citratus (D.C) stapf were the most mentioned. Fifty-four phytochemicals from 13 species had DM activities. These were mainly; polyphenolics, phytosterols, and triterpenoids. Extracts, fractions, and pure compounds from 18 species had in vitro antidiabetic activities of which 14 had α-glucosidase and α-amylase inhibition effects. The most studied -Momordica charantia L. increased; glucose uptake and adiponectin release in 3T3-L1 adipocytes, insulin secretion, insulin receptor substrate-1 (IRS-1), GLUT-4 translocation, and GLP-1 secretion; and inhibited protein tyrosine phosphatase 1 B (PTP1B). Preclinical studies reported 30 species that lower plasma glucose with molecular targets in the liver, skeletal muscles, adipose tissues, pancreases, and stomach. While three species; Aspilia mossambiscensis (Oliv.) Willd, Caesalpinia bonduc (L.) Roxb, and Phyllanthus amarus Schumach. & Thonn. had mild toxicity in animals, 33 had no report of their efficacy in DM management or toxicity. CONCLUSION Local communities in Tanzania use herbal medicine for the management of DM. However, only a fraction of such species has scientific evidence. A. mossambiscensis, C. bonduc., and P. amarus had mild toxicity in animals. Together, our findings call for future researches to focus on in vitro, in vivo, and phytochemical investigation of plant species for which their use in DM among the local communities in Tanzania have not been validated.
Collapse
Affiliation(s)
- Emanuel L Peter
- Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda.
| | - Prakash B Nagendrappa
- Centre for Local Health Traditions & Policy, The University of Trans-disciplinary Health Sciences and Technology, Bengaluru, India.
| | - Samson Hilonga
- Institute of Traditional Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania.
| | - Naasson Tuyiringire
- Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda.
| | - Efrata Ashuro
- Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda.
| | - Anita Kaligirwa
- Department of Pharmacology, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda.
| | - Crispin Duncan Sesaazi
- Department of Pharmaceutical Sciences, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda.
| |
Collapse
|
17
|
Torbati FA, Ramezani M, Dehghan R, Amiri MS, Moghadam AT, Shakour N, Elyasi S, Sahebkar A, Emami SA. Ethnobotany, Phytochemistry and Pharmacological Features of Centella asiatica: A Comprehensive Review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1308:451-499. [PMID: 33861456 DOI: 10.1007/978-3-030-64872-5_25] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Centella asiatica (CA) or Gotu cola is an herbal plant from the Apiaceae family with a long history of usage in different traditional medicines. It has long been used for the treatment of various ailments such as central nervous system (CNS), skin and gastrointestinal disorders especially in the Southeast Asia. This chapter focused on the phytochemical constituent and pharmacological activities of CA based on preclinical and clinical studies. Additionally, botanical description and distribution, traditional uses, interactions, and safety issues are reviewed. Electronic databases of Google Scholar, Scopus, PubMed, and Web of Science were searched to obtain relevant studies on the pharmacological activities of CA. Approximately, 124 chemical compounds including triterpenoids, polyphenolic compounds, and essential oils have been isolated and identified from CA. Ethnomedicinal applications of CA mostly include treatment of gastrointestinal diseases, wounds, nervous system disorders, circulatory diseases, skin problems, respiratory ailments, diabetes and sleep disorders in various ethnobotanical practices. Pharmacological studies revealed a wide range of beneficial effects of CA on CNS, cardiovascular, lung, liver, kidney, gastrointestinal, skin, and endocrine system. Among them, neuroprotective activity, wound healing and treatment of venous insufficiency, as well as antidiabetic activity seem to be more frequently reported. At the moment, considering various health benefits of CA, it is marketed as an oral supplement as well as a topical ingredient in some cosmetic products. Additional preclinical studies and particularly randomized controlled trials are needed to clarify the therapeutic roles of CA.
