1
|
Du J, Wang H, Zhong L, Wei S, Min X, Deng H, Zhang X, Zhong M, Huang Y. Bioactivity and biomedical applications of pomegranate peel extract: a comprehensive review. Front Pharmacol 2025; 16:1569141. [PMID: 40206073 PMCID: PMC11979244 DOI: 10.3389/fphar.2025.1569141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/07/2025] [Indexed: 04/11/2025] Open
Abstract
Pomegranate peel is a by-product generated during the processing of pomegranate (Punica granatum L.) fruit, accounting for approximately 50% of the total mass of the fruit. Although pomegranate peel is usually regarded as waste, it is rich in various bioactive metabolites such as polyphenols, tannins, and flavonoids, demonstrating significant medicinal and nutritional value. In recent years, Pomegranate peel extract (PPE) has shown broad application prospects in the biomedical field due to its multiple effects, including antioxidant, anti-inflammatory, antibacterial, anti-apoptotic properties, and promotion of cell regeneration. This review consolidates the major bioactive metabolites of PPE and explores its applications in biomedical materials, including nanodrug carriers, hydrogels, and tissue engineering scaffolds. By synthesizing the existing literature, we delve into the potential value of PPE in biomedicine, the challenges currently encountered, and the future directions for research. The aim of this review is to provide a scientific basis for optimizing the utilization of PPE and to facilitate its broader application in the biomedical field.
Collapse
Affiliation(s)
- Jinsong Du
- School of Health Management, Zaozhuang University, Zaozhuang, China
- Department of Teaching and Research, Shandong Coal Health School, Zaozhuang, China
| | - Heming Wang
- School of Nursing, Jilin University, Jilin, China
| | - Lingyun Zhong
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Shujie Wei
- Image Center, Zaozhuang Municipal Hospital, Zaozhuang, China
| | - Xiaoqiang Min
- Department of Teaching and Research, Shandong Coal Health School, Zaozhuang, China
- Department of Geriatics, Shandong Healthcare Group Xinwen Central Hospital, Taian, China
| | - Hongyan Deng
- School of Health Management, Zaozhuang University, Zaozhuang, China
| | - Xiaoyan Zhang
- Magnetic Resonance Imaging Department, Shandong Healthcare Group Zaozhuang Central Hospital, Zaozhuang, China
| | - Ming Zhong
- Lanshu Cosmetics Co., Ltd., Huzhou, Zhejiang, China
| | - Yi Huang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Ezcurra-Hualde M, Gómez-Leyva JF, Juarez-Curiel E, Regalado-Noyola YJ, Ardaiz N, Casares N, Ruiz-Guillamon D, Rodríguez-Leon SM, Flores-Hernández FY, Arrizabalaga L, Risson A, García-Fuentes R, Gomar C, Belsue V, Aranda F, Berraondo P, Garcia-Garcia MR. Intratumoral administration of Hibiscus sabdariffa-derived anthocyanins exerts potent antitumor effects in murine cancer models. Front Immunol 2025; 16:1549890. [PMID: 40124386 PMCID: PMC11925877 DOI: 10.3389/fimmu.2025.1549890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 02/17/2025] [Indexed: 03/25/2025] Open
Abstract
Introduction Cancer remains the leading cause of death worldwide, with increasing incidence rates. Natural compounds have gained attention as potential therapeutic agents due to their bioactive properties. Anthocyanins, particularly delphinidin-3-sambubioside (Dp-3-sam) and cyanidin-3-sambubioside (Cn-3-sam), are flavonoids with antioxidant and potential antitumor properties. This study investigates the antitumor effects of anthocyanins extracted from Hibiscus sabdariffa L. (H. sabdariffa), administered intratumorally, and their potential as adjuvants to chemotherapy. Methods Anthocyanins were extracted from H. sabdariffa and characterized using high-performance liquid chromatography (HPLC). The total phenolic content was determined using the Folin-Ciocalteu method. Antioxidant activity was assessed through DPPH, ABTS, and FRAP assays. The antiproliferative effects of Dp-3-sam and Cn-3-sam were evaluated in vitro using MCA-205 fibrosarcoma and CT26 colon carcinoma cell lines. In vivo studies were conducted on mouse tumor models to assess tumor growth inhibition following intratumoral administration of anthocyanins alone or in combination with doxorubicin. The impact on angiogenesis, immune cell recruitment, and long-term immune memory was also analyzed. Results HPLC analysis confirmed the presence of Dp-3-sam and Cn-3-sam in the H. sabdariffa extract. The anthocyanins exhibited significant antioxidant activity in all assays. In vitro studies demonstrated dose-dependent inhibition of cancer cell proliferation. In vivo, intratumoral administration of anthocyanins led to a significant reduction in tumor growth. The combination of anthocyanins with doxorubicin further enhanced tumor suppression. Mechanistically, Dp-3-sam and Cn-3-sam reduced angiogenesis and promoted immune cell recruitment but did not elicit an effective antitumor immune response alone. However, co-administration with doxorubicin reversed this limitation, leading to increased immune activation and resistance to tumor rechallenge, suggesting the induction of long-term immune memory. Discussion These findings highlight the potential of H. sabdariffa-derived anthocyanins as adjuvants in cancer therapy. When administered intratumorally, they enhance chemotherapy efficacy and immunogenicity. However, further studies are needed to optimize dosing strategies, evaluate long-term safety, and assess clinical applicability.
Collapse
Affiliation(s)
- Miriam Ezcurra-Hualde
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Juan Florencio Gómez-Leyva
- Laboratorio de Biología Molecular, TecNM-Instituto Tecnológico de Tlajomulco, Tlajomulco de Zúñiga, Jalisco, Mexico
| | - Efren Juarez-Curiel
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Laboratorio de Biología Molecular, TecNM-Instituto Tecnológico de Tlajomulco, Tlajomulco de Zúñiga, Jalisco, Mexico
| | | | - Nuria Ardaiz
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Noelia Casares
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Solid Tumor Program, Cima Universidad de Navarra, Cancer, Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
| | - David Ruiz-Guillamon
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | | | - Flor Yohana Flores-Hernández
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | - Leire Arrizabalaga
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Aline Risson
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Román García-Fuentes
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Celia Gomar
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Virginia Belsue
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Fernando Aranda
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain
| | - Maritza R. Garcia-Garcia
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Escuela de Nutrición, Universidad Autónoma de Guadalajara, Zapopan, Jalisco, Mexico
| |
Collapse
|
3
|
Ladeira Bernardes A, Albuquerque Pereira MDF, Xisto Campos I, Ávila L, Dos Santos Cruz BC, Duarte Villas Mishima M, Maciel Dos Santos Dias M, de Oliveira Mendes TA, Gouveia Peluzio MDC. Oral intake of Hibiscus sabdariffa L. increased c-Myc and caspase-3 gene expression and altered microbial population in colon of BALB/c mice induced to preneoplastic lesions. Eur J Nutr 2025; 64:109. [PMID: 40042671 DOI: 10.1007/s00394-025-03622-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 02/17/2025] [Indexed: 04/17/2025]
Abstract
BACKGROUND Colorectal carcinogenesis induces changes in the colon, such as the appearance of aberrant crypt foci (ACF). This process is influenced by genetic and environmental factors, such as diet. Hibiscus sabdariffa L. is a considerable source of phenolic compounds, such as anthocyanins, and dietary fibers that may exert anti-inflammatory, antioxidant and prebiotic properties, attenuating the appearance of ACFs. OBJECTIVES To investigate whether supplementation with 5% or 10% of dehydrated calyces of Hibiscus sabadariffa (DHSC) influences the composition of the intestinal microbiota and the expression of genes related to colorectal carcinogenesis in BALB/c mice. METHODS The in vivo experiment lasted 12 weeks and the animals were divided into 3 experimental groups: the control group and the supplemented groups (5% or 10% DCHS) and induced pre-neoplastic lesions with the drug Dimethylhydrazine. Serum aspartate aminotransferase and alanine aminotransferase markers, liver cytokine profile, gut microbiota composition and tumor protein 53, cellular myelocytomatosis oncogene, caspase-3 and Proliferating Cell Nuclear Antigen gene expression were determined. RESULTS Supplementation with 5% or 10% of DCHS altered the composition of the intestinal microbiota, increasing the abundance of the families Lachnospiraceae, Ruminococcaceae, Clostridiaceae and of the genus Clostridum, important producers of butyrate. Furthermore, 5% and 10% DCHS supplementation increased caspase-3 and c-Myc expression, respectively, which may suggest apoptotic events. CONCLUSIONS Therefore, the effects of DHSC, rich in anthocyanins and dietary fiber, on the composition of the intestinal microbiota and on the expression of genes associated with cell apoptosis may contribute to reducing the risk of developing preneoplastic lesions.