Collapse
Affiliation(s)
- Farshad Abedi Torbati
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahin Ramezani
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Dehghan
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Ali Tafazoli Moghadam
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Shakour
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sepideh Elyasi
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Seyed Ahmad Emami
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
18
|
Oldoni TLC, Merlin N, Bicas TC, Prasniewski A, Carpes ST, Ascari J, de Alencar SM, Massarioli AP, Bagatini MD, Morales R, Thomé G. Antihyperglycemic activity of crude extract and isolation of phenolic compounds with antioxidant activity from Moringa oleifera Lam. leaves grown in Southern Brazil. Food Res Int 2020; 141:110082. [PMID: 33641964 DOI: 10.1016/j.foodres.2020.110082] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/22/2020] [Accepted: 12/25/2020] [Indexed: 12/20/2022]
Abstract
The antihyperglicemic activity of crude extract from Moringa oleifera leaves and isolation of phenolic compounds with antioxidant activity using bioguided assay were employed by the first time in leaves cultivated in Brazil. The hydroalcoholic extract (HE) was produced by using ethanol:water (80:20 v/v) and purified by solid-liquid procedure using solvents in ascending order of polarity. The ethyl acetate fraction (Fr-EtOAc) presented high antioxidant potential and it was purified using chromatographic techniques rendering isolated compounds that were identified from the spectral data. The HE extract (500 mg kg-1) was adimistrated in diabetic rats induced by streptozotocin and chemical markers and lipid peroxidation in liver and kidney were evaluated. The Fr-EtOAc showed high antioxidant potential by FRAP reduction method (1678 µmol Fe2+ g-1), DPPH and ABTS scavenging methods (526.7 and 671.5 µmol TEAC g-1 respectively) and ORAC assay (3560.6 µmol TEAC g-1). Therefore, the Fr-EtOAc was purified and yielded three bioactive subfractions (S-12, S-13 abd S-15) that were rechromatoghaphed in HPLC-SemiPrep. After that, two main bioactive glycosylated flavonoids (isoquercitrin and astragalin) and phenolic acid (3-O-caffeoylquinic acid) were obtained. Additionally, the HE extract provided protection against oxidative damage in liver and kidney of diabetic rats ameliorating endogenous antioxidant defenses by increase catalase (CAT), glutathione S-transferase (GST) and non-protein thiol groups (NPSH) levels as well as decreased the lipid peroxidation in these tissues. Our results indicate that three phenolic compounds with high antioxidant activity were isolated and, the chemical composition of HE crude extract, rich in flavonoids glycosylated could be intimately related to antihyperglycemic action. So, it is possible to suggest that these compounds may be used as chemical biomarkers for this plant in Brazil, ensuring quality and supporting the use of aerial parts in tradicional medicine.
Collapse
Affiliation(s)
- Tatiane Luiza C Oldoni
- Department of Chemistry, Federal Technological University of Paraná (UTFPR), Pato Branco, PR 85503-390, Brazil.