Collapse
Affiliation(s)
- Andressa Ladeira Bernardes
- Department of Nutrition and Health, Universidade Federal de Viçosa, Campus Universitário da, Viçosa, Minas Gerais, CEP:36570-900, Brazil.
| | | | - Iasmim Xisto Campos
- Department of Nutrition and Health, Universidade Federal de Viçosa, Campus Universitário da, Viçosa, Minas Gerais, CEP:36570-900, Brazil
| | - Larissa Ávila
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Bruna Cristina Dos Santos Cruz
- Department of Nutrition and Health, Universidade Federal de Viçosa, Campus Universitário da, Viçosa, Minas Gerais, CEP:36570-900, Brazil
| | - Marcella Duarte Villas Mishima
- Department of Nutrition and Health, Universidade Federal de Viçosa, Campus Universitário da, Viçosa, Minas Gerais, CEP:36570-900, Brazil
| | - Manoela Maciel Dos Santos Dias
- Department of Nutrition and Health, Universidade Federal de Viçosa, Campus Universitário da, Viçosa, Minas Gerais, CEP:36570-900, Brazil
| | | | - Maria do Carmo Gouveia Peluzio
- Department of Nutrition and Health, Universidade Federal de Viçosa, Campus Universitário da, Viçosa, Minas Gerais, CEP:36570-900, Brazil
| |
Collapse
|
4
|
Elkelish A, Abu-Elsaoud AM, Alqahtani AM, El-Nablaway M, Al Harthi N, Al Harthi N, Lakoh S, Saied EM, Labib M. Unlocking the pharmacological potential of Brennnesselwurzel (Urtica dioica L.): an in-depth study on multifaceted biological activities. BMC Complement Med Ther 2024; 24:413. [PMID: 39696148 DOI: 10.1186/s12906-024-04709-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024] Open
Abstract
Brennnesselwurzel (Urtica dioica L.) is recognized for its diverse pharmacological properties. With a range of chemical constituents, such as vitamins, minerals, phenolic compounds, fibers, and amino acids, Brennnesselwurzel (BWE) has a long history of traditional medicinal use in Europe and Asia. The correlation between a plant's metabolite composition and its activity can vary depending on considerations such as geographic location, environmental conditions, and genetic variations. In the present study, we explore the phytochemical profile and biological activity of the 70% acetone extract of the BWE plant. The chemical profile of the BWE extract was explored using several techniques, including amino acid analyzer, HPLC, GC-MS, and other colorimetric analysis. The antioxidant activity of the BWE extract was assessed by evaluating the total antioxidant, free radical scavenging activity (DPPH, ABTS, H2O2), and metal chelating scavenging activity (FRAP, CUPRAC, metal chelating). Furthermore, we assessed the antimicrobial and antiproliferation activities of the BWE extract against 29 microbial strains and 15 cell lines, respectively. Our phytochemical analyzes revealed that the BWE extract has a unique profile of metabolites including amino acids, flavonoids, phenolics, volatile oils, lipids, and vitamins. The BWE extract showed a total antioxidant capacity of 30.94 ± 1.58 mg GAE/g, together with potential free radical scavenging activity towards ABTS (IC50 = 153.51 ± 3.97 µg/ml), DPPH (IC50 = 195.75 ± 5.91 µg/ml), and H2O2 (IC50 = 230.67 ± 5.98 µg/ml). Although the BWE extract showed no significant antifungal activity, our findings revealed that the BWE extract possesses substantial antibacterial activity against Staphylococcus epidermidi, Streptococcus mutants, Enterococcus faecalis, Micrococcus sp., Klebsiella pneumonia and Porphyromonas gingivalis. Furthermore, the BWE extract demonstrated potential antiproliferative activity toward a panel of cancer cell lines with a high selectivity index. Among the cells examined, the BWE extract exhibited significant cytotoxic activity toward HCT-116, A-549, MDA-MB-231 cells with IC50 of 15.11, 15.32, 15.79 µg/mL, respectively, while it possessed no significant cytotoxic activity towards WI-38 cells (IC50 119.62 µg/mL). Taken together, our findings reveal that BWE extract possesses a wide spectrum of biological activities, including antioxidant, antibacterial, and antitumor activities, and could be considered for further research to explore its potential as a natural plant-based supplement for human diseases.
Collapse
Affiliation(s)
- Amr Elkelish
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 1690950, 11623, Riyadh, Saudi Arabia
| | - Abdelghafar M Abu-Elsaoud
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 1690950, 11623, Riyadh, Saudi Arabia
| | - Alaa M Alqahtani
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Mohammad El-Nablaway
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, 13713, DiriyahRiyadh, Saudi Arabia
| | - Norah Al Harthi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Najwa Al Harthi
- Department of General Nursing, College of Nursing, Taif University, Taif, Saudi Arabia
| | - Sulaiman Lakoh
- Department of Internal Medicine, Faculty of Clinical Sciences & Dentistry, College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone.
| | - Essa M Saied
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
- Institute for Chemistry, Humboldt Universität Zu Berlin, 12489, Berlin, Germany
| | - Mai Labib
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Cairo, 3725005, Egypt
| |
Collapse
|
5
|
Espinosa-Sánchez A, Montaño-Estrada LF, Rendón-Huerta EP, Navarrete-Peón A, Gómez-Aldapa CA, Muñóz-Pérez VM, Castro-Rosas J. Hibiscus sabdariffa as a Novel Alternative Strategy Against Helicobacter pylori Infection Development to Gastric Cancer. J Med Food 2024; 27:1158-1167. [PMID: 39382479 DOI: 10.1089/jmf.2024.0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
Most gastric cancers (95%) are related to an initial Helicobacter pylori infection worldwide. Treatments against this pathogen include a mix of antibiotics, antimicrobials, and proton-pump inhibitors. Over time, H. pylori mutated, generating resistance to treatments and making it hard to combat its infection. The purpose of this review is Hibiscus sabdariffa, commonly known as hibiscus, as a potential agent for anti-H. pylori activity. Scientific interest has increased toward plant-derived bioactive compounds, which have the ability to enhance the antibiotic effect and can lead to the development of new drugs, such is the case for H. sabdariffa. In general, studies show that natural products, such as plant-derived bioactive compounds, can be used as alternative treatments from natural origin against the pathogen. The specific action mechanism of these bioactive compounds is still controversial, but it is suggested that they have an anti-inflammatory effect, and they also act as antibiotic coadjutants. Research has been conducted regarding different bioactive compounds such as polyphenols, epicatechins, alkaloids, and caryophyllenes. H. sabdariffa contains several of these compounds; therefore, more studies are needed to establish its effect against H. pylori.