| | - Nathalie Merlin
- Department of Chemistry, Federal Technological University of Paraná (UTFPR), Pato Branco, PR 85503-390, Brazil
| | - Thariane Carvalho Bicas
- Department of Chemistry, Federal Technological University of Paraná (UTFPR), Pato Branco, PR 85503-390, Brazil
| | - Anaclara Prasniewski
- Department of Biology, Federal Technological University of Paraná (UTFPR), Santa Helena, PR 85892-000, Brazil
| | - Solange Teresinha Carpes
- Department of Chemistry, Federal Technological University of Paraná (UTFPR), Pato Branco, PR 85503-390, Brazil
| | - Jociani Ascari
- Department of Biology, Federal Technological University of Paraná (UTFPR), Santa Helena, PR 85892-000, Brazil
| | - Severino Matias de Alencar
- Department of Agri-Food Industry, Food and Nutrition, "Luiz de Queiroz" College of Agriculture, University of Sao Paulo (USP), P.O. Box. 9, 13418-900 Piracicaba, SP, Brazil
| | - Adna Prado Massarioli
- Department of Agri-Food Industry, Food and Nutrition, "Luiz de Queiroz" College of Agriculture, University of Sao Paulo (USP), P.O. Box. 9, 13418-900 Piracicaba, SP, Brazil
| | | | - Rafael Morales
- Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina (Epagri), 88318-112 Itajaí, SC, Brazil
| | - Gustavo Thomé
- Department of Chemistry, Federal Technological University of Paraná (UTFPR), Pato Branco, PR 85503-390, Brazil
| |
Collapse
|
19
|
Montrose K, López Cabezas RM, Paukštytė J, Saarikangas J. Winter is coming: Regulation of cellular metabolism by enzyme polymerization in dormancy and disease. Exp Cell Res 2020; 397:112383. [PMID: 33212148 DOI: 10.1016/j.yexcr.2020.112383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 12/20/2022]
Abstract
Metabolism feeds growth. Accordingly, metabolism is regulated by nutrient-sensing pathways that converge growth promoting signals into biosynthesis by regulating the activity of metabolic enzymes. When the environment does not support growth, organisms invest in survival. For cells, this entails transitioning into a dormant, quiescent state (G0). In dormancy, the activity of biosynthetic pathways is dampened, and catabolic metabolism and stress tolerance pathways are activated. Recent work in yeast has demonstrated that dormancy is associated with alterations in the physicochemical properties of the cytoplasm, including changes in pH, viscosity and macromolecular crowding. Accompanying these changes, numerous metabolic enzymes transition from soluble to polymerized assemblies. These large-scale self-assemblies are dynamic and depolymerize when cells resume growth. Here we review how enzyme polymerization enables metabolic plasticity by tuning carbohydrate, nucleic acid, amino acid and lipid metabolic pathways, with particular focus on its potential adaptive value in cellular dormancy.
Collapse
Affiliation(s)
- Kristopher Montrose
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, Finland; Research Programme in Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland
| | - Rosa María López Cabezas
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, Finland; Research Programme in Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland
| | - Jurgita Paukštytė
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, Finland; Research Programme in Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland
| | - Juha Saarikangas
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, Finland; Research Programme in Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland; Neuroscience Center, University of Helsinki, Finland.
| |
Collapse
|
20
|
Sun B, Wu L, Wu Y, Zhang C, Qin L, Hayashi M, Kudo M, Gao M, Liu T. Therapeutic Potential of Centella asiatica and Its Triterpenes: A Review. Front Pharmacol 2020; 11:568032. [PMID: 33013406 PMCID: PMC7498642 DOI: 10.3389/fphar.2020.568032] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022] Open
Abstract
Centella asiatica (also known as Centella asiatica (L.) Urb. or Gotu kola) is a traditional Chinese medicine with extensive medicinal value, which is commonly used in Southeast Asian countries. This study aimed to summarize the effects of C. asiatica and its main components on neurological diseases, endocrine diseases, skin diseases, cardiovascular diseases, gastrointestinal diseases, immune diseases, and gynecological diseases, as well as potential molecular mechanisms, to study the pathological mechanism of these diseases based on the changes at the molecular level. The results showed that C. asiatica and its triterpenoids had extensive beneficial effects on neurological and skin diseases, which were confirmed through clinical studies. They exhibited anti-inflammatory, anti-oxidative stress, anti-apoptotic effects, and improvement in mitochondrial function. However, further clinical studies are urgently required due to the low level of evidence and lack of patients.
Collapse
Affiliation(s)
- Boju Sun
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Lili Wu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China
| | - You Wu
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Chengfei Zhang
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Lingling Qin
- Technology Department, Beijing University of Chinese Medicine, Beijing, China
| | - Misa Hayashi
- School of Pharmaceutical Sciences, Mukogawa Women’s University, Hyogo, Japan
| | - Maya Kudo
- School of Pharmaceutical Sciences, Mukogawa Women’s University, Hyogo, Japan
| | - Ming Gao
- School of Pharmaceutical Sciences, Mukogawa Women’s University, Hyogo, Japan
| | - Tonghua Liu
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
21
|
Makpol S, Abdul Sani NF, Hakimi NH, Ab Rani N, Zakaria SNA, Abd Rasid AF, Gunasekaran G, Mohd Sahardi NFN, Tan JK, Abd Ghafar N, Mad Nordin MF. Zingiber officinale Roscoe Prevents DNA Damage and Improves Muscle Performance and Bone Integrity in Old Sprague Dawley Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:1-18. [DOI: 10.1155/2020/3823780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Age-related loss of skeletal muscle mass and strength or sarcopenia is attributed to the high level of oxidative stress and inadequate nutritional intake. The imbalance in oxidative status with increased production of free radicals results in damage to the DNA which leads to cell dysfunction. This study aimed to determine the effect of Zingiber officinale Roscoe (ginger) on muscle performance and bone integrity in Sprague Dawley (SD) rats. SD rats aged three (young), nine (adult), and twenty-one (old) months old were treated with either distilled water or ginger extract at a concentration of 200 mg/kg body weight (BW) daily for 3 months via oral gavage. Muscle performance was assessed at 0, 1, 2, and 3 months of treatment by measuring muscle strength, muscle function, and bone integrity while DNA damage was determined by comet assay. Muscle cell histology was analyzed by hematoxylin and eosin (H&E) staining. Young and adult ginger-treated rats showed a significant improvement in muscle strength after 3 months of supplementation. Bone mineral density (BMD) and bone mineral content (BMC) were increased while fat free mass (FMM) was decreased after 3 months of ginger supplementation in young rats but not changed in adult and old ginger supplemented groups. Interestingly, supplementation of ginger for 3 months to the old rats decreased the level of damaged DNA. Histological findings showed reduction in the size of muscle fibre and fascicles with heterogenous morphology of the muscle fibres indicating sarcopenia was evident in old rats. Treatment with ginger extract improved the histological changes even though there was evidence of cellular infiltration (mild inflammation) and dilated blood vessels. In conclusion, Z. officinale Roscoe prevents DNA damage and improves muscle performance and bone integrity in SD rats indicating its potential in alleviating oxidative stress in ageing and thus delaying sarcopenia progression.
Collapse
Affiliation(s)
- Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Level 17 Preclinical Building, UKM Medical Center, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Nur Fathiah Abdul Sani
- Department of Biochemistry, Faculty of Medicine, Level 17 Preclinical Building, UKM Medical Center, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Nur Haleeda Hakimi
- Department of Biochemistry, Faculty of Medicine, Level 17 Preclinical Building, UKM Medical Center, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Nazirah Ab Rani
- Department of Biochemistry, Faculty of Medicine, Level 17 Preclinical Building, UKM Medical Center, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Siti Nor Asyikin Zakaria
- Department of Biochemistry, Faculty of Medicine, Level 17 Preclinical Building, UKM Medical Center, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Ahmad Fais Abd Rasid
- Department of Biochemistry, Faculty of Medicine, Level 17 Preclinical Building, UKM Medical Center, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Geetha Gunasekaran
- Department of Biochemistry, Faculty of Medicine, Level 17 Preclinical Building, UKM Medical Center, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Nur Fatin Nabilah Mohd Sahardi
- Department of Biochemistry, Faculty of Medicine, Level 17 Preclinical Building, UKM Medical Center, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Jen Kit Tan
- Department of Biochemistry, Faculty of Medicine, Level 17 Preclinical Building, UKM Medical Center, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Norzana Abd Ghafar
- Department of Anatomy, Faculty of Medicine, Level 18 Preclinical Building, UKM Medical Center, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Mariam Firdhaus Mad Nordin