Collapse
Affiliation(s)
- Astrid Espinosa-Sánchez
- Centro de Investigaciones Químicas, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, México
| | - Luis Felipe Montaño-Estrada
- Laboratorio de Inmunobiología, Departamento de Biología Celular y Tisular, Facultad de Medicina, Ciudad Universitaria, Ciudad de México, México
| | - Erika Patricia Rendón-Huerta
- Laboratorio de Inmunobiología, Departamento de Biología Celular y Tisular, Facultad de Medicina, Ciudad Universitaria, Ciudad de México, México
| | | | - Carlos Alberto Gómez-Aldapa
- Centro de Investigaciones Químicas, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, México
| | - Víctor Manuel Muñóz-Pérez
- Departamento de Farmacología, Área Académica de Medicina, Instituto de Ciencias de la Salud, Doctores Pachuca, México
| | - Javier Castro-Rosas
- Centro de Investigaciones Químicas, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, México
| |
Collapse
|
6
|
Ranneh Y, Bedir AS, Abu-Elsaoud AM, Al Raish S. Polyphenol Intervention Ameliorates Non-Alcoholic Fatty Liver Disease: An Updated Comprehensive Systematic Review. Nutrients 2024; 16:4150. [PMID: 39683546 PMCID: PMC11644642 DOI: 10.3390/nu16234150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has recently emerged as a challenging metabolic disorder with a strong emphasis on its prevention and management. Polyphenols, a group of naturally occurring plant compounds, have been associated with a decreased risk of various metabolic disorders related to NAFLD. The current systematic review aims to critically assess evidence about the ameliorative effect of polyphenol supplementation on NAFLD patients. A PRISMA systematic search appraisal was conducted in PubMed, Scopus, Web of Science Core Collection, and all relevant studies published prior to April 2024 and met the inclusion criteria were included. Twenty-nine randomized clinical trials (RCTs) comprised 1840 NAFLD patients. The studies primarily examined eleven phenolic compounds, including turmeric, curcumin, resveratrol, genistein, catechin, green tea extract, hesperidin, and silymarin. Turmeric and curcumin decreased liver enzymes, inflammatory cytokines, lipid profile, insulin resistance, and NAFLD score, while resveratrol did not present consistent results across all the studies. Most studies on silymarin showed a reduction in liver enzymes and lipid profile; however, no changes were observed in inflammatory cytokine levels. The dietary supplementation of hesperidin and naringenin or green tea extract caused improvements in liver enzyme, lipid profile, and inflammatory cytokine, while genistein supplementation did not modulate blood lipid profile. In conclusion, dietary supplementation of polyphenols could potentially prevent and ameliorate NAFLD. Still, the inconsistent results across the included RCTs require further clinical research to establish optimal dosage and duration.
Collapse
Affiliation(s)
- Yazan Ranneh
- Department of Nutrition and Dietetics, College of Pharmacy, Al-Ain University, Al-Ain P.O. Box 64141, United Arab Emirates;
| | - Alaa S. Bedir
- Department of Nutrition, College of Medicine and Health Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates;
| | - Abdelghafar M. Abu-Elsaoud
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia;
| | - Seham Al Raish
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| |
Collapse
|
7
|
Du S, Wang Z, Zhu H, Tang Z, Li Q. Flavonoids attenuate inflammation of HGF and HBMSC while modulating the osteogenic differentiation based on microfluidic chip. J Transl Med 2024; 22:992. [PMID: 39488714 PMCID: PMC11531701 DOI: 10.1186/s12967-024-05808-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND When inflammation occurs in periodontal tissues, a dynamic cellular crosstalk interacts between gingival fibroblasts and bone marrow mesenchymal stem cells (BMSCs), which plays a crucial role in the biological behaviour and differentiation of the cells. Recently, flavonoids are increasingly recognized for their therapeutic potential in modulating inflammation and osteogenic differentiation. Owing to their varied molecular structures and mechanisms, there are more needs that flavonoid compounds should be identified by extensive screening. However, current drug research mostly relies on static, single-type cell cultures. In this study, an innovative bionic microfluidic chip system tailored for both soft and hard tissues was developed to screen for flavonoids suitable for treating periodontitis. METHODS This study developed a microfluidic system that bionically simulates the soft and hard structures of periodontal tissues. Live/dead staining, reactive oxygen species (ROS) staining, and RT-qPCR analysis were employed. These techniques evaluated the effects of flavonoid compounds on the levels of inflammatory factors and ROS contents in HGF and HBMSC under LPS stimulation. Additionally, the impact of these compounds on osteogenic induction in HBMSC and the exploration of the underlying mechanisms were assessed. RESULTS The microfluidic chip used in this study features dual chambers separated by a porous membrane, allowing cellular signal communication via bioactive factors secreted by cells in both layers under perfusion. The inflammatory response within the chip under LPS stimulation was lower compared to individual static cultures of HGF and HBMSC. The selected flavonoids-myricetin, catechin, and quercetin-significantly reduced cellular inflammation, decreased ROS levels, and enhanced osteogenic differentiation of BMSCs. Additionally, fisetin, silybin, and icariside II also demonstrated favorable outcomes in reducing inflammation, lowering ROS levels, and promoting osteogenic differentiation through the Wnt/β-catenin pathway. CONCLUSIONS The bionic microfluidic chip system provides enhanced capabilities for drug screening and evaluation, delivering a more precise assessment of drug efficacy and safety compared to traditional in vitro methods. This study demonstrates the efficacy of flavonoids in influencing osteogenic processes in BMSCs primarily through the Wnt/β-catenin pathway. These results uncover the potential of flavonoids as therapeutic medicine for treating periodontitis, meriting further research and development.
Collapse
Affiliation(s)
- Sa Du
- Second Clinical Division, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
- Center for Digital Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Zhongyu Wang
- Second Clinical Division, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Huilin Zhu
- Second Clinical Division, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Zhihui Tang
- Second Clinical Division, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China.
| | - Qing Li
- Center for Digital Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China.
| |
Collapse
|
8
|
Mostafa HS. Valorization of faba bean peels for fungal tannase production and its application in coffee tannin removal. Food Chem X 2024; 23:101678. [PMID: 39211766 PMCID: PMC11357878 DOI: 10.1016/j.fochx.2024.101678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024] Open
Abstract
This study describes the optimization of the production conditions of Penicillium commune tannase on unutilized food waste, green bean peels, using the central composite of the response surface methodology. It also focuses on applying purified tannase to reduce tannins in coffee. The proposed design recommended a temperature of 29.07 °C, pH of 6.74, a tannin level of 6.76%, and 3.31% bean peels for maximum tannase production (313.40 U/g/min) by solid-state fermentation. This waste can be used as a sustainable and low-cost substrate for tannase enhancement by ≈5 folds. Applying purified tannase in instant coffee beverage resulted in a ≈ 23% reduction in tannins and a ≈ 16% increase in reducing sugars, with no significant changes in caffeine and phenolic compound contents. Tannase had a detrimental effect on the volume and stability of the coffee foam. This study will pave the way for tannase industrial production and its promising use in low-bitter coffee production.
Collapse
Affiliation(s)
- Heba Sayed Mostafa
- Food Science Department, Faculty of Agriculture, Cairo University, 12613 Giza, Egypt
| |
Collapse
|
9
|
Kim E, Choi S, Kim SY, Jang SJ, Lee S, Kim H, Jang JH, Seo HH, Lee JH, Choi SS, Moh SH. Wound healing effect of polydeoxyribonucleotide derived from Hibiscus sabdariffa callus via Nrf2 signaling in human keratinocytes. Biochem Biophys Res Commun 2024; 728:150335. [PMID: 38996695 DOI: 10.1016/j.bbrc.2024.150335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/14/2024]
Abstract
There has been a growing interest in skin recovery in both the medical and cosmetics fields, leading to an increasing number of studies reporting diverse materials being utilized for this purpose. Among them, polydeoxyribonucleotide (PDRN) is known for its efficacy in skin repair processes, while Hibiscus sabdariffa (HS) is recognized for its antioxidant, hypolipidemic, and wound healing properties, including its positive impact on mammalian skin and cells. We hypothesized that these characteristics may have a germane relationship during the healing process. Consequently, we induced calli from HS and then extracted PDRN for use in treating human keratinocytes. PDRN (5 μg/mL) had considerable wound healing effects and wrinkle improvement effects. To confirm its function at the molecular level, we performed real-time polymerase chain reaction, western blotting, and immunocytochemistry. Furthermore, genes related to wound healing (MMP9, Nrf2, KGF, VEGF, SOD2, and AQP3) were significantly upregulated. Additionally, the protein expression of MMP9, AQP3, and CAT, which are closely related to wound healing and antioxidant cascades, was considerably enhanced. Based on cellular morphology and molecular-level evidence, we propose that PDRN from calli of HS can improve wound healing in human keratinocytes. Furthermore, its potential to serve as a novel material in cosmetic products is demonstrated.
Collapse
Affiliation(s)
- Euihyun Kim
- Plant Cell Research Institute, BIO-FD&C Co., Ltd, Yeonsu-gu, Incheon, 21990, Republic of Korea.
| | - Sunmee Choi
- Plant Cell Research Institute, BIO-FD&C Co., Ltd, Yeonsu-gu, Incheon, 21990, Republic of Korea.
| | - Soo-Yun Kim
- Plant Cell Research Institute, BIO-FD&C Co., Ltd, Yeonsu-gu, Incheon, 21990, Republic of Korea.
| | - Sung Joo Jang
- Plant Cell Research Institute, BIO-FD&C Co., Ltd, Yeonsu-gu, Incheon, 21990, Republic of Korea.
| | - Sak Lee
- Plant Cell Research Institute, BIO-FD&C Co., Ltd, Yeonsu-gu, Incheon, 21990, Republic of Korea.
| | - Hyein Kim
- Plant Cell Research Institute, BIO-FD&C Co., Ltd, Yeonsu-gu, Incheon, 21990, Republic of Korea.
| | - Ji Hyeon Jang
- Plant Cell Research Institute, BIO-FD&C Co., Ltd, Yeonsu-gu, Incheon, 21990, Republic of Korea.
| | - Hyo Hyun Seo
- Plant Cell Research Institute, BIO-FD&C Co., Ltd, Yeonsu-gu, Incheon, 21990, Republic of Korea.
| | - Jeong Hun Lee
- Plant Cell Research Institute, BIO-FD&C Co., Ltd, Yeonsu-gu, Incheon, 21990, Republic of Korea.
| | - Sung Soo Choi
- Daesang Holdings, Jung-gu, Seoul, 04513, Republic of Korea.
| | - Sang Hyun Moh
- Plant Cell Research Institute, BIO-FD&C Co., Ltd, Yeonsu-gu, Incheon, 21990, Republic of Korea.
| |
Collapse
|
10
|
Mohamed AH, Ahmed AT, Al Abdulmonem W, Bokov DO, Shafie A, Al-Hetty HRAK, Hsu CY, Alissa M, Nazir S, Jamali MC, Mudhafar M. Interleukin-6 serves as a critical factor in various cancer progression and therapy. Med Oncol 2024; 41:182. [PMID: 38900329 DOI: 10.1007/s12032-024-02422-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024]
Abstract
Interleukin-6 (IL-6), a pro-inflammatory cytokine, plays a crucial role in host immune defense and acute stress responses. Moreover, it modulates various cellular processes, including proliferation, apoptosis, angiogenesis, and differentiation. These effects are facilitated by various signaling pathways, particularly the signal transducer and activator of transcription 3 (STAT3) and Janus kinase 2 (JAK2). However, excessive IL-6 production and dysregulated signaling are associated with various cancers, promoting tumorigenesis by influencing all cancer hallmarks, such as apoptosis, survival, proliferation, angiogenesis, invasiveness, metastasis, and notably, metabolism. Emerging evidence indicates that selective inhibition of the IL-6 signaling pathway yields therapeutic benefits across diverse malignancies, such as multiple myeloma, prostate, colorectal, renal, ovarian, and lung cancers. Targeting key components of IL-6 signaling, such as IL-6Rs, gp130, STAT3, and JAK via monoclonal antibodies (mAbs) or small molecules, is a heavily researched approach in preclinical cancer studies. The purpose of this study is to offer an overview of the role of IL-6 and its signaling pathway in various cancer types. Furthermore, we discussed current preclinical and clinical studies focusing on targeting IL-6 signaling as a therapeutic strategy for various types of cancer.
Collapse
Affiliation(s)
- Asma'a H Mohamed
- Biomedical Engineering Department, College of Engineering and Technologies, Al-Mustaqbal University, Babil, Hilla, 51001, Iraq
| | - Abdulrahman T Ahmed
- Department of Nursing, Al-Maarif University College, Ramadi, AL-Anbar Governorate, Iraq.
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Kingdom of Saudi Arabia
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy named after A.P. Nelyubin, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow, Russian Federation, 119991
- Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow, Russian Federation, 109240
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | | | - Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ, 85004, USA
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Shahid Nazir
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| | - Mohammad Chand Jamali
- Faculty of Medical and Health Sciences, Liwa College, Al Ain, Abu Dhabi, United Arab Emirates
| | - Mustafa Mudhafar
- Department of Medical Physics, College of Applied Medical Sciences, University of Kerbala, Karbala, 56001, Iraq
- Department of Anesthesia Techniques and Intensive Care, Al-Taff University College, Kerbala, 56001, Iraq
| |
Collapse
|
11
|
Cadena-Iñiguez J, Santiago-Osorio E, Sánchez-Flores N, Salazar-Aguilar S, Soto-Hernández RM, Riviello-Flores MDLL, Macías-Zaragoza VM, Aguiñiga-Sánchez I. The Cancer-Protective Potential of Protocatechuic Acid: A Narrative Review. Molecules 2024; 29:1439. [PMID: 38611719 PMCID: PMC11012759 DOI: 10.3390/molecules29071439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/04/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Cancer is one of the leading causes of death worldwide, making the search for alternatives for its control a critical issue. In this context, exploring alternatives from natural sources, such as certain vegetables containing a variety of secondary metabolites with beneficial effects on the body and that play a crucial role in the fight against cancer, is essential. Among the compounds with the greatest efficacy in controlling this disease, those with antioxidant activity, particularly phenolic com-pounds, stand out. A remarkable example of this group is protocatechuic acid (PCA), which has been the subject of various revealing research on its activities in different areas. These studies sustain that protocatechuic acid has anti-inflammatory, antimutagenic, antidiabetic, antiulcer, antiviral, antifibrogenic, antiallergic, neuroprotective, antibacterial, anticancer, antiosteoporotic, anti-aging, and analgesic properties, in addition to offering protection against metabolic syndrome and con-tributing to the preservation of hepatic, renal, and reproductive functionality. Therefore, this paper aims to review the biological activities of PCA, focusing on its anticancer potential and its in-volvement in the control of various molecular pathways involved in tumor development, sup-porting its option as a promising alternative for cancer treatment.