- Department of Chemical Process Engineering, Universiti Teknologi Malaysia (UTM) Kuala Lumpur, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia
| |
Collapse
|
22
|
Oyenihi AB, Opperman M, Alabi TD, Mpahleni B, Masola B. Centella asiatica alleviates diabetes-induced changes in fatty acid profile and oxidative damage in rat testis. Andrologia 2020; 52:e13751. [PMID: 32656793 DOI: 10.1111/and.13751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/13/2020] [Indexed: 12/17/2022] Open
Abstract
The in vivo effects of Centella asiatica L. Urban (Family: Apiaceae; CA) on diabetes-induced testicular fatty acid misdistribution and oxidative injury were investigated. Diabetic rats were treated with vehicle, CA or metformin daily for 14 days by oral gavage. Fatty acid (FA) content in testis was analysed using gas chromatography-flame ionisation detection while redox indices were measured as peroxide value (PV), malondialdehyde (MDA), oxygen radical antioxidant capacity (ORAC), reduced glutathione (GSH), glutathione S-transferase (GST) and glutathione peroxidase (GPx) activities. Diabetes increased omega-6 (61%), and decreased omega-3 (23%) and monounsaturated fatty acids (MUFA; 18%) compared to non-diabetic controls. Oxidative injury in diabetic rats was confirmed by increases in PV (112%) and MDA (77%) in addition to decreases in GSH (41%) and activities of GST (19%) & GPx (24%) compared to non-diabetic controls. CA treatment led to 17% reduction in omega-6 and 33% rise in MUFA compared to diabetic controls. Additionally, CA ameliorated the oxidative injury and improved antioxidant capacity by increasing GSH (49%), GST (16%) and GPx (23%) when compared to diabetic controls. Data suggest CA potential in alleviating the alterations caused by diabetes in testes through effects on omega-6 and MUFA; and via increased GSH level and dependent enzyme activities.
Collapse
Affiliation(s)
- Ayodeji B Oyenihi
- Functional Foods Research Unit, Faculty of Applied Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| | - Maretha Opperman
- Functional Foods Research Unit, Faculty of Applied Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| | - Toyin D Alabi
- Oxidative Stress Research Centre, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| | - Buhle Mpahleni
- Functional Foods Research Unit, Faculty of Applied Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| | - Bubuya Masola
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
23
|
Liu X, Wang K, Zhou J, Sullivan MA, Liu Y, Gilbert RG, Deng B. Metformin and Berberine suppress glycogenolysis by inhibiting glycogen phosphorylase and stabilizing the molecular structure of glycogen in db/db mice. Carbohydr Polym 2020; 243:116435. [PMID: 32532388 DOI: 10.1016/j.carbpol.2020.116435] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/18/2020] [Accepted: 05/08/2020] [Indexed: 01/08/2023]
Abstract
Glycogen is a branched glucose polymer involved in sustaining blood glucose homeostasis. Liver glycogen comprises α particles (up to 300 nm in diameter) made of joined β particles (∼20 nm in diameter). Glycogen α particles in a mouse model for diabetes are molecularly fragile, breaking down into smaller β particles more readily than in healthy mice. Glycogen phosphorylase (GP), a rate-limiting enzyme in glycogen degradation, is overexpressed in diabetic mice. This study shows that Metformin and Berberine, two common drugs, two common drugs used to treat diabetes, are able to revert the liver glycogen of diabetic mice to the stable structure seen in non-diabetic mice. It is also shown that these drugs reduce the GP level via the cAMP/PKA signaling pathway in diabetic livers and decrease the affinity of GP with the glycogen of db/db mice. These effects of these drugs may slow down the degradation of liver glycogen and improve glucose homeostasis.
Collapse
Affiliation(s)
- Xiaocui Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Kaiping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Jing Zhou
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Mitchell A Sullivan
- Glycation and Diabetes Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, 4072, Australia
| | - Yage Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Robert G Gilbert
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, College of Agriculture, Yangzhou University, 225009, Yangzhou, Jiangsu Province, China; Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Bin Deng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
24
|
Li Y, Chen D, Zhang F, Lin Y, Ma Y, Zhao S, Chen C, Wang X, Liu J. Preventive effect of pressed degreased walnut meal extracts on T2DM rats by regulating glucolipid metabolism and modulating gut bacteria flora. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103694] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|