Collapse
Affiliation(s)
- Jorge Cadena-Iñiguez
- Postgraduate College, Campus San Luis Potosí, Salinas de Hidalgo, San Luis Potosí 78622, Mexico;
| | - Edelmiro Santiago-Osorio
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, Faculty of High Studies Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico; (E.S.-O.); (N.S.-F.)
| | - Nancy Sánchez-Flores
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, Faculty of High Studies Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico; (E.S.-O.); (N.S.-F.)
| | - Sandra Salazar-Aguilar
- Specialized Equipment Laboratory, Faculty of High Studies Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico;
| | - Ramón Marcos Soto-Hernández
- Postgraduate College, Campus Montecillo, Km. 36.5, Carretera México-Texcoco, Montecillo, Texcoco 56230, Mexico; (R.M.S.-H.); (M.d.l.L.R.-F.)
| | - María de la Luz Riviello-Flores
- Postgraduate College, Campus Montecillo, Km. 36.5, Carretera México-Texcoco, Montecillo, Texcoco 56230, Mexico; (R.M.S.-H.); (M.d.l.L.R.-F.)
| | - Víctor Manuel Macías-Zaragoza
- Department of Biomedical Sciences, Faculty of Medicine, Faculty of Higher Studies Zaragoza, National Autonomous University of Mexico, Av. Guelatao 66, Iztapalapa, Mexico City 09230, Mexico;
| | - Itzen Aguiñiga-Sánchez
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, Faculty of High Studies Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico; (E.S.-O.); (N.S.-F.)
- Department of Biomedical Sciences, Faculty of Medicine, Faculty of Higher Studies Zaragoza, National Autonomous University of Mexico, Av. Guelatao 66, Iztapalapa, Mexico City 09230, Mexico;
| |
Collapse
|
12
|
Simionescu N, Petrovici AR. Enhancing the Antioxidant Potential of Weissella confusa PP29 Probiotic Media through Incorporation of Hibiscus sabdariffa L. Anthocyanin Extract. Antioxidants (Basel) 2024; 13:165. [PMID: 38397763 PMCID: PMC10886145 DOI: 10.3390/antiox13020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Lactic acid bacteria (LAB) produce important metabolites during fermentation processes, such as exopolysaccharides (EPS), which represent powerful natural antioxidants. On the other hand, H. sabdariffa L. anthocyanin extracts protect LAB and support their development. This study uncovers for the first time, the antioxidant profile of Weissella confusa PP29 probiotic media and focuses on elevating its impressive antioxidant attributes by synergistically integrating H. sabdariffa L. anthocyanin extract. The multifaceted potential of this innovative approach is explored and the results are remarkable, allowing us to understand the protective capacity of the fermented product on the intestinal mucosa. The total phenolic content was much lower at the end of the fermentation process compared to the initial amount, confirming their LAB processing. The DPPH radical scavenging and FRAP of the fermented products were higher compared to ascorbic acid and antioxidant extracts, while superoxide anion radical scavenging and lipid peroxidation inhibitory activity were comparable to that of ascorbic acid. The antioxidant properties of the fermented products were correlated with the initial inoculum and anthocyanin concentrations. All these properties were preserved for 6 months, demonstrating the promising efficacy of this enriched medium, underlining its potential as a complex functional food with enhanced health benefits.
Collapse
Affiliation(s)
- Natalia Simionescu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania;
- The Research Institute of the University of Bucharest (ICUB), 90 Sos. Panduri, 050663 Bucharest, Romania
| | - Anca-Roxana Petrovici
- Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania;
| |
Collapse
|
13
|
Das NC, Chakraborty P, Nandy S, Dey A, Malik T, Mukherjee S. Programmed cell death pathways as targets for developing antifilarial drugs: Lessons from the recent findings. J Cell Mol Med 2023; 27:2819-2840. [PMID: 37605891 PMCID: PMC10538269 DOI: 10.1111/jcmm.17913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/17/2023] [Accepted: 08/09/2023] [Indexed: 08/23/2023] Open
Abstract
More than half a century has passed since the introduction of the National Filariasis Control Program; however, as of 2023, lymphatic filariasis (LF) still prevails globally, particularly in the tropical and subtropical regions, posing a substantial challenge to the objective of worldwide elimination. LF is affecting human beings and its economically important livestock leading to a crucial contributor to morbidities and disabilities. The current scenario has been blowing up alarms of attention to develop potent therapeutics and strategies having efficiency against the adult stage of filarial nematodes. In this context, the exploration of a suitable drug target that ensures lethality to macro and microfilariae is now our first goal to achieve. Apoptosis has been the potential target across all three stages of filarial nematodes viz. oocytes, microfilariae (mf) and adults resulting in filarial death after receiving the signal from the reactive oxygen species (ROS) and executed through intrinsic and extrinsic pathways. Hence, it is considered a leading target for developing antifilarial drugs. Herein, we have shown the efficacy of several natural and synthetic compounds/nanoformulations in triggering the apoptotic death of filarial parasites with little or no toxicity to the host body system.
Collapse
Affiliation(s)
- Nabarun Chandra Das
- Integrative Biochemistry & Immunology Laboratory, Department of Animal ScienceKazi Nazrul UniversityAsansolIndia
| | - Pritha Chakraborty
- Integrative Biochemistry & Immunology Laboratory, Department of Animal ScienceKazi Nazrul UniversityAsansolIndia
| | - Samapika Nandy
- Department of Life SciencePresidency UniversityKolkataIndia
- School of PharmacyGraphic Era Hill UniversityDehradunIndia
| | - Abhijit Dey
- Department of Life SciencePresidency UniversityKolkataIndia
| | | | - Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory, Department of Animal ScienceKazi Nazrul UniversityAsansolIndia
| |
Collapse
|
14
|
Hamza AA, Heeba GH, Hassanin SO, Elwy HM, Bekhit AA, Amin A. Hibiscus-cisplatin combination treatment decreases liver toxicity in rats while increasing toxicity in lung cancer cells via oxidative stress- apoptosis pathway. Biomed Pharmacother 2023; 165:115148. [PMID: 37450997 DOI: 10.1016/j.biopha.2023.115148] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/01/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
Cisplatin (CIS) is a broad-spectrum anti-carcinogen that causes cytotoxic effects both in normal and cancer cells. The purpose of this study was to test whether Hibiscus sabdariffa (HS) extract can reduce CIS-induced hepatotoxicity in rodents and to assess its anticancer activity in vitro. Treatment with HS extract at daily doses of 500 mg/kg before and after a single dose of CIS (10 mg/kg) reduced hepatotoxicity in Wistar male albino rats. HS extract reduced activity of hepatic damage marker enzymes ( i.e. alanine and aspartate aminotransferases), necrosis, and apoptosis in liver tissues of CIS-treated rats. This hepatic protection was associated with reduced oxidative stress in liver tissues. The antioxidant effects of HS were manifested as a normalization of malondialdehyde levels and glutathione levels which were all raised after CIS-induction. In addition, HS treatment resulted in a decrease of catalase, and superoxide dismutase activity. The combined effects of CIS and HS were also studied in two human lung cancer cell lines (A549 and H460). Treatment with HS (20 μg /mL) enhanced the cytotoxic activity of CIS both in A549 and H460 cell lines. Interestingly, HS increased CIS-induced apoptosis and oxidative stress more clearly in A549 cells indicating that HS extract in combination with CIS could increase the efficacy of CIS in the treatment of cancer.
Collapse
Affiliation(s)
- Alaaeldin Ahmed Hamza
- Biology Department, National Organization for Drug Control and Research, Giza 12611, Egypt.
| | - Gehan Hussein Heeba
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, El-Minia, Egypt
| | - Soha Osama Hassanin
- Biochemistry Department, Modern University for Technology and information, Cairo 11585, Egypt
| | - Hanan Mohamed Elwy
- Analytical Chemistry Department, National Organization for Drug Control and Research, Giza 12611, Egypt
| | | | - Amr Amin
- Department of Biology, College of Science U.A.E. University, P.O. Box 15551, Al-Ain, UAE.
| |
Collapse
|
15
|
Lorenzana-Martínez G, San Juan-García CA, Santerre A, Andrade-González I, Bañuelos-Pineda J. The Phytoestrogenic Effect of Hibiscus sabdariffa Involves Estrogen Receptor α in Ovariectomized Wistar Rats. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023:10.1007/s11130-023-01061-x. [PMID: 37314593 DOI: 10.1007/s11130-023-01061-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 06/15/2023]
Abstract
The calyxes of Hibiscus sabdariffa present multiple pharmacological effects primarily attributed to their high anthocyanin content; however, little is known about their phytoestrogenic effect. Ovarian hypofunction (OH) is a process characterized by the rapid detention of the production of ovarian hormones, which compromises reproductive and cognitive functions. Hormone replacement therapy (HRT) efficiently compensates for OH; nevertheless, questions have been raised on its secondary effects and safety. One of the alternatives to tackling OH involves using phytoestrogens such as anthocyanins for their structural similarity to natural estrogens. In a Wistar rat model of ovariectomy (OVX), we recently reported the beneficial properties of an anthocyanin-rich extract prepared from the calyces of H. sabdariffa (HSE) in hindering the adverse effects of OH on memory performance and highlighted a possible phytoestrogenic impact through the modulation of estrogen receptor (ER) expression. We now report that HSE and estradiol differentially affected the expression of ERα and ERβ. ERα was more sensitive to HSE; meanwhile, estradiol preferentially modulated ERβ. Thus, our study leads to further research on using H. sabdariffa as a nutrition-based alternative to HRT.
Collapse
Affiliation(s)
- Gerardo Lorenzana-Martínez
- Laboratorio de Morfofisiología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Camino Ing. Ramón Padilla Sánchez No 2100, Predio las Agujas, C.P. 45510, Zapopan, Nextipac, Jalisco, Mexico
| | - César Alejandro San Juan-García
- Laboratorio de Biomarcadores Moleculares en Biomedicina y Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Camino Ing. Ramón Padilla Sánchez No 2100, Predio las Agujas, C.P. 45510, Zapopan, Nextipac, Jalisco, Mexico
| | - Anne Santerre
- Laboratorio de Biomarcadores Moleculares en Biomedicina y Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Camino Ing. Ramón Padilla Sánchez No 2100, Predio las Agujas, C.P. 45510, Zapopan, Nextipac, Jalisco, Mexico.
| | - Isaac Andrade-González
- Planta Piloto de Procesos Agroalimentarios, Tecnologico Nacional de Mexico Campus Tlajomulco, km 10 Carr. San Miguel Cuyutlan, C.P. 45640, Tlajomulco de Zúñiga, Jalisco, Mexico
| | - Jacinto Bañuelos-Pineda
- Laboratorio de Morfofisiología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Camino Ing. Ramón Padilla Sánchez No 2100, Predio las Agujas, C.P. 45510, Zapopan, Nextipac, Jalisco, Mexico
| |
Collapse
|
16
|
Duque-Soto C, Expósito-Almellón X, García P, Pando ME, Borrás-Linares I, Lozano-Sánchez J. Extraction, Characterization, and Bioactivity of Phenolic Compounds-A Case on Hibiscus Genera. Foods 2023; 12:foods12050963. [PMID: 36900480 PMCID: PMC10000862 DOI: 10.3390/foods12050963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/13/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Phenolic compounds have recently gained interest, as they have been related to improvements in health and disease prevention, such as inflammatory intestinal pathologies and obesity. However, their bioactivity may be limited by their instability or low concentration in food matrices and along the gastrointestinal tract once consumed. This has led to the study of technological processing with the aim of optimizing phenolic compounds' biological properties. In this sense, different extraction systems have been applied to vegetable sources for the purpose of obtaining enriched phenolic extracts such as PLE, MAE, SFE, and UAE. In addition, many in vitro and in vivo studies evaluating the potential mechanisms of these compounds have also been published. This review includes a case study of the Hibiscus genera as an interesting source of phenolic compounds. The main goal of this work is to describe: (a) phenolic compound extraction by designs of experiments (DoEs) applied to conventional and advanced systems; (b) the influence of the extraction system on the phenolic composition and, consequently, on the bioactive properties of these extracts; and (c) bioaccessibility and bioactivity evaluation of Hibiscus phenolic extracts. The results have pointed out that the most used DoEs were based on response surface methodologies (RSM), mainly the Box-Behnken design (BBD) and central composite design (CCD). The chemical composition of the optimized enriched extracts showed an abundance of flavonoids, as well as anthocyanins and phenolic acids. In vitro and in vivo studies have highlighted their potent bioactivity, with particular emphasis on obesity and related disorders. This scientific evidence establishes the Hibiscus genera as an interesting source of phytochemicals with demonstrated bioactive potential for the development of functional foods. Nevertheless, future investigations are needed to evaluate the recovery of the phenolic compounds of the Hibiscus genera with remarkable bioaccessibility and bioactivity.
Collapse
Affiliation(s)
- Carmen Duque-Soto
- Department of Food Science and Nutrition, University of Granada, Campus Universitario s/n, 18071 Granada, Spain
| | - Xavier Expósito-Almellón
- Department of Food Science and Nutrition, University of Granada, Campus Universitario s/n, 18071 Granada, Spain
| | - Paula García
- Departamento de Nutrición, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - María Elsa Pando
- Departamento de Nutrición, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Isabel Borrás-Linares
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, 18071 Granada, Spain
- Correspondence: ; Tel.: +34-958637083
| | - Jesús Lozano-Sánchez
- Department of Food Science and Nutrition, University of Granada, Campus Universitario s/n, 18071 Granada, Spain
| |
Collapse
|
17
|
Laskar YB, Mazumder PB, Talukdar AD. Hibiscus sabdariffa anthocyanins are potential modulators of estrogen receptor alpha activity with favourable toxicology: a computational analysis using molecular docking, ADME/Tox prediction, 2D/3D QSAR and molecular dynamics simulation. J Biomol Struct Dyn 2023; 41:611-633. [PMID: 34854367 DOI: 10.1080/07391102.2021.2009914] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The estrogen hormone receptor (ER) mediated gene expression mainly regulate the development and physiology of the primary and secondary reproductive system alongside bone-forming, metabolism and behaviour. Over-expressed ER is associated with several pathological conditions and play a crucial role in breast cancer occurrence, progression and metastasis. Hibiscus sabdariffa L. or roselle is a rich source of naturally occurring polyphenolic compounds that reportedly have robust estrogenic activity. However, the estrogen-like ingredient of the plant remains ambiguous. This study has screened a library of already recorded and less-explored compounds of Hibiscus sabdariffa for their estrogen receptor binding affinity and safety using a suite of computational methods that include protein-ligand docking, ADME and Toxicity prediction, and 2D/3D QSAR. The study revealed that the estrogen-receptor binding potential of Pelargonidin, Delphinidin, Cyanidin, and Hibiscetin are more efficient than popular breast cancer drugs, Tamoxifen and Raloxifene. Besides, the compounds exhibited favourable toxicological parameters with potent bioactivity towards binding ER-α subunit. Thus, these compounds can serve as prototypes for designing novel Selective Estrogen Receptor Modulator molecules with a few structural modifications. This is the first report exploring the phytochemical basis of estrogenic activity of Hibiscus sabdariffa L.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yahyea Baktiar Laskar
- Natural Product and Biomedicine Research Laboratory, Department of Biotechnology, Assam University, Silchar, India
| | - Pranab Behari Mazumder
- Natural Product and Biomedicine Research Laboratory, Department of Biotechnology, Assam University, Silchar, India
| | - Anupam Das Talukdar
- Ethnobotany and Medicinal Plants Research Laboratory, Department of Life Science & Bioinformatics, Assam University, Silchar, India
| |
Collapse
|
18
|
Sayed Mostafa H. Production of low-tannin Hibiscus sabdariffa tea through D-optimal design optimization of the preparation conditions and the catalytic action of new tannase. Food Chem X 2023; 17:100562. [PMID: 36845514 PMCID: PMC9943849 DOI: 10.1016/j.fochx.2023.100562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/14/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
Many tannase-based industrial applications are currently being developed to successfully break down tannins in teas and juices. However, so far, no study has demonstrated the potential application of tannase to reduce tannin levels in Hibiscus sabdariffa tea. The D-optimal design was utilized to predict the optimal conditions for maximizing anthocyanins and decreasing tannin content in Hibiscus tea. Then, the effects of Penicillium commune tannase were evaluated by examining the physicochemical parameters and α-amylase inhibitory action of untreated and treated Hibiscus tea, as well as quantifying catechin content changes using HPLC. Following treatment with tannase, the esterified catechins decreased by 8.91%, while the non-esterified catechins increased by 19.76%. Additionally, tannase significantly raised the total phenolic compounds by 8.6%. In contrast, the α-amylase inhibiting activity of Hibiscus tea decreased by ≈28%. As a novel member of the tea family, tannase offers an excellent means of conditionally producing low-astringency Hibiscus tea.
Collapse
|
19
|
Bassong TR, Kenmogne LV, Awounfack CF, Ndinteh DT, Njamen D, Zingue S. Effects of Hibiscus sabdariffa Calyxes Aqueous Extract on Antioxidant Status and Histopathology in Mammary Tumor-Induced in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:9872788. [PMID: 35502172 PMCID: PMC9056213 DOI: 10.1155/2022/9872788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/05/2022] [Accepted: 03/21/2022] [Indexed: 11/18/2022]
Abstract
Breast cancer is a major threat worldwide. Hibiscus sabdariffa is widely consumed as beverage in sub-Saharan Africa for its anticancer potential. The present study therefore aimed at scientifically verifying its anticancer effect in rats. For this, 48 Wistar rats (∼55 days) were treated either with tamoxifen at 3.3 mg/kg BW (standard) or with a decoction of H. sabdariffa (125, 250, and 500 mg/kg BW) or distilled water (vehicle). Breast cancer was induced by a single dose of 50 mg/kg of 7,12-dimethylbenz(a)anthracene (DMBA). At the end of the 21 weeks of treatment, the tumor incidence, tumor morphology, histopathology, as well as some biochemical parameters in the tumors were assessed. As a result, 86% of DMBA's rats developed mammary tumors. The H. sabdariffa extract (125 and 250 mg/kg) reduced tumor incidence by 63% and 75%, respectively; inhibited tumor burden by 84.86% and 38.78%, respectively, and decreased tumor volume by more than 72% compared to the DMBA group. It also protected rats against DMBA-induced diffuse breast neoplasia, and the optimal effect was recorded at 125 mg/kg. Furthermore, it significantly increases the SOD activity and decreases the MDA level. In summary, H. sabdariffa has antibreast tumor and antioxidant properties in rats, which could justify its common use to treat cancer.
Collapse
Affiliation(s)
- Thierry Renaud Bassong
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaounde, Cameroon
| | - Larissa Vanelle Kenmogne
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaounde, Cameroon
- Department of Surgery, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Charline Florence Awounfack
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaounde, Cameroon
| | - Derek Tantoh Ndinteh
- Centre for Natural Product Research, Department of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa
| | - Dieudonné Njamen
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaounde, Cameroon
| | - Stéphane Zingue
- Centre for Natural Product Research, Department of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa
- Department of Medical and Biomedical Engineering, Higher Technical Teachers' Training College, University of Ebolowa, P.O. Box 886 Ebolowa, Cameroon
| |
Collapse
|
20
|
Montalvo-González E, Villagrán Z, González-Torres S, Iñiguez-Muñoz LE, Isiordia-Espinoza MA, Ruvalcaba-Gómez JM, Arteaga-Garibay RI, Acosta JL, González-Silva N, Anaya-Esparza LM. Physiological Effects and Human Health Benefits of Hibiscus sabdariffa: A Review of Clinical Trials. Pharmaceuticals (Basel) 2022; 15:ph15040464. [PMID: 35455462 PMCID: PMC9033014 DOI: 10.3390/ph15040464] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/09/2022] [Accepted: 04/10/2022] [Indexed: 02/04/2023] Open
Abstract
Hibiscus sabdariffa Linn. Malvaceae (HS) is characterized by its edible calyxes. The HS calyxes are widely used for cosmetic, food, and medicinal applications. According to ethnobotanical evidence, decoction, infusion, or maceration extracts from HS calyxes have been used in folk medicine to treat many ailments. Moreover, several in vitro and in vivo studies have demonstrated the pharmacological properties and potential human health benefits of HS consumption. On the other hand, the evaluation of the physiological effects and health benefits of HS in clinical studies is most challenging. Therefore, this narrative review summarizes and discusses the physiological effects and health benefits of HS calyxes reported in clinical trials. Preparations obtained from HS calyxes (extracts, infusions, decoction, teas, beverages, capsules, and pills) are used as non-pharmacological therapies to prevent/control diverse chronic non-communicable diseases. The most-reported HS health benefits are its antihypertensive, antidyslipidemic, hypoglycemic, body fat mass reduction, nephroprotective, antianemic, antioxidant, anti-inflammatory, and anti-xerostomic activities; these effects are associated with the phytochemicals found in HS. Moreover, no adverse effects were reported during the clinical trials. However, clinical studies exhibited some limitations; thus, further studies are required to validate the clinical efficacy of HS in large-scale studies with higher doses and a good experimental design
Collapse
Affiliation(s)
- Efigenia Montalvo-González
- Integral Food Research Laboratory, National Technological of Mexico/Technological Institute of Tepic, Av. Tecnologico 2595, Tepic 63175, Mexico;
| | - Zuamí Villagrán
- Department of Health Sciences, Division of Biomedical Science, University Center of Los Altos, University of Guadalajara, Av. Rafael Casillas Aceves 1200, Guadalajara 47600, Mexico; (Z.V.); (S.G.-T.)
| | - Sughey González-Torres
- Department of Health Sciences, Division of Biomedical Science, University Center of Los Altos, University of Guadalajara, Av. Rafael Casillas Aceves 1200, Guadalajara 47600, Mexico; (Z.V.); (S.G.-T.)
| | - Laura Elena Iñiguez-Muñoz
- División of Natural and Technological Exact Sciences, Southern Region University Center, University of Guadalajara, Av. Enrique Arreola Silva 883, Guadalajara 49000, Mexico;
| | - Mario Alberto Isiordia-Espinoza
- Department of Clinics, Division of Biomedical Sciences, Institute of Research in Medical Sciences, Los Altos University Center, University of Guadalajara, Av. Rafael Casillas Aceves 1200, Guadalajara 47600, Mexico;
| | - José Martín Ruvalcaba-Gómez
- National Center for Genetic Resources, National Institute of Forestry, Agriculture and Livestock Research, Boulevard de la Biodiversidad 400, Tepatitlan de Morelos 47600, Mexico; (J.M.R.-G.); (R.I.A.-G.)
| | - Ramón Ignacio Arteaga-Garibay
- National Center for Genetic Resources, National Institute of Forestry, Agriculture and Livestock Research, Boulevard de la Biodiversidad 400, Tepatitlan de Morelos 47600, Mexico; (J.M.R.-G.); (R.I.A.-G.)
| | - José Luis Acosta
- Interdisciplinary Research Centre for Integral Regional Development Sinaloa Unit, National Polytechnic Institute, Boulevard Juan de Dios Bátiz 250, Guasave 81049, Mexico;
| | - Napoleón González-Silva
- Department of Livestock and Agricultural Sciences, University Center of Los Altos, University of Guadalajara, Av. Rafael Casillas Aceves 1200, Guadalajara 47600, Mexico
- Correspondence: (N.G.-S.); (L.M.A.-E.)
| | - Luis Miguel Anaya-Esparza
- Department of Livestock and Agricultural Sciences, University Center of Los Altos, University of Guadalajara, Av. Rafael Casillas Aceves 1200, Guadalajara 47600, Mexico
- Correspondence: (N.G.-S.); (L.M.A.-E.)
| |
Collapse
|
21
|
Sun X, Zhang Y, Zhou Y, Lian X, Yan L, Pan T, Jin T, Xie H, Liang Z, Qiu W, Wang J, Li Z, Zhu F, Sui X. NPCDR: natural product-based drug combination and its disease-specific molecular regulation. Nucleic Acids Res 2021; 50:D1324-D1333. [PMID: 34664659 PMCID: PMC8728151 DOI: 10.1093/nar/gkab913] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/16/2021] [Accepted: 09/25/2021] [Indexed: 01/15/2023] Open
Abstract
Natural product (NP) has a long history in promoting modern drug discovery, which has derived or inspired a large number of currently prescribed drugs. Recently, the NPs have emerged as the ideal candidates to combine with other therapeutic strategies to deal with the persistent challenge of conventional therapy, and the molecular regulation mechanism underlying these combinations is crucial for the related communities. Thus, it is urgently demanded to comprehensively provide the disease-specific molecular regulation data for various NP-based drug combinations. However, no database has been developed yet to describe such valuable information. In this study, a newly developed database entitled ‘Natural Product-based Drug Combination and Its Disease-specific Molecular Regulation (NPCDR)’ was thus introduced. This database was unique in (a) providing the comprehensive information of NP-based drug combinations & describing their clinically or experimentally validated therapeutic effect, (b) giving the disease-specific molecular regulation data for a number of NP-based drug combinations, (c) fully referencing all NPs, drugs, regulated molecules/pathways by cross-linking them to the available databases describing their biological or pharmaceutical characteristics. Therefore, NPCDR is expected to have great implications for the future practice of network pharmacology, medical biochemistry, drug design, and medicinal chemistry. This database is now freely accessible without any login requirement at both official (https://idrblab.org/npcdr/) and mirror (http://npcdr.idrblab.net/) sites.
Collapse
Affiliation(s)
- Xueni Sun
- School of Pharmacy and Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Yintao Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310000, China
| | - Xichen Lian
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lili Yan
- School of Pharmacy and Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Ting Pan
- School of Pharmacy and Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Ting Jin
- School of Pharmacy and Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Han Xie
- School of Pharmacy and Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Zimao Liang
- School of Pharmacy and Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Wenqi Qiu
- Department of Surgery, HKU-SZH & Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jianxin Wang
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Zhaorong Li
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Xinbing Sui
- School of Pharmacy and Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
22
|
Joshi BC, Juyal V, Sah AN, Verma P, Mukhija M. Review On Documented Medicinal Plants Used For The Treatment Of Cancer. CURRENT TRADITIONAL MEDICINE 2021. [DOI: 10.2174/2215083807666211011125110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background:
Cancer is a frightful disease and it is the second leading cause of death worldwide. Naturally derived compounds are gaining interest of research workers as they have less toxic side effects as compared to currently used treatments such as chemotherapy. Plants are the pool of chemical compounds which provides a promising future for research on cancer.
Objective:
This review paper provides updated information gathered on medicinal plants and isolated phytoconstituents used as anticancer agents and summarises the plant extracts and their isolated chemical constituents exhibiting anticancer potential on clinical trials.
Methods:
An extensive bibliographic investigation was carried out by analysing worldwide established scientific databases like SCOPUS, PUBMED, SCIELO, ScienceDirect, Springerlink, Web of Science, Wiley, SciFinder and Google Scholar etc. In next few decades, herbal medicine may become a new epoch of medical system.
Results:
Many researches are going on medicinal plants for the treatment of cancer but it is a time to increase further experimental studies on plant extracts and their chemical constituents to find out their mechanism of action at molecular level.
Conclusion:
The article may help many researchers to start off further experimentation that might lead to the drugs for the cancer treatment.
Collapse
Affiliation(s)
- Bhuwan Chandra Joshi
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Vijay Juyal
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Archana N. Sah
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Piyush Verma
- Department of Pharmacology, School of Pharmaceutical science and Technology, Sardar Bhagwan Singh University, Dehradun-248001, India
| | - Minky Mukhija
- Department of Pharmaceutical Sciences, Ch. Devi Lal College of Pharmacy, Buria Road, Bhagwangarh, Jagadhri-135003, India
| |
Collapse
|
23
|
Role of Herbal Teas in Regulating Cellular Homeostasis and Autophagy and Their Implications in Regulating Overall Health. Nutrients 2021; 13:nu13072162. [PMID: 34201882 PMCID: PMC8308238 DOI: 10.3390/nu13072162] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/19/2021] [Accepted: 06/20/2021] [Indexed: 02/06/2023] Open
Abstract
Tea is one of the most popular and widely consumed beverages worldwide, and possesses numerous potential health benefits. Herbal teas are well-known to contain an abundance of polyphenol antioxidants and other ingredients, thereby implicating protection and treatment against various ailments, and maintaining overall health in humans, although their mechanisms of action have not yet been fully identified. Autophagy is a conserved mechanism present in organisms that maintains basal cellular homeostasis and is essential in mediating the pathogenesis of several diseases, including cancer, type II diabetes, obesity, and Alzheimer’s disease. The increasing prevalence of these diseases, which could be attributed to the imbalance in the level of autophagy, presents a considerable challenge in the healthcare industry. Natural medicine stands as an effective, safe, and economical alternative in balancing autophagy and maintaining homeostasis. Tea is a part of the diet for many people, and it could mediate autophagy as well. Here, we aim to provide an updated overview of popular herbal teas’ health-promoting and disease healing properties and in-depth information on their relation to autophagy and its related signaling molecules. The present review sheds more light on the significance of herbal teas in regulating autophagy, thereby improving overall health.
Collapse
